JP2009084627A - Method for producing sintered compact, and neodymium-iron-boron based sintered magnet produced by using method for producing sintered compact - Google Patents
Method for producing sintered compact, and neodymium-iron-boron based sintered magnet produced by using method for producing sintered compact Download PDFInfo
- Publication number
- JP2009084627A JP2009084627A JP2007255162A JP2007255162A JP2009084627A JP 2009084627 A JP2009084627 A JP 2009084627A JP 2007255162 A JP2007255162 A JP 2007255162A JP 2007255162 A JP2007255162 A JP 2007255162A JP 2009084627 A JP2009084627 A JP 2009084627A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- metal
- evaporated
- sintered compact
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 229910001172 neodymium magnet Inorganic materials 0.000 title claims description 15
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 title claims description 12
- 239000000463 material Substances 0.000 claims abstract description 61
- 239000012071 phase Substances 0.000 claims abstract description 51
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 41
- 238000001883 metal evaporation Methods 0.000 claims abstract description 38
- 238000005245 sintering Methods 0.000 claims abstract description 30
- 239000007791 liquid phase Substances 0.000 claims abstract description 22
- 239000010409 thin film Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 41
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- 238000001704 evaporation Methods 0.000 claims description 26
- 230000008569 process Effects 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 19
- 229910052771 Terbium Inorganic materials 0.000 claims description 15
- 238000010298 pulverizing process Methods 0.000 claims description 14
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 13
- 230000008020 evaporation Effects 0.000 claims description 10
- 229910052779 Neodymium Inorganic materials 0.000 claims description 9
- 238000005266 casting Methods 0.000 claims description 6
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000009750 centrifugal casting Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 3
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 14
- 230000006872 improvement Effects 0.000 abstract description 2
- 238000007738 vacuum evaporation Methods 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 239000000047 product Substances 0.000 description 14
- 239000000843 powder Substances 0.000 description 11
- 230000004907 flux Effects 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 7
- 239000011810 insulating material Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- 230000005389 magnetism Effects 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- -1 Al Cu Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、焼結体の製造方法に関し、より詳しくは、ネオジウム鉄ボロン系(Nd−Fe−B系)の焼結磁石から先ず希土類元素を優先的に蒸発させ、次に、主相の結晶磁気異方性を大きく向上させるジスプロシウム(Dy)やテルビウム(Tb)をその結晶粒界相に拡散させることで超高性能磁石を作製するための焼結体の製造方法に関する。 The present invention relates to a method for manufacturing a sintered body, and more specifically, first, rare earth elements are preferentially evaporated from a neodymium iron boron-based (Nd-Fe-B-based) sintered magnet, and then crystals of the main phase. The present invention relates to a method for producing a sintered body for producing an ultra-high performance magnet by diffusing dysprosium (Dy) or terbium (Tb) that greatly improves magnetic anisotropy into the grain boundary phase.
ネオジウム鉄ボロン系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に豊富で安定供給が可能なNd、Bの元素の組み合わせからなることで安価に製造できると共に、高磁気特性(最大エネルギー積はフェライト系磁石の10倍程度)を有することから、電子機器など種々の製品に利用され、ハイブリッドカー用のモーターや発電機などにも採用され、使用量が増えている。 A neodymium iron boron-based sintered magnet (so-called neodymium magnet) can be manufactured at low cost by being made of a combination of iron and Nd and B elements that are inexpensive and abundant in resources and can be stably supplied. Because it has high magnetic properties (the maximum energy product is about 10 times that of ferrite magnets), it is used in various products such as electronic equipment, and it is also used in motors and generators for hybrid cars. Yes.
ネオジウム鉄ボロン系の磁石は主に粉末冶金法で生産されており、この方法では、先ず、Nd、Fe、Bを所定の組成比で配合し、溶解、鋳造して合金原料を作製し、例えば水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、合金原料粉末を得る。次いで、得られた合金原料粉末を磁界中で配向(磁場配向)させ、磁場を印加した状態で圧縮成形して成形体を得る。そして、この成形体を所定の条件下で焼結させて焼結磁石が作製される(特許文献1参照)。
ところで、Nd−Fe−B系の焼結磁石の磁性を担うR2T14B相(主相成分)は、平衡状態では液相から直接生成せず、先ず初相としてγ鉄が生成し、液相とその鉄との反応(包晶反応)で生成する(γ鉄は温度低下と共にα鉄に変態する)。この場合、例えば、凝固冷却速度の速い急冷法であるストリップキャスティング法(SC法)により合金原料を溶解、鋳造したとしても、Ndの含有量を28.5%以下にすれば、α鉄の生成の抑制が難しく、合金中にデンドライト状に生成することが知られている。 By the way, the R 2 T 14 B phase (main phase component) responsible for the magnetism of the Nd—Fe—B based sintered magnet is not directly generated from the liquid phase in an equilibrium state, and firstly γ iron is generated as an initial phase. It is formed by the reaction between the liquid phase and its iron (peritectic reaction) (γ iron transforms into α iron as the temperature decreases). In this case, for example, even if the alloy raw material is melted and cast by the strip casting method (SC method), which is a rapid cooling method with a rapid solidification cooling rate, if the Nd content is 28.5% or less, the production of α iron It is known that it is difficult to suppress, and it is formed in a dendrite form in the alloy.
α鉄が合金中にデンドライト状に生成し、立体的に繋がっていると、その後の粉砕工程での合金の粉砕性を著しく害する。つまり、粉砕性が悪いと、水素粉砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕工程により微粉砕しようとしても、高磁気特性の焼結磁石を作製することに適した粒形の揃った微細な粉末粒子の粉末を得ることが困難となる。その上、ジェットミル中に粗大粒(デンドライト状に生成したα鉄に起因する)が残留したり、バッグフィルターで回収される微粉の量が増えることによって組成ずれが起こり易く、品質管理が困難であるという問題がある。 If alpha iron is formed in a dendritic form in the alloy and is three-dimensionally connected, the pulverizability of the alloy in the subsequent pulverization step is significantly impaired. In other words, if the grindability is poor, the particles are once coarsely pulverized by the hydrogen pulverization process, and then the particle shapes suitable for producing sintered magnets with high magnetic properties are prepared even if the pulverization is attempted by the jet mill pulverization process. It is difficult to obtain fine powder particles. In addition, coarse grains (due to α-iron produced in a dendritic form) remain in the jet mill, and composition deviation tends to occur due to an increase in the amount of fine powder collected by the bag filter, making quality control difficult. There is a problem that there is.
他方で、Ndの含有量を28.5%より多くすれば、α鉄が生成しないインゴットの製造が可能であるものの、Rリッチ相が増えて、磁性を担うR2T14B相の体積比が減少するため、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)の大きな高性能磁石の製造が難しくなるといった問題が生じる。 On the other hand, if the Nd content is more than 28.5%, it is possible to produce an ingot that does not produce α iron, but the R-rich phase increases and the volume ratio of the R 2 T 14 B phase that plays a role in magnetism. Therefore, there arises a problem that it becomes difficult to manufacture a high-performance magnet having a maximum energy product ((BH) max) and a large residual magnetic flux density (Br) exhibiting magnetic characteristics.
また、この種の磁石においては、保磁力をさらに高めれば、磁石自体の厚みの薄くしても強い磁力を持ったものが得られるので、この種の磁石利用製品自体の小型、軽量化や小電力化を図ることができる。このことから、従来技術のものと比較して一層高い保磁力を有する超高性能磁石の開発が望まれている。 Furthermore, with this type of magnet, if the coercive force is further increased, a magnet having a strong magnetic force can be obtained even if the thickness of the magnet itself is reduced. Electricity can be achieved. For this reason, development of an ultra-high performance magnet having a higher coercive force than that of the prior art is desired.
そこで、本発明の目的は、上記点に鑑み、例えば永久磁石の磁気特性の向上などの製品機能を改善できる焼結体の製造方法を提供することにある。 In view of the above, an object of the present invention is to provide a method for manufacturing a sintered body that can improve product functions such as improvement of magnetic properties of a permanent magnet.
上記課題を解決するために、請求項1記載の焼結体の製造方法は、液相焼結により一次焼結体を得た後、この一次焼結体を焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相成分中の蒸気圧の高い元素を優先的に蒸発させて、液相の体積比を減少あるいは消滅させて二次焼結体を得る第一工程と、当該二次焼結体を焼結温度より低い温度にて真空雰囲気中で加熱すると共に、真空雰囲気中で所定の金属蒸発材料を加熱して蒸発させ、この蒸発した金属原子を二次焼結体表面に付着させ、この付着した金属原子を二次焼結体の結晶粒界相に拡散させる第二工程とを含むことを特徴とする。 In order to solve the above-mentioned problem, the method for producing a sintered body according to claim 1 is to obtain a primary sintered body by liquid phase sintering, and then vacuum the primary sintered body at a temperature lower than the sintering temperature. A first step of obtaining a secondary sintered body by preferentially evaporating an element having a high vapor pressure in a liquid phase component by heating in an atmosphere and reducing or eliminating a volume ratio of the liquid phase; The secondary sintered body is heated in a vacuum atmosphere at a temperature lower than the sintering temperature, and a predetermined metal evaporation material is heated and evaporated in the vacuum atmosphere, and the evaporated metal atoms are removed from the surface of the secondary sintered body. And a second step of diffusing the attached metal atoms into the grain boundary phase of the secondary sintered body.
本発明によれば、二次焼結体を得る工程の実施により、焼結促進に寄与する液相成分のうち、蒸気圧の高い元素を優先的に蒸発させて液相の体積比を減少させ、主相本来の特性を発揮させることができる。特に、焼結体がR2T14B相系磁石の場合、希土類元素を効率良く蒸発させて、Rリッチ相の体積比を減少させ、磁性を担うR2T14B相(主相成分)の体積比を増大させることにより、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上することができる。 According to the present invention, by performing the step of obtaining the secondary sintered body, among the liquid phase components contributing to the promotion of sintering, the element having a high vapor pressure is preferentially evaporated to reduce the volume ratio of the liquid phase. The main characteristics of the main phase can be exhibited. In particular, when the sintered body is an R 2 T 14 B phase magnet, the rare earth element is efficiently evaporated, the volume ratio of the R rich phase is reduced, and the R 2 T 14 B phase (main phase component) that plays a role in magnetism. By increasing the volume ratio, it is possible to improve the maximum energy product ((BH) max) and the residual magnetic flux density (Br) exhibiting magnetic characteristics.
