[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009079514A - Fuel pressure control device for cylinder injection type internal combustion engine - Google Patents

Fuel pressure control device for cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2009079514A
JP2009079514A JP2007248588A JP2007248588A JP2009079514A JP 2009079514 A JP2009079514 A JP 2009079514A JP 2007248588 A JP2007248588 A JP 2007248588A JP 2007248588 A JP2007248588 A JP 2007248588A JP 2009079514 A JP2009079514 A JP 2009079514A
Authority
JP
Japan
Prior art keywords
fuel
fuel pressure
pressure
time
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248588A
Other languages
Japanese (ja)
Inventor
Masahiro Yokoi
真浩 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007248588A priority Critical patent/JP2009079514A/en
Priority to CNA2008101658249A priority patent/CN101397960A/en
Priority to DE200810042371 priority patent/DE102008042371A1/en
Priority to CN2010105566506A priority patent/CN101982652A/en
Publication of JP2009079514A publication Critical patent/JP2009079514A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the ease of restarting after an idling stop while reducing a fuel leak (oil tightness leak) from a fuel injection valve during the idling stop as much as possible, in a cylinder injection engine with an idling stop function. <P>SOLUTION: A relief valve 41 for reducing fuel pressure in a high pressure fuel system is provided at a predetermined section of the high pressure fuel system supplying high pressure fuel to a fuel injection valve 34 from a high pressure pump 14 (a delivery pipe 33 in an embodiment). The open and close action of the relief valve 41 is controlled to reduce fuel pressure in the high pressure fuel system detected by a fuel pressure sensor 35 to predetermined fuel pressure at a time of the idling stop, and a manual stop by turning off an ignition switch 38. The easiness of restarting after the idling stop is improved while reducing an oil tightness leak during the idling stop as much as possible by setting set fuel pressure during the idling stop higher than set fuel pressure at a time of the manual stop. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、筒内噴射式内燃機関のアイドルストップ(自動停止及び自動再始動)を制御する機能と、内燃機関(エンジン)の停止時に高圧燃料系内の燃圧を減圧する機能とを備えた筒内噴射式内燃機関の燃圧制御装置に関する発明である。   The present invention provides a cylinder having a function of controlling idle stop (automatic stop and automatic restart) of a cylinder injection internal combustion engine and a function of reducing the fuel pressure in the high-pressure fuel system when the internal combustion engine (engine) is stopped. The invention relates to a fuel pressure control device for an internal injection internal combustion engine.

気筒内に燃料を直接噴射する筒内噴射式エンジンは、吸気ポートに燃料を噴射する吸気ポート噴射式エンジンと比較して、噴射から燃焼までの時間が短く、噴射燃料を霧化させる時間を十分に稼ぐことができないため、噴射圧力を高圧にして噴射燃料を微粒化する必要がある。そのため、特許文献1(特開2003−322048号公報)に記載されているように、筒内噴射式エンジンでは、燃料タンクから低圧ポンプで汲み上げた燃料を、エンジンのカム軸で駆動される高圧ポンプに供給し、この高圧ポンプから吐出される高圧の燃料を高圧燃料配管を通して燃料噴射弁へ圧送するようにしている。   An in-cylinder injection engine that directly injects fuel into a cylinder has a shorter time from injection to combustion and sufficient time to atomize the injected fuel compared to an intake port injection engine that injects fuel into an intake port. Therefore, it is necessary to atomize the injected fuel by increasing the injection pressure. Therefore, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2003-322048), in a cylinder injection engine, the fuel pumped up from the fuel tank by the low pressure pump is driven by the engine camshaft. The high-pressure fuel discharged from the high-pressure pump is pumped to the fuel injection valve through the high-pressure fuel pipe.

一般に、高圧ポンプは、吐出した燃料の逆流を防止する逆止弁を設けることで、高圧燃料配管内の燃圧(燃料圧力)を高圧に維持するようにