JP2009084763A - Method for preparing carbon fiber - Google Patents
Method for preparing carbon fiber Download PDFInfo
- Publication number
- JP2009084763A JP2009084763A JP2007258780A JP2007258780A JP2009084763A JP 2009084763 A JP2009084763 A JP 2009084763A JP 2007258780 A JP2007258780 A JP 2007258780A JP 2007258780 A JP2007258780 A JP 2007258780A JP 2009084763 A JP2009084763 A JP 2009084763A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- furnace
- amount
- infusibilization
- oxidizing gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Inorganic Fibers (AREA)
Abstract
Description
本発明は放熱材料、繊維強化樹脂成型材料としての使用に好適な炭素繊維の製造方法に関わるものである。さらには不融化工程の収率が長期間に渡って高く維持可能な炭素繊維の製造方法に関わるものである。 The present invention relates to a carbon fiber production method suitable for use as a heat dissipation material and a fiber-reinforced resin molding material. Furthermore, the present invention relates to a carbon fiber production method that can maintain the yield of the infusibilization process high for a long period of time.
ピッチ系炭素繊維は黒鉛化性が高いために熱伝導性の優れた素材として注目されている。熱伝導性の優れた物質として、例えば酸化アルミニウムや窒化ホウ素、窒化アルミニウム、酸化マグネシウム、酸化亜鉛、炭化ケイ素、石英、水酸化アルミニウムなどの金属、金属酸化物、金属窒化物、金属炭化物、金属水酸化物などが知られている。しかし、金属材料系の充填材は比重が高く複合材としたときに重量が大きくなってしまう。また、炭素系材料であるカーボンブラック等の球形材料は、添加量が高くなると、所謂粉落ちが発生し、特に電子機器においては、その導電性が機器に悪影響を与える。これに対して、ピッチ系炭素繊維は比重が小さく金属材料系の充填材と同じ体積で添加した場合の複合材の重量を軽くできるというメリットがあるのみならず、その形状が繊維状であることより、粉落ちが起こり難いというメリットもある。 Pitch-based carbon fibers are attracting attention as a material with excellent thermal conductivity because of their high graphitization properties. Examples of materials having excellent thermal conductivity include metals such as aluminum oxide, boron nitride, aluminum nitride, magnesium oxide, zinc oxide, silicon carbide, quartz, and aluminum hydroxide, metal oxides, metal nitrides, metal carbides, and metal water. Oxides are known. However, metallic material-based fillers have high specific gravity and become heavy when used as a composite material. Further, when a spherical material such as carbon black, which is a carbon-based material, is added in a high amount, so-called powder falling occurs, and particularly in an electronic device, its conductivity adversely affects the device. In contrast, pitch-based carbon fibers have the advantage that the specific gravity is small and the weight of the composite material can be reduced when added in the same volume as the metal-based filler, and the shape is fibrous. In addition, there is also an advantage that powder falling hardly occurs.
ピッチ系炭素繊維の製造工程は主に紡糸工程、不融化工程、焼成工程で構成されている。ピッチ系炭素繊維を製造する過程において、メソフェーズピッチをメルトブロー法によって紡糸して得られた炭素繊維前駆体マットを500〜2000℃の高温不活性雰囲気下で加熱すると炭素以外の原子のほとんどは取り除かれ炭素繊維となる。しかしながら紡糸工程で得られた炭素繊維前駆体は融点が低く、急激な高温加熱を施すと溶融してしまい繊維形状を失ってしまう。従って炭素繊維を製造するためには上記加熱処理の前に不融化処理が必要となる。 The production process of pitch-based carbon fibers mainly includes a spinning process, an infusibilization process, and a firing process. In the process of producing pitch-based carbon fibers, when carbon fiber precursor mat obtained by spinning mesophase pitch by melt blow method is heated in a high temperature inert atmosphere of 500-2000 ° C, most of the atoms other than carbon are removed. Carbon fiber. However, the carbon fiber precursor obtained in the spinning process has a low melting point, and melts and loses its fiber shape when subjected to rapid high-temperature heating. Therefore, in order to produce carbon fibers, an infusibilization treatment is required before the heat treatment.
不融化は通常酸化性雰囲気下、150〜350℃の範囲で緩やかな勾配で加熱処理することにより達成される。不融化処理には炭素繊維前駆体をトレイ等に載せて不融化炉へ間欠投入する方法と炭素繊維前駆体をマット状にして搬送ベルトに載せて不融化炉へ連続投入する方法があるが、一般には生産効率のよい後者が選択される。連続投入式の不融化炉は炭素繊維前駆体マットの流れ方向と直列に複数の室を有し、各室ごとにヒータ等の加熱装置及びファン等の酸化性ガス循環装置を備えている。 Infusibilization is usually achieved by heat treatment with a gentle gradient in the range of 150 to 350 ° C. in an oxidizing atmosphere. The infusibilization treatment includes a method in which the carbon fiber precursor is placed on a tray or the like and intermittently charged into the infusibilization furnace, and a method in which the carbon fiber precursor is matted and placed on the transport belt and continuously fed into the infusibilization furnace. In general, the latter with high production efficiency is selected. The continuous charging type infusible furnace has a plurality of chambers in series with the flow direction of the carbon fiber precursor mat, and each chamber is provided with a heating device such as a heater and an oxidizing gas circulation device such as a fan.
一方、炭素繊維前駆体マットの内部まで均一な不融化処理を施すためには単に酸化ガス雰囲気下へ炭素繊維前駆体マットを投入するだけでは十分ではなく、例えば特許文献1のように酸化性ガスを炭素繊維前駆体マットの厚み方向に強制的に貫通させることが必要となる。しかしながらこの方法では炭素繊維前駆体マットに周辺よりも嵩高な部分があった場合、その部分は酸化性ガスの貫通性が悪くなり、マット内部で不融化反応熱が蓄熱する。そこを起点に炭素繊維前駆体が溶融あるいは燃焼現象が起こり、工程収率を著しく悪化させる。 On the other hand, in order to perform a uniform infusibilization treatment to the inside of the carbon fiber precursor mat, it is not sufficient to simply introduce the carbon fiber precursor mat into an oxidizing gas atmosphere. For example, as disclosed in Patent Document 1, an oxidizing gas is used. Must be forced to penetrate in the thickness direction of the carbon fiber precursor mat. However, in this method, when the carbon fiber precursor mat has a bulky part than the surrounding part, the penetrability of the oxidizing gas is deteriorated in the part, and the heat of infusible reaction is stored in the mat. From this point, the carbon fiber precursor melts or burns, which significantly deteriorates the process yield.
また、特許文献2では搬送ベルトの上方に3次元保持機構を設けることにより炭素繊維前駆体マットの下方から上方へ酸化性ガスを貫通させる際に起こる嵩高部分の圧縮による貫通不良を低減し、酸化性ガスを均一に貫通させる方法について記載がある。しかしながら3次元保持機構を炉内に設置することは設備の複雑化を招くとともに、3次元保持されたマットが工程出口で機構より剥がれずに搬送がスムーズに行われず反って収率が落ちることがある。また当該文献では不融化炉各室ごとに給排気機能を備え、室ごとに給排気量をコントロールできる構造としているが、各室ごとの給排気量制御の方法については開示されていない。
Further, in
メソフェーズピッチをメルトブロー法によって紡糸して得られた炭素繊維前駆体は金網ベルト上に捕集されマット状となる。さらに後工程の設備小型化のために捕集されたマットをクロスラップし、複数枚重ねた形状にする。しかしながらこのようにして得られた炭素繊維前駆体マットの目付量を一定にすることは上記操作上困難であり、その乱れが不融化処理における酸化性ガスの貫通を不均一にしてしまう。また酸化性ガスを循環させる構造の不融化炉の場合、循環系統に設けた加熱装置保護用フィルタの目詰まりが発生し、酸化性ガスの貫通が不安定となる。酸化性ガスの貫通が不安定になるとそこを起点に不融化反応熱が炭素繊維前駆体マットの内部に蓄熱し、溶融あるいは燃焼現象が起こり、工程収率を著しく悪化させる。さらに嵩高部分の圧縮防止策として炉内にマットの形状保持機構を設置すると設備の複雑化、搬送性の低下を招く。 The carbon fiber precursor obtained by spinning the mesophase pitch by the melt blow method is collected on the wire mesh belt and becomes a mat shape. Furthermore, the collected mats are cross-wrapped to reduce the equipment size in the subsequent process, and a plurality of mats are stacked. However, it is difficult in the above operation to keep the basis weight of the carbon fiber precursor mat thus obtained, and the disturbance makes the penetration of the oxidizing gas in the infusible treatment nonuniform. Further, in the case of an infusibilizing furnace having a structure in which an oxidizing gas is circulated, the heating device protection filter provided in the circulation system is clogged, and the penetration of the oxidizing gas becomes unstable. When the penetration of the oxidizing gas becomes unstable, the heat of infusible reaction is stored inside the carbon fiber precursor mat, causing melting or combustion phenomenon, and the process yield is remarkably deteriorated. Furthermore, if a mat shape holding mechanism is installed in the furnace as a measure for preventing compression of the bulky portion, the equipment becomes complicated and the transportability is lowered.
従って本発明の目的は形状保持機構を用いることなしに、炭素繊維前駆体マットの目付量の変化及び加熱装置保護用フィルタ目詰まりに対し酸化性ガスの貫通状態を一定に保つことで不融化反応を安定化させ、高い工程収率が達成可能な製造方法を提供するところにある。 Accordingly, the object of the present invention is to achieve an infusible reaction by keeping the oxidizing gas penetration state constant against changes in the weight per unit area of the carbon fiber precursor mat and clogging of the filter for heating device protection without using a shape holding mechanism. Is to provide a production method that can achieve a high process yield.
本発明者らは、炭素繊維前駆体マットを長期間に渡って高収率で不融化処理するための方法について検討したところ、炭素繊維前駆体マットに周辺よりも嵩高な部分がある場合でも、本発明の方法により各室ごとの給排気量制御を制御し、前駆体マットに貫通させる酸化性ガス量を均一に保つ方法を見出し本発明に到達した。すなわち本発明は炭素繊維前駆体マットの目付量の変化及び加熱装置保護用フィルタ目詰まりを不融化炉各室の酸化性ガスの面風速によって感知し、それに対し循環風圧を変化させることで面風速を目標値に追従させることにより、前駆体マットに貫通させる酸化性ガス量を均一に保つことを特徴とする炭素繊維の製造方法である。 The present inventors examined a method for infusibilizing the carbon fiber precursor mat with a high yield over a long period of time, even when the carbon fiber precursor mat has a bulky part than the periphery, The present inventors have found a method of controlling the supply / exhaust amount control for each chamber by the method of the present invention to keep the amount of oxidizing gas penetrating the precursor mat uniform, and have reached the present invention. That is, in the present invention, the change in the basis weight of the carbon fiber precursor mat and the clogging of the filter for protecting the heating device are detected by the surface wind speed of the oxidizing gas in each chamber of the infusibilizing furnace, and the surface wind speed is changed by changing the circulating wind pressure. This is a carbon fiber manufacturing method characterized by keeping the amount of oxidizing gas penetrating the precursor mat uniform by following the target value.
さらに本発明者らは、上記操作により循環風圧が変化したことによる各室の給排気バランスの変化が隣室へ影響を及ぼし、その結果隣室の酸化性ガスの貫通状態及び室内温度分布が乱れることを発見し、循環風圧の変化に対し給排気バランスを調整することで隣室への影響を抑制できる方法を見出し、本発明に到達した。 Furthermore, the present inventors have found that the change in the supply / exhaust balance of each chamber due to the change in the circulating wind pressure due to the above operation affects the adjacent chamber, and as a result, the oxidizing gas penetration state and the indoor temperature distribution in the adjacent chamber are disturbed. The present inventors have found a method capable of suppressing the influence on the adjacent room by adjusting the supply / exhaust balance with respect to the change in the circulating wind pressure, and have reached the present invention.
即ち、本発明は(1)メソフェーズピッチをメルトブロー法によって紡糸し、(2)酸化性ガス雰囲気下で不融化し、(3)不活性ガス雰囲気下で焼成する炭素繊維の製造方法において、(2)の不融化工程における不融化炉が、炭素繊維前駆体マットの搬送方向と直列に複数の室を有し、かつ、酸化性ガスが炉内を循環する機能を有し、かつ、各室ごとに給排気機能を有した連続投入式不融化炉であって、炉各室において炭素繊維前駆体マットを貫通する酸化性ガスの面風速Vを測定し、Vの変化量に対し循環風圧を変化させてVを目標値±10%に制御することを特徴とする炭素繊維の製造方法である。 That is, the present invention relates to (1) a method for producing a carbon fiber in which a mesophase pitch is spun by a melt blow method, (2) infusible in an oxidizing gas atmosphere, and (3) fired in an inert gas atmosphere. The infusibilization furnace in the infusibilization step has a plurality of chambers in series with the conveying direction of the carbon fiber precursor mat, and has a function of circulating an oxidizing gas in the furnace, and for each chamber. Is a continuous charging type infusible furnace with an air supply / exhaust function, which measures the surface wind speed V of the oxidizing gas passing through the carbon fiber precursor mat in each furnace chamber and changes the circulating wind pressure with respect to the amount of change in V Thus, the carbon fiber manufacturing method is characterized in that V is controlled to a target value ± 10%.
本発明の炭素繊維の製造方法において、さらに不融化炉各室の給気量Q1と排気量Q2を測定し、循環風圧の変化に対し給気量及び排気量を変化させてQ1とQ2との比Q1/Q2を1.0±0.3に制御することが好ましい。 In the carbon fiber manufacturing method of the present invention, the air supply amount Q1 and the exhaust amount Q2 of each chamber of the infusibilizing furnace are further measured, and the supply air amount and the exhaust amount are changed with respect to the change of the circulating wind pressure. It is preferable to control the ratio Q1 / Q2 to 1.0 ± 0.3.
さらに、不融化炉各室の循環ガスの面風速Vが0.5m/s以上5.0m/s未満であること、さらに不融化炉各室の給気量の総計Qt[Nm3/h]と不融化炉に投入される炭素繊維マット量W[kg/h]との比Qt/Wが5以上50未満であることが好ましい。 Furthermore, the surface wind velocity V of the circulating gas in each infusibilizing furnace chamber is 0.5 m / s or more and less than 5.0 m / s, and the total air supply amount Qt [Nm 3 / h] in each infusibilizing furnace chamber And the ratio Qt / W of the carbon fiber mat amount W [kg / h] charged into the infusibilizing furnace is preferably 5 or more and less than 50.
炭素繊維前駆体マットに周辺よりも嵩高な部分がある場合でも、本発明の方法により各室ごとの給排気量制御を制御し、貫通させる酸化性ガス量を均一に保つことで、長期に安定した不融化処理が可能となり、長期間に渡って不融化工程収率を高く維持できる。 Even if the carbon fiber precursor mat has a bulky part than the surrounding area, the method of the present invention controls the supply / exhaust amount control for each chamber and keeps the amount of oxidizing gas to be penetrated uniformly, so that it is stable for a long time. Infusibilization treatment can be performed, and the infusibilization process yield can be maintained high over a long period of time.
次に、本発明の実施の形態について順次説明する。
本発明で製造される炭素繊維の原料としては、例えば、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等が挙げられる。その中でもナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特に光学的異方性ピッチ、すなわちメソフェーズピッチが好ましい。これらは、一種を単独で用いても、二種以上を適宜組み合わせて用いてもよいが、メソフェーズピッチを単独で用いることが炭素繊維の熱伝導性を向上させる上で特に望ましい。
Next, embodiments of the present invention will be sequentially described.
Examples of the raw material for the carbon fiber produced in the present invention include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum pitch and coal pitch. Among them, condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene are preferable, and optically anisotropic pitch, that is, mesophase pitch is particularly preferable. These may be used singly or in combination of two or more, but it is particularly desirable to use mesophase pitch alone in order to improve the thermal conductivity of the carbon fiber.
原料ピッチの軟化点はメトラー法により求めることができ、250℃以上350℃以下が好ましい。軟化点が250℃より低いと、不融化の際に繊維同士の融着や大きな熱収縮が発生する。また、350℃より高いとピッチの熱分解が生じ糸状になりにくくなる。
原料ピッチはメルトブロー法により紡糸され、その後不融化、焼成によって3次元ランダムマット状炭素繊維とする。以下各工程について説明する。
The softening point of the raw material pitch can be determined by the Mettler method, and is preferably 250 ° C. or higher and 350 ° C. or lower. When the softening point is lower than 250 ° C., fusion between fibers and large heat shrinkage occur during infusibilization. On the other hand, when the temperature is higher than 350 ° C., thermal decomposition of the pitch occurs and it becomes difficult to form a yarn.
The raw material pitch is spun by a melt blow method, and then made into a three-dimensional random mat-like carbon fiber by infusibilization and firing. Each step will be described below.
(1)メゾフェーズピッチから炭素繊維前駆体を製造する工程
原料ピッチは公知の方法によって紡糸することができる。連続糸或いはメルトブロー法による短繊維が一般的である。本発明では生産性が高いという観点よりメルトブロー法で紡糸を行うことを主眼においている。
本発明においては、紡糸ノズルの形状については特に制約はないが、ノズル孔径Dとノズル孔長さLの比L/Dが5以上20以下のものが好ましく用いられ、更に好ましくは8以上15以下である。紡糸時のノズルの温度についても特に制約はなく、安定した紡糸状態が維持できる温度、即ち、原料ピッチの粘度が2〜25Pa・s、好ましくは8〜17Pa・sになる温度であればよい。
(1) Process for producing carbon fiber precursor from mesophase pitch The raw material pitch can be spun by a known method. A continuous fiber or a short fiber by a melt blow method is generally used. The main object of the present invention is to perform spinning by the melt blow method from the viewpoint of high productivity.
In the present invention, the shape of the spinning nozzle is not particularly limited, but those having a ratio L / D of the nozzle hole diameter D to the nozzle hole length L of preferably 5 or more and 20 or less, more preferably 8 or more and 15 or less. It is. The temperature of the nozzle at the time of spinning is not particularly limited, and may be a temperature at which a stable spinning state can be maintained, that is, a temperature at which the viscosity of the raw material pitch is 2 to 25 Pa · s, preferably 8 to 17 Pa · s.
ノズル孔から出糸されたピッチ繊維は、100〜350℃に加温された毎分100〜10000mの線速度のガスを細化点近傍に吹き付けることによって短繊維化され、炭素繊維前駆体となる。吹き付けるガスは空気、窒素、アルゴンを用いることができるが、コストパフォーマンスの点から空気が望ましい。 The pitch fibers drawn out from the nozzle holes are shortened by blowing a gas having a linear velocity of 100 to 10000 m / minute heated to 100 to 350 ° C. in the vicinity of the thinning point to become a carbon fiber precursor. . As the gas to be blown, air, nitrogen, or argon can be used, but air is preferable from the viewpoint of cost performance.
炭素繊維前駆体は、金網ベルト上に捕集され連続的なマット状になり、さらにクロスラップされることで3次元ランダムマット状となる。
3次元ランダムマットとは、クロスラップされていることに加え、ピッチ繊維が三次元的に交絡しているマットをいう。この交絡は、ノズルから、金網ベルトに到達する間にチムニと呼ばれる筒において達成される。線状の繊維が立体的に交絡するために、通常一次元的な挙動しか示さない繊維の特性が立体においても反映されるようになる。
The carbon fiber precursor is collected on a wire mesh belt to form a continuous mat, and further cross-wrapped to form a three-dimensional random mat.
The three-dimensional random mat refers to a mat in which pitch fibers are entangled three-dimensionally in addition to being cross-wrapped. This entanglement is achieved in a cylinder called chimney while reaching the wire mesh belt from the nozzle. Since the linear fibers are entangled three-dimensionally, the characteristics of the fibers that normally exhibit only one-dimensional behavior are reflected in the three-dimensional.
(2)炭素繊維前駆体から不融化炭素繊維を製造する工程
以下に本発明における不融化工程を図面を用いて説明する。
図1は本発明で用いる不融化炉の概略側断面図である。炭素繊維前駆体マットは上段搬送ベルト1、下段搬送ベルト2の間に挟まれる形で搬送される。搬送ベルトは酸化性ガスが貫通できるよう通気性があり、不融化反応温度に耐え得る材質であれば特に制約はない。また上下ベルト間隔は固定式でもよいが、マットの目付量によって任意に調整できる機構を備えていることが好ましい。さらに搬送ベルトは不融化反応時間を任意に設定できるように可変式であることが好ましい。
(2) Process for producing infusible carbon fiber from carbon fiber precursor Hereinafter, the infusible process in the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional side view of an infusibilizing furnace used in the present invention. The carbon fiber precursor mat is conveyed while being sandwiched between an upper conveyance belt 1 and a
不融化炉は搬送方向と直列に複数の反応室3に仕切られている。仕切板4は各室独立性を保持するために、搬送ベルトに接しない程度まで狭めることが好ましい。また室数は4〜30室とし、各室で不融化反応条件を設定できる。室数は急激な反応温度変化、設備コストを考慮すると6〜20室であることが好ましい。さらに最前室と最後室の前後にはそれぞれ入口シール室5、出口シール室6を設置し、大気中への炉内ガス拡散を防止することが好ましい。 The infusibilizing furnace is partitioned into a plurality of reaction chambers 3 in series with the conveying direction. In order to maintain the independence of each chamber, the partition plate 4 is preferably narrowed to the extent that it does not contact the conveyor belt. The number of chambers is 4-30, and the infusibilization reaction conditions can be set in each chamber. The number of chambers is preferably 6 to 20 in consideration of rapid reaction temperature changes and equipment costs. Furthermore, it is preferable to install an inlet seal chamber 5 and an outlet seal chamber 6 respectively before and after the front and rear chambers to prevent diffusion of gas in the furnace into the atmosphere.
図2は本発明で用いる不融化炉の概略横断面図である。搬送方向と直列に仕切られた各室3は、各室ごとにヒータ、バーナ等の加熱装置7、酸化性ガス循環装置8、給気口9、排気口10、給気量調整装置11、排気量調整装置12、整流装置13を有しており、各室独立で不融化条件の設定が可能である。不融化反応温度は最前室100〜200℃、最後室250〜350℃とし、その間室は前室+10〜30℃と緩慢に昇温することが好ましい。反応時間は15〜120分、好ましくは20〜60分である。使用するガスは酸化性であれば特に制約はないが、例えば空気、酸素、ハロゲンガス、二酸化窒素、オゾンなどを採択することができる。これらの中でも、コストパフォーマンスと低温で速やかに不融化させうるという点から空気及び/またはハロゲンガスを含む混合ガスである事が好ましい。なお循環ガスの風向は上→下向き、下→上向きどちらでもよいが、全室下→上向き、あるいは上→下向きと下→上向きの室を交互に配置することが好ましい。また各室内の雰囲気を一定に保持するために、循環ガスの一部を排気し、純正な酸化性ガスを給気することが好ましく、給気量Q1と排気量Q2の比Q1/Q2は1.0±0.3の範囲であることが好ましい。1.0±0.3の範囲外になれば仕切板間からの隣室へ漏れるもしくは隣室から漏れ込む酸化性ガス量が多くなり、各室の独立性が保たれなくなる。さらに好ましくは1.0±0.1である。
FIG. 2 is a schematic cross-sectional view of an infusibilizing furnace used in the present invention. Each chamber 3 partitioned in series with the transport direction has a heating device 7 such as a heater and a burner, an oxidizing gas circulation device 8, an air supply port 9, an
上述したようにメルトブロー法で紡糸された炭素繊維前駆体はマット形成時及びクロスラップ時にしばしば目付斑を発生し、それが起因となって通常の方法では酸化性ガスの貫通が不均一となる。さらに加熱装置7を保護するためのフィルタの目詰まりによっても酸化性ガスの貫通が不安定となる。本発明では各室に酸化性ガスの面風速計14を設置し、面風速Vの変化を感知することで目付斑及びフィルタ目詰まりを発見する機能を持たせている。なお面風速Vはマットに対して垂直方向の風速と定義する。Vが瞬時的に変化したとき酸化性ガス循環装置8の風圧を、Vが目標値へ近づく方向へ変化させる。風圧は循環装置の回転数、ダンパ開度等で調整する。なおVが目標値±10%の範囲になるように制御させ、自動制御であると好ましい。また面風速計14は各室に数箇所あればさらに好ましく、その中の最低風速が目標値±10%の範囲になるように制御する。さらに好ましくは目標値±5%である。
As described above, the carbon fiber precursor spun by the melt-blowing method often causes spotting spots at the time of mat formation and cross-wrapping, and this causes uneven penetration of the oxidizing gas in a normal method. Further, the clogging of the filter for protecting the heating device 7 makes the penetration of the oxidizing gas unstable. In the present invention, a
本発明では各室の排気は排気ファン15で、給気は酸化性ガス循環装置8のエジェクタ効果で行われるため、Vの調整のために循環風圧が変化すると、給気量Q1が変動してしまう。給気量が変化するとQ1/Q2が適正値から外れていまい、上述したような各室独立性が崩れる。そこで本発明では循環風圧の変化に伴い、給気量調整装置11、排気量調整装置12によってQ1/Q2が1.0±0.3の範囲であるように調整し、自動制御であると好ましい。さらに好ましくは1.0±0.1である。
In the present invention, the exhaust of each chamber is performed by the
本発明の不融化条件は、不融化炉各室の循環ガスの面風速Vが0.5m/s以上5.0m/s未満であることが好ましい。Vが0.5m/s未満ではマット内部熱を十分に除熱できずにマットの溶融、燃焼が発生する。逆にVが5.0m/s以上ではマットが圧縮しすぎて酸化性ガスがマット全体へ行き渡らないことがある。さらに好ましくは1.0m/s以上3.0m/s未満である。 The infusibilization condition of the present invention is preferably such that the surface wind velocity V of the circulating gas in each infusibilization furnace chamber is 0.5 m / s or more and less than 5.0 m / s. If V is less than 0.5 m / s, the heat inside the mat cannot be sufficiently removed and the mat melts and burns. On the contrary, when V is 5.0 m / s or more, the mat may be compressed too much and the oxidizing gas may not spread over the entire mat. More preferably, it is 1.0 m / s or more and less than 3.0 m / s.
さらに本発明の不融化条件は、不融化炉各室の給気量の総計Qt[Nm3/h]と不融化炉に投入される炭素繊維マット量W[kg/h]との比Qt/Wが5以上50未満であることが好ましい。Qt/Wが5未満では不融化反応時に生成する反応ガスの置換が十分ではなく、酸化性ガスの濃度が変化するため安定した不融化反応が行えない。逆にQt/Wが50以上では不融化反応は正常に行われるが、給気されるガスを加熱するための熱量が大きいので設備コスト、ランニングコストが高くなる。さらに好ましくは10以上30未満である。 Further, the infusibilization condition of the present invention is the ratio Qt / Qt of the total air supply amount Qt [Nm 3 / h] of each chamber of the infusibilization furnace and the carbon fiber mat amount W [kg / h] charged into the infusibilization furnace. W is preferably 5 or more and less than 50. When Qt / W is less than 5, the reaction gas generated during the infusibilization reaction is not sufficiently substituted, and the concentration of the oxidizing gas changes, so that a stable infusibilization reaction cannot be performed. On the contrary, when Qt / W is 50 or more, the infusibilization reaction is normally performed, but since the amount of heat for heating the supplied gas is large, the equipment cost and the running cost are increased. More preferably, it is 10 or more and less than 30.
(3)不融化炭素繊維から炭素化もしくは黒鉛化炭素繊維を製造する工程
上記で得た不融化炭素繊維を不活性ガス雰囲気中で炭素化もしくは黒鉛化し炭素繊維を製造することができる。不融化炭素繊維の炭素化は真空中、或いは窒素、アルゴン、クリプトン等の不活性ガス中で焼成されるが、常圧で、且つコストの安い窒素中で実施するのが特に好ましい。炭素化の温度としては500〜2000℃、より好ましくは800〜1800℃である。
(3) Step of producing carbonized or graphitized carbon fiber from infusible carbon fiber The infusible carbon fiber obtained above can be carbonized or graphitized in an inert gas atmosphere to produce a carbon fiber. Carbonization of the infusible carbon fiber is performed in a vacuum or in an inert gas such as nitrogen, argon, krypton, etc., but it is particularly preferable to carry out the reaction at normal pressure and at low cost. The carbonization temperature is 500 to 2000 ° C, more preferably 800 to 1800 ° C.
通常2000℃を超える炭素繊維の焼成は黒鉛化と呼ばれ、窒素ガス等は電離を起こしてしまうため、アルゴン、クリプトンといった不活性ガスを使用する。炭素繊維の熱伝導率を高くするためには、2300〜3500℃で処理することが好ましく、さらには2500〜3200℃で処理するのが特に好ましい。 Usually, the firing of carbon fibers exceeding 2000 ° C. is called graphitization, and nitrogen gas and the like cause ionization, and therefore inert gases such as argon and krypton are used. In order to increase the thermal conductivity of the carbon fiber, the treatment is preferably performed at 2300 to 3500 ° C., more preferably 2500 to 3200 ° C.
以下、本発明を実施例により更に具体的に説明するが、本発明はこれにより何等限定を受けるものでは無い。尚、実施例中の各値は以下の方法に従って求めた。
(1)紡糸におけるメソフェーズピッチのキャピラリ内流速
ギアポンプから送液される時間当たりの送液量からキャピラリを通過するピッチ速度を算出することで求めた。
(2)キャピラリ内におけるメソフェーズピッチの溶融粘度
紡糸時の樹脂温度とキャピラリ内流速から、キャピラリレオメータを用いて評価した。
(3)不融化炉各室の面風速
炭素繊維前駆体マットの上下から炉内ガスを抜出し、クローネ製風圧センサDP850Cで風圧を検出し、(株)ヒラノテクシード製風速演算ユニットV−50を用いて測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention does not receive any limitation by this. In addition, each value in an Example was calculated | required according to the following method.
(1) Mesophase pitch flow velocity in capillary during spinning It was determined by calculating the pitch speed passing through the capillary from the amount of liquid fed per time fed from the gear pump.
(2) Melt viscosity of mesophase pitch in the capillary It was evaluated using a capillary rheometer from the resin temperature at the time of spinning and the flow velocity in the capillary.
(3) Surface wind speed in each chamber of infusibilization furnace The gas in the furnace is extracted from the top and bottom of the carbon fiber precursor mat, the wind pressure is detected by the Krone wind pressure sensor DP850C, and the wind speed calculation unit V-50 manufactured by Hirano Techseed is used. It was measured.
[実施例1]
縮合多環炭化水素化合物よりなる、光学的異方性割合が100%、軟化点が283℃であるピッチを主原料とした。この原料を330℃において、導入部径1.2mm、導入角45°、直径φ0.2mm、L/D=10のキャピラリからなる紡糸用ノズルを用い、キャピラリ内流速0.15m/sで送液し、かつキャピラリ横のスリットから毎分5500mで350℃の空気を吹き付けて、溶融ピッチを牽引して平均繊維径11.0μmの炭素繊維前駆体からなる目付け300g/m2である不織布を作成した。
なお、溶融ピッチの密度は1.22g/cm2、キャピラリレオメータで評価した330℃、0.15m/sにおけるキャピラリ内の溶融粘度は17Pa・sとした。
[Example 1]
A pitch composed of a condensed polycyclic hydrocarbon compound having an optical anisotropy ratio of 100% and a softening point of 283 ° C. was used as a main raw material. This raw material was fed at 330 ° C. using a spinning nozzle consisting of a capillary with an introduction part diameter of 1.2 mm, an introduction angle of 45 °, a diameter of φ0.2 mm, and L / D = 10, and a flow rate in the capillary of 0.15 m / s. In addition, air at 350 ° C. was blown at a rate of 5500 m / min from the slit next to the capillary, and the melt pitch was pulled to create a nonwoven fabric having a basis weight of 300 g /
The melt pitch density was 1.22 g /
上記炭素繊維前駆体からなる不織布を、炭素繊維前駆体マットの搬送方向と直列に複数の室を有し、かつ、酸化性ガスが炉内を循環する機能を有し、かつ、各室ごとに給排気機能を有した連続投入式不融化炉を用いて不融化処理を実施した。上段搬送ベルト1及び下段搬送ベルト2の間隔は入口側で70mm、出口側を35mmとし、仕切板4の間隔はベルトに接触しない程度に設定した。室数は8室とし、25分かけて最前室170℃から最後室300℃まで炭素繊維前駆体マットを搬送した。酸化性ガスには空気を使用し、炉内循環ガスの風向は奇数室は上→下向き、偶数室は下→上向きとした。
The nonwoven fabric composed of the carbon fiber precursor has a plurality of chambers in series with the conveying direction of the carbon fiber precursor mat, and has a function of circulating an oxidizing gas in the furnace. The infusibilization treatment was carried out using a continuous charging type infusibilizing furnace with an air supply and exhaust function. The interval between the upper conveyance belt 1 and the
各室の面風速は2.0m/sに設定し、風速の調整は酸化性ガス循環装置8として回転数制御可能なファンを用いて行った。また各室の給気量Q1と排気量Q2の比Q1/Q2は1.0に設定し、給気量及び排気量の調整は給気量調整装置11及び排気量調整装置12として開度を自動調整可能なダンパを用いて行った。
不融化炉各室の給気量の総計Qt[Nm3/h]と不融化炉に投入される炭素繊維マット量W[kg/h]との比Qt/Wは100とした。
The surface wind speed of each chamber was set to 2.0 m / s, and the wind speed was adjusted using a fan capable of controlling the rotation speed as the oxidizing gas circulation device 8. Further, the ratio Q1 / Q2 between the air supply amount Q1 and the exhaust amount Q2 of each chamber is set to 1.0, and the adjustment of the air supply amount and the exhaust amount is performed as the air supply amount adjusting device 11 and the exhaust
The ratio Qt / W between the total amount Qt [Nm 3 / h] of the air supply amount in each infusibilizing furnace and the carbon fiber mat amount W [kg / h] charged into the infusibilizing furnace was set to 100.
次いで、不融化処理された炭素繊維前駆体マットを窒素ガス雰囲気下800℃で焼成した後、アルゴンガス雰囲気下2400℃で黒鉛化して炭素繊維を得た。
このようにして14日間連続して炭素繊維前駆体マットの不融化処理を行ったところ、不融化処理の異常は一切なく、不融化工程収率は炭素ベースで100%であった。
Next, the infusibilized carbon fiber precursor mat was fired at 800 ° C. in a nitrogen gas atmosphere, and then graphitized at 2400 ° C. in an argon gas atmosphere to obtain carbon fibers.
Thus, when the infusibilization treatment of the carbon fiber precursor mat was performed continuously for 14 days, there was no abnormality of the infusibilization treatment, and the infusibilization process yield was 100% on a carbon basis.
[実施例2]
不融化炉各室の給気量の総計Qt[Nm3/h]と不融化炉に投入される炭素繊維マット量W[kg/h]との比Qt/Wを20とした以外は実施例1と同様の条件で炭素繊維の製造を実施した。
このようにして14日間連続して炭素繊維前駆体マットの不融化処理を行ったところ、不融化処理の異常は一切なく、不融化工程収率は炭素ベースで100%であった。さらに実施例1に比べて不融化工程で使用するエネルギー量が70%であった。
[Example 2]
Example except that the ratio Qt / W of the total amount Qt [Nm 3 / h] of the air supply amount in each chamber of the infusibilizing furnace and the carbon fiber mat amount W [kg / h] charged into the infusibilizing furnace was set to 20. The carbon fiber was produced under the same conditions as in 1.
Thus, when the infusibilization treatment of the carbon fiber precursor mat was performed continuously for 14 days, there was no abnormality of the infusibilization treatment, and the infusibilization process yield was 100% on a carbon basis. Furthermore, compared with Example 1, the amount of energy used in the infusibilization process was 70%.
[実施例3]
各室の給気量Q1と排気量Q2の比Q1/Q2を2.0に設定したこと以外は実施例1と同様の条件で炭素繊維の製造を実施した。
このようにして14日間連続して炭素繊維前駆体マットの不融化処理を行ったところ、不融化異常が8回発生し、不融化工程収率は炭素ベースで95%であった。
[Example 3]
Carbon fibers were produced under the same conditions as in Example 1 except that the ratio Q1 / Q2 between the air supply amount Q1 and the exhaust amount Q2 in each chamber was set to 2.0.
Thus, when the infusibilization treatment of the carbon fiber precursor mat was performed for 14 days in succession, infusibilization abnormality occurred 8 times, and the infusibilization process yield was 95% on a carbon basis.
[比較例1]
各室の面風速をマット投入初期に2.0m/sに設定し、その後風速調整を実施しないこと以外は実施例1と同様の条件で炭素繊維の製造を実施した。
このようにして14日間連続して炭素繊維前駆体マットの不融化処理を行ったところ、不融化処理の異常が20回発生し、不融化工程収率は炭素ベースで90%であった。
[Comparative Example 1]
The carbon fiber was produced under the same conditions as in Example 1 except that the surface wind speed of each chamber was set to 2.0 m / s at the initial stage of matting and the wind speed was not adjusted thereafter.
Thus, when the infusibilization treatment of the carbon fiber precursor mat was performed for 14 days in succession, abnormality of the infusibilization treatment occurred 20 times, and the infusibilization process yield was 90% on a carbon basis.
1 上段搬送ベルト
2 下段搬送ベルト
3 反応室
4 仕切板
5 入口シール室
6 出口シール室
7 加熱装置
8 酸化性ガス循環装置
9 給気口
10 排気口
11 給気量調整装置
12 排気量調整装置
13 整流装置
14 面風速計
15 排気ファン
16 炭素繊維前駆体マット
DESCRIPTION OF SYMBOLS 1
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007258780A JP2009084763A (en) | 2007-10-02 | 2007-10-02 | Method for preparing carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007258780A JP2009084763A (en) | 2007-10-02 | 2007-10-02 | Method for preparing carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009084763A true JP2009084763A (en) | 2009-04-23 |
Family
ID=40658543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007258780A Withdrawn JP2009084763A (en) | 2007-10-02 | 2007-10-02 | Method for preparing carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009084763A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112725938A (en) * | 2020-12-16 | 2021-04-30 | 福建立亚化学有限公司 | Polycarbosilane fiber non-melting treatment equipment |
CN116219582A (en) * | 2023-04-10 | 2023-06-06 | 新疆中部合盛硅业有限公司 | Continuous non-melting method in asphalt carbon fiber preparation |
-
2007
- 2007-10-02 JP JP2007258780A patent/JP2009084763A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112725938A (en) * | 2020-12-16 | 2021-04-30 | 福建立亚化学有限公司 | Polycarbosilane fiber non-melting treatment equipment |
CN116219582A (en) * | 2023-04-10 | 2023-06-06 | 新疆中部合盛硅业有限公司 | Continuous non-melting method in asphalt carbon fiber preparation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104395514B (en) | Carbon fiber bundle manufacture carbide furnace and the manufacture method of carbon fiber bundle | |
US5967770A (en) | Device for continuous thermal treatment of multidimensional sheet structures consisting of fibers made of polyacrylonitrile | |
JP5205767B2 (en) | Heat treatment furnace and carbon fiber manufacturing method | |
CN103614858A (en) | Micron silicon-carbide fibrofelt and production method thereof | |
JP2009084763A (en) | Method for preparing carbon fiber | |
JP2952271B2 (en) | Carbon fiber felt excellent in high-temperature insulation properties and method for producing the same | |
CN108251919A (en) | A kind of interval adds continuous Pitch-Based Graphite Fibers filament preparation process | |
JP6677553B2 (en) | Manufacturing method of carbon material | |
CN203128704U (en) | Non-melting furnace for producing asphalt carbon fibers | |
JP2009191406A (en) | Method of manufacturing carbon fiber sheet | |
CN217869240U (en) | Carbonizing furnace for processing PAN-based carbon fiber products | |
JP4809757B2 (en) | Flame-resistant heat treatment apparatus and method for producing flame-resistant fiber bundle | |
RU2520982C1 (en) | Method of carbonisation of viscose fibrous materials in process of obtaining carbon fibres | |
CN108286088A (en) | A kind of asphalt base carbon fiber and preparation method thereof that can be used for weaving | |
JP3390182B2 (en) | Carbon fiber based heat insulating material and method for producing the same | |
KR200460763Y1 (en) | Carbonization furnace for manufacturing activated carbon-fiber | |
JP4292771B2 (en) | Heat treatment furnace | |
JP2008248397A (en) | Heat-treating furnace and heat-treating method | |
JP2005206968A (en) | Method for producing carbon fiber sheet | |
JP2015030936A (en) | Carbonization furnace | |
JPH0737690B2 (en) | Pitch fiber infusible furnace | |
JP2007224430A (en) | Method and apparatus for producing graphite fiber | |
JP4209963B2 (en) | Carbonization furnace for carbon fiber firing | |
CN110709542A (en) | Method for producing carbon fiber | |
JP2003166168A (en) | Oxidized fiber structure, carbon fiber structure, and method for producing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100902 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110707 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110707 |
|
A761 | Written withdrawal of application |
Effective date: 20120404 Free format text: JAPANESE INTERMEDIATE CODE: A761 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120412 |