JP2009001439A - Optical glass for molding - Google Patents
Optical glass for molding Download PDFInfo
- Publication number
- JP2009001439A JP2009001439A JP2007161642A JP2007161642A JP2009001439A JP 2009001439 A JP2009001439 A JP 2009001439A JP 2007161642 A JP2007161642 A JP 2007161642A JP 2007161642 A JP2007161642 A JP 2007161642A JP 2009001439 A JP2009001439 A JP 2009001439A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- point
- glass
- optical glass
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 74
- 238000000465 moulding Methods 0.000 title claims abstract description 26
- 230000009477 glass transition Effects 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims abstract description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 17
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 15
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 15
- 125000004429 atom Chemical group 0.000 claims description 13
- 229910017768 LaF 3 Inorganic materials 0.000 claims description 11
- 229910005690 GdF 3 Inorganic materials 0.000 claims description 8
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- 125000001153 fluoro group Chemical group F* 0.000 claims description 8
- 238000004031 devitrification Methods 0.000 abstract description 29
- 229910052715 tantalum Inorganic materials 0.000 abstract description 3
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 2
- 229910052746 lanthanum Inorganic materials 0.000 abstract description 2
- 229910052727 yttrium Inorganic materials 0.000 abstract description 2
- 229910052758 niobium Inorganic materials 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 25
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 229910018068 Li 2 O Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 15
- 229910052761 rare earth metal Inorganic materials 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 150000002910 rare earth metals Chemical class 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 8
- 238000007496 glass forming Methods 0.000 description 8
- -1 Gd 2 O 3 Inorganic materials 0.000 description 6
- 206010040925 Skin striae Diseases 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/23—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/253—Silica-free oxide glass compositions containing germanium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明はアッベ数(νd)をx軸とし、屈折率(nd)をy軸とする直交座標系におけるA点(52.0,1.80000)、B点(44.0,1.80000)、C点(47.0,1.74000)、D点(55.0,1.74000)をA点、B点、C点、D点、A点の順序で結んだ直線である境界線で囲まれる範囲内のアッベ数(νd)と屈折率(nd)を有するモールド用光学ガラスに関するものである。 In the present invention, point A (52.0, 1.8000) and point B (44.0, 1.80000) in an orthogonal coordinate system having the Abbe number (νd) as the x-axis and the refractive index (nd) as the y-axis. , C point (47.0, 1.74000), D point (55.0, 1.74000) is a boundary line that is a straight line connecting point A, point B, point C, point D, point A The present invention relates to an optical glass for molding having an Abbe number (νd) and a refractive index (nd) within the enclosed range.
近年のデジタル機器の急速な普及、発展において、非球面レンズを用いた光学設計は欠かせない存在になっている。非球面レンズはガラスを再加熱し金型で加圧成形してレンズを得る技術(ガラスモールド成形)を用いて作製されているが、ここで問題となるのが金型の寿命である。金型の寿命は低コスト、大量生産のためには非常に重要となる。金型の長寿命化に重要なのは加熱する温度(成形温度)であり、できるだけ低い温度で成形できるガラス、つまりガラス転移温度(Tg)および屈伏点(At)ができるだけ低いガラスの開発が要求されている。 With the rapid spread and development of digital equipment in recent years, optical design using aspherical lenses has become indispensable. The aspherical lens is manufactured using a technique (glass molding) in which glass is reheated and pressure-molded with a mold to obtain a lens, but the problem here is the life of the mold. Mold life is very important for low cost and mass production. What is important for extending the life of the mold is the heating temperature (molding temperature), which requires the development of glass that can be molded at as low a temperature as possible, that is, a glass with a glass transition temperature (Tg) and yield point (At) as low as possible. Yes.
また、さらなる光学機器の発展のために、光学恒数に関する要望も高まってきている。特にアッベ数(νd)が50.0付近でできるだけ屈折率(nd)の高いモールド用光学ガラスの要求が高い。 In addition, there is an increasing demand for optical constants for further development of optical instruments. In particular, there is a high demand for optical glass for molds having a high refractive index (nd) as much as possible when the Abbe number (νd) is around 50.0.
以下、ガラス転移温度(Tg)および屈伏点(At)が比較的低く、要求される光学恒数を満たす従来例のガラスを説明する。
特許文献1には、屈伏温度(At)が560℃以下であり、屈折率(nd)が1.795以上、アッベ数(νd)が39.5以上の範囲の光学恒数を有し、必須成分として、B2O3、GeO2、La2O3、Gd2O3、Li2O、Ta2O5、LaF3を含有する光学ガラスが提案されている。
Hereinafter, a glass of a conventional example that has a relatively low glass transition temperature (Tg) and yield point (At) and satisfies the required optical constant will be described.
Patent Document 1 has an optical constant having a yield temperature (At) of 560 ° C. or lower, a refractive index (nd) of 1.795 or more, and an Abbe number (νd) of 39.5 or more, and is essential. Optical glass containing B 2 O 3 , GeO 2 , La 2 O 3 , Gd 2 O 3 , Li 2 O, Ta 2 O 5 , and LaF 3 as components has been proposed.
また、特許文献2には、ガラス転移温度(Tg)が530〜680℃の範囲で、アッベ数(νd)をx軸とし、屈折率(nd)をy軸とする、x−y直交座標におけるA点(1.75、50.0)、B点(1.80、46.0)、C点(1.80、50.0)およびD点(1.75、56.0)をA点、B点、C点、D点、A点の順序で結ぶ直線である境界線で囲まれる範囲内の光学恒数を有し、必須成分としてSiO2、B2O3、La2O3、Gd2O3、Li2O、Fを含有する光学ガラスが提案されている。 In Patent Document 2, the glass transition temperature (Tg) is in the range of 530 to 680 ° C., the Abbe number (νd) is the x axis, and the refractive index (nd) is the y axis. Point A (1.75, 50.0), point B (1.80, 46.0), point C (1.80, 50.0) and point D (1.75, 56.0) , B point, C point, D point, and an optical constant in a range surrounded by a boundary line that is a straight line in the order of A point, and SiO 2 , B 2 O 3 , La 2 O 3 , as essential components, An optical glass containing Gd 2 O 3 , Li 2 O, and F has been proposed.
しかし、上述した従来例のガラスでは、以下に説明するような問題点が存在する。
すなわち、特許文献1および2に記載された光学ガラスはいずれもLi2OおよびFを必須成分にしてガラス転移温度(Tg)を低下させているが、Li2Oを含有しているため耐失透性が悪いという問題がある。
また、特許文献2に記載の光学ガラスは、希土類酸化物(Y2O3、La2O3、Gd2O3、Yb2O3)の合計含有量が実施例にある通り、すべて50.0重量%以上と非常に多い。そのため、Li2Oを含有させながらガラス化させるために、ガラス形成酸化物(SiO2、B2O3、GeO2)の合計含有量が25.0重量%以上含有させるか、あるいは、それ以下の場合は希土類酸化物と相性の良いB2O3を21.5重量%以上含有させている。これらは両方とも溶融時の揮発を増やす原因となる。溶融時の揮発は、ガラス品質(脈理、屈折率分布、屈折率変動)の悪化につながり、得率を低下させるという問題がある。溶融時の揮発をなるべく少なくして得率の良い光学ガラスを作製することは、低コスト化や環境影響を考えれば非常に重要である。
However, the conventional glass described above has the following problems.
That is, the optical glasses described in Patent Documents 1 and 2 both have Li 2 O and F as essential components to lower the glass transition temperature (Tg). However, since they contain Li 2 O, they are resistant to loss. There is a problem of poor permeability.
In addition, the optical glasses described in Patent Document 2 are all 50. As the total content of rare earth oxides (Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 ) is in the examples. Very large, 0% by weight or more Therefore, in order to vitrify while containing Li 2 O, the total content of glass-forming oxides (SiO 2 , B 2 O 3 , GeO 2 ) is 25.0% by weight or more, or less. In this case, 21.5% by weight or more of B 2 O 3 having good compatibility with the rare earth oxide is contained. Both of these cause increased volatilization upon melting. Volatilization at the time of melting leads to deterioration of glass quality (striae, refractive index distribution, refractive index fluctuation), and there is a problem that the yield is lowered. It is very important to reduce the volatilization at the time of melting and to produce an optical glass with a good yield in view of cost reduction and environmental impact.
そこで、本発明の目的は、上述した従来例の問題点を解消し、耐失透性を悪化させることなく、アッベ数(νd)が50.0付近で高い屈折率(nd)を有し、低いガラス転移温度(Tg)および屈伏点(At)を達成し、溶融時の揮発を極力低減させる工夫がなされているモールド用光学ガラスを提供することにある。 Therefore, an object of the present invention is to solve the problems of the conventional examples described above, and has a high refractive index (nd) when the Abbe number (νd) is around 50.0 without deteriorating the devitrification resistance. An object of the present invention is to provide an optical glass for a mold which has a low glass transition temperature (Tg) and a yield point (At) and is devised to reduce volatilization at the time of melting as much as possible.
本発明者らは、鋭意研究を重ねた結果、B2O3-Ln2O3-ZnO-F系ガラス(Ln:希土類元素)において、Li2Oなどのアルカリ酸化物を使用せず、ZnOとFを一定量以上導入することでガラス転移温度(Tg)を低下させることにより、ガラス形成酸化物の合計含有量を抑え、かつ、B2O3の含有量も抑えることができ、その結果この組成系特有の激しい揮発を極力抑え、脈理や屈折率変動等による品質悪化を大きく低減することがでることを知見した。また、耐失透性を悪化させずに一定量以上の希土類元素を含有させることができるため、要求される高屈折率低分散性を実現できることとなった。 The present inventors have made intensive studies, B 2 O 3 -Ln 2 O 3 -ZnO-F -based glass: in (Ln rare earth element), without the use of alkali oxide such as Li 2 O, ZnO By reducing the glass transition temperature (Tg) by introducing a certain amount or more of F and F, the total content of glass-forming oxides can be suppressed, and the content of B 2 O 3 can also be suppressed. It has been found that severe volatilization peculiar to this composition system can be suppressed as much as possible, and quality deterioration due to striae and refractive index fluctuation can be greatly reduced. Moreover, since a certain amount or more of rare earth elements can be contained without deteriorating the devitrification resistance, the required high refractive index and low dispersibility can be realized.
すなわち、本発明のモールド用光学ガラスは、重量%で、
SiO2 0〜7.0 好ましくは 0〜5.0
B2O3 14.0〜21.5 好ましくは 16.0〜21.0
GeO2 0〜5.0 好ましくは 0〜4.0
La2O3 7.0〜35.0 好ましくは 8.0〜32.0
Gd2O3 10.5〜40.0 好ましくは 11.0〜38.0
Y2O3 0〜8.0 好ましくは 0〜6.0
LaF3 5.0〜40.0 好ましくは 6.5〜37.0
GdF3 0〜12.0 好ましくは 0〜9.0
YF3 0〜8.0 好ましくは 0〜6.5
Ta2O5 0〜8.0 好ましくは 0〜6.0
CaO 0〜3.0 好ましくは 0〜2.0
SrO 0〜3.0 好ましくは 0〜1.5
BaO 0〜3.0 好ましくは 0〜2.0
ZnO 1.0〜25.0 好ましくは 2.0〜22.0
ZnF2 0〜8.0 好ましくは 0〜6.0
ZrO2 0〜6.0 好ましくは 0〜4.5
TiO2 0〜4.0 好ましくは 0〜3.0
WO3 0〜3.0 好ましくは 0〜2.0
Nb2O5 0〜5.0 好ましくは 0〜4.0
を含有し、アルカリ金属酸化物を含有しない組成のモールド用光学ガラスであって、
ガラス転移温度(Tg)が590℃以下かつ屈伏点(At)が630℃以下であり、
図1に示すように、アッベ数(νd)をx軸とし、屈折率(nd)をy軸とする直交座標系におけるA点(52.0,1.80000)、B点(44.0,1.80000)、C点(47.0,1.74000)、D点(55.0,1.74000)をA点、B点、C点、D点、A点の順序で結んだ直線である境界線で囲まれる範囲内の光学恒数を有することを特徴とするものである。
That is, the optical glass for molds of the present invention is in wt%,
SiO 2 0-7.0, preferably 0-5.0
B 2 O 3 14.0 to 21.5, preferably 16.0 to 21.0
GeO 2 0-5.0, preferably 0-4.0
La 2 O 3 7.0-35.0, preferably 8.0-32.0
Gd 2 O 3 10.5-40.0, preferably 11.0-38.0
Y 2 O 3 0-8.0, preferably 0-6.0
LaF 3 5.0 to 40.0, preferably 6.5 to 37.0
GdF 3 0 to 12.0, preferably 0 to 9.0
YF 3 0~8.0 preferably from 0 to 6.5
Ta 2 O 5 0-8.0, preferably 0-6.0
CaO 0-3.0, preferably 0-2.0
SrO 0-3.0, preferably 0-1.5
BaO 0-3.0, preferably 0-2.0
ZnO 1.0-25.0, preferably 2.0-22.0
ZnF 2 0-8.0, preferably 0-6.0
ZrO 2 0-6.0, preferably 0-4.5
TiO 2 0-4.0, preferably 0-3.0
WO 3 0-3.0, preferably 0-2.0
Nb 2 O 5 0-5.0, preferably 0-4.0
And an optical glass for molding having a composition not containing an alkali metal oxide,
The glass transition temperature (Tg) is 590 ° C. or lower and the yield point (At) is 630 ° C. or lower,
As shown in FIG. 1, point A (52.0, 1.8000) and point B (44.0, 44.0, 4) in an orthogonal coordinate system having the Abbe number (νd) as the x-axis and the refractive index (nd) as the y-axis. 1.80000), C point (47.0, 1.74000), D point (55.0, 1.74000) in the order of A point, B point, C point, D point, A point It has an optical constant within a range surrounded by a certain boundary line.
また、本発明のモールド用光学ガラスは、ZnOを11.0重量%以上含有する、あるいはF原子を5.5重量%以上含有することが好適である。 Moreover, it is preferable that the optical glass for molds of the present invention contains 11.0% by weight or more of ZnO or 5.5% by weight or more of F atoms.
また、本発明のモールド用光学ガラスは、Zn原子とF原子との合計含有量が10.0重量%以上であることが好適である。 In the optical glass for molds of the present invention, the total content of Zn atoms and F atoms is preferably 10.0% by weight or more.
また、本発明のモールド用光学ガラスは、SiO2、GeO2の少なくともいずれか一方とB2O3との合計含有量が25.0重量%以下であることが好適である。 In the mold optical glass of the present invention, the total content of at least one of SiO 2 and GeO 2 and B 2 O 3 is preferably 25.0% by weight or less.
また、本発明のモールド用光学ガラスは、La原子とGd原子とY原子との合計含有量が43.0重量%以上であることが好適である。 Moreover, it is suitable for the optical glass for molds of the present invention that the total content of La atoms, Gd atoms and Y atoms is 43.0% by weight or more.
本発明によれば、モールド用光学ガラスが、
重量%で、
SiO2 0〜7.0
B2O3 14.0〜21.5
GeO2 0〜5.0
La2O3 7.0〜35.0
Gd2O3 10.5〜40.0
Y2O3 0〜8.0
LaF3 5.0〜40.0
GdF3 0〜12.0
YF3 0〜8.0
Ta2O5 0〜8.0
CaO 0〜3.0
SrO 0〜3.0
BaO 0〜3.0
ZnO 1.0〜25.0
ZnF2 0〜8.0
ZrO2 0〜6.0
TiO2 0〜4.0
WO3 0〜3.0
Nb2O5 0〜5.0
を含有し、アルカリ金属酸化物を含有しない組成のモールド用光学ガラスであって、
ガラス転移温度(Tg)が590℃以下かつ屈伏点(At)が630℃以下であり、
図1に示すように、アッベ数(νd)をx軸とし、屈折率(nd)をy軸とする直交座標系におけるA点(52.0,1.80000)、B点(44.0,1.80000)、C点(47.0,1.74000)、D点(55.0,1.74000)をA点、B点、C点、D点、A点の順序で結んだ直線である境界線で囲まれる範囲内の光学恒数を有することにより、耐失透性を悪化させることなく、低いガラス転移温度(Tg)および屈伏点(At)を達成し、溶融時の揮発を低減させたモールド用光学ガラスを提供することが可能となる。
According to the present invention, the optical glass for molding is
% By weight
SiO 2 0~7.0
B 2 O 3 14.0 to 21.5
GeO 2 0~5.0
La 2 O 3 7.0~35.0
Gd 2 O 3 10.5~40.0
Y 2 O 3 0~8.0
LaF 3 5.0-40.0
GdF 3 0~12.0
YF 3 0~8.0
Ta 2 O 5 0~8.0
CaO 0-3.0
SrO 0-3.0
BaO 0-3.0
ZnO 1.0-25.0
ZnF 2 0-8.0
ZrO 2 0-6.0
TiO 2 0-4.0
WO 3 0~3.0
Nb 2 O 5 0~5.0
And an optical glass for molding having a composition not containing an alkali metal oxide,
The glass transition temperature (Tg) is 590 ° C. or lower and the yield point (At) is 630 ° C. or lower,
As shown in FIG. 1, point A (52.0, 1.8000) and point B (44.0, 44.0, 4) in an orthogonal coordinate system having the Abbe number (νd) as the x-axis and the refractive index (nd) as the y-axis. 1.80000), C point (47.0, 1.74000), D point (55.0, 1.74000) in the order of A point, B point, C point, D point, A point By having an optical constant within the range surrounded by a certain boundary line, low glass transition temperature (Tg) and yield point (At) are achieved without deteriorating devitrification resistance, and volatilization during melting is reduced. It becomes possible to provide the optical glass for molds made.
初めに、本発明におけるモールド用光学ガラスの組成のうち、必須成分B2O3、La2O3、Gd2O3、LaF3およびZnOについて説明する。 First, the essential components B 2 O 3 , La 2 O 3 , Gd 2 O 3 , LaF 3 and ZnO will be described in the composition of the optical glass for molding in the present invention.
本発明におけるモールド用光学ガラスは、B2O3を重量%で
B2O3 14.0〜21.5
含有する。
B2O3は本発明におけるモールド用光学ガラスの綱目を形成する主成分であり、耐失透性の向上に有効である。しかし、14.0重量%未満の含有量では耐失透性が悪くなり、21.5重量%を超えて含有させると揮発による品質悪化やガラス転移温度(Tg)、屈伏点(At)の高温化の問題が生じてくる。なお、B2O3のより好ましい範囲は16.0〜21.0重量%である。
The optical glass for molds in the present invention contains B 2 O 3 in a weight percentage of B 2 O 3 14.0 to 21.5.
contains.
B 2 O 3 is a main component that forms the mesh of the optical glass for molding in the present invention, and is effective in improving devitrification resistance. However, when the content is less than 14.0% by weight, the devitrification resistance deteriorates, and when the content exceeds 21.5% by weight, the quality deteriorates due to volatilization, the glass transition temperature (Tg), and the yield point (At) are high. The problem of conversion will arise. A more preferable range of B 2 O 3 is 16.0 to 21.0% by weight.
本発明におけるモールド用光学ガラスは、La2O3を重量%で
La2O3 7.0〜35.0
含有する。
La2O3は高屈折率低分散化のために非常に有効な成分である。しかし、7.0重量%未満ではその効果を発揮できず、35.0重量%を超えると耐失透性が悪くなる。なお、La2O3のより好ましい範囲は8.0〜32.0重量%である。
Mold for optical glass of the present invention, La 2 O 3 and La 2 O 3 in weight percent 7.0 to 35.0
contains.
La 2 O 3 is a very effective component for achieving a high refractive index and low dispersion. However, if it is less than 7.0% by weight, the effect cannot be exhibited, and if it exceeds 35.0% by weight, the devitrification resistance is deteriorated. A more preferable range of La 2 O 3 is 8.0 to 32.0% by weight.
本発明におけるモールド用光学ガラスは、Gd2O3を重量%で
Gd2O3 10.5〜40.0
含有する。
Gd2O3は、La2O3と同様に、高屈折率低分散化に有効な成分である。またLa2O3と併用することによって、耐失透性を保ちつつ希土類成分の含有量を増やすことができ、より高屈折率低分散化が可能となる。しかし、10.5重量%未満では所望の屈折率を得ることは難しく、40.0重量%を超えて含有させると耐失透性が悪くなる。なお、Gd2O3のより好ましい範囲は11.0〜38.0重量%である。
The optical glass for molds in the present invention contains Gd 2 O 3 in a weight percentage of Gd 2 O 3 10.5 to 40.0.
contains.
Gd 2 O 3 is an effective component for reducing the high refractive index and low dispersion, like La 2 O 3 . Further, when used in combination with La 2 O 3 , the content of rare earth components can be increased while maintaining devitrification resistance, and a higher refractive index and lower dispersion can be achieved. However, if it is less than 10.5% by weight, it is difficult to obtain a desired refractive index, and if it exceeds 40.0% by weight, devitrification resistance deteriorates. A more preferred range of Gd 2 O 3 is from 11.0 to 38.0 wt%.
本発明におけるモールド用光学ガラスは、LaF3を重量%で
LaF3 5.0〜40.0
含有する。
LaF3は希土類成分の供給源であり、またFの供給源でもある。Fを含有させるとガラス転移温度(Tg)、屈伏点(At)が低くなり、屈折率も低くなることが知られているが、同じくガラス転移温度(Tg)、屈伏点(At)を下げる成分であるアルカリ金属酸化物(Li2O、Na2O、K2Oなど)を含有させた場合と比べて、希土類成分を多く含有しているガラスの耐失透性を保つ効果は飛躍的に高い。結果として、耐失透性を高めるがガラス転移温度(Tg)、屈伏点(At)を大きく上げてしまい溶融時の揮発の原因となるガラス形成酸化物(SiO2、B2O3、GeO2)の含有量を少なく抑えながらも、希土類成分の含有量を増やすことができるためガラス転移温度(Tg)、屈伏点(At)が低く、耐失透性が良い高屈折率低分散ガラスを得率良く作製することができる。
5.0重量%未満しか含有させないと、このような効果を得られず、また、40.0重量%を超えて含有させると耐失透性に悪影響がでる。なお、LaF3のより好ましい範囲は6.5〜37.0重量%である。
Mold for optical glass of the present invention, LaF 3 5.0 to 40.0 the LaF 3 weight%
contains.
LaF 3 is a source of rare earth components and also a source of F. It is known that when F is contained, the glass transition temperature (Tg) and the yield point (At) are lowered and the refractive index is also lowered, but it is also a component that lowers the glass transition temperature (Tg) and the yield point (At). Compared with the case of containing an alkali metal oxide (Li 2 O, Na 2 O, K 2 O, etc.), the effect of maintaining the devitrification resistance of the glass containing a large amount of rare earth components is dramatically improved. high. As a result, the glass-forming oxides (SiO 2 , B 2 O 3 , GeO 2 increase the devitrification resistance but increase the glass transition temperature (Tg) and yield point (At) and cause volatilization during melting. ) Can be increased while the content of the rare earth component can be increased, so that a glass with a low glass transition temperature (Tg) and a yield point (At) and a high refractive index and low dispersion glass with good devitrification resistance is obtained. It can be produced efficiently.
When the content is less than 5.0% by weight, such an effect cannot be obtained, and when the content exceeds 40.0% by weight, devitrification resistance is adversely affected. A more preferable range of LaF 3 is 6.5 to 37.0% by weight.
本発明におけるモールド用光学ガラスは、ZnOを重量%で
ZnO 1.0〜25.0
含有する。
ZnOは比較的屈折率を高めつつもガラス転移温度(Tg)、屈伏点(At)を低く抑えることができる成分である。1.0重量%未満しか含有させないと、ガラス転移温度(Tg)、屈伏点(At)を低く抑える効果が低く、25.0重量%を超えて含有させると所望する屈折率が得られなくなる。なお、ZnOのより好ましい範囲は2.0〜22.0重量%である。
The optical glass for molds according to the present invention contains ZnO at a weight percentage of ZnO 1.0 to 25.0.
contains.
ZnO is a component that can keep the glass transition temperature (Tg) and yield point (At) low while relatively increasing the refractive index. If the content is less than 1.0% by weight, the effect of suppressing the glass transition temperature (Tg) and the yield point (At) is low, and if the content exceeds 25.0% by weight, the desired refractive index cannot be obtained. A more preferable range of ZnO is 2.0 to 22.0% by weight.
次に、本発明におけるモールド用光学ガラスの組成のうち、任意成分SiO2、GeO2、Y2O3、GdF3、YF3、Ta2O5、CaO、SrO、BaO、ZnF2、ZrO2、TiO2、WO3およびNb2O5について説明する。 Next, among the compositions of the optical glass for molding in the present invention, optional components SiO 2 , GeO 2 , Y 2 O 3 , GdF 3 , YF 3 , Ta 2 O 5 , CaO, SrO, BaO, ZnF 2 , ZrO 2. , TiO 2 , WO 3 and Nb 2 O 5 will be described.
本発明におけるモールド用光学ガラスは、SiO2を重量%で
SiO2 0〜7.0
含有する。
SiO2は本発明におけるモールド用光学ガラスの綱目を形成する成分であり、少量導入することにより耐失透性を上げる効果がある、しかし、7.0重量%を超えて含有させると所望のガラス転移温度(Tg)、屈伏点(At)が得られなくなる。また溶融温度が高くなって溶融時の揮発に問題が生じる。なお、SiO2のより好ましい範囲は0〜5.0重量%である。
The optical glass for molding in the present invention is SiO 2 0 to 7.0 by weight of SiO 2 .
contains.
SiO 2 is a component that forms the mesh of the optical glass for molding in the present invention, and has the effect of increasing the devitrification resistance when introduced in a small amount. However, when it is contained in an amount exceeding 7.0% by weight, the desired glass is obtained. The transition temperature (Tg) and yield point (At) cannot be obtained. In addition, the melting temperature becomes high, causing a problem in volatilization during melting. A more preferred range of SiO 2 is 0 to 5.0 wt%.
本発明におけるモールド用光学ガラスは、GeO2を重量%で
GeO2 0〜5.0
含有する。
GeO2は、SiO2同様に、本発明におけるモールド用光学ガラスの綱目を形成する成分である。しかし、5.0重量%を超えて含有させるとガラス転移温度(Tg)、屈伏点(At)、溶融温度の高温化を招き好ましくない。なお、GeO2のより好ましい範囲は0〜4.0重量%である。
The optical glass for molds according to the present invention contains GeO 2 by weight% GeO 2 0-5.0.
contains.
GeO 2 is a component that forms the mesh of the optical glass for molding in the present invention, like SiO 2 . However, if the content exceeds 5.0% by weight, the glass transition temperature (Tg), the yield point (At), and the melting temperature are increased, which is not preferable. A more preferable range of GeO 2 is 0 to 4.0% by weight.
SiO2とGeO2の少なくともいずれか一方とB2O3との合計含有量が25.0重量%以下とすれば、ガラス転移温度(Tg)、屈伏点(At)の低温化、ガラスの耐失透性の向上、溶融時の揮発の抑制について効果を発揮することができる。 If the total content of at least one of SiO 2 and GeO 2 and B 2 O 3 is 25.0% by weight or less, the glass transition temperature (Tg), the yield point (At) can be lowered, the glass resistance can be reduced. An effect can be exhibited about improvement in devitrification and suppression of volatilization at the time of melting.
本発明におけるモールド用光学ガラスは、Y2O3を重量%で
Y2O3 0〜8.0
含有する。
Y2O3は、La2O3やGd2O3と同様に、高屈折率低分散化に有効な成分である。少量含有させると耐失透性の向上に効果があるが、8.0重量%を超えて含有させるとガラス溶融時の溶け残りの原因となる。なお、Y2O3のより好ましい範囲は0〜6.0重量%である。
The optical glass for molds in the present invention is Y 2 O 3 in weight percent Y 2 O 3 0 to 8.0.
contains.
Y 2 O 3 is an effective component for high refractive index and low dispersion, like La 2 O 3 and Gd 2 O 3 . If contained in a small amount, it is effective in improving devitrification resistance. However, if contained in an amount exceeding 8.0% by weight, it causes unmelted residue during glass melting. A more preferable range of Y 2 O 3 is 0 to 6.0% by weight.
本発明におけるモールド用光学ガラスは、GdF3、YF3をそれぞれ重量%で
GdF3 0〜12.0
YF3 0〜8.0
含有する。
GdF3、YF3は少量であればLaF3と置き換えて含有させることができる。それぞれ12.0重量%、8.0重量%を超えて含有させると、耐失透性が悪くなる。なお、GdF3のより好ましい範囲は0〜9.0重量%、YF3のより好ましい範囲は0〜6.5重量%である。
The optical glass for molds in the present invention contains GdF 3 and YF 3 in weight percentages of GdF 3 0 to 12.0, respectively.
YF 3 0~8.0
contains.
GdF 3 and YF 3 can be substituted for LaF 3 and contained in small amounts. When the content exceeds 12.0% by weight and 8.0% by weight, respectively, the devitrification resistance deteriorates. A more preferable range of GdF 3 is 0 to 9.0% by weight, and a more preferable range of YF 3 is 0 to 6.5% by weight.
本発明におけるモールド用光学ガラスは、希土類原子成分のLa原子とGd原子とY原子との合計含有量が43.0重量%以上、さらに好ましくは44.0重量%以上である。
この合計含有量が43.0重量%未満の場合、所望する高屈折率低分散性が得られない。
In the optical glass for molding in the present invention, the total content of La atom, Gd atom and Y atom of the rare earth atom component is 43.0% by weight or more, more preferably 44.0% by weight or more.
When the total content is less than 43.0% by weight, the desired high refractive index and low dispersibility cannot be obtained.
本発明におけるモールド用光学ガラスは、Ta2O5を重量%で
Ta2O5 0〜8.0
含有する。
Ta2O5は化学的耐久性を向上させるとともに、耐失透性を保ちつつ高屈折率低分散化できる成分である。しかし、8.0重量%を超えて含有させると所望するガラス転移温度(Tg)、屈伏点(At)が得られなくなる。なお、Ta2O5のより好ましい範囲は0〜6.0重量%である。
The optical glass for molds in the present invention contains Ta 2 O 5 by weight% Ta 2 O 5 0-8.0.
contains.
Ta 2 O 5 is a component capable of improving the chemical durability and reducing the high refractive index while maintaining the devitrification resistance. However, if the content exceeds 8.0% by weight, the desired glass transition temperature (Tg) and yield point (At) cannot be obtained. A more preferred range of Ta 2 O 5 is a 0 to 6.0 wt%.
本発明におけるモールド用光学ガラスは、CaO、SrO、BaOをそれぞれ重量%で
CaO 0〜3.0
SrO 0〜3.0
BaO 0〜3.0
含有する。
CaO、SrO、BaOは、溶融性や屈折率調整に有効な成分である。それぞれ3.0重量%を超えて含有させると所望する屈折率が得られにくくなる。なお、CaOのより好ましい範囲は0〜2.0重量%、SrOのより好ましい範囲は0〜1.5重量%、BaOのより好ましい範囲は0〜2.0重量%である。
The optical glass for molds in the present invention contains CaO, SrO, and BaO in terms of% by weight.
SrO 0-3.0
BaO 0-3.0
contains.
CaO, SrO, and BaO are effective components for meltability and refractive index adjustment. When each content exceeds 3.0% by weight, it becomes difficult to obtain a desired refractive index. A more preferable range of CaO is 0 to 2.0% by weight, a more preferable range of SrO is 0 to 1.5% by weight, and a more preferable range of BaO is 0 to 2.0% by weight.
本発明におけるモールド用光学ガラスは、ZnF2を重量%で
ZnF2 0〜8.0
含有する。
ZnF2は、ZnとFの供給源となる。8.0重量%を超えて含有させると所望する屈折率が得られなくなる。なお、ZnF2のより好ましい範囲は0〜6.0重量%である。
The optical glass for molds in the present invention contains ZnF 2 in wt% ZnF 2 0-8.0.
contains.
ZnF 2 is a supply source of Zn and F. If the content exceeds 8.0% by weight, the desired refractive index cannot be obtained. A more preferable range of ZnF 2 is 0 to 6.0% by weight.
ZnOを11.0重量%以上含有する、あるいはF原子を5.5重量%以上含有することが好ましい。
すなわち、F原子含有量が5.5重量%未満の場合にはZnOを11.0重量%以上含有させることが好ましく、逆にZnO含有量が11.0重量%未満の場合にはF原子を5.5重量%以上含有させることが好ましい。これにより、所望のガラス転移温度(Tg)、屈伏点(At)が得られるためである。
It is preferable to contain 11.0% by weight or more of ZnO or 5.5% by weight or more of F atoms.
That is, when the F atom content is less than 5.5% by weight, ZnO is preferably contained in an amount of 11.0% by weight or more. Conversely, when the ZnO content is less than 11.0% by weight, F atoms are contained. It is preferable to contain 5.5 weight% or more. This is because a desired glass transition temperature (Tg) and yield point (At) can be obtained.
また、Zn原子とF原子との合計含有量が10.0重量%以上であることが好ましい。これにより、所望のガラス転移温度(Tg)、屈伏点(At)が得られるためである。 The total content of Zn atoms and F atoms is preferably 10.0% by weight or more. This is because a desired glass transition temperature (Tg) and yield point (At) can be obtained.
本発明におけるモールド用光学ガラスは、ZrO2を重量%で
ZrO2 0〜6.0
含有する。
ZrO2は、Ta2O5と同様に、化学的耐久性を向上させるとともに、耐失透性を保ちつつ高屈折率低分散化できる成分である。しかし、6.0重量%を超えて含有させると溶融時の溶け残りが生じるようになる。なお、ZrO2のより好ましい範囲は0〜4.5重量%である。
The optical glass for molds in the present invention contains ZrO 2 in a weight percentage of ZrO 2 0 to 6.0.
contains.
ZrO 2 , like Ta 2 O 5 , is a component that can improve the chemical durability and maintain a high refractive index and low dispersion while maintaining devitrification resistance. However, if the content exceeds 6.0% by weight, unmelted residue at the time of melting occurs. A more preferable range of ZrO 2 is 0 to 4.5% by weight.
本発明におけるモールド用光学ガラスは、TiO2を重量%で
TiO2 0〜4.0
含有する。
TiO2は、大きく屈折率を上げる効果がある。またB2O3-Lu2O3(Lu:希土類元素)系ガラスに含有させることにより、B2O3などのガラス形成酸化物を減らしても耐失透性を比較的良く保つ効果がある。しかし4.0重量%を超えて含有させると高分散化し、所望する屈折率範囲のガラスができなくなる。なお、TiO2のより好ましい範囲は0〜3.0重量%である。
The optical glass for molds in the present invention contains TiO 2 at a weight percentage of TiO 2 0 to 4.0.
contains.
TiO 2 has the effect of greatly increasing the refractive index. Further, by including it in B 2 O 3 -Lu 2 O 3 (Lu: rare earth element) -based glass, there is an effect of maintaining relatively good devitrification resistance even if the glass forming oxide such as B 2 O 3 is reduced. . However, if the content exceeds 4.0% by weight, the dispersion becomes highly dispersed and a glass having a desired refractive index range cannot be obtained. A more preferable range of the TiO 2 is 0 to 3.0 wt%.
本発明におけるモールド用光学ガラスは、WO3を重量%で
WO3 0〜3.0
含有する。
WO3は屈折率を高める効果のある成分である。しかし、3.0重量%を超えて含有させると耐失透性が悪くなる。なお、WO3のより好ましい範囲は0〜2.0重量%である。
Mold for optical glass of the present invention, WO 3 and WO 3 in weight percent 0 to 3.0
contains.
WO 3 is a component having an effect of increasing the refractive index. However, when the content exceeds 3.0% by weight, the devitrification resistance deteriorates. A more preferable range of WO 3 is 0 to 2.0% by weight.
本発明におけるモールド用光学ガラスは、Nb2O5を重量%で
Nb2O5 0〜5.0
含有する。
Nb2O5は、屈折率を大きく高める効果のある成分である。しかし、5.0重量%を超えて含有させると高分散化し、所望する屈折率範囲のガラスができなくなる。なお、Nb2O5のより好ましい範囲は0〜4.0重量%である。
The optical glass for molds according to the present invention contains Nb 2 O 5 at a weight percentage of Nb 2 O 5 0 to 5.0.
contains.
Nb 2 O 5 is a component having an effect of greatly increasing the refractive index. However, if the content exceeds 5.0% by weight, the glass is highly dispersed and a glass having a desired refractive index range cannot be obtained. A more preferable range of Nb 2 O 5 is a 0 to 4.0 wt%.
本発明のモールド用光学ガラスは、各成分の原料としてそれぞれに相当する酸化物、水酸化物、フッ化物、炭酸塩、硝酸塩などを使用し、所定の割合で秤量し、十分混合したものをガラス調合原料とする。このガラス調合原料を白金製坩堝に投入し、電気炉で1000℃〜1200℃に加熱して溶融しながら適時攪拌し、清澄、均質化してから、適当な温度に予熱した金型に鋳込んだ後、電気炉内で徐冷して、本発明のモールド用光学ガラスを製造する。なお、ガラスの着色改善や脱泡のためにごく少量(0.1重量%以下)のSb2O3など、工業上周知である脱泡成分を加えても本発明の効果に影響は無い。 The optical glass for molds of the present invention is prepared by using oxides, hydroxides, fluorides, carbonates, nitrates, and the like corresponding to the respective components as raw materials, weighed at a predetermined ratio, and mixed well. Use as a raw material. This glass preparation raw material was put into a platinum crucible, heated to 1000 ° C. to 1200 ° C. in an electric furnace, stirred while being melted, clarified and homogenized, and then cast into a mold preheated to an appropriate temperature. Then, it anneals in an electric furnace and manufactures the optical glass for molds of this invention. In addition, even if a defoaming component known in the industry such as a very small amount (0.1% by weight or less) of Sb 2 O 3 is added for improving the coloration or defoaming of the glass, the effect of the present invention is not affected.
本発明の目的から外れない限り、上記成分の他に光学恒数の調整、溶融性の改善、耐失透性の向上、およびガラス転移温度(Tg)、屈伏点(At)の低温化などのために、Mg、Al、Ga、In、Ybの酸化物及びフッ化物、またCa、Sr、Baのフッ化物などを含有させることもできる。 Unless deviating from the object of the present invention, in addition to the above components, adjustment of optical constants, improvement of meltability, improvement of devitrification resistance, reduction of glass transition temperature (Tg), yield point (At), etc. Therefore, oxides and fluorides of Mg, Al, Ga, In, and Yb, fluorides of Ca, Sr, and Ba can be included.
以下に実施例を挙げて本発明のモールド用光学ガラスを具体的に説明するが、本発明はこれに限定されるものではない。
表1および2に本発明の光学ガラス(実施例1〜21)の組成(重量%)、屈折率(nd)、アッベ数(νd)、ガラス転移温度(Tg)、屈伏点(At)、原子重量%でのF量、Zn量、F+Zn合計量、および希土類元素合計量(Y+La+Gd)を示した。実施例1〜21のガラスの作製法は前述の通りである。屈折率、アッベ数、ガラス転移温度(Tg)、屈伏点(At)は公知の方法により測定した。
また、図1に、アッベ数(νd)をx軸、屈折率(nd)をy軸とした直座標系に実施例1〜21の光学恒数をプロットし、本発明の請求する光学恒数範囲を点A、B、C、Dで囲んだものを示した。
Examples The optical glass for molding of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
Tables 1 and 2 show the composition (% by weight), refractive index (nd), Abbe number (νd), glass transition temperature (Tg), yield point (At), and atoms of the optical glass of the present invention (Examples 1 to 21). The amount of F in wt%, the amount of Zn, the total amount of F + Zn, and the total amount of rare earth elements (Y + La + Gd) are shown. The glass production methods of Examples 1 to 21 are as described above. The refractive index, Abbe number, glass transition temperature (Tg), and yield point (At) were measured by known methods.
Also, in FIG. 1, the optical constants of Examples 1 to 21 are plotted on a direct coordinate system in which the Abbe number (νd) is the x axis and the refractive index (nd) is the y axis, and the optical constants claimed by the present invention are plotted. The range surrounded by points A, B, C and D is shown.
また、表3に比較例1〜12の光学ガラスの組成(重量%)、屈折率(nd)、アッベ数(νd)、ガラス転移温度(Tg)、屈伏点(At)、原子重量%でのF量、Zn量、F+Zn合計量、および希土類元素合計量(Y+La+Gd)を示した。 Table 3 shows the composition (% by weight), refractive index (nd), Abbe number (νd), glass transition temperature (Tg), yield point (At), and atomic weight% of the optical glasses of Comparative Examples 1 to 12. The amount of F, the amount of Zn, the total amount of F + Zn, and the total amount of rare earth elements (Y + La + Gd) are shown.
すべての実施例の光学ガラスにおいて、表1および2にある通り光学設計上非常に有用である光学恒数を有していて、ガラス転移温度(Tg)が524℃〜582℃、屈伏点(At)が565℃〜624℃の範囲にあるためモールド用光学ガラスとして適しており、さらに溶融中の揮発が非常に少ないため脈理、屈折率変動などの品質が良好である。
また、得られたガラスから所定量のガラス塊を切り出して研磨プリフォームを作製し、モールドで数種類のレンズを得た。これらのレンズは良好な転写性を示し、金型へのガラス付着、揮発物の付着など成形性に問題がある現象は認められなかった。この点でもモールド用光学ガラスとして優れている。
The optical glasses of all examples have optical constants that are very useful in optical design as shown in Tables 1 and 2, have a glass transition temperature (Tg) of 524 ° C. to 582 ° C., and a yield point (At ) Is in the range of 565 ° C. to 624 ° C., it is suitable as an optical glass for molding. Furthermore, since there is very little volatilization during melting, quality such as striae and refractive index fluctuation is good.
Further, a predetermined amount of glass lump was cut out from the obtained glass to prepare a polishing preform, and several types of lenses were obtained with a mold. These lenses showed good transferability, and there were no problems with moldability such as glass adhesion or volatile matter adhesion to the mold. This is also excellent as an optical glass for molds.
一方、比較例1〜12の光学ガラスに関して説明する。
比較例1の光学ガラスはガラス転移温度(Tg)、屈伏点(At)高温化の要因となるガラス形成酸化物の含有量や希土類含有量に対して、ガラス転移温度(Tg)、屈伏点(At)低温化させるZnO、F、Li2Oが不足しているため、モールド用光学ガラスとして適さない。またB2O3含有量が多く、溶融時の揮発も問題となる。
比較例2の光学ガラスは比較例1同様、ZnO、F、Li2Oの不足によるガラス転移温度(Tg)、屈伏点(At)の高温化により、モールド用光学ガラスとして適さない。またB2O3含有量が非常に多く、溶融時の揮発も問題となる。
比較例3および比較例4の光学ガラスは、Li2Oを含有させながら希土類成分を多く含有させているので、耐失透性を保つためにB2O3含有量が多い。そのため溶融時の揮発に問題がある。
比較例5の光学ガラスは、Li2Oを比較的多く含有させているため、耐失透性に問題がある。
比較例6の光学ガラスは、B2O3が多めであるため溶融時の揮発に問題が残る。また、希土類成分を多く含有していながら、さらにLi2Oを含有しており、そのうえガラス形成酸化物(SiO2+B2O3)合計量が少ないため、耐失透性に問題がある。
比較例7の光学ガラスは、耐失透性を高めるため、Li2O含有量を少なくし、ガラス形成酸化物(SiO2、B2O3、GeO2)を多く含有させている。そのためガラス転移温度(Tg)が高くなってしまい、モールド用光学ガラスとして適さない。
比較例8および比較例9の光学ガラスは、B2O3の含有量が多いため耐失透性は良好であるが、その反面溶融時の揮発が問題となる。
比較例10の光学ガラスは、Gd2O3含有量が少ないため耐失透性が十分でなく、またガラス化させるためにB2O3を非常に多くに含有させなければならなくなり、溶融時の揮発も問題である。
比較例11および比較例12の光学ガラスは、Li2Oの含有量が多いため耐失透性に問題がある。そのため希土類成分を多く含有させることができない。
On the other hand, the optical glass of Comparative Examples 1 to 12 will be described.
The optical glass of Comparative Example 1 has a glass transition temperature (Tg), a yield point (At), a glass transition temperature (Tg), a yield point (At) with respect to the glass-forming oxide content and the rare earth content that cause high temperatures. At) Since ZnO, F, and Li 2 O to be lowered are insufficient, it is not suitable as an optical glass for molding. The B 2 O many 3 content, also a problem volatilization during melting.
As in Comparative Example 1, the optical glass of Comparative Example 2 is not suitable as an optical glass for molding due to high glass transition temperature (Tg) and yield point (At) due to lack of ZnO, F, and Li 2 O. Further, the B 2 O 3 content is very large, and volatilization at the time of melting becomes a problem.
Since the optical glasses of Comparative Example 3 and Comparative Example 4 contain a large amount of rare earth components while containing Li 2 O, the content of B 2 O 3 is large in order to maintain devitrification resistance. Therefore, there is a problem in volatilization at the time of melting.
Optical glass of Comparative Example 5, since the relatively large to contain Li 2 O, there is a problem in devitrification resistance.
Since the optical glass of Comparative Example 6 has a large amount of B 2 O 3 , there remains a problem in volatilization at the time of melting. Further, although it contains a large amount of rare earth components, it further contains Li 2 O, and furthermore, since the total amount of glass-forming oxide (SiO 2 + B 2 O 3 ) is small, there is a problem in devitrification resistance.
The optical glass of Comparative Example 7 contains a large amount of glass-forming oxides (SiO 2 , B 2 O 3 , GeO 2 ) in order to increase the devitrification resistance, thereby reducing the Li 2 O content. Therefore, the glass transition temperature (Tg) becomes high and is not suitable as an optical glass for molding.
The optical glasses of Comparative Example 8 and Comparative Example 9 have good devitrification resistance because of the high content of B 2 O 3 , but on the other hand, volatilization during melting becomes a problem.
Since the optical glass of Comparative Example 10 has a low Gd 2 O 3 content, it has insufficient devitrification resistance, and in order to be vitrified, it has to contain a very large amount of B 2 O 3 , and when melted. Volatilization is also a problem.
The optical glasses of Comparative Example 11 and Comparative Example 12 have a problem in devitrification resistance because of a large content of Li 2 O. Therefore, a large amount of rare earth components cannot be contained.
以上の理由から、従来光学ガラスと比較し本発明の光学ガラスは、B2O3-La2O3-Gd2O3-LaF3-ZnO-F系で、かつ、Li2Oなどのアルカリ金属酸化物を一切含有させないガラスであって、所定量以上の希土類元素を含有させることにより、図1の点A、B、C、Dで囲んだ範囲のような光学設計上非常に有用な高屈折率低分散の光学恒数を持たせることができ、またZnO、F、ガラス形成酸化物合計量を所定の割合とすることによりガラス転移温度(Tg)、屈伏点(At)を低く抑えることができ、さらに溶融時の揮発も少なく抑えることができる。すなわち、モールド用光学ガラスとして産業上非常に有用である。 For the above reasons, the optical glass of the present invention is a B 2 O 3 —La 2 O 3 —Gd 2 O 3 —LaF 3 —ZnO—F system and an alkali such as Li 2 O compared to the conventional optical glass. It is a glass that does not contain any metal oxide, and by containing a rare earth element in a predetermined amount or more, it is very useful in optical design such as a range surrounded by points A, B, C, and D in FIG. An optical constant having low refractive index dispersion can be provided, and the glass transition temperature (Tg) and yield point (At) are kept low by setting the total amount of ZnO, F, and glass-forming oxide to a predetermined ratio. Furthermore, the volatilization at the time of melting can be reduced. That is, it is very useful industrially as an optical glass for molds.
Claims (5)
SiO2 0〜7.0
B2O3 14.0〜21.5
GeO2 0〜5.0
La2O3 7.0〜35.0
Gd2O3 10.5〜40.0
Y2O3 0〜8.0
LaF3 5.0〜40.0
GdF3 0〜12.0
YF3 0〜8.0
Ta2O5 0〜8.0
CaO 0〜3.0
SrO 0〜3.0
BaO 0〜3.0
ZnO 1.0〜25.0
ZnF2 0〜8.0
ZrO2 0〜6.0
TiO2 0〜4.0
WO3 0〜3.0
Nb2O5 0〜5.0
を含有し、アルカリ金属酸化物を含有しない組成のモールド用光学ガラスであって、
ガラス転移温度(Tg)が590℃以下かつ屈伏点(At)が630℃以下であり、
図1に示すように、アッベ数(νd)をx軸とし、屈折率(nd)をy軸とする直交座標系におけるA点(52.0,1.80000)、B点(44.0,1.80000)、C点(47.0,1.74000)、D点(55.0,1.74000)をA点、B点、C点、D点、A点の順序で結んだ直線である境界線で囲まれる範囲内の光学恒数を有することを特徴とするモールド用光学ガラス。 % By weight
SiO 2 0~7.0
B 2 O 3 14.0 to 21.5
GeO 2 0~5.0
La 2 O 3 7.0~35.0
Gd 2 O 3 10.5~40.0
Y 2 O 3 0~8.0
LaF 3 5.0-40.0
GdF 3 0~12.0
YF 3 0~8.0
Ta 2 O 5 0-8.0
CaO 0-3.0
SrO 0-3.0
BaO 0-3.0
ZnO 1.0-25.0
ZnF 2 0-8.0
ZrO 2 0-6.0
TiO 2 0-4.0
WO 3 0~3.0
Nb 2 O 5 0~5.0
And an optical glass for molding having a composition not containing an alkali metal oxide,
The glass transition temperature (Tg) is 590 ° C. or lower and the yield point (At) is 630 ° C. or lower,
As shown in FIG. 1, point A (52.0, 1.8000) and point B (44.0, 44.0, 4) in an orthogonal coordinate system having the Abbe number (νd) as the x-axis and the refractive index (nd) as the y-axis. 1.80000), C point (47.0, 1.74000), D point (55.0, 1.74000) in the order of A point, B point, C point, D point, A point An optical glass for molding having an optical constant within a range surrounded by a certain boundary line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007161642A JP5049666B2 (en) | 2007-06-19 | 2007-06-19 | Optical glass for mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007161642A JP5049666B2 (en) | 2007-06-19 | 2007-06-19 | Optical glass for mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009001439A true JP2009001439A (en) | 2009-01-08 |
JP5049666B2 JP5049666B2 (en) | 2012-10-17 |
Family
ID=40318261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007161642A Active JP5049666B2 (en) | 2007-06-19 | 2007-06-19 | Optical glass for mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5049666B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013047168A (en) * | 2010-10-29 | 2013-03-07 | Ohara Inc | Optical glass, preform and optical element |
JP2013063888A (en) * | 2011-09-01 | 2013-04-11 | Ohara Inc | Optical glass, preform and optical element |
JP2014043390A (en) * | 2012-08-27 | 2014-03-13 | Cdgm Glass Co Ltd | Optical glass, glass preform using the same, optical component and optical apparatus |
JP2014133699A (en) * | 2011-10-28 | 2014-07-24 | Ohara Inc | Optical glass, preform and optical element |
JP2014529574A (en) * | 2011-09-07 | 2014-11-13 | 成都光明光▲電▼股▲分▼有限公司 | Optical glass and optical element |
JP5659023B2 (en) * | 2009-02-03 | 2015-01-28 | Hoya株式会社 | Optical glass, precision press-molding preforms, optical elements |
JP2015147720A (en) * | 2014-01-07 | 2015-08-20 | 日本電気硝子株式会社 | optical glass |
JP2015147719A (en) * | 2014-01-07 | 2015-08-20 | 日本電気硝子株式会社 | optical glass |
CN114031291A (en) * | 2021-12-06 | 2022-02-11 | 湖北新华光信息材料有限公司 | Optical glass, method for producing same, and optical element |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169150A (en) * | 1980-05-30 | 1981-12-25 | Ohara Inc | Optical glass |
JPS62100449A (en) * | 1985-10-24 | 1987-05-09 | Ohara Inc | Optical glass |
JP2005170782A (en) * | 2003-11-17 | 2005-06-30 | Ohara Inc | Optical glass |
JP2007290899A (en) * | 2006-04-24 | 2007-11-08 | Ohara Inc | Glass composition |
-
2007
- 2007-06-19 JP JP2007161642A patent/JP5049666B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56169150A (en) * | 1980-05-30 | 1981-12-25 | Ohara Inc | Optical glass |
JPS62100449A (en) * | 1985-10-24 | 1987-05-09 | Ohara Inc | Optical glass |
JP2005170782A (en) * | 2003-11-17 | 2005-06-30 | Ohara Inc | Optical glass |
JP2007290899A (en) * | 2006-04-24 | 2007-11-08 | Ohara Inc | Glass composition |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5659023B2 (en) * | 2009-02-03 | 2015-01-28 | Hoya株式会社 | Optical glass, precision press-molding preforms, optical elements |
JP2013047168A (en) * | 2010-10-29 | 2013-03-07 | Ohara Inc | Optical glass, preform and optical element |
JP2013063888A (en) * | 2011-09-01 | 2013-04-11 | Ohara Inc | Optical glass, preform and optical element |
JP2014529574A (en) * | 2011-09-07 | 2014-11-13 | 成都光明光▲電▼股▲分▼有限公司 | Optical glass and optical element |
JP2014133699A (en) * | 2011-10-28 | 2014-07-24 | Ohara Inc | Optical glass, preform and optical element |
JP2014043390A (en) * | 2012-08-27 | 2014-03-13 | Cdgm Glass Co Ltd | Optical glass, glass preform using the same, optical component and optical apparatus |
KR101542475B1 (en) * | 2012-08-27 | 2015-08-06 | 시디지엠 글라스 컴퍼니 리미티드 | Optical Glass for Precision Press Molding, Glass Preform, Optical Element and Optical instrument |
TWI549919B (en) * | 2012-08-27 | 2016-09-21 | Precision molded optical glass, glass preforms, optical components and optical instruments | |
JP2015147720A (en) * | 2014-01-07 | 2015-08-20 | 日本電気硝子株式会社 | optical glass |
JP2015147719A (en) * | 2014-01-07 | 2015-08-20 | 日本電気硝子株式会社 | optical glass |
CN114031291A (en) * | 2021-12-06 | 2022-02-11 | 湖北新华光信息材料有限公司 | Optical glass, method for producing same, and optical element |
Also Published As
Publication number | Publication date |
---|---|
JP5049666B2 (en) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5049666B2 (en) | Optical glass for mold | |
JP6033486B2 (en) | Optical glass, preform material and optical element | |
JP5290528B2 (en) | Optical glass for precision press molding | |
JP4411424B2 (en) | High refractive index optical glass for precision press molding | |
JP5073353B2 (en) | Optical glass | |
JP5602987B2 (en) | Optical glass | |
JP2006327926A (en) | Optical glass | |
JP2008303141A (en) | Optical glass | |
JP5946237B2 (en) | Optical glass, preform material and optical element | |
TW201331146A (en) | Optical glass, preform, and optical element | |
JP7503163B2 (en) | Optical glass, preforms and optical elements | |
EP1568665A2 (en) | An optical glass for precision molding | |
JP2009018952A (en) | Optical glass | |
JP4607561B2 (en) | Optical glass for precision press molding | |
JP7446052B2 (en) | Optical glass, preforms and optical elements | |
JP7545192B2 (en) | Optical glass, preforms and optical elements | |
JP5690505B2 (en) | Optical glass, mold press molding preform and optical element | |
JP2004168593A (en) | Optical glass | |
TWI621599B (en) | Optical glass, preforms and optical components | |
EP2338846B1 (en) | Optical glass and optical element | |
JP2012236756A (en) | Optical glass, preform, and optical element | |
JP7354362B2 (en) | Optical glass, preforms and optical elements | |
JP2007070194A (en) | Optical glass | |
JP2010202418A (en) | Optical glass | |
JP4233832B2 (en) | Optical glass for molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120723 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5049666 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |