JP2009094029A - All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery - Google Patents
All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery Download PDFInfo
- Publication number
- JP2009094029A JP2009094029A JP2007266192A JP2007266192A JP2009094029A JP 2009094029 A JP2009094029 A JP 2009094029A JP 2007266192 A JP2007266192 A JP 2007266192A JP 2007266192 A JP2007266192 A JP 2007266192A JP 2009094029 A JP2009094029 A JP 2009094029A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- electrode
- secondary battery
- inorganic solid
- electrolyte powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、高分子電解質を用いた全固体型リチウム二次電池に関するものである。 The present invention relates to an all solid-state lithium secondary battery using a polymer electrolyte.
近年、携帯電話、ノート型パソコンなどの高性能小型ポータブル機器の急速な普及に伴い、高エネルギー密度が得られる電源が要求されている。二次電池の中でも、高電圧が得られるリチウム二次電池に注目が集まっており、小型電子機器への搭載が進み、電力貯蔵、電気自動車用電源などにも応用され始めている。 In recent years, with the rapid spread of high-performance small portable devices such as mobile phones and notebook personal computers, a power source capable of obtaining a high energy density is required. Among secondary batteries, lithium secondary batteries that can obtain high voltage are attracting attention, and are increasingly being applied to small electronic devices, and are beginning to be applied to power storage, power sources for electric vehicles, and the like.
このようなリチウム電池は、無機材料からなる電極と非水電解液から構成されている。非水電解液を使用したリチウム電池はレート特性にも優れ幅広く使用されているが、漏液の危険性や可燃性ガスの発生による機器の破壊や電池の破裂、発火の危険性に課題が残されている。そこで、このような危険性を回避できる高分子電解質を用いたリチウム二次電池の研究が進められている。 Such a lithium battery is composed of an electrode made of an inorganic material and a non-aqueous electrolyte. Lithium batteries using non-aqueous electrolytes have excellent rate characteristics and are widely used. However, there are still problems with the risk of leakage, the destruction of equipment due to the generation of flammable gases, the explosion of batteries, and the risk of ignition. Has been. Therefore, research on lithium secondary batteries using a polymer electrolyte capable of avoiding such a risk is underway.
上記のような固体高分子電解質は、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデン、ポリビニルアルコールなどの重合体、またはこれらの共重合体のポリマーマトリックス中に支持電解質として、過塩素リチウム、ヘキサフルオロ燐酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウムなどを溶解した重合体、または架橋体が用いられている。
これらの固体高分子電解質は、柔軟性があり成形性に優れ、フィルムの成型や電極内の活物質との界面が容易に形成できる。
The solid polymer electrolyte as described above is a polymer such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyvinyl alcohol, or lithium perchlorate, lithium hexafluorophosphate as a supporting electrolyte in a polymer matrix of these copolymers. In addition, a polymer in which lithium tetrafluoroborate, lithium trifluoromethanesulfonate, or the like is dissolved, or a crosslinked product is used.
These solid polymer electrolytes have flexibility and excellent moldability, and can easily form a film and an interface with an active material in an electrode.
しかし、固体高分子電解質はイオン伝導度が非水電解液と比較して2〜3桁程度低く、二次電池用に用いる場合には動作温度が高くなければならないことや、レート特性が低いことが課題となっている。また、二次電池に用いる場合には、長期間充放電を繰り返すことから、電極材料に対しても化学的な安定性が求められるが、固体高分子電解質は特に充電時の正極の高電位に耐えられないものが多く、サイクルを繰り返す毎に電解質の経時的な抵抗増加が生じ、それに伴い電池容量が減少しサイクル寿命の短さに課題が残っている。 However, solid polymer electrolytes have an ionic conductivity that is about 2 to 3 orders of magnitude lower than that of non-aqueous electrolytes. When used for secondary batteries, the operating temperature must be high and the rate characteristics must be low. Has become an issue. In addition, when used for a secondary battery, since it is repeatedly charged and discharged for a long period of time, chemical stability is also required for the electrode material, but the solid polymer electrolyte is particularly at a high potential of the positive electrode during charging. There are many things that cannot be tolerated, and each time the cycle is repeated, the resistance of the electrolyte increases with time, resulting in a decrease in battery capacity and a problem with short cycle life.
これらの課題に対し、電極中の活物質と電解質が直接触れないように、活物質表面を無機物でコーティングする技術が提案されたが、従来のリチウム二次電池の製造工程にそぐわないものや、抵抗増加の抑制やレート特性などに課題が残り信頼性の高い全固体型リチウム二次電池が得られていなかった。 To address these issues, a technology has been proposed to coat the active material surface with an inorganic material so that the active material and the electrolyte in the electrode are not in direct contact with each other. All-solid-state lithium secondary batteries with high reliability have not been obtained due to problems such as suppression of increase and rate characteristics.
特許文献1および2は(LiPO3)nの水性溶液を調整し、電極活物質と混合し、撹拌した後、乾燥することにより、活物質表面に(LiPO3)nをコーティングする技術が開示されている。しかし、これらは高分子固体電解質部分のイオン伝導度を向上させる効果が得にくく、出力を得にくいという問題がある。また、既存のリチウムイオン電池用の電極作製プロセスに、更に無機固体電解質を活物質表面に均一にコーティングするという工程を増やさなければならないため好ましくない。
このような状況に鑑みて、本発明の課題は高分子固体電解質を用いた全固体型リチウム二次電池において、電池抵抗の経時的な増加を抑制しサイクル寿命を向上させ、同時に内部抵抗の低減を行うことにより放電負荷特性も向上させ、電池の信頼性を高めることである。 In view of such circumstances, the object of the present invention is to suppress the increase in battery resistance over time and improve cycle life in an all-solid-state lithium secondary battery using a solid polymer electrolyte, and simultaneously reduce internal resistance. By improving the discharge load characteristics, the reliability of the battery is improved.
上記課題の解決のために、本発明者は、高分子固体電解質を用いた全固体型リチウム二次電池の電極内に無機固体電解質粉末を添加することにより、サイクル寿命が長く、レート特性にも優れた信頼性の高い全固体型リチウム二次電池が得られることを見いだした。
具体的には本発明は以下のようなものを提供する。
In order to solve the above problems, the present inventor added a solid inorganic electrolyte powder to the electrode of an all-solid-state lithium secondary battery using a solid polymer electrolyte, thereby increasing the cycle life and improving the rate characteristics. We have found that an excellent and reliable all solid-state lithium secondary battery can be obtained.
Specifically, the present invention provides the following.
(構成1)
少なくとも一つの電極において、活物質、導電助材、高分子固体電解質および無機固体電解質粉末を含む電極合材に対して、高分子固体電解質および無機固体電解質粉末が占める割合が体積分率で50%未満である電極を有する全固体型リチウム二次電池。
(構成2)
前記無機固体電解質粉末は、前記高分子固体電解質中に分散していることを特徴とする構成1に記載の全固体型リチウム二次電池。
(構成3)
少なくとも一つの電極において、電極合材に対し、無機固体電解質粉末の占める割合が体積分率で30%未満である構成1または2に記載の全固体型リチウム二次電池。
(構成4)
前記無機固体電解質粉末の平均粒子径が30μm以下である構成1から3のいずれかに記載の全固体型リチウム二次電池。
(構成5)
前記無機固体電解質粉末は、リチウムを含有する酸化物、リチウムとハロゲンを含む化合物、およびリチウムと窒素を含む化合物のいずれか一つ以上からなることを特徴とする構成1から4のいずれかに記載の全固体型リチウム二次電池。
(構成6)
前記無機固体電解質粉末は、リチウムイオン伝導性の酸化物であることを特徴とする構成1から5のいずれかに記載の全固体型リチウム二次電池。
(構成7)
前記無機固体電解質粉末はLi1+x+zMx(Ge1−yTiy)2−xSizP3−zO12(但し、0≦x≦0.8、0≦y≦1.0、0≦z≦0.6、M=Al、Gaから選ばれる一つ以上)の結晶を含有することを特徴とする構成1から6のいずれかに記載の全固体型リチウム二次電池。
(構成8)
活物質、導電助材、高分子固体電解質および無機固体電解質粉末を含む電極合材に対して、高分子固体電解質および無機固体電解質粉末が占める割合が体積分率で50%未満である全固体型リチウム二次電池用の電極。
(構成9)
前記無機固体電解質粉末は、前記高分子固体電解質中に分散していることを特徴とする構成8に記載の全固体型リチウム二次電池用の電極。
(構成10)
電極合材に対し、無機固体電解質粉末の占める割合が体積分率で30%未満である構成8または9に記載の全固体型リチウム二次電池用の電極。
(構成11)
前記無機固体電解質粉末の平均粒子径が30μm以下である構成8から10のいずれかに記載の全固体型リチウム二次電池用の電極。
(構成12)
前記無機固体電解質粉末は、リチウムを含有する酸化物、リチウムとハロゲンを含む化合物、およびリチウムと窒素を含む化合物のいずれか一つ以上からなることを特徴とする構成8から11のいずれかに記載の全固体型リチウム二次電池用の電極。
(構成13)
前記無機固体電解質粉末は、リチウムイオン伝導性の酸化物であることを特徴とする構成8から12のいずれかに記載の全固体型リチウム二次電池用の電極。
(構成14)
前記無機固体電解質粉末はLi1+x+zMx(Ge1−yTiy)2−xSizP3−zO12(但し、0≦x≦0.8、0≦y≦1.0、0≦z≦0.6、M=Al、Gaから選ばれる一つ以上)の結晶を含有することを特徴とする構成8から13のいずれかに記載の全固体型リチウム二次電池用の電極。
(Configuration 1)
In at least one electrode, the ratio of the polymer solid electrolyte and the inorganic solid electrolyte powder to the electrode mixture containing the active material, the conductive additive, the polymer solid electrolyte, and the inorganic solid electrolyte powder is 50% in volume fraction. An all-solid-state lithium secondary battery having an electrode that is less than
(Configuration 2)
The all-solid-state lithium secondary battery according to Configuration 1, wherein the inorganic solid electrolyte powder is dispersed in the polymer solid electrolyte.
(Configuration 3)
The all-solid-state lithium secondary battery according to Configuration 1 or 2, wherein in at least one electrode, the proportion of the inorganic solid electrolyte powder in the electrode mixture is less than 30% in volume fraction.
(Configuration 4)
4. The all solid lithium secondary battery according to any one of configurations 1 to 3, wherein the inorganic solid electrolyte powder has an average particle size of 30 μm or less.
(Configuration 5)
The inorganic solid electrolyte powder is composed of any one or more of an oxide containing lithium, a compound containing lithium and halogen, and a compound containing lithium and nitrogen. All solid-state lithium secondary battery.
(Configuration 6)
6. The all-solid-state lithium secondary battery according to any one of configurations 1 to 5, wherein the inorganic solid electrolyte powder is a lithium ion conductive oxide.
(Configuration 7)
The inorganic solid electrolyte powder is Li 1 + x + z M x (Ge 1−y Ti y ) 2−x Si z P 3−z O 12 (where 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 1.0, 0 ≦ 7. An all-solid-state lithium secondary battery according to any one of Structures 1 to 6, comprising a crystal of z ≦ 0.6 and one or more selected from M = Al and Ga.
(Configuration 8)
All solid type in which the proportion of the polymer solid electrolyte and the inorganic solid electrolyte powder is less than 50% of the electrode mixture containing the active material, the conductive additive, the polymer solid electrolyte and the inorganic solid electrolyte powder. Electrode for lithium secondary battery.
(Configuration 9)
9. The electrode for an all solid-state lithium secondary battery according to Configuration 8, wherein the inorganic solid electrolyte powder is dispersed in the polymer solid electrolyte.
(Configuration 10)
The electrode for the all-solid-state lithium secondary battery according to Configuration 8 or 9, wherein the proportion of the inorganic solid electrolyte powder is less than 30% in terms of volume fraction with respect to the electrode mixture.
(Configuration 11)
11. The electrode for an all solid-state lithium secondary battery according to any one of configurations 8 to 10, wherein the inorganic solid electrolyte powder has an average particle size of 30 μm or less.
(Configuration 12)
The inorganic solid electrolyte powder includes any one or more of an oxide containing lithium, a compound containing lithium and halogen, and a compound containing lithium and nitrogen. Electrode for all solid-state lithium secondary battery.
(Configuration 13)
The electrode for an all-solid-state lithium secondary battery according to any one of Structures 8 to 12, wherein the inorganic solid electrolyte powder is a lithium ion conductive oxide.
(Configuration 14)
The inorganic solid electrolyte powder is Li 1 + x + z M x (Ge 1−y Ti y ) 2−x Si z P 3−z O 12 (where 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 1.0, 0 ≦ 14. An electrode for an all-solid-state lithium secondary battery according to any one of Structures 8 to 13, comprising a crystal of z ≦ 0.6 and one or more selected from M = Al and Ga.
本発明によれば、電池抵抗の経時的な増加を抑制しサイクル寿命を向上させ、同時に内部抵抗の低減を行うことにより放電負荷特性も向上させ、サイクル寿命が長く、レート特性にも優れた信頼性の高い全固体二次電池を得ることが出来る。
また、この発明においては従来の全固体二次電池の製造工程を簡略化でき実用上、非常に有効である。
According to the present invention, the battery resistance is prevented from increasing over time to improve cycle life, and at the same time, the internal resistance is reduced to improve discharge load characteristics, resulting in long cycle life and excellent rate characteristics. A highly solid all-solid secondary battery can be obtained.
In addition, in the present invention, the manufacturing process of the conventional all-solid-state secondary battery can be simplified, which is practically very effective.
本発明の全固体型リチウム二次電池においては、少なくとも一つの電極において無機固体電解質粉末を含み、電極合材(電極合材は活物質、導電助材、高分子固体電解質および無機固体電解質粉末を含む)に対して、高分子固体電解質および無機固体電解質粉末が占める割合が体積分率で50%未満である。このように電極中に無機固体電解質粉末を含み、高分子固体電解質および無機固体電解質粉末の体積分率を50%未満とすることにより、電池抵抗の経時的な増加を抑制し、電池の内部抵抗を低減することができる。また上記の効果を得ながらレート特性を維持しやすくするためには高分子固体電解質および無機固体電解質粉末の体積分率は48%以下がより好ましく、45%以下が最も好ましい。
また、高分子固体電解質および無機固体電解質粉末合計の体積分率が5%未満であると、電極内のリチウムイオン伝導性が低くなり放電特性に影響を与え易くなるほか、電池抵抗の経時的な増加を抑制し、電池の内部抵抗を低減する効果が得られにくいため、前記体積分率は5%以上であることが好ましく、15%以上であることがより好ましく、20%以上%であることが最も好ましい。
In the all solid-state lithium secondary battery of the present invention, at least one electrode includes an inorganic solid electrolyte powder, and the electrode mixture (the electrode mixture is an active material, a conductive additive, a polymer solid electrolyte, and an inorganic solid electrolyte powder). The solid solid electrolyte powder and the inorganic solid electrolyte powder account for less than 50% in volume fraction. Thus, by including the inorganic solid electrolyte powder in the electrode and making the volume fraction of the polymer solid electrolyte and the inorganic solid electrolyte powder less than 50%, the increase in battery resistance over time is suppressed, and the internal resistance of the battery is reduced. Can be reduced. In order to easily maintain the rate characteristics while obtaining the above effect, the volume fraction of the polymer solid electrolyte and the inorganic solid electrolyte powder is more preferably 48% or less, and most preferably 45% or less.
Further, if the total volume fraction of the polymer solid electrolyte and the inorganic solid electrolyte powder is less than 5%, the lithium ion conductivity in the electrode is lowered and the discharge characteristics are likely to be affected, and the battery resistance over time. The volume fraction is preferably 5% or more, more preferably 15% or more, and more preferably 20% or more% because it is difficult to obtain the effect of suppressing the increase and reducing the internal resistance of the battery. Is most preferred.
正極材料に使用する活物質としては、リチウムの吸蔵,放出が可能な遷移金属化合物を用いることができ、例えば、マンガン、コバルト、ニッケル、バナジウム、ニオブ、モリブデン、チタン、鉄から選ばれる少なくとも1種を含む遷移金属酸化物等を使用することができる。 As the active material used for the positive electrode material, a transition metal compound capable of occluding and releasing lithium can be used. For example, at least one selected from manganese, cobalt, nickel, vanadium, niobium, molybdenum, titanium, and iron Transition metal oxides containing can be used.
正極材料に使用する導電助剤としてはアセチレンブラック等の炭素系材料やその他公知の材料を用いることが出来る。 As the conductive additive used for the positive electrode material, a carbon-based material such as acetylene black and other known materials can be used.
負極材料に使用する活物質としては、金属リチウムやリチウム−アルミニウム合金、リチウム−インジウム、シリコン、錫合金などリチウムの吸蔵、放出が可能な合金、チタンやバナジウムなどの遷移金属酸化物及び黒鉛などのカーボン系の材料を使用することが好ましい。 Active materials used for the negative electrode material include metal lithium, lithium-aluminum alloys, lithium-indium, silicon, tin alloys such as lithium occluding and releasing alloys, transition metal oxides such as titanium and vanadium, and graphite. It is preferable to use a carbon-based material.
電極に使用する高分子固体電解質は、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデン、ポリビニルアルコールなどの重合体、またはこれらの共重合体のポリマーマトリックス中に支持電解質として、過塩素リチウム、ヘキサフルオロ燐酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウムなどを溶解した重合体、または架橋体を用いることができる。 The polymer solid electrolyte used for the electrode is a polymer such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyvinyl alcohol, or lithium perchlorate, lithium hexafluorophosphate as a supporting electrolyte in a polymer matrix of these copolymers. In addition, a polymer in which lithium tetrafluoroborate, lithium trifluoromethanesulfonate, or the like is dissolved, or a crosslinked product can be used.
無機固体電解質粉末を含む電極は、上記の材料を所定の割合で秤量した後、混合して、集電体上に塗布・乾燥させて作製することができる。混合には、電解質ポリマーを溶解できる有機溶媒等を用いても良い。 The electrode containing the inorganic solid electrolyte powder can be prepared by weighing the above materials at a predetermined ratio, mixing them, and applying and drying on the current collector. For mixing, an organic solvent or the like that can dissolve the electrolyte polymer may be used.
前記無機固体電解質粉末は、前記電極合材に含まれる高分子固体電解質中に分散していることが電極内のイオン伝導の点で好ましい。図1は本発明の電極の概念図である。図に示す様に、本発明において無機固体電解質粉末は、高分子固体電解質中に分散している。図2は従来の電極の概念図であるが、この図の様に無機固体電解質が活物質中をコーティングしたものは、固体電解質中に分散している場合と比較して高分子固体電解質部分のイオン伝導度を向上させる効果が得にくく、出力を得にくい。また、既存のリチウムイオン電池用の電極作製プロセスに更に、無機固体電解質を活物質表面に均一にコーティングするという工程を増やさなければならないため好ましくない。
無機固体電解質粉末を、高分子固体電解質中に良好に分散させるには、上述した電極の作製過程において、活物質、導電助材、結着材を混合する際に、同時に無機固体電解質を添加すればよい。
The inorganic solid electrolyte powder is preferably dispersed in the polymer solid electrolyte contained in the electrode mixture from the viewpoint of ion conduction in the electrode. FIG. 1 is a conceptual diagram of an electrode of the present invention. As shown in the figure, in the present invention, the inorganic solid electrolyte powder is dispersed in the polymer solid electrolyte. FIG. 2 is a conceptual diagram of a conventional electrode. As shown in this figure, an inorganic solid electrolyte coated in an active material has a polymer solid electrolyte portion compared to a case where it is dispersed in a solid electrolyte. It is difficult to obtain the effect of improving ionic conductivity, and it is difficult to obtain an output. Moreover, it is not preferable because the process for uniformly coating the surface of the active material with an inorganic solid electrolyte must be further added to the existing electrode manufacturing process for lithium ion batteries.
In order to satisfactorily disperse the inorganic solid electrolyte powder in the polymer solid electrolyte, the inorganic solid electrolyte should be added at the same time when the active material, the conductive additive, and the binder are mixed in the electrode preparation process described above. That's fine.
本発明の全固体型リチウム二次電池においては、少なくとも一つの電極において、電極合材に対し、無機固体電解質粉末の占める割合が体積分率で30%未満であることが、電池抵抗の経時的な増加をより抑制しやすくし、電池の内部抵抗をより低減させやすくなるため好ましい。前記の効果をより得易くするためには電極合材に対し、無機固体電解質粉末の占める割合が体積分率で29.9%以下であることがより好ましく、27%以下であることが最も好ましい。
また、電極合材に対する無機固体電解質粉末の占める割合が2%未満であると、電池抵抗の経時的な増加を抑制し、電池の内部抵抗を低減する効果が得られにくいため、前記体積分率は2%以上であることが好ましく、5%以上であることがより好ましく、7%以上であることが最も好ましい。
In the all-solid-state lithium secondary battery of the present invention, the ratio of the inorganic solid electrolyte powder to the electrode mixture in the at least one electrode is less than 30% in terms of volume fraction. This is preferable because it is easier to suppress the increase and the internal resistance of the battery can be further reduced. In order to make the above effect easier to obtain, the ratio of the inorganic solid electrolyte powder to the electrode mixture is more preferably 29.9% or less, and most preferably 27% or less in terms of volume fraction. .
In addition, when the proportion of the inorganic solid electrolyte powder to the electrode mixture is less than 2%, it is difficult to obtain the effect of suppressing the increase in battery resistance with time and reducing the internal resistance of the battery. Is preferably 2% or more, more preferably 5% or more, and most preferably 7% or more.
電極中に含まれる無機固体電解質粉末の平均粒子径は電極内の活物質粒子径、電極厚さを考慮し、電極内での分散性を良好とし易くするため30μm以下であることが好ましく、20μm以下であることがより好ましく、18μm以下であることが最も好ましい。
また、電極中に含まれる無機固体電解質粉末の平均粒子径は電極内への分散、電極材料同士の結着性を良好とし易くするため150nm以上が好ましく、200nm以上がより好ましく、500nm以上が最も好ましい。前記平均粒子径はレーザー回折法によって測定した時のD50(累積50%径)の値であり、具体的にはベックマン・コールター社の粒度分布測定装置LS100Qまたはサブミクロン粒子アナライザーN5によって測定した値を用いることができる。前記の測定装置は被測定物の粒子径によって使い分けをする。被測定物の最大粒径が3μm未満の場合はサブミクロン粒子アナライザーN5を用いて測定する。被測定物の最小粒子径が0.4μm以上の場合は粒度分布測定装置LS100Qを用いて測定する。被測定物の最大粒子径が3μm以上で最小粒径が0.4μm未満の場合はまずLS100Qで測定し、分布曲線のピークが2μm以上の時はLS100Qで測定して得られる値を用いる。LS100Qで測定した分布曲線のピークが2μm未満の時はN5で測定して得られる値を用いる。なお、前記平均粒子径は体積基準で表わした値である。
The average particle size of the inorganic solid electrolyte powder contained in the electrode is preferably 30 μm or less in order to facilitate good dispersibility in the electrode in consideration of the active material particle size and electrode thickness in the electrode. Or less, and most preferably 18 μm or less.
The average particle size of the inorganic solid electrolyte powder contained in the electrode is preferably 150 nm or more, more preferably 200 nm or more, and most preferably 500 nm or more in order to facilitate the dispersion in the electrode and the binding property between the electrode materials. preferable. The average particle diameter is a value of D50 (cumulative 50% diameter) measured by a laser diffraction method. Specifically, a value measured by a particle size distribution measuring device LS100Q or a submicron particle analyzer N5 manufactured by Beckman Coulter, Inc. Can be used. The above-described measuring apparatus is properly used depending on the particle diameter of the object to be measured. When the maximum particle size of the object to be measured is less than 3 μm, measurement is performed using a submicron particle analyzer N5. When the minimum particle diameter of the object to be measured is 0.4 μm or more, measurement is performed using a particle size distribution measuring device LS100Q. When the maximum particle size of the object to be measured is 3 μm or more and the minimum particle size is less than 0.4 μm, first, measurement is performed with LS100Q, and when the peak of the distribution curve is 2 μm or more, the value obtained by measurement with LS100Q is used. When the peak of the distribution curve measured with LS100Q is less than 2 μm, the value obtained by measuring with N5 is used. The average particle diameter is a value expressed on a volume basis.
前記無機固体電解質粉末は、リチウムを含有する酸化物、リチウムとハロゲンを含む化合物、およびリチウムと窒素を含む化合物のいずれか一つ以上からなることがとなりやすいため好ましい。このなかでもリチウムイオン伝導性の酸化物は電池製造工程において使用される有機溶媒等の材料や大気での作製雰囲気に対して化学的な安定性が高いためより好ましい。 The inorganic solid electrolyte powder is preferable because it tends to be composed of one or more of an oxide containing lithium, a compound containing lithium and halogen, and a compound containing lithium and nitrogen. Among these, a lithium ion conductive oxide is more preferable because it has high chemical stability with respect to materials such as an organic solvent used in the battery manufacturing process and a production atmosphere in the air.
さらに、リチウムイオン伝導性の無機固体電解質粉末は、Li1+x+zMx(Ge1−yTiy)2−xSizP3−zO12(但し、0≦x≦0.8、0≦y≦1.0、0≦z≦0.6、M=Al、Gaから選ばれる一つ以上)で示されるリチウムイオン伝導性の結晶を含むことにより高いイオン伝導性を有し、電極内のリチウムイオン移動を担うのに充分な伝導性を得やすくなるため最も好ましい。 Further, the lithium ion conductive inorganic solid electrolyte powder is Li 1 + x + z M x (Ge 1−y Ti y ) 2−x Si z P 3−z O 12 (where 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.6, M = one or more selected from Al, Ga) and having high ion conductivity, lithium in the electrode This is most preferable because it is easy to obtain sufficient conductivity for carrying ion migration.
リチウムイオン伝導性の結晶は、イオン伝導を阻害する結晶粒界を含まない結晶であるとイオン伝導の点で有利である。特にガラスセラミックスは、イオン伝導を妨げる空孔や結晶粒界をほとんど有しないので、イオン伝導性が高く、かつ化学的な安定性に優れるため、より好ましい。 The lithium ion conductive crystal is advantageous in terms of ion conduction if it does not include a crystal grain boundary that inhibits ion conduction. In particular, glass ceramics are more preferable because they have almost no vacancies or crystal grain boundaries that hinder ion conduction, and therefore have high ion conductivity and excellent chemical stability.
ここで、ガラスセラミックスとは、ガラスを熱処理することによりガラス相中に結晶相を析出させて得られる材料であり、非晶質固体と結晶からなる材料をいい、更に、ガラス相すべてを結晶相に相転移させた材料、すなわち、材料中の結晶量(結晶化度)が100質量%のものを含む。尚、100%結晶化させた材料であってもガラスセラミックスの場合は結晶の粒子間や結晶中に空孔がほとんどない。これに対し、一般にいわれるセラミックスや焼結体はその製造工程上、結晶の粒子間や結晶中の空孔や結晶粒界の存在が避けられず、本発明のガラスセラミックスとは区別することができる。特にイオン伝導に関しては、セラミックスの場合は空孔や結晶粒界の存在により、結晶粒子自体が有する伝導度よりもかなり低い値となってしまう。ガラスセラミックスは結晶化工程の制御により結晶間の伝導度の低下を抑えることができ、結晶粒子自体が本質的に有する伝導度と同程度の伝導度を得ることが容易となる。 Here, the glass ceramic is a material obtained by precipitating a crystalline phase in a glass phase by heat-treating the glass, and means a material composed of an amorphous solid and a crystal. In other words, a material that has undergone phase transition to the above, that is, a material whose crystal content (crystallinity) in the material is 100 mass%. In the case of glass ceramics, even if the material is 100% crystallized, there are almost no voids between crystal grains or in the crystal. On the other hand, ceramics and sintered bodies generally referred to in the production process cannot avoid the presence of vacancies and crystal grain boundaries between crystal grains, and crystals, and can be distinguished from the glass ceramics of the present invention. it can. In particular, with regard to ionic conduction, in the case of ceramics, due to the presence of vacancies and crystal grain boundaries, the conductivity is considerably lower than the conductivity of the crystal grains themselves. Glass ceramics can suppress a decrease in conductivity between crystals by controlling the crystallization process, and it becomes easy to obtain the same conductivity as the conductivity inherent to the crystal grains themselves.
従って、Li1+x+zMx(Ge1−yTiy)2−xSizP3−zO12(但し、0≦x≦0.8、0≦y≦1.0、0≦z≦0.6、M=Al、Gaから選ばれる一つ以上)で示されるリチウムイオン伝導性の結晶を析出させたガラスセラミックスの粉末は電極中に含まれるリチウムイオン伝導性の無機固体電解質粉末として最も好ましい。 Therefore, Li 1 + x + z M x (Ge 1-y Ti y) 2-x Si z P 3-z O 12 ( where, 0 ≦ x ≦ 0.8,0 ≦ y ≦ 1.0,0 ≦ z ≦ 0. 6, one or more selected from M = Al and Ga) is most preferable as the lithium ion conductive inorganic solid electrolyte powder contained in the electrode.
Li1+x+zMx(Ge1−yTiy)2−xSizP3−zO12(但し、0≦x≦0.8、0≦y≦1.0、0≦z≦0.6、M=Al、Gaから選ばれる一つ以上)で示されるリチウムイオン伝導性の結晶を析出させたガラスセラミックスは酸化物基準のmol%表示で、
Li2O 10〜25%、および
Al2O3および/またはGa2O3 0〜15%、および
TiO2および/またはGeO2 25〜50%、および
SiO2 0〜15%、および
P2O5 26〜40%
の各成分を含有するガラスを溶融、急冷することでガラスを得たのち、このガラスを熱処理し、結晶を析出させることによって得ることができる。
Li 1 + x + z M x (Ge 1−y Ti y ) 2−x Si z P 3−z O 12 (where 0 ≦ x ≦ 0.8, 0 ≦ y ≦ 1.0, 0 ≦ z ≦ 0.6, The glass ceramics on which the lithium ion conductive crystal represented by M = Al or Ga) is expressed in mol% based on the oxide,
Li 2 O 10-25%, and Al 2 O 3 and / or Ga 2 O 3 0-15%, and TiO 2 and / or GeO 2 25-50%, and SiO 2 0-15%, and P 2 O 5 26-40%
After obtaining glass by melting and quenching the glass containing each of the above components, the glass can be heat treated to precipitate crystals.
ここで、「酸化物基準のmol%」とは、本発明の無機組成物構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべて分解され酸化物へ変化すると仮定した場合に、この生成酸化物の質量の総和を100mol%として、ガラスセラミックス中に含有される各成分を表記した組成である。 Here, “mol% based on oxide” means that oxides, nitrates, and the like used as raw materials for the inorganic composition constituents of the present invention are all decomposed and changed to oxides when melted. This is a composition in which each component contained in the glass ceramic is described with the total mass of the generated oxide being 100 mol%.
上述の組成の場合、溶融ガラスをキャストして容易にガラスを得ることができ、このガラスを熱処理して得られた上記結晶相をもつガラスセラミックスは25℃において1×10−4S/cm〜1×10−3S/cmの高いリチウムイオン伝導性を有する。 In the case of the above-mentioned composition, it is possible to easily obtain glass by casting molten glass, and the glass ceramics having the above crystal phase obtained by heat-treating this glass is 1 × 10 −4 S / cm to 25 ° C. High lithium ion conductivity of 1 × 10 −3 S / cm.
本発明の全固体リチウム二次電池の電解質(セパレータ)にはポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデン、ポリビニルアルコールなどの重合体、またはこれらの共重合体のポリマーマトリックス中に支持電解質として、過塩素リチウム、ヘキサフルオロ燐酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウムなどを溶解した重合体、または架橋体などの公知の材料を用いることができる。 The electrolyte (separator) of the all-solid-state lithium secondary battery of the present invention is a polymer such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyvinyl alcohol, or a perchloric acid as a supporting electrolyte in a polymer matrix of these copolymers. A known material such as a polymer in which lithium, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, or the like is dissolved, or a crosslinked material can be used.
本発明の全固体リチウム二次電池は上述した正極、セパレータ、負極を順に積層させ熱圧着または正極/電解質、負極/電解質を積層成型した後、張り合わせる、または熱圧着することによって作製することができる。 The all-solid-state lithium secondary battery of the present invention can be produced by laminating the positive electrode, separator, and negative electrode described above in order and thermoforming or laminating and forming the positive electrode / electrolyte and negative electrode / electrolyte, and then bonding or thermocompression bonding. it can.
以下、本発明に係る全固体リチウム二次電池および全固体リチウム二次電池用の電極について、具体的な実施例を挙げて説明する。なお、本発明は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。 Hereinafter, an all-solid lithium secondary battery and an electrode for an all-solid lithium secondary battery according to the present invention will be described with specific examples. In addition, this invention is not limited to what was shown to the following Example, In the range which does not change the summary, it can change suitably and can implement.
《実施例1》
1)リチウムイオン伝導性ガラスセラミックスの作製
原料としてH3PO4、Al(PO3)3、Li2CO3、SiO2、TiO2を使用し、これらを酸化物換算のmol%でP2O5を35.0%、Al2O3を7.5%、Li2Oを15.0%、TiO2を38.0%、SiO2を4.5%といった組成になるように秤量して均一に混合した後に、白金ポットに入れ、電気炉中1500℃でガラス融液を撹拌しながら4時間加熱熔解した。その後、ガラス融液を流水中に滴下させることにより、フレーク状のガラスを得、このガラスを950℃で12時間の熱処理により結晶化を行うことにより、目的のガラスセラミックスを得た。析出した結晶相は粉末X線回折法により、Li1+x+zAlx(Ge1−yTiy)2−xSizP3−zO12(0<x≦0.2、y=1、0<Z≦0.3)が主結晶相であることが確認した。得られたガラスセラミックスのフレークをラボスケールのジェットミルにより粉砕、ジルコニア製の回転ローラーにより分級を行い、平均粒子径8μmのガラスセラミックスの粉末を得た。また、このガラスセラミックスのイオン伝導度は1.3×10−3Scm−1であった。
2)正極の作製
電極合材に対して高分子固体電解質および無機固体電解質粉末が占める体積分率が45vol%、電極合材に対して無機固体電解質粉末が占める体積分率が27vol%になるように正極を作製した。詳細は以下の通りである。
正極集電体として厚さ20μmのAl箔を使用した。活物質としてLiCoO2を93wt%、導電助材としてアセチレンブラック7wt%を混合した。ポリエチレンオキシド系ポリマーにリチウムビストリフルオロスルホニルイミドを溶解させた高分子固体電解質と無機固体電解質として、上記により作製したリチウムイオン伝導性ガラスセラミックスをリチウムイオン伝導性ガラスセラミックスの体積分率が60vol%になるように秤量・混合して、NMP(N−メチル−2−ピロリドン)を加えてペースト状に調整した。この固体電解質ペーストと先に混合したLiCoO2とアセチレンブラックの混合物を固形分換算で、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が45vol%になるよう秤量し、NMPを加えてペースト状に調整した。このペーストをAl箔集電体に塗布し、100℃で乾燥させた。その後、ロールプレスにて電極合材が密になるようプレスして、その後50mm角に裁断して正極を作製した。ここで、LiCoO2の平均粒子径は8μmのものを用いた。無機固体電解質粉末は高分子固体電解質中に分散している。電極合材に対する無機固体電解質粉末の体積分率は27vol%であった。
3)負極の作製
負極集電体として厚さ18μmのCu箔を使用した。活物質としてグラファイト92wt%と正極で使用した高分子固体電解質8wt%を混合して、NMPを加えてペースト状に調製した。このペーストを負極集電体に均一に塗布し、100℃で乾燥させた。その後、ロールプレスにてプレスした後に52mm角に裁断して負極を作製した。ここでグラファイトの平均粒子径は15μmのものを用いた。
3)電池の作製
上記2)、3)で得られた各電極を真空中、70℃で乾燥させた後に、上記2)で得られた負極上に電極に使用したのと同じ高分子固体電解質を塗布して高分子固体電解質層を積層した。その後、上記1)で得られた正極を重ねて積層し、金属ラミネート樹脂フィルムケースに収納した。
Example 1
1) Preparation of lithium ion conductive glass ceramics H 3 PO 4 , Al (PO 3 ) 3 , Li 2 CO 3 , SiO 2 , and TiO 2 are used as raw materials, and these are converted to P 2 O in mol% in terms of oxide. 5 is 35.0%, Al 2 O 3 is 7.5%, Li 2 O is 15.0%, TiO 2 is 38.0%, and SiO 2 is 4.5%. After uniformly mixing, the mixture was placed in a platinum pot and melted by heating in an electric furnace at 1500 ° C. with stirring for 4 hours. Thereafter, the glass melt was dropped into running water to obtain flaky glass, and the glass was crystallized by heat treatment at 950 ° C. for 12 hours to obtain the target glass ceramic. The precipitated crystal phase powder X-ray diffractometry, Li 1 + x + z Al x (Ge 1-y Ti y) 2-x Si z P 3-z O 12 (0 <x ≦ 0.2, y = 1,0 <Z ≦ 0.3) was confirmed to be the main crystal phase. The obtained glass ceramic flakes were pulverized by a lab-scale jet mill and classified by a zirconia rotating roller to obtain a glass ceramic powder having an average particle diameter of 8 μm. Moreover, the ionic conductivity of this glass ceramic was 1.3 * 10 < -3 > Scm < -1 >.
2) Preparation of positive electrode The volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture is 45 vol%, and the volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture is 27 vol%. A positive electrode was prepared. Details are as follows.
An Al foil having a thickness of 20 μm was used as the positive electrode current collector. 93 wt% of LiCoO 2 was mixed as an active material, and 7 wt% of acetylene black was mixed as a conductive additive. As a polymer solid electrolyte and an inorganic solid electrolyte in which lithium bistrifluorosulfonylimide is dissolved in a polyethylene oxide polymer, the volume fraction of the lithium ion conductive glass ceramic is 60 vol%. The mixture was weighed and mixed, and NMP (N-methyl-2-pyrrolidone) was added to prepare a paste. This solid electrolyte paste and the previously mixed LiCoO 2 and acetylene black mixture were weighed so that the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture was 45 vol% in terms of solid content. Was added to prepare a paste. This paste was applied to an Al foil current collector and dried at 100 ° C. Then, it pressed so that an electrode compound material might become dense with a roll press, and it cut | judged to 50 mm square after that, and produced the positive electrode. Here, the average particle diameter of LiCoO 2 was 8 μm. The inorganic solid electrolyte powder is dispersed in the polymer solid electrolyte. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 27 vol%.
3) Production of Negative Electrode A 18 μm thick Cu foil was used as the negative electrode current collector. 92 wt% of graphite as an active material and 8 wt% of the polymer solid electrolyte used in the positive electrode were mixed, and NMP was added to prepare a paste. This paste was uniformly applied to the negative electrode current collector and dried at 100 ° C. Then, after pressing with a roll press, it cut | judged to 52 square mm and produced the negative electrode. Here, graphite having an average particle diameter of 15 μm was used.
3) Preparation of battery The same polymer solid electrolyte as that used for the electrode on the negative electrode obtained in 2) above after drying each electrode obtained in 2) and 3) in vacuum at 70 ° C. Was applied to laminate a polymer solid electrolyte layer. Thereafter, the positive electrodes obtained in 1) above were stacked and stacked, and housed in a metal laminated resin film case.
《実施例2》
固体電解質固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が35vol%になるように調整した以外は、実施例1と同様に電池を作製した。電極合材に対する無機固体電解質粉末の体積分率は21vol%であった。
Example 2
In the adjustment of the solid electrolyte, the mixture of the solid electrolyte, the active material, and acetylene black, except that the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture was adjusted to 35 vol%, Example 1 A battery was similarly prepared. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 21 vol%.
《実施例3》
固体電解質における無機固体電解質粉末の体積分率を50vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が35vol%になるように調整した以外は、実施例1と同様に電池を作製した。電極合材に対する無機固体電解質粉末の体積分率は18vol%であった。
Example 3
Adjusting the volume fraction of the inorganic solid electrolyte powder in the solid electrolyte to 50 vol%, and adjusting the mixture of the solid electrolyte, the active material, and acetylene black, the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture A battery was produced in the same manner as in Example 1 except that the amount was adjusted to 35 vol%. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 18 vol%.
《実施例4》
固体電解質における無機固体電解質粉末の体積分率を20vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が35vol%になるように調整した以外は、実施例1と同様に電池を作製した。電極合材に対する無機固体電解質粉末の体積分率は7vol%であった。
Example 4
Adjusting the volume fraction of the inorganic solid electrolyte powder in the solid electrolyte to 20 vol%, and adjusting the mixture of the solid electrolyte, the active material, and acetylene black, the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture A battery was produced in the same manner as in Example 1 except that the amount was adjusted to 35 vol%. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 7 vol%.
《実施例5》
固体電解質における無機固体電解質粉末の体積分率を60vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が25vol%になるように調整した。 また、この時用いた無機固体電解質粉末は実施例1で作製したリチウムイオン伝導性ガラスセラミックスの粉末用い、湿式ボールミル粉砕にて平均粒子径を1μmの粉末を調整した。電極合材に対する無機固体電解質粉末の体積分率は15vol%であった。その他は実施例1と同様に電池を作製した。
Example 5
Adjusting the volume fraction of the inorganic solid electrolyte powder in the solid electrolyte to 60 vol%, and adjusting the mixture of the solid electrolyte, the active material, and acetylene black, the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture Was adjusted to 25 vol%. The inorganic solid electrolyte powder used at this time was a lithium ion conductive glass ceramic powder prepared in Example 1, and a powder having an average particle size of 1 μm was prepared by wet ball milling. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 15 vol%. Otherwise, a battery was fabricated in the same manner as in Example 1.
《実施例6》
固体電解質における無機固体電解質粉末の体積分率を50vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が25vol%になるように調整した。また、この時用いた無機固体電解質粉末は実施例2と同様に作製し、平均粒子径0.5μmの粉末を調整した。電極合材に対する無機固体電解質粉末の体積分率は13vol%であった。その他は実施例1と同様に電池を作製した。
Example 6
Adjusting the volume fraction of the inorganic solid electrolyte powder in the solid electrolyte to 50 vol%, and adjusting the mixture of the solid electrolyte, the active material, and acetylene black, the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture Was adjusted to 25 vol%. The inorganic solid electrolyte powder used at this time was prepared in the same manner as in Example 2, and a powder having an average particle diameter of 0.5 μm was prepared. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 13 vol%. Otherwise, a battery was fabricated in the same manner as in Example 1.
《実施例7》
固体電解質における無機固体電解質粉末の体積分率を20vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が20%になるように調整した。また、この時用いた無機固体電解質粉末は実施例1で作製したリチウムイオン伝導性ガラスセラミックスのフレークを用い、得られたガラスセラミックスのフレークをラボスケールのジェットミルにより粉砕、ジルコニア製の回転ローラーにより分級を行い、平均粒子径を18μmとした。電極合材に対する無機固体電解質粉末の体積分率は10vol%であった。その他は実施例1と同様に電池を作製した。
Example 7
Adjusting the volume fraction of the inorganic solid electrolyte powder in the solid electrolyte to 20 vol%, and adjusting the mixture of the solid electrolyte, the active material, and acetylene black, the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture Was adjusted to 20%. The inorganic solid electrolyte powder used at this time was the lithium ion conductive glass ceramic flakes produced in Example 1. The obtained glass ceramic flakes were pulverized by a lab-scale jet mill, and then rotated by a zirconia rotating roller. Classification was carried out so that the average particle size was 18 μm. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 10 vol%. Otherwise, a battery was fabricated in the same manner as in Example 1.
《実施例8》
無機固体電解質粉末にLiNbO3(平均粒子径3μm)を用いて、固体電解質における体積分率を40vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が30vol%になるように調整した以外は、実施例1と同様に電池を作製した。電極合材に対する無機固体電解質粉末の体積分率は12vol%であった。
Example 8
Using inorganic solid electrolyte powder LiNbO 3 (average particle diameter 3 μm), adjusting the volume fraction in the solid electrolyte to 40 vol%, and adjusting the mixture of the solid electrolyte, the active material and acetylene black, the polymer for the electrode mixture A battery was fabricated in the same manner as in Example 1 except that the volume fraction occupied by the solid electrolyte and the inorganic solid electrolyte powder was adjusted to 30 vol%. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 12 vol%.
《実施例9》
無機固体電解質粉末にLi4Ti5O12(平均粒子径11μm)を用いて、固体電解質における体積分率を40vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が30vol%になるように調整した以外は、実施例1と同様に電池を作製した。電極合材に対する無機固体電解質粉末の体積分率は12vol%であった。
Example 9
Li 4 Ti 5 O 12 (average particle diameter of 11 μm) was used as the inorganic solid electrolyte powder, the volume fraction in the solid electrolyte was adjusted to 40 vol%, and in the adjustment of the mixture of the solid electrolyte, the active material, and acetylene black, A battery was fabricated in the same manner as in Example 1, except that the volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the material was adjusted to 30 vol%. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 12 vol%.
《実施例10》
無機固体電解質粉末にLiF(平均粒子径0.9μm)を用いて、固体電解質における体積分率を30vol%に調整し、固体電解質と活物質とアセチレンブラックの混合物の調整において、電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率が40vol%になるように調整した以外は、実施例1と同様に電池を作製した。電極合材に対する無機固体電解質粉末の体積分率は12vol%であった。
Example 10
Using LiF (average particle size 0.9 μm) as the inorganic solid electrolyte powder, adjusting the volume fraction in the solid electrolyte to 30 vol%, and adjusting the mixture of the solid electrolyte, the active material, and acetylene black, A battery was fabricated in the same manner as in Example 1 except that the volume fraction occupied by the molecular solid electrolyte and the inorganic solid electrolyte powder was adjusted to 40 vol%. The volume fraction of the inorganic solid electrolyte powder with respect to the electrode mixture was 12 vol%.
《実施例11》
LiFePO4、AB、リチウムイオン伝導性ガラスセラミックス、Pvdfを73:7:5:15wt%になるように秤量して、NMPとともに混合し正極合材スラリーを調整した。リチウムイオン伝導性ガラスセラミックスは実施例1で作製ガラスセラミックスのフレークを用い、平均粒子径1μmの粉末とした。
調整した正極合材スラリーをAl箔集電体に塗布した後に乾燥させ、ロールプレスにてプレスした。この時の正極合材層の嵩密度から空隙率を算出し、空隙率26%であった。この合材層の上から高分子電解質スラリーを塗布し、合材中に高分子電解質を染み込ませた。塗布、乾燥を数回に渡って繰り返して正極を作製した。電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率は39vol%、無機固体電解質粉末の体積分率は13vol%であった。
また、Li4Ti5O12(平均粒子径11μm)、アセチレンブラック、上記と同じ平均粒子径1μmのリチウムイオン伝導性ガラスセラミックス粉末、Pvdfを80:5:5:10wt%になるように秤量し、NMPとともに混合して負極合材スラリーを調整した。これをCu箔集電体に塗布した後、乾燥させ、ロールプレスにてプレスした。このときの負極合材層の空隙率を算出し、空隙率22%であった。その後、正極と同様に高分子電解質スラリーを塗布して負極を作製した。電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率は30vol%、無機固体電解質粉末の体積分率は8vol%であった。
これら正極と負極と高分子固体電解質フィルム(30μm)を張り合わせて、金属ラミネート樹脂フィルムケースに収納した。
Example 11
LiFePO 4 , AB, lithium ion conductive glass ceramics, and Pvdf were weighed to 73: 7: 5: 15 wt% and mixed with NMP to prepare a positive electrode mixture slurry. As the lithium ion conductive glass ceramics, the glass ceramic flakes produced in Example 1 were used, and the powders had an average particle diameter of 1 μm.
The adjusted positive electrode mixture slurry was applied to an Al foil current collector, dried, and pressed with a roll press. The porosity was calculated from the bulk density of the positive electrode mixture layer at this time, and the porosity was 26%. The polymer electrolyte slurry was applied from above the mixture layer, and the polymer electrolyte was infiltrated into the mixture. Coating and drying were repeated several times to produce a positive electrode. The volume fraction occupied by the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture was 39 vol%, and the volume fraction of the inorganic solid electrolyte powder was 13 vol%.
Further, Li 4 Ti 5 O 12 (average particle diameter 11 μm), acetylene black, lithium ion conductive glass ceramic powder having the same average particle diameter 1 μm as above, and Pvdf were weighed so as to be 80: 5: 5: 10 wt%. The negative electrode mixture slurry was prepared by mixing with NMP. This was applied to a Cu foil current collector, dried, and pressed with a roll press. The porosity of the negative electrode mixture layer at this time was calculated, and the porosity was 22%. Thereafter, a polymer electrolyte slurry was applied in the same manner as the positive electrode to produce a negative electrode. The volume fraction of the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture was 30 vol%, and the volume fraction of the inorganic solid electrolyte powder was 8 vol%.
These positive electrode, negative electrode and polymer solid electrolyte film (30 μm) were bonded together and stored in a metal laminated resin film case.
《実施例12》
LiMn2O4、AB、無機固体電解質粉末として実施例11と同じリチウムイオン伝導性ガラスセラミックス粉末、Pvdfを80:5:5:10wt%になるように秤量して、NMPとともに混合し正極合材スラリーを調整した。
これをAl箔集電体に塗布した後に乾燥させ、ロールプレスにてプレスした。この時の正極合材層の嵩密度から空隙率を算出し、空隙率24%であった。この合材層の上から高分子電解質スラリーを塗布し、合材中に高分子電解質を染み込ませた。塗布、乾燥を数回に渡って繰り返して正極を作製した。電極合材に対する高分子固体電解質および無機固体電解質粉末が占める体積分率は34vol%、無機固体電解質粉末の体積分率は10vol%であった。リチウムイオン伝導性ガラスセラミックスは実施例1で作製ガラスセラミックスのフレークを用い、平均粒子径3μmの粉末とした。上記以外は実施例11と同様にして電池を作製した。
Example 12
LiMn 2 O 4 , AB, the same lithium ion conductive glass ceramic powder as in Example 11 as an inorganic solid electrolyte powder, Pvdf was weighed to 80: 5: 5: 10 wt%, mixed with NMP, and mixed with positive electrode The slurry was adjusted.
This was applied to an Al foil current collector, dried, and pressed with a roll press. The porosity was calculated from the bulk density of the positive electrode mixture layer at this time, and the porosity was 24%. The polymer electrolyte slurry was applied from above the mixture layer, and the polymer electrolyte was infiltrated into the mixture. Coating and drying were repeated several times to produce a positive electrode. The volume fraction of the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture was 34 vol%, and the volume fraction of the inorganic solid electrolyte powder was 10 vol%. As the lithium ion conductive glass ceramics, the glass ceramic flakes produced in Example 1 were used, and a powder having an average particle diameter of 3 μm was used. A battery was made in the same manner as Example 11 except for the above.
《比較例1》
実施例1で用いた無機固体電解質粉末を全て高分子固体電解質に置き換えた以外は、実施例1と同様に電池を作製した。
<< Comparative Example 1 >>
A battery was fabricated in the same manner as in Example 1, except that all of the inorganic solid electrolyte powder used in Example 1 was replaced with a polymer solid electrolyte.
上記実施例で作製した電池を60℃の環境下で2日間保存した後に、定電流−定電圧充電−定電流放電法にて1/10Cの電流値で充放電評価した。また、充放電サイクルの前後での抵抗測定を交流インピーダンス法にて行った。初回放電後と50サイクル繰り返した後のセルインピーダンスでの抵抗増加率を表1に示す。また、それぞれの実施例の電池において、定電流−定電圧充電にて満充電した後に、1/4Cの電流値で放電させた時の放電容量を充電容量当たりに換算したものを出力特性として記載する。表1において「固体電解質体積分率」とは電極合材に対する高分子固体電解質と無機固体電解質粉末の合計の体積分率を示している。 The batteries produced in the above examples were stored at 60 ° C. for 2 days, and then charged and discharged at a current value of 1/10 C by a constant current-constant voltage charge-constant current discharge method. In addition, resistance measurement before and after the charge / discharge cycle was performed by an AC impedance method. Table 1 shows the rate of increase in resistance at the cell impedance after the first discharge and after 50 cycles. In addition, in each of the batteries of the examples, the output capacity is obtained by converting the discharge capacity per charge capacity when the battery is discharged at a current value of 1/4 C after being fully charged by constant current-constant voltage charging. To do. In Table 1, “solid electrolyte volume fraction” indicates the total volume fraction of the polymer solid electrolyte and the inorganic solid electrolyte powder with respect to the electrode mixture.
以上のことから、本発明にある高分子固体電解質を用いた全固体リチウム二次電池の電極の少なくとも一方に特定量の無機固体電解質を混合することにより、電池のインピーダンスの増加抑制する効果が得られ、出力特性やサイクル安定性を高めることが可能となることが分かる。 From the above, the effect of suppressing the increase in battery impedance can be obtained by mixing a specific amount of the inorganic solid electrolyte with at least one of the electrodes of the all-solid lithium secondary battery using the solid polymer electrolyte of the present invention. It can be seen that the output characteristics and cycle stability can be improved.
1 電極活物質
2 電極集電体
3 高分子固体電解質
4 導電助剤
5 無機固体電解質粉末
6 無機固体電解質コーティング層
DESCRIPTION OF SYMBOLS 1 Electrode active material 2 Electrode current collector 3 Polymer solid electrolyte 4 Conductive aid 5 Inorganic solid electrolyte powder 6 Inorganic solid electrolyte coating layer
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007266192A JP2009094029A (en) | 2007-10-12 | 2007-10-12 | All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007266192A JP2009094029A (en) | 2007-10-12 | 2007-10-12 | All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009094029A true JP2009094029A (en) | 2009-04-30 |
Family
ID=40665803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007266192A Pending JP2009094029A (en) | 2007-10-12 | 2007-10-12 | All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009094029A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069083A1 (en) * | 2011-11-07 | 2013-05-16 | トヨタ自動車株式会社 | All-solid-state battery |
JP2015022960A (en) * | 2013-07-22 | 2015-02-02 | Jsr株式会社 | Slurry for electrode of electricity storage device |
DE102015222553A1 (en) | 2014-12-31 | 2016-06-30 | Hyundai Motor Company | Cathode for a solid-state lithium battery and accumulator, in which this is used |
WO2018139580A1 (en) | 2017-01-30 | 2018-08-02 | 公立大学法人首都大学東京 | Electrode composition, electrode, production method for said electrode, and battery |
KR101953738B1 (en) * | 2017-10-11 | 2019-03-04 | 한국에너지기술연구원 | Composite Electrode with Ionic Liquid for All-Solid-State Battery, Method Of Manufacturing The Same, And All-Solid-State Lithium Battery Comprising The Same |
JP2020098767A (en) * | 2018-11-06 | 2020-06-25 | 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. | Composite electrode material with improved structure |
CN111755733A (en) * | 2019-03-28 | 2020-10-09 | 揖斐电株式会社 | All-solid-state battery and method for manufacturing same |
US10818970B2 (en) | 2017-12-27 | 2020-10-27 | Hyundai Motor Company | All-solid battery |
WO2021015147A1 (en) * | 2019-07-19 | 2021-01-28 | 昭和電工株式会社 | Composite electrode material, electrode layer, and solid-state battery |
US20220181610A1 (en) * | 2020-12-03 | 2022-06-09 | Toyota Jidosha Kabushiki Kaisha | All solid state battery |
-
2007
- 2007-10-12 JP JP2007266192A patent/JP2009094029A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069083A1 (en) * | 2011-11-07 | 2013-05-16 | トヨタ自動車株式会社 | All-solid-state battery |
JP2015022960A (en) * | 2013-07-22 | 2015-02-02 | Jsr株式会社 | Slurry for electrode of electricity storage device |
US10326128B2 (en) | 2014-12-31 | 2019-06-18 | Hyundai Motor Company | Cathode of all-solid lithium battery and secondary battery using the same |
US11177472B2 (en) | 2014-12-31 | 2021-11-16 | Hyundai Motor Company | Cathode of all-solid lithium battery and secondary battery using the same |
KR20160083485A (en) | 2014-12-31 | 2016-07-12 | 현대자동차주식회사 | A cathode of wholly solid lithium battery and a secondary battery comprising thereof |
DE102015222553B4 (en) | 2014-12-31 | 2022-12-01 | Hyundai Motor Company | Cathode for solid-state lithium battery and accumulator using same |
CN105742559A (en) * | 2014-12-31 | 2016-07-06 | 现代自动车株式会社 | Cathode Of All-Solid Lithium Battery And Secondary Battery Using The Same |
CN105742559B (en) * | 2014-12-31 | 2019-05-28 | 现代自动车株式会社 | The cathode of solid lithium battery and the secondary cell for using the cathode |
DE102015222553A1 (en) | 2014-12-31 | 2016-06-30 | Hyundai Motor Company | Cathode for a solid-state lithium battery and accumulator, in which this is used |
KR20190111962A (en) | 2017-01-30 | 2019-10-02 | 도쿄 메트로폴리탄 유니버시티 | Composition for electrodes, electrode, manufacturing method and battery |
WO2018139580A1 (en) | 2017-01-30 | 2018-08-02 | 公立大学法人首都大学東京 | Electrode composition, electrode, production method for said electrode, and battery |
KR101953738B1 (en) * | 2017-10-11 | 2019-03-04 | 한국에너지기술연구원 | Composite Electrode with Ionic Liquid for All-Solid-State Battery, Method Of Manufacturing The Same, And All-Solid-State Lithium Battery Comprising The Same |
US10818970B2 (en) | 2017-12-27 | 2020-10-27 | Hyundai Motor Company | All-solid battery |
JP2020098767A (en) * | 2018-11-06 | 2020-06-25 | 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. | Composite electrode material with improved structure |
CN111755733A (en) * | 2019-03-28 | 2020-10-09 | 揖斐电株式会社 | All-solid-state battery and method for manufacturing same |
WO2021015147A1 (en) * | 2019-07-19 | 2021-01-28 | 昭和電工株式会社 | Composite electrode material, electrode layer, and solid-state battery |
JPWO2021015147A1 (en) * | 2019-07-19 | 2021-01-28 | ||
JP7484919B2 (en) | 2019-07-19 | 2024-05-16 | 株式会社レゾナック | Composite electrode material, electrode layer, and solid-state battery |
US20220181610A1 (en) * | 2020-12-03 | 2022-06-09 | Toyota Jidosha Kabushiki Kaisha | All solid state battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6460316B2 (en) | Sodium ion battery electrode mixture, method for producing the same, and sodium all-solid battery | |
JP2009094029A (en) | All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery | |
US9209484B2 (en) | All-solid-state cell | |
US8808407B2 (en) | Method of manufacturing a solid lithium ion secondary battery with an electrolyte layer and/or positive electrode layer containing a crystallite having a lithium ion conducting property | |
JP5312969B2 (en) | Method for producing lithium ion secondary battery | |
JP5957618B2 (en) | Secondary battery including solid electrolyte layer | |
WO2020045633A1 (en) | Sulfide solid electrolyte and all-solid-state battery | |
JP5299860B2 (en) | All solid battery | |
JP6673338B2 (en) | Inorganic lithium ion conductor | |
JP5304168B2 (en) | All solid battery | |
JP2009181921A (en) | Solid battery | |
CN108923061B (en) | Solid electrolyte material and all-solid-state lithium battery | |
JPWO2015068268A1 (en) | All solid state battery, electrode for all solid state battery and method for producing the same | |
KR20080044218A (en) | Lithium ion conductive solid electrolyte and method for manufacturing the same | |
JP2011165410A (en) | All solid lithium ion secondary battery and method for manufacturing the same | |
JP6575109B2 (en) | Lithium ion conductor, electrode, battery, manufacturing method thereof, and electronic device | |
US9209486B2 (en) | All-solid-state cell | |
JP6660766B2 (en) | Manufacturing method of all solid state battery | |
JP2013051171A (en) | Electrode body for all solid-state battery and all solid-state battery | |
JP2010056027A (en) | Aqueous lithium secondary battery, and electrode for aqueous lithium secondary battery | |
JP5197918B2 (en) | All-solid lithium ion secondary battery and solid electrolyte | |
WO2017217079A1 (en) | All-solid battery | |
WO2020022305A1 (en) | Positive electrode active material | |
JP7002199B2 (en) | Manufacturing method of all-solid-state battery | |
JP5473476B2 (en) | Lithium ion secondary battery and electrode for lithium ion secondary battery |