次いで、所定の金属原子を二次焼結体の結晶粒界相に拡散させる工程を実施することで、主相の特性を向上させる金属原子をその結晶粒界相に拡散させ、主相本来の特性をより一層向上させることができる。特に、磁性を担うR2T14B相の体積比を増大させることにより、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上したものに対し、主相の結晶磁気異方性を大きく向上させるDyやTbをその結晶粒界相に拡散させることで、ニュークリエーション型の保磁力発生機構を強化し、その結果、最大エネルギー積がほとんど損なわれることなく、保磁力が飛躍的に向上し、その結果、超高性能磁石が得られる。 Next, by carrying out a step of diffusing predetermined metal atoms into the grain boundary phase of the secondary sintered body, metal atoms that improve the characteristics of the main phase are diffused into the crystal grain boundary phase, The characteristics can be further improved. In particular, by increasing the volume ratio of the R 2 T 14 B phase responsible for magnetism, the maximum energy product ((BH) max) and residual magnetic flux density (Br) exhibiting magnetic characteristics are improved, while the main phase By diffusing Dy or Tb, which greatly improves the magnetocrystalline anisotropy, into the grain boundary phase, the nucleation mechanism of the nucleation type is strengthened. As a result, the maximum energy product is hardly impaired, The magnetic force is dramatically improved, and as a result, an ultra-high performance magnet is obtained.
この場合、前記第二工程の際、前記付着した金属原子を、二次焼結体表面に金属蒸発材料からなる薄膜が形成される前に二次焼結体の結晶粒界相に拡散させることがよい。これによれば、第二工程の際に磁石表面が劣化することが防止され、仕上げ加工が不要な生産性に優れた磁石が得られる。 In this case, in the second step, the adhered metal atoms are diffused into the grain boundary phase of the secondary sintered body before the thin film made of the metal evaporation material is formed on the surface of the secondary sintered body. Is good. According to this, it is possible to prevent the magnet surface from being deteriorated during the second step and to obtain a magnet with excellent productivity that does not require finishing.
本発明においては、前記一次焼結体は、原料合金をストリップキャスティング法あるいは遠心鋳造法で製造し、その後、粉砕、磁場成形、焼結の各工程を経て得たものであることが好ましい。 In the present invention, the primary sintered body is preferably obtained by manufacturing a raw material alloy by a strip casting method or a centrifugal casting method, and then performing pulverization, magnetic field forming, and sintering processes.
前記原料合金は、ネオジウム、プラセオジウム及びテルビウムのうち少なくとも1つを含む希土類元素を有するネオジウム鉄ボロン系焼結磁石用のものであり、前記希土類元素の含有量が28.5重量%以上30重量%以下であることが好ましい。 The raw material alloy is for a neodymium iron boron based sintered magnet having a rare earth element including at least one of neodymium, praseodymium and terbium, and the content of the rare earth element is 28.5 wt% or more and 30 wt%. The following is preferable.
これによれば、前記一次焼結体が、例えば主相成分がR2T14B相で構成され、Rが、Ndを主とする少なくとも1種の希土類元素、Tが、Feを主とする遷移金属であり、R2T14B相化学量論組成より過剰のRがRリッチ相として、特に焼結時に液相となって焼結の促進に役立つ焼結磁石である場合に、例えば、合金原料を溶解、鋳造するとき、合金中にデンドライト状のα鉄が生成しないように、希土類元素の含有量を多く設定し、α鉄が生成しないインゴットを製造し、公知の工程で焼結磁石を得た後、Rリッチ相の希土類元素のみを蒸発させることで、Ndリッチ相の体積比を減少させ、その結果、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)を向上でき、高性能磁石となる。そして、DyやTbをその結晶粒界相に拡散させることで、保磁力を向上でき、超高性能磁石が得られる。尚、上記原料合金には、後工程で拡散させるDyが含まれていないことが好ましい。 According to this, in the primary sintered body, for example, the main phase component is composed of the R 2 T 14 B phase, R is at least one rare earth element mainly including Nd, and T is mainly Fe. For example, when the transition metal is a sintered magnet that has an excess of R 2 T 14 B phase stoichiometric composition as the R-rich phase, particularly a liquid phase at the time of sintering and serves to promote sintering, When melting and casting the alloy raw material, an ingot that does not produce alpha iron is produced by setting a large amount of rare earth element so that dendritic alpha iron is not produced in the alloy. The volume ratio of the Nd-rich phase is decreased by evaporating only the R-rich phase rare earth element, and as a result, the maximum energy product ((BH) max) and the residual magnetic flux density (Br) exhibiting magnetic characteristics are reduced. ) Can be improved, resulting in a high-performance magnet. Then, by diffusing Dy or Tb into the grain boundary phase, the coercive force can be improved and an ultra-high performance magnet can be obtained. In addition, it is preferable that the said raw material alloy does not contain Dy diffused by a post process.
この場合、前記希土類元素の蒸発によって、希土類元素の含有量を28.5%未満に減らすか、または、希土類元素の平均濃度の減少量を0.5重量%以上とすればよい。 In this case, the rare earth element content may be reduced to less than 28.5% by evaporation of the rare earth element or the average concentration of the rare earth element may be reduced by 0.5% by weight or more.
前記真空雰囲気中で加熱するときの加熱温度を、900℃以上に設定することが好ましい。900℃より低い温度では、一次焼結体が上記焼結磁石であるときに希土類元素を優先的に蒸発させることができず、また、焼結温度以上の温度では、異常粒成長が起こり、磁気特性が大きく低下する。 The heating temperature when heating in the vacuum atmosphere is preferably set to 900 ° C. or higher. When the temperature is lower than 900 ° C., the rare earth element cannot be preferentially evaporated when the primary sintered body is the sintered magnet, and when the temperature is higher than the sintering temperature, abnormal grain growth occurs. The characteristics are greatly reduced.
前記真空雰囲気の圧力を、10−3Pa以下に設定することが好ましい。10−3Paより高い圧力では、一次焼結体が上記焼結磁石であるときに希土類元素を優先的に効率よく蒸発させることができない。 The pressure in the vacuum atmosphere is preferably set to 10 −3 Pa or less. When the pressure is higher than 10 −3 Pa, the rare earth element cannot be evaporated preferentially and efficiently when the primary sintered body is the sintered magnet.
また、前記蒸発した希土類元素をトラップする機構を設け、回収することが好ましい。これにより、特にTb等の高価な希土類元素を蒸発させる場合に、その希土類元素が回収できて良い。 Further, it is preferable to provide and collect a mechanism for trapping the evaporated rare earth element. Thereby, especially when an expensive rare earth element such as Tb is evaporated, the rare earth element may be recovered.
本発明においては、前記金属蒸発材料は、ジスプロシウム、テルビウムまたはこれらのいずれか一方を含む合金である。 In the present invention, the metal evaporation material is dysprosium, terbium, or an alloy containing any one of these.
ここで、蒸発した金属原子を二次焼結体表面に供給する工程を実施するに際して、溶けたDy等の金属蒸発材料が、表面Ndリッチ相が溶けた磁石表面に直接付着することを防止する必要がある。このため、前記二次焼結体と金属蒸発材料とを相互に離間して配置することが望ましい。 Here, when carrying out the step of supplying evaporated metal atoms to the surface of the secondary sintered body, the metal evaporation material such as molten Dy is prevented from directly adhering to the magnet surface in which the surface Nd-rich phase is dissolved. There is a need. For this reason, it is desirable that the secondary sintered body and the metal evaporating material are arranged apart from each other.
また、付着した金属原子を二次焼結体表面に金属蒸発材料からなる薄膜が形成される前にその結晶粒界相に拡散させるために、当該金属蒸発材料の比表面積を変化させて一定温度下における蒸発量を増減し、前記蒸発した金属原子の二次焼結体表面への供給量を調節する構成を採用するのがよい。 Further, in order to diffuse the attached metal atoms to the grain boundary phase before the thin film made of the metal evaporating material is formed on the surface of the secondary sintered body, the specific surface area of the metal evaporating material is changed to a constant temperature. It is preferable to employ a configuration in which the amount of evaporation below is increased and decreased, and the amount of the evaporated metal atoms supplied to the surface of the secondary sintered body is adjusted.
他方で、当該金属蒸発材料の蒸気圧を変化させて前記蒸発した金属原子の二次焼結体表面への供給量を調節してもよい。 On the other hand, the supply pressure of the evaporated metal atoms to the secondary sintered body surface may be adjusted by changing the vapor pressure of the metal evaporation material.
なお、請求項1乃至請求項12のいずれか1項に記載の方法によって製造される焼結体は、例えばネオジウム鉄ボロン系焼結磁石である。 In addition, the sintered compact manufactured by the method of any one of Claims 1 thru | or 12 is a neodymium iron boron series sintered magnet, for example.
図1を参照して説明すれば、1は、本発明の焼結体の製造方法のうち、液相焼結により得た一次焼結体S1を焼結温度より低い温度にて真空雰囲気中で加熱することにより、液相成分中の蒸気圧の高い元素を優先的に蒸発させて、液相の体積比を減少あるいは消滅させて二次焼結体S2を得る工程(蒸発処理工程)を実施することに適した真空蒸発装置である。 Referring to FIG. 1, in the method for producing a sintered body according to the present invention, 1 is a method of producing a primary sintered body S1 obtained by liquid phase sintering in a vacuum atmosphere at a temperature lower than the sintering temperature. Performing the process (evaporation process) to obtain the secondary sintered body S2 by preferentially evaporating the element with high vapor pressure in the liquid phase component by heating and reducing or eliminating the volume ratio of the liquid phase It is a vacuum evaporation device suitable for doing.
真空蒸発装置1は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段2を介して所定圧力(例えば10−5Pa)まで減圧して保持できる真空チャンバ3を有する。真空チャンバ内3には、上面を開口した円筒形状の焼結体ケース4が設置され、この焼結体ケース4で囲まれた空間が処理室4aを構成する。焼結体ケース4は、後述するように、加熱手段により加熱したときに、一次焼結体S1から、液相成分を優先的に蒸発させたとき、その蒸発した元素Rと反応しない材料から構成されている。 The vacuum evaporation apparatus 1 includes a vacuum chamber 3 that can be held at a reduced pressure to a predetermined pressure (for example, 10 −5 Pa) through a vacuum exhaust unit 2 such as a turbo molecular pump, a cryopump, or a diffusion pump. A cylindrical sintered body case 4 having an upper surface opened is installed in the vacuum chamber 3, and a space surrounded by the sintered body case 4 constitutes a processing chamber 4a. As described later, the sintered body case 4 is made of a material that does not react with the evaporated element R when the liquid phase component is preferentially evaporated from the primary sintered body S1 when heated by the heating means. Has been.
即ち、一次焼結体S1が、ネオジウム、プラセオジウムやテルビウムなどの希土類元素Rを含むネオジウム鉄ボロン系の焼結磁石であるとき、蒸発させた希土類元素が焼結体ケース4の表面に付着してその表面に反応生成物を形成したのでは、希土類元素の回収が困難になる場合がある。このため、焼結体ケース4を、表面に付着した希土類元素Rの剥離が容易なMoやSUSから製作するか、またはMo等を他の断熱材の表面に内張膜として成膜したものから構成している。また、処理室4aには、焼結体ケース4の底面から上面に向かって相互に所定の間隔を置いて、例えばMo製の皿状の載置部4bが複数個配置され、載置部4bには、直方体など所定形状に成形した後、焼結してなる一次焼結体(例えば、ネオジウム鉄ボロン系の焼結磁石)S1が並べて載置できる。 That is, when the primary sintered body S1 is a neodymium iron boron-based sintered magnet containing rare earth elements R such as neodymium, praseodymium and terbium, the evaporated rare earth elements adhere to the surface of the sintered body case 4. If a reaction product is formed on the surface, it may be difficult to recover the rare earth element. For this reason, the sintered body case 4 is manufactured from Mo or SUS from which the rare earth element R attached to the surface is easily peeled, or Mo or the like is formed as a lining film on the surface of another heat insulating material. It is composed. In the processing chamber 4a, a plurality of, for example, Mo-shaped plate-like mounting portions 4b are arranged at predetermined intervals from the bottom surface to the upper surface of the sintered body case 4, and the mounting portion 4b The primary sintered body (for example, neodymium iron boron-based sintered magnet) S1 formed after being shaped into a predetermined shape such as a rectangular parallelepiped and then sintered can be placed side by side.
また、真空チャンバ3には、焼結体ケース4の周囲を囲うように加熱手段5が設けられている。加熱手段5は、焼結体ケース4の周囲を囲うようにその全長に亘って列設した複数本の環状のフィラメントから構成される電気ヒータ(図示せず)であり、各フィラメントは、真空チャンバ3内に設けた支持片(図示せず)で支持されている。この場合、フィラメントもまた、蒸発させて元素Rと反応しないMo等から構成されている。そして、減圧下で、加熱手段5によって焼結体ケース4を加熱することで、焼結体ケース4を介して間接的に処理室4a、ひいては、載置部4bに載置した一次焼結体S1を略均等に加熱できる。 The vacuum chamber 3 is provided with heating means 5 so as to surround the periphery of the sintered body case 4. The heating means 5 is an electric heater (not shown) composed of a plurality of annular filaments arranged over the entire length so as to surround the periphery of the sintered body case 4, and each filament is a vacuum chamber. 3 is supported by a support piece (not shown) provided in the interior. In this case, the filament is also made of Mo or the like that does not react with the element R after being evaporated. Then, the sintered body case 4 is heated by the heating means 5 under reduced pressure, so that the primary sintered body placed on the processing chamber 4a and thus on the placing portion 4b indirectly through the sintered body case 4. S1 can be heated substantially evenly.
焼結体ケース2の上方には、その開口した上面を覆うようにトラップ板6が配置されている。トラップ板6もまた、蒸発させた元素Rと反応せず、かつ、表面に付着したものが剥離し易い材料、例えば、蒸発したものが希土類元素であればMoから構成される。この場合、処理室4aの容積は、蒸発させた液相成分元素の平均自由行程を考慮して、蒸発した元素が直接または焼結体ケース4の内壁への衝突を繰返して上面開口を通って外側に排出されるように設定され、また、焼結体ケース4の上端からトラップ板6までの間隔は、排出された元素Rの大部分が付着するように設定されている。この場合、焼結体ケース4に、例えば冷媒の循環による冷却手段を付設し、温度差によって蒸発した元素Rがトラップ板6に付着して堆積するように構成してもよい。 A trap plate 6 is disposed above the sintered body case 2 so as to cover the opened upper surface. The trap plate 6 is also made of a material that does not react with the evaporated element R and that is easily peeled off when it adheres to the surface, for example, Mo if the evaporated element is a rare earth element. In this case, the volume of the processing chamber 4a is determined by taking into consideration the mean free path of the evaporated liquid phase component element, and the evaporated element repeatedly hits the inner wall of the sintered body case 4 directly or through the upper surface opening. The distance from the upper end of the sintered body case 4 to the trap plate 6 is set so that most of the discharged element R adheres. In this case, the sintered body case 4 may be provided with, for example, a cooling means by circulating a refrigerant so that the element R evaporated by the temperature difference adheres to the trap plate 6 and accumulates.
次に、図2を参照して説明すれば、10は、本発明の焼結体の製造方法のうち、二次焼結体S2を焼結温度より低い温度にて真空雰囲気中で加熱すると共に、真空雰囲気中で所定の金属蒸発材料を加熱して蒸発させ、この蒸発した金属原子を二次焼結体表面に付着させ、この付着した金属原子を、二次焼結体S2表面に金属蒸発材料Vからなる薄膜が形成される前に二次焼結体S2の結晶粒界相に拡散させる工程(真空蒸気処理工程)を実施することに適した真空蒸気処理装置である。 Next, with reference to FIG. 2, in the method for manufacturing a sintered body according to the present invention, 10 heats the secondary sintered body S2 in a vacuum atmosphere at a temperature lower than the sintering temperature. Then, a predetermined metal evaporation material is heated and evaporated in a vacuum atmosphere, the evaporated metal atoms are attached to the surface of the secondary sintered body, and the attached metal atoms are evaporated onto the surface of the secondary sintered body S2. This is a vacuum vapor processing apparatus suitable for performing a step (vacuum vapor processing step) of diffusing into the crystal grain boundary phase of the secondary sintered body S2 before the thin film made of the material V is formed.
真空蒸気処理装置10は、ターボ分子ポンプ、クライオポンプ、拡散ポンプなどの真空排気手段11を介して所定圧力(例えば1×10−5Pa)まで減圧して保持できる真空チャンバ12を有する。 真空チャンバ12内には加熱手段13が設けられている。加熱手段13は、特に図示しないが、例えば後述する処理箱の周囲を囲う断熱材とその内側に配置した発熱体とから構成され、発熱体は、複数本の環状フィラメントを有する電気ヒータである。 The vacuum vapor processing apparatus 10 includes a vacuum chamber 12 that can be held at a reduced pressure to a predetermined pressure (for example, 1 × 10 −5 Pa) through a vacuum exhausting unit 11 such as a turbo molecular pump, a cryopump, or a diffusion pump. A heating means 13 is provided in the vacuum chamber 12. Although not shown in particular, the heating means 13 includes, for example, a heat insulating material that surrounds the processing box described later and a heating element disposed inside thereof, and the heating element is an electric heater having a plurality of annular filaments.
また、真空チャンバ内12には、断熱材の内側に位置させて、上面を開口した直方体形状の箱部14と、開口した箱部14の上面に着脱自在な蓋部15とからなる処理箱16が少なくとも1個設置される。蓋部15の外周縁部には下方に屈曲させたフランジ15aがその全周に亘って形成され、箱部14の上面に蓋部15を装着すると、フランジ15aが箱部14の外壁に嵌合して(この場合、メタルシールなどの真空シールは設けていない)、真空チャンバ11と隔絶された処理室16aが画成される。そして、真空排気手段11を介して真空チャンバ12を所定圧力(例えば、1×10−5Pa)まで減圧すると、処理室16aが真空チャンバ12より略半桁高い圧力(例えば、5×10−4Pa)まで減圧されるようになっている。 Further, in the vacuum chamber 12, a processing box 16, which is located inside the heat insulating material and includes a rectangular parallelepiped box portion 14 having an upper surface opened and a lid portion 15 detachably attached to the upper surface of the opened box portion 14. At least one is installed. A flange 15a bent downward is formed on the outer peripheral edge of the lid portion 15 over its entire circumference. When the lid portion 15 is attached to the upper surface of the box portion 14, the flange 15a is fitted to the outer wall of the box portion 14. Thus (in this case, a vacuum seal such as a metal seal is not provided), and a processing chamber 16 a isolated from the vacuum chamber 11 is defined. Then, when the vacuum chamber 12 is depressurized to a predetermined pressure (for example, 1 × 10 −5 Pa) through the evacuation unit 11, the processing chamber 16 a has a pressure (for example, 5 × 10 −4 ) that is approximately half orders of magnitude higher than the vacuum chamber 12. The pressure is reduced to Pa).
処理室16aの容積は、後述する蒸発金属材料Vの平均自由行程を考慮して蒸気雰囲気中の金属原子が直接または衝突を繰返して複数の方向から二次焼結体S2に供給されるように設定されている。また、箱部14及び蓋部15の壁面の肉厚は、加熱手段を作動させて加熱されたとき、熱変形しないように設定されている。処理室16a内で底面から所定の高さ位置には、複数本の線材(例えばφ0.1〜10mm)を格子状に配置することで載置部17が形成され、この載置部17に複数個の二次焼結体S2を並べて載置できるようになっている。他方、金属蒸発材料Vは、処理室20の底面、側面または上面等に適宜配置される。 The volume of the processing chamber 16a is set so that metal atoms in the vapor atmosphere are supplied directly or repeatedly to the secondary sintered body S2 from a plurality of directions in consideration of the mean free path of the evaporated metal material V described later. Is set. The wall thicknesses of the box portion 14 and the lid portion 15 are set so as not to be thermally deformed when the heating means is operated and heated. A placement unit 17 is formed by arranging a plurality of wire rods (for example, φ0.1 to 10 mm) in a lattice shape at a predetermined height position from the bottom surface in the processing chamber 16a. The individual secondary sintered bodies S2 can be placed side by side. On the other hand, the metal evaporation material V is appropriately disposed on the bottom surface, side surface, top surface, or the like of the processing chamber 20.
これにより、金属蒸発材料Vを箱部13の底面に設置するだけで二次焼結体S2と金属蒸発材料Vとが離間して配置でき、しかも、二次焼結体S2の下側に位置する金属蒸発材料Vから蒸発した金属原子が直接または衝突を繰返して複数の方向から二次焼結体S2の略全面に亘って供給されるため、処理箱16を回転させたりする必要はない。また、処理箱16を、箱部14と蓋部15とから構成したため、処理箱16自体の構造もまた簡単になり、蓋部15が取外すと、上面が開口することで箱部14への金属蒸発材料Vと二次焼結体S2との出し入れが容易にできる。 As a result, the secondary sintered body S2 and the metal evaporated material V can be spaced apart from each other simply by installing the metal evaporating material V on the bottom surface of the box portion 13, and the position is located below the secondary sintered body S2. Since the metal atoms evaporated from the metal evaporation material V to be supplied are supplied over substantially the entire surface of the secondary sintered body S2 from a plurality of directions directly or repeatedly, there is no need to rotate the processing box 16. Further, since the processing box 16 is composed of the box part 14 and the lid part 15, the structure of the processing box 16 itself is also simplified. When the lid part 15 is removed, the upper surface is opened so that the metal to the box part 14 is opened. The evaporating material V and the secondary sintered body S2 can be easily taken in and out.
このように本実施の形態の真空蒸気処理装置10によれば、真空チャンバ12内に、金属蒸発材料Vと二次焼結体S2とを収納した少なくとも1個の処理箱16を出し入れして行うバッチ式としたため、真空チャンバ12内で処理箱16内に二次焼結体S2等を出し入れする機構等が不要になり、真空蒸気処理装置10自体を簡単な構造にでき、その上、複数の処理箱16を収納可能にしておけば、大量の二次焼結体S2に対し同時処理できるため、高い生産性を達成できる。 As described above, according to the vacuum vapor processing apparatus 10 of the present embodiment, at least one processing box 16 containing the metal evaporation material V and the secondary sintered body S2 is taken in and out of the vacuum chamber 12. Since it is a batch type, a mechanism for taking in and out the secondary sintered body S2 and the like in the processing box 16 in the vacuum chamber 12 becomes unnecessary, and the vacuum vapor processing apparatus 10 itself can have a simple structure. If the processing box 16 can be stored, a large amount of the secondary sintered body S2 can be processed simultaneously, so that high productivity can be achieved.
ところで、焼結体S1、S2が、ネオジウム鉄ボロン系の焼結磁石であり、金属蒸発材料VとしてDyやTbを用いる場合、処理箱16として、例えば一般の真空装置でよく用いられるAl2O3を用いると、蒸気雰囲気中のDyとAl2O3が反応してその表面に反応生成物を形成すると共に、Al原子がDy蒸気雰囲気中に侵入する虞がある。また、DyやTbを蒸発させるには真空下で900℃以上の温度に加熱する必要があることから、従来の電気炉のようにフィラメントとしてカーボンを用いたのでは、カーボンの昇華によって炉内が汚染されたり、Dy、TbやSi等の金属蒸発材料Vがカーボンと反応しまたは被処理物Sからでる水や水素がカーボンと反応し、急速にヒータ自体の痩せ細りに起因して到達温度の再現性が悪くなる等の問題が生じる。 By the way, when the sintered bodies S1 and S2 are neodymium iron boron-based sintered magnets and Dy or Tb is used as the metal evaporation material V, as the processing box 16, for example, Al 2 O often used in a general vacuum apparatus. When 3 is used, Dy and Al 2 O 3 in the vapor atmosphere react to form a reaction product on the surface, and Al atoms may enter the Dy vapor atmosphere. Further, since it is necessary to heat to 900 ° C. or higher under vacuum in order to evaporate Dy and Tb, when carbon is used as a filament as in a conventional electric furnace, the inside of the furnace is sublimated by carbon sublimation. The metal evaporation material V such as Dy, Tb, or Si reacts with carbon or water or hydrogen generated from the object to be processed S reacts with carbon, and the temperature of the reached temperature is rapidly increased due to thinning of the heater itself. Problems such as poor reproducibility arise.
このため、真空チャンバ12内に存在する、載置部17を含む処理箱16を構成する部品及び加熱手段13を構成する断熱材やフィラメンなどの部品をMo製とした。これにより、処理箱16を加熱してこの処理箱16内で金属蒸発材料Vを蒸発させたときに他の原子が侵入することが防止できる。他方、処理箱16を箱部14の上面に蓋部15を装着した構造(略密閉構造)であるため、蒸発した原子の一部が箱部14と蓋部15との間隙を通って外部に流出する虞があるが、断熱材もMo製であるため、金属蒸発材料Vと反応しないことから、断熱材等に付着した金属蒸発材料Vの回収が容易になり、特に資源的に乏しく、安定供給が望めないDyやTbが金属蒸発材料であるとき特に有効となる。 For this reason, parts such as a heat insulating material and a filament that constitute the processing box 16 including the mounting portion 17 and the heating means 13 that are present in the vacuum chamber 12 are made of Mo. Thereby, when the process box 16 is heated and the metal evaporation material V is evaporated in this process box 16, it can prevent that another atom penetrate | invades. On the other hand, since the processing box 16 has a structure (substantially sealed structure) in which the lid portion 15 is mounted on the upper surface of the box portion 14, a part of the evaporated atoms passes through the gap between the box portion 14 and the lid portion 15 to the outside. Although there is a risk of spilling out, since the heat insulating material is also made of Mo, it does not react with the metal evaporating material V, so that the metal evaporating material V adhering to the heat insulating material can be easily recovered, and is particularly scarce in terms of resources and stable. This is particularly effective when Dy or Tb that cannot be supplied is a metal evaporation material.
さらに、加熱手段13のフィラメントをMo製としたことで、処理室16aを1000℃以上の高温に加熱するときでも、到達温度の高い再現性を有し、真空チャンバ11を減圧した後に加熱手段13を作動させて処理箱16を加熱することで、熱効率が大きくなること、及び処理箱16の壁面を介して間接的に処理室16aを加熱することとが相俟って、処理室内16aを略均等かつ再現性よく短時間で加熱できる。 Furthermore, since the filament of the heating means 13 is made of Mo, even when the processing chamber 16a is heated to a high temperature of 1000 ° C. or higher, the heating means 13 has a high reproducibility of the reached temperature and the vacuum chamber 11 is decompressed after the pressure is reduced. The processing chamber 16 is heated by heating the processing chamber 16a to increase the thermal efficiency and indirectly heat the processing chamber 16a through the wall surface of the processing box 16. It can be heated in a short time with good uniformity and reproducibility.
尚、本実施の形態では、Moで構成部品を作製したが、処理箱16を再現性よく加熱でき、かつ、金属蒸発材料Vと反応しない材料であればよく、例えば、ステンレス、V、TaまたはMo、V、Taの少なくとも1種を含有する合金(希土類添加型Mo合金、Ti添加型Mo合金などを含む)やCaO、Y2O3、或いは希土類酸化物から製作してもよい。また、これらの材料を他の断熱材の表面に内張膜として成膜したものから構成してもよい。 In this embodiment, the component parts are made of Mo. However, any material can be used as long as the processing box 16 can be heated with good reproducibility and does not react with the metal evaporation material V. For example, stainless steel, V, Ta or Mo, V, alloys containing at least one of Ta (rare-earth doped type Mo alloy, and the like Ti addition type Mo alloy) and CaO, Y 2 O 3, or may be made from rare earth oxide. Moreover, you may comprise from what formed these materials as a lining film | membrane on the surface of another heat insulating material.
次に、本発明の焼結体の製造方法によるネオジウム鉄ボロン系焼結磁石(永久磁石)の作製について説明する。先ず、原料合金粉末は次のように作製される。即ち、Fe、Nd、Bが所定の組成比となるように、工業用純鉄、金属ネオジウム、低炭素フェロボロンを配合して真空誘導炉を用いて溶解し、急冷法、例えばストリップキャスト法により0.05mm〜0.5mmの原料合金を先ず作製する。あるいは、遠心鋳造法で5〜10mm程度の厚さの原料合金を作製してもよく、配合の際に、Dy、Tb、Co、Cu、Nb、Zr、Al、Ga等を添加しても良い。この場合、希土類元素の合計含有量を28.5%より多くし、α鉄が生成しないインゴットとする。 Next, production of a neodymium iron boron based sintered magnet (permanent magnet) by the method for producing a sintered body of the present invention will be described. First, the raw material alloy powder is produced as follows. That is, industrial pure iron, metallic neodymium, and low carbon ferroboron are blended and dissolved using a vacuum induction furnace so that Fe, Nd, and B have a predetermined composition ratio, and then quenched by a rapid cooling method such as a strip casting method. First, a raw material alloy of 05 mm to 0.5 mm is prepared. Alternatively, a raw material alloy having a thickness of about 5 to 10 mm may be produced by a centrifugal casting method, and Dy, Tb, Co, Cu, Nb, Zr, Al, Ga, or the like may be added during blending. . In this case, the total content of rare earth elements is set to more than 28.5%, and an ingot that does not produce α iron is obtained.
次いで、作製した原料合金を、公知の水素粉砕工程により粗粉砕し、引き続き、ジェットミル微粉砕工程により窒素ガス雰囲気中で微粉砕し、平均粒径3〜10μmの原料合金粉末を得る。次いで、原料合金粉末を、公知の圧縮成形機を用いて磁界中で所定形状に圧縮成形する。次いで、圧縮成形機から取出した成形体を、図示しない焼結炉内に収納し、真空中で所定温度(例えば、1050℃)で所定時間焼結(焼結工程)し、さらに所定温度(500℃)、焼結磁石たる一次焼結体S1を得る。 Next, the produced raw material alloy is coarsely pulverized by a known hydrogen pulverization step, and then finely pulverized in a nitrogen gas atmosphere by a jet mill pulverization step to obtain a raw material alloy powder having an average particle diameter of 3 to 10 μm. Next, the raw material alloy powder is compression molded into a predetermined shape in a magnetic field using a known compression molding machine. Next, the molded body taken out from the compression molding machine is housed in a sintering furnace (not shown), sintered in a vacuum at a predetermined temperature (for example, 1050 ° C.) for a predetermined time (sintering process), and further, a predetermined temperature (500 ° C), a primary sintered body S1 which is a sintered magnet is obtained.
次に、図1に示す真空蒸発装置1を用い、真空蒸発工程により二次焼結体S2を得る。先ず、上記のように作製した一次焼結体S1を、真空蒸発装置1の載置部4b上に載置した後、真空排気手段2を作動させて、所定圧力(例えば10−5Pa)に到達するまで真空チャンバ3を減圧する。真空チャンバ3内が所定圧力に到達した後、加熱手段4を作動させて処理室4a、ひいては焼結磁石Sを加熱し、所定温度に到達した後、この状態で所定時間保持する(真空蒸発処理工程)。 Next, using the vacuum evaporation apparatus 1 shown in FIG. 1, a secondary sintered body S2 is obtained by a vacuum evaporation process. First, the primary sintered body S1 produced as described above is placed on the placement portion 4b of the vacuum evaporation apparatus 1, and then the evacuation means 2 is operated to a predetermined pressure (for example, 10 −5 Pa). The vacuum chamber 3 is depressurized until it reaches. After the inside of the vacuum chamber 3 reaches a predetermined pressure, the heating means 4 is operated to heat the processing chamber 4a and eventually the sintered magnet S. After reaching the predetermined temperature, this state is maintained for a predetermined time (vacuum evaporation process). Process).
この場合、処理室4a、ひいては焼結磁石Sの加熱温度を900℃以上で、焼結温度未満の温度に設定する。900℃より低い温度では、希土類元素Rの蒸発速度が遅く、また、焼結温度を超えると、異常粒成長が起こり、磁気特性が大きく低下する。併せて、真空チャンバ3と真空排気手段2とを連結する排気通路(排気管)7に開度調整自在な開閉バルブ8を設け、この開閉バルブ8の開度を調節して、真空チャンバ8、ひいては処理室4a内の圧力を10−3Pa以下の圧力に設定する。10−3Paより高い圧力では、希土類元素Rを効率よく蒸発させることができない。 In this case, the heating temperature of the processing chamber 4a and consequently the sintered magnet S is set to 900 ° C. or higher and lower than the sintering temperature. When the temperature is lower than 900 ° C., the evaporation rate of the rare earth element R is slow, and when the sintering temperature is exceeded, abnormal grain growth occurs and the magnetic properties are greatly deteriorated. In addition, an open / close valve 8 whose opening degree can be adjusted is provided in an exhaust passage (exhaust pipe) 7 that connects the vacuum chamber 3 and the vacuum exhaust means 2, and the opening degree of the open / close valve 8 is adjusted so that the vacuum chamber 8, As a result, the pressure in the processing chamber 4a is set to a pressure of 10 −3 Pa or less. When the pressure is higher than 10 −3 Pa, the rare earth element R cannot be efficiently evaporated.
これにより、一定温度下での蒸気圧の相違により(例えば、1000℃において、Ndの蒸気圧は10−3Pa、Feの蒸気圧は10−5Pa、Bの蒸気圧は10−13Pa)、Rリッチ相中の希土類元素Rのみが蒸発する。その結果、Ndリッチ相の割合が減少して、磁気特性を示す最大エネルギー積((BH)max)及び残留磁束密度(Br)が向上し、高性能なものとなる。この場合、二次焼結体S2たる焼結磁石の希土類元素Rの含有量を28.5wt%未満、または、希土類元素Rの平均濃度の減少量を0.5重量%以上となるまで加熱処理する。 Thereby, due to the difference in vapor pressure at a constant temperature (for example, at 1000 ° C., the vapor pressure of Nd is 10 −3 Pa, the vapor pressure of Fe is 10 −5 Pa, and the vapor pressure of B is 10 −13 Pa). Only the rare earth element R in the R-rich phase evaporates. As a result, the ratio of the Nd-rich phase is reduced, the maximum energy product ((BH) max) and the residual magnetic flux density (Br) showing magnetic characteristics are improved, and high performance is achieved. In this case, heat treatment is performed until the content of the rare earth element R in the sintered magnet as the secondary sintered body S2 is less than 28.5 wt%, or the amount of decrease in the average concentration of the rare earth element R is 0.5 wt% or more. To do.
そして、上記真空蒸発処理を実施した後、加熱手段5の作動を一旦停止すると共に、開閉バルブ8を全開して真空チャンバ3を排気しつつ冷却し、処理室4a内の温度を例えば500℃まで一旦下げる。引き続き、加熱手段4を再度作動させ、処理室20内の温度を550℃〜650℃の範囲に設定し、一層磁気特性を向上させるための熱処理を施す。最後に、略室温まで冷却し、二次焼結体S2を取り出す。 Then, after carrying out the vacuum evaporation process, the operation of the heating means 5 is temporarily stopped, the open / close valve 8 is fully opened and the vacuum chamber 3 is exhausted and cooled, and the temperature in the process chamber 4a is reduced to, for example, 500 ° C. Lower it once. Subsequently, the heating means 4 is actuated again, the temperature in the processing chamber 20 is set in the range of 550 ° C. to 650 ° C., and heat treatment for further improving the magnetic properties is performed. Finally, it is cooled to about room temperature and the secondary sintered body S2 is taken out.
次に、図2に示す真空蒸気処理装置10を用い、二次焼結体S2への真空蒸気処理工程により焼結体たる永久磁石を得る。先ず、箱部14の載置部17に二次焼結体S2を載置すると共に、箱部14の底面に金属蒸発材料Vを設置する(これにより、処理室16a内で二次焼結体S2と金属蒸発材料Vとが離間して配置される)。 Next, the permanent magnet which is a sintered compact is obtained by the vacuum vapor processing process to secondary sintered compact S2 using the vacuum vapor processing apparatus 10 shown in FIG. First, the secondary sintered body S2 is placed on the placement portion 17 of the box portion 14, and the metal evaporation material V is placed on the bottom surface of the box portion 14 (thereby, the secondary sintered body is disposed in the processing chamber 16a). S2 and the metal evaporation material V are spaced apart).
金属蒸発材料Vとしては、主相の結晶磁気異方性を大きく向上させるDy、Tbまたはこれらの少なくとも一方を含む合金が用いられ、その際、保磁力を一層高めるために、Nd、Pr、Al、Cu及びGa等を含めてもよい。この場合、金属蒸発材料Vは、所定の混合割合で配合し、例えばアーク溶解炉を用いてバルク状の合金を得て、処理室16aに配置される。 As the metal evaporation material V, Dy, Tb or an alloy containing at least one of them is used to greatly improve the magnetocrystalline anisotropy of the main phase. At this time, in order to further increase the coercive force, Nd, Pr, Al Cu, Ga, etc. may be included. In this case, the metal evaporating material V is blended at a predetermined mixing ratio, and a bulk alloy is obtained using, for example, an arc melting furnace, and disposed in the processing chamber 16a.
次いで、箱部14の開口した上面に蓋部15を装着した後、この処理箱16を、真空チャンバ12内の所定位置に収納する(図2参照)。そして、真空排気手段11を介して真空チャンバ12を所定圧力(例えば、1×10−5Pa)まで真空排気して減圧し、(処理室16aは略半桁高い圧力まで真空排気される)、所定圧力に達すると、加熱手段13を作動させて処理箱16を加熱する。減圧下で処理室16a内の温度が所定温度に達すると、処理箱16の底面に設置した金属蒸発材料Vが、処理室16aと略同温まで加熱されて蒸発を開始し、処理室40内に蒸気雰囲気が形成される。金属蒸発材料Vが蒸発を開始した場合、二次焼結体S2と金属蒸発材料Vとが離間して配置しているため、溶けたDyなどの金属蒸発材料Vが直接焼結磁石Sに付着することはない。そして、蒸気雰囲気中のDy原子などが、直接または衝突を繰返して複数の方向から、金属蒸発材料Vと略同温まで加熱された焼結磁石S表面に向かって供給されて付着し、この付着した金属原子が二次焼結体たるS2の結晶粒界相に拡散されて永久磁石Mが得られる。 Next, after the lid 15 is mounted on the opened upper surface of the box 14, the processing box 16 is stored in a predetermined position in the vacuum chamber 12 (see FIG. 2). Then, the vacuum chamber 12 is evacuated and depressurized to a predetermined pressure (for example, 1 × 10 −5 Pa) through the evacuating means 11 (the processing chamber 16a is evacuated to a pressure approximately half digit higher), When the predetermined pressure is reached, the heating means 13 is operated to heat the processing box 16. When the temperature in the processing chamber 16a reaches a predetermined temperature under reduced pressure, the metal evaporation material V installed on the bottom surface of the processing box 16 is heated to substantially the same temperature as the processing chamber 16a and starts to evaporate. A vapor atmosphere is formed. When the metal evaporating material V starts to evaporate, the secondary sintered body S2 and the metal evaporating material V are spaced apart from each other, so that the molten metal evaporating material V such as Dy adheres directly to the sintered magnet S. Never do. Then, Dy atoms or the like in the vapor atmosphere are supplied and adhered from a plurality of directions directly or repeatedly to the surface of the sintered magnet S heated to substantially the same temperature as the metal evaporation material V. The obtained metal atoms are diffused into the grain boundary phase of S2, which is a secondary sintered body, and the permanent magnet M is obtained.
真空蒸気処理に際しては、より磁気特性を高めつつ生産効率を高めるために、二次焼結体S2表面に金属蒸発材料Vからなる薄膜が形成される前に、蒸発した金属原子を二次焼結体S2の結晶粒界相に拡散させて均一に行き渡らせることがよい。このため、二次焼結体S2の1〜10重量%の割合で、単位体積当たりの表面積(比表面積)が小さいバルク状(略球状)の金属蒸発材料Vを処理箱16の底面に配置し、一定温度下における蒸発量を減少させることが好ましい。それに加えて、金属蒸発材料Vが例えばDyからなる場合には、加熱手段13の作動を制御して処理室16a内の温度を800℃〜1050℃、好ましくは900℃〜1000℃の範囲に設定することが好ましい(例えば、処理室内温度が900℃〜1000℃のとき、Dyの飽和蒸気圧は約1×10−2〜1×10−1Paとなる)。 In the vacuum vapor treatment, in order to increase the production efficiency while enhancing the magnetic characteristics, the evaporated metal atoms are subjected to secondary sintering before the thin film made of the metal evaporation material V is formed on the surface of the secondary sintered body S2. It is preferable to diffuse the crystal grain boundary phase of the body S2 and spread it uniformly. Therefore, a bulk (substantially spherical) metal evaporation material V having a small surface area (specific surface area) per unit volume at a ratio of 1 to 10% by weight of the secondary sintered body S2 is disposed on the bottom surface of the processing box 16. It is preferable to reduce the amount of evaporation at a constant temperature. In addition, when the metal evaporation material V is made of, for example, Dy, the operation of the heating means 13 is controlled to set the temperature in the processing chamber 16a to a range of 800 ° C to 1050 ° C, preferably 900 ° C to 1000 ° C. (For example, when the processing chamber temperature is 900 ° C. to 1000 ° C., the saturated vapor pressure of Dy is about 1 × 10 −2 to 1 × 10 −1 Pa).
処理室16a内の温度(ひいては、二次焼結体S2の加熱温度)が800℃より低いと、二次焼結体S2表面に付着したDy原子の結晶粒界層への拡散速度が遅くなり、二次焼結体S2表面に薄膜が形成される前にその結晶粒界相に拡散させて均一に行き渡らせることができない。他方、1050℃を超えた温度では、Dyの蒸気圧が高くなって蒸気雰囲気中のDy原子が二次焼結体S2表面に過剰に供給される。また、Dyが結晶粒内に拡散する虞があり、Dyが結晶粒内に拡散すると、結晶粒内の磁化を大きく下げるため、最大エネルギー積及び残留磁束密度が低下することになる。 If the temperature in the processing chamber 16a (and hence the heating temperature of the secondary sintered body S2) is lower than 800 ° C., the diffusion rate of Dy atoms adhering to the surface of the secondary sintered body S2 to the grain boundary layer becomes slow. Before the thin film is formed on the surface of the secondary sintered body S2, it cannot be diffused into the crystal grain boundary phase and distributed uniformly. On the other hand, at a temperature exceeding 1050 ° C., the vapor pressure of Dy increases, and Dy atoms in the vapor atmosphere are excessively supplied to the surface of the secondary sintered body S2. Further, there is a possibility that Dy diffuses into the crystal grains, and when Dy diffuses into the crystal grains, the magnetization in the crystal grains is greatly reduced, so that the maximum energy product and the residual magnetic flux density are lowered.
また、二次焼結体S2表面にDyの薄膜が形成される前にDyをその結晶粒界相に拡散させるために、二次焼結体S2の表面積の総和に対するバルク状のDyの表面積の総和の比率が、1×10−4〜2×103の範囲になるように設定する。1×10−4〜2×103の範囲以外の比率では、焼結磁石S表面にDyなどの金属蒸発材料Vからなる薄膜が形成される場合があり、また、高い磁気特性の永久磁石が得られない。この場合、上記比率が1×10−3から1×103の範囲が好ましく、また、上記比率が1×10−2から1×102の範囲がより好ましい。 Further, in order to diffuse Dy into the grain boundary phase before the Dy thin film is formed on the surface of the secondary sintered body S2, the surface area of the bulk Dy relative to the total surface area of the secondary sintered body S2 The total ratio is set to be in the range of 1 × 10 −4 to 2 × 10 3 . When the ratio is outside the range of 1 × 10 −4 to 2 × 10 3 , a thin film made of a metal evaporation material V such as Dy may be formed on the surface of the sintered magnet S, and a permanent magnet having high magnetic properties may be formed. I can't get it. In this case, the ratio is preferably in the range of 1 × 10 −3 to 1 × 10 3 , and the ratio is more preferably in the range of 1 × 10 −2 to 1 × 10 2 .
これにより、蒸気圧を低くすると共にDyの蒸発量を減少させることで、二次焼結体S2へのDy原子の供給量が抑制されることと、二次焼結体S2を所定温度範囲で加熱することによって拡散速度が早くなることとが相俟って、二次焼結体S2表面に付着したDy原子を、二次焼結体S2表面で堆積してDy層(薄膜)を形成する前に二次焼結体S2の結晶粒界相に効率よく拡散させて均一に行き渡らせることができる(図3参照)。その結果、永久磁石Mの表面が劣化することが防止され、また、二次焼結体S2表面に近い領域の粒界内にDyが過剰に拡散することが抑制され、結晶粒界相にDyリッチ相(Dyを5〜80%の範囲で含む相)を有する磁化および保磁力が効果的に向上した高磁気特性を有し、その上、仕上げ加工が不要な生産性に優れた永久磁石Mが得られる。 Thereby, by lowering the vapor pressure and reducing the evaporation amount of Dy, the supply amount of Dy atoms to the secondary sintered body S2 is suppressed, and the secondary sintered body S2 is kept in a predetermined temperature range. Combined with increasing the diffusion rate by heating, the Dy atoms attached to the surface of the secondary sintered body S2 are deposited on the surface of the secondary sintered body S2 to form a Dy layer (thin film). Before, it can be efficiently diffused and uniformly distributed in the grain boundary phase of the secondary sintered body S2 (see FIG. 3). As a result, the surface of the permanent magnet M is prevented from deteriorating, and Dy is prevented from excessively diffusing into the grain boundary in the region close to the surface of the secondary sintered body S2, so that the grain boundary phase has Dy. Permanent magnet M having a rich phase (phase containing Dy in the range of 5 to 80%), high magnetic characteristics with effectively improved coercive force, and excellent productivity without the need for finishing Is obtained.
ところで、上記二次焼結体S2を作製した後、ワイヤーカット等により所望形状に加工する場合がある。その際、上記加工によって、二次焼結体S2表面の主相である結晶粒にクラックが生じて磁気特性が著しく劣化する場合がある。ところが、上記真空蒸気処理工程を実施すると、表面付近の結晶粒のクラックの内側にDyリッチ相が形成されることで、磁化および保磁力が回復できる。 By the way, after producing said secondary sintered compact S2, it may be processed into a desired shape by wire cutting or the like. At that time, the above processing may cause cracks in the crystal grains which are the main phase on the surface of the secondary sintered body S2, and the magnetic properties may be significantly deteriorated. However, when the vacuum vapor treatment step is performed, the magnetization and coercive force can be recovered by forming a Dy-rich phase inside the cracks in the crystal grains near the surface.
また、従来のネオジム磁石では防錆対策が必要になることからCoを添加していたが、Ndと比較して極めて高い耐食性、耐候性を有するDyのリッチ相が結晶粒界相に存することで、Coを用いることなく、極めて強い耐食性、耐候性を有する永久磁石となる。尚、焼結磁石の表面に付着したDyを拡散させる場合、焼結磁石Sの結晶粒界にCoを含む金属層化合物がないため、焼結磁石S表面に付着したDyなどの金属原子はさらに効率よく拡散される。 In addition, in conventional neodymium magnets, Co has been added because rust prevention measures are required, but the rich phase of Dy having extremely high corrosion resistance and weather resistance compared to Nd exists in the grain boundary phase. , Without using Co, it becomes a permanent magnet having extremely strong corrosion resistance and weather resistance. When Dy adhering to the surface of the sintered magnet is diffused, there is no metal layer compound containing Co at the crystal grain boundary of the sintered magnet S, so that metal atoms such as Dy adhering to the surface of the sintered magnet S further It is diffused efficiently.
最後に、上記処理を所定時間(例えば、4〜48時間)だけ実施した後、加熱手段13の作動を停止すると共に、真空チャンバ12に接続したガス導入手段(図示せず)を介して真空チャンバ12内に10KPaのArガスを導入し、金属蒸発材料Vの蒸発を停止させ、処理室16aの温度を例えば500℃まで一旦下げる。引き続き、加熱手段13を再度作動させ、処理室16a内の温度を450℃〜650℃の範囲に設定し、一層保磁力を向上させるために熱処理を施す。最後に、略室温まで冷却し、真空チャンバ12をベントした後、処理箱16を取り出す。 Finally, after performing the above process for a predetermined time (for example, 4 to 48 hours), the operation of the heating means 13 is stopped, and a vacuum chamber is connected via a gas introduction means (not shown) connected to the vacuum chamber 12. The Ar gas of 10 KPa is introduced into 12 to stop the evaporation of the metal evaporation material V, and the temperature of the processing chamber 16a is once lowered to 500 ° C., for example. Subsequently, the heating means 13 is operated again, the temperature in the processing chamber 16a is set in the range of 450 ° C. to 650 ° C., and heat treatment is performed to further improve the coercive force. Finally, after cooling to approximately room temperature and venting the vacuum chamber 12, the processing box 16 is removed.
尚、本実施の形態では、金属蒸発材料VとしてDyを用いるものを例として説明したが、最適な拡散速度を早くできる二次焼結体S2の加熱温度範囲(900℃〜1000℃の範囲)で、蒸気圧が低いTbを用いてもよい。金属蒸発材料VがTbである場合、処理室16aを900℃〜1150℃の範囲で加熱すればよい。900℃より低い温度では、二次焼結体S2表面にTb原子を供給できる蒸気圧に達しない。他方、1150℃を超えた温度では、Tbが結晶粒内に過剰に拡散してしまい、最大エネルギー積及び残留磁束密度を低下させる。 In the present embodiment, the example using Dy as the metal evaporation material V has been described as an example. However, the heating temperature range of the secondary sintered body S2 capable of increasing the optimum diffusion rate (range of 900 ° C. to 1000 ° C.). Therefore, Tb having a low vapor pressure may be used. When the metal evaporation material V is Tb, the processing chamber 16a may be heated in the range of 900 ° C to 1150 ° C. At a temperature lower than 900 ° C., the vapor pressure that can supply Tb atoms to the surface of the secondary sintered body S2 is not reached. On the other hand, at a temperature exceeding 1150 ° C., Tb is excessively diffused in the crystal grains, thereby reducing the maximum energy product and the residual magnetic flux density.
また、本実施の形態では、焼結した後の一次焼結体S1に対し、真空蒸発処理を実施する場合について説明したが、これに限定されるものではなく、例えば、焼結後に、焼結磁石Sをワイヤーカット等により所望形状に加工した後、上記真空蒸発処理を実施してもよい。 In the present embodiment, the case where the vacuum evaporation treatment is performed on the primary sintered body S1 after sintering has been described. However, the present invention is not limited to this. For example, after sintering, After the magnet S is processed into a desired shape by wire cutting or the like, the vacuum evaporation process may be performed.
さらに、本実施の形態では、焼結磁石Sの製造を例として説明したが、焼結体から特定物質を蒸発させ、特定の金属元素をその結晶粒界相に拡散させて焼結体の機能を向上できるものであれば、本発明の焼結体の製造方法を適用できる。例えば、銅系AlNセラミック等の熱伝導性の向上、またはSiC等の超硬材料、硬質材料やセラミックス材料の強度や靭性の向上に利用できる。 Furthermore, in the present embodiment, the manufacture of the sintered magnet S has been described as an example. However, the function of the sintered body is determined by evaporating a specific substance from the sintered body and diffusing a specific metal element into the crystal grain boundary phase. If it can improve, the manufacturing method of the sintered compact of this invention can be applied. For example, it can be used to improve the thermal conductivity of copper-based AlN ceramics or the like, or to improve the strength and toughness of cemented carbide materials such as SiC, hard materials and ceramic materials.
SiCの超硬材料を例に説明すれば、炭化珪素(SiC)粉末に金属シリコン粉末を焼結助剤(液相成分)として混合した状態で粉砕して原料粉末とし、公知の成形法により原料粉末を成形した後、焼結する。次いで、上記真空蒸発装置を用いた真空蒸発処理により、シリコンの融点以上で焼結助剤を優先的に蒸発させてその体積比を減少させる。次いで、上記真空蒸気処理装置1を用いて真空蒸発処理により液相成分たるシリコンを供給する。 For example, a SiC superhard material will be pulverized in a state in which a silicon carbide (SiC) powder is mixed with a metal silicon powder as a sintering aid (liquid phase component) to obtain a raw material powder. After the powder is formed, it is sintered. Next, by the vacuum evaporation process using the vacuum evaporator, the sintering aid is preferentially evaporated above the melting point of silicon to reduce the volume ratio. Next, silicon that is a liquid phase component is supplied by vacuum evaporation using the vacuum vapor processing apparatus 1.
これによれば、真空蒸発処理により焼結助剤を蒸発させることで焼結体を緻密化でき、真空蒸気処理により液相成分をさらに供給することで、粒界相に高濃度に偏析させる等、特殊な粒界相成分を作り出すことができる。その結果、機械的強度、特に、高い靭性値を有する超硬材料が作製できる。 According to this, the sintered body can be densified by evaporating the sintering aid by vacuum evaporation treatment, and by further supplying the liquid phase component by vacuum vapor treatment, the grain boundary phase is segregated to a high concentration, etc. , Special grain boundary phase components can be created. As a result, a cemented carbide material having mechanical strength, in particular, a high toughness value can be produced.
また、銅系AlNにおいては、焼結助剤としてY2O3やCaOを用いる場合に、本発明の焼結体の製造方法が適用でき、低温焼結技術によらず、高熱伝導率を有するAlNセラミックスが得られる。 In addition, in the case of copper-based AlN, when Y 2 O 3 or CaO is used as a sintering aid, the method for producing a sintered body of the present invention can be applied, and it has high thermal conductivity regardless of low-temperature sintering technology. AlN ceramics are obtained.
実施例1では、図1に示す真空蒸発装置1及び図2に示す真空蒸気処理装置10を用い、永久磁石を得た。まず、工業用純鉄、金属ネオジウム、低炭素フェロボロン、電解コバルト、純銅を原料として、配合組成で29Nd−1B−0.1Cu−1Co−Bal Fe(重量%)となるようにして、真空誘導溶解を行い、ストリップキャスティング法で厚さ約0.3mmの薄片状インゴットを得た。次に、水素粉砕工程により一旦粗粉砕し、引き続き、例えばジェットミル微粉砕工程により微粉砕して、合金原料粉末を得た。 In Example 1, a permanent magnet was obtained using the vacuum evaporation apparatus 1 shown in FIG. 1 and the vacuum vapor processing apparatus 10 shown in FIG. First, industrial pure iron, metallic neodymium, low carbon ferroboron, electrolytic cobalt, and pure copper are used as raw materials so that the composition is 29Nd-1B-0.1Cu-1Co-BalFe (wt%), and vacuum induction melting is performed. And a flaky ingot having a thickness of about 0.3 mm was obtained by a strip casting method. Next, it was roughly pulverized by a hydrogen pulverization step, and then finely pulverized by, for example, a jet mill pulverization step to obtain an alloy raw material powder.
次に、公知の構造を有する横磁場圧縮成形装置を用いて、成形体を得て、次いで真空焼結炉にて1050℃の温度下で2時間焼結させて一次焼結体S1を得た。そして、ワイヤカットにより一次焼結体をφ10×5mmの形状に加工した後、表面粗さが10μm以下となるように仕上げ加工した後、希硝酸によって表面をエッチングした。 Next, a molded body was obtained using a transverse magnetic field compression molding apparatus having a known structure, and then sintered in a vacuum sintering furnace at a temperature of 1050 ° C. for 2 hours to obtain a primary sintered body S1. . Then, the primary sintered body was processed into a shape of φ10 × 5 mm by wire cutting, and then finished to have a surface roughness of 10 μm or less, and then the surface was etched with dilute nitric acid.
次に、図1に示す真空蒸発装置1を用い、処理室4a内の載置部4bに100個の上記一次焼結体S1を配置した後、真空チャンバ3の圧力が10−5Paに到達するまで真空排気した。真空チャンバ3内の圧力が所定位置に達した後、加熱手段5を作動させて処理室4aを加熱した。この場合、加熱温度を975℃に設定すると共に、開閉バルブ8の開度を調節して真空チャンバ3内の圧力を5×10−5Paに設定した。次いで、保磁力を向上するための熱処理を行った。この場合、熱処理温度を530℃、処理時間を60分に設定した。そして、二次焼結体S2を得た。 Next, using the vacuum evaporation apparatus 1 shown in FIG. 1, after arranging 100 said primary sintered compacts S1 in the mounting part 4b in the process chamber 4a, the pressure of the vacuum chamber 3 reaches 10 <-5 > Pa. It was evacuated until. After the pressure in the vacuum chamber 3 reached a predetermined position, the heating means 5 was operated to heat the processing chamber 4a. In this case, the heating temperature was set to 975 ° C., and the opening of the opening / closing valve 8 was adjusted to set the pressure in the vacuum chamber 3 to 5 × 10 −5 Pa. Next, heat treatment was performed to improve the coercive force. In this case, the heat treatment temperature was set to 530 ° C., and the treatment time was set to 60 minutes. And secondary sintered compact S2 was obtained.
次に、上記真空蒸気処理装置10を用い、上記真空蒸気処理によって永久磁石Mを得た。この場合、処理箱4としてMo製のものを用い、載置部17上に、上記により作製した100個の二次焼結体S2を等間隔で配置すると共に、処理箱4の底面に、金属蒸発材料Vとして、純度99.9%で塊状のDy(約φ1mm)を30gの総量で配置した。 Next, the permanent magnet M was obtained by the said vacuum vapor processing using the said vacuum vapor processing apparatus 10. FIG. In this case, the processing box 4 is made of Mo, and the 100 secondary sintered bodies S2 produced as described above are arranged at equal intervals on the mounting portion 17, and a metal is formed on the bottom surface of the processing box 4. As the evaporation material V, massive Dy (about φ1 mm) having a purity of 99.9% was arranged in a total amount of 30 g.
次いで、二次焼結体S2と金属蒸発材料Vとをセットした処理箱16を真空チャンバ12の所定位置に収納した後、真空排気手段11を作動させて真空チャンバを1×10−4Pa(処理室16a内の圧力は約5×10−3Pa)まで減圧し、加熱手段13を作動させた。この場合、処理室16aの加熱温度を900℃に設定した。そして、処理室16aの温度が900℃に達した後、この状態で6時間、上記真空蒸気処理を行い、永久磁石Mを得た(試料#1)。 Next, after the processing box 16 in which the secondary sintered body S2 and the metal evaporation material V are set is stored in a predetermined position of the vacuum chamber 12, the vacuum evacuation unit 11 is operated to set the vacuum chamber to 1 × 10 −4 Pa ( The pressure in the processing chamber 16a was reduced to about 5 × 10 −3 Pa), and the heating means 13 was operated. In this case, the heating temperature of the processing chamber 16a was set to 900 ° C. And after the temperature of the process chamber 16a reached 900 degreeC, the said vacuum vapor process was performed for 6 hours in this state, and the permanent magnet M was obtained (sample # 1).
他方で、真空蒸気処理に際し、金属蒸発材料Vとして、純度99.9%で塊状のTb(約φ1mm)を用い、永久磁石Mも作製した(試料#2)。この場合、処理室16aの加熱温度を975℃、真空蒸気処理時間を8時間に設定した。 On the other hand, at the time of the vacuum vapor treatment, a permanent magnet M was also produced using a bulky Tb (about φ1 mm) with a purity of 99.9% as the metal evaporation material V (sample # 2). In this case, the heating temperature of the processing chamber 16a was set to 975 ° C., and the vacuum steam processing time was set to 8 hours.
図4は、実施例1で作製した永久磁石Mの磁気特性(BHカーブトレーサーにより測定)の平均値を示す表である。これによれば、真空蒸発処理を施す前の磁石の磁気特性を示す最大エネルギー積は51.8MG0eで、残留磁束密度は14.52kGであり、真空蒸発処理のみを施すと(試料#3:二次焼結体)、最大エネルギー積は54.8MG0eで、残留磁束密度は14.85kGであり、さらに、この二次焼結体S2に真空蒸気処理を施すと、最大エネルギー積及び残留磁束密度を殆ど損なうことなく、保磁力が倍以上になり、試料#1では、20.3kOe、試料#2では25.9kOeであり、超高性能の永久磁石が得られることが判る。 FIG. 4 is a table showing the average value of the magnetic properties (measured by a BH curve tracer) of the permanent magnet M produced in Example 1. According to this, the maximum energy product indicating the magnetic characteristics of the magnet before the vacuum evaporation process is 51.8MG0e, the residual magnetic flux density is 14.52 kG, and when only the vacuum evaporation process is performed (sample # 3: 2 Secondary sintered body), the maximum energy product is 54.8MG0e, the residual magnetic flux density is 14.85 kG, and further, when this secondary sintered body S2 is subjected to vacuum vapor treatment, the maximum energy product and the residual magnetic flux density are obtained. With almost no loss, the coercive force is doubled or more, 20.3 kOe for sample # 1 and 25.9 kOe for sample # 2, indicating that an ultra-high performance permanent magnet can be obtained.
1 真空蒸発装置
3 真空チャンバ
4 焼結体ケース
4a 処理室
5 加熱手段
6 トラップ板
S1 一次焼結体(焼結磁石)
R (希土類)元素
10 真空蒸気処理装置
12 真空チャンバ
13 加熱手段
16 処理箱
16a 処理室
S2 二次焼結体(焼結磁石)
V 金属蒸発材料(Dy、Tb)
DESCRIPTION OF SYMBOLS 1 Vacuum evaporation apparatus 3 Vacuum chamber 4 Sintered body case 4a Processing chamber 5 Heating means 6 Trap board S1 Primary sintered body (sintered magnet)
R (rare earth) element 10 Vacuum vapor processing apparatus 12 Vacuum chamber 13 Heating means 16 Processing box 16a Processing chamber S2 Secondary sintered body (sintered magnet)
V Metal evaporation material (Dy, Tb)
Claims (13)
当該二次焼結体を焼結温度より低い温度にて真空雰囲気中で加熱すると共に、真空雰囲気中で所定の金属蒸発材料を加熱して蒸発させ、この蒸発した金属原子を二次焼結体表面に付着させ、この付着した金属原子を二次焼結体の結晶粒界相に拡散させる第二工程とを含むことを特徴とする焼結体の製造方法。 After obtaining a primary sintered body by liquid phase sintering, this primary sintered body is heated in a vacuum atmosphere at a temperature lower than the sintering temperature, so that the element having a high vapor pressure in the liquid phase component is preferentially used. And a first step of obtaining a secondary sintered body by reducing or eliminating the volume ratio of the liquid phase,
The secondary sintered body is heated in a vacuum atmosphere at a temperature lower than the sintering temperature, a predetermined metal evaporation material is heated and evaporated in the vacuum atmosphere, and the evaporated metal atoms are secondary sintered body. A method for producing a sintered body comprising a second step of attaching to the surface and diffusing the attached metal atoms into the grain boundary phase of the secondary sintered body.
A neodymium iron boron-based sintered magnet manufactured by the method according to any one of claims 1 to 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007255162A JP5210585B2 (en) | 2007-09-28 | 2007-09-28 | Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007255162A JP5210585B2 (en) | 2007-09-28 | 2007-09-28 | Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009084627A true JP2009084627A (en) | 2009-04-23 |
JP5210585B2 JP5210585B2 (en) | 2013-06-12 |
Family
ID=40658434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007255162A Expired - Fee Related JP5210585B2 (en) | 2007-09-28 | 2007-09-28 | Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5210585B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011229363A (en) * | 2010-11-24 | 2011-11-10 | Kanehito Kanamori | Powerful motor |
CN104321838A (en) * | 2012-02-23 | 2015-01-28 | 吉坤日矿日石金属株式会社 | Neodymium-based rare-earth permanent magnet and process for producing same |
CN110299235A (en) * | 2018-03-22 | 2019-10-01 | 日立金属株式会社 | The manufacturing method of R-T-B based sintered magnet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897022A (en) * | 1994-09-29 | 1996-04-12 | Tokin Corp | Manufacture of rare-earth magnet |
JP2003224007A (en) * | 2002-01-30 | 2003-08-08 | Citizen Watch Co Ltd | Anisotropic rare earth magnetic powder and method for manufacturing the same |
WO2007102391A1 (en) * | 2006-03-03 | 2007-09-13 | Hitachi Metals, Ltd. | R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME |
-
2007
- 2007-09-28 JP JP2007255162A patent/JP5210585B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0897022A (en) * | 1994-09-29 | 1996-04-12 | Tokin Corp | Manufacture of rare-earth magnet |
JP2003224007A (en) * | 2002-01-30 | 2003-08-08 | Citizen Watch Co Ltd | Anisotropic rare earth magnetic powder and method for manufacturing the same |
WO2007102391A1 (en) * | 2006-03-03 | 2007-09-13 | Hitachi Metals, Ltd. | R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011229363A (en) * | 2010-11-24 | 2011-11-10 | Kanehito Kanamori | Powerful motor |
CN104321838A (en) * | 2012-02-23 | 2015-01-28 | 吉坤日矿日石金属株式会社 | Neodymium-based rare-earth permanent magnet and process for producing same |
JPWO2013125075A1 (en) * | 2012-02-23 | 2015-07-30 | Jx日鉱日石金属株式会社 | Neodymium rare earth permanent magnet and manufacturing method thereof |
CN104321838B (en) * | 2012-02-23 | 2018-04-06 | 吉坤日矿日石金属株式会社 | Neodymium base rare earth element permanent magnet and its manufacture method |
US9972428B2 (en) | 2012-02-23 | 2018-05-15 | Jx Nippon Mining & Metals Corporation | Neodymium-based rare earth permanent magnet and process for producing same |
CN110299235A (en) * | 2018-03-22 | 2019-10-01 | 日立金属株式会社 | The manufacturing method of R-T-B based sintered magnet |
CN110299235B (en) * | 2018-03-22 | 2024-01-30 | 株式会社博迈立铖 | Method for producing R-T-B sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
JP5210585B2 (en) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI433172B (en) | Method for manufacturing permanent magnets and permanent magnets | |
JP5159629B2 (en) | Vacuum steam processing equipment | |
JP5205277B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP5049722B2 (en) | Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method | |
US20130068992A1 (en) | Method for producing rare earth permanent magnets, and rare earth permanent magnets | |
JP5348124B2 (en) | Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method | |
WO2006112403A1 (en) | Rare earth sintered magnet and process for producing the same | |
TW200935462A (en) | Process for producing permanent magnet and permanent magnet | |
JP5275043B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
US20100037826A1 (en) | Vacuum vapor processing apparatus | |
US8128760B2 (en) | Permanent magnet and method of manufacturing same | |
JP5064930B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP2009200179A (en) | Manufacturing method of sintered compact | |
JP5210585B2 (en) | Sintered body manufacturing method and neodymium iron boron-based sintered magnet manufactured by this sintered body manufacturing method | |
JP2008177332A (en) | Method of manufacturing permanent magnet and manufacturing apparatus for permanent magnet | |
JP5025372B2 (en) | Sintered body manufacturing method and neodymium iron boron based sintered magnet manufactured by this sintered body manufacturing method | |
TW202127476A (en) | R-t-b series permanent magnetic material, raw material composition, preparation method and application | |
JP2009200180A (en) | Manufacturing method of permanent magnet | |
JP5433720B2 (en) | Sintered body manufacturing equipment | |
JP6672753B2 (en) | RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet | |
JP2011060965A (en) | Method and apparatus for manufacturing r2fe14b rare earth sintered magnet | |
JP5179133B2 (en) | Sintered body manufacturing equipment | |
JP4860491B2 (en) | Permanent magnet and method for manufacturing permanent magnet | |
JP2010245392A (en) | Sintered magnet for neodymium iron boron base |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5210585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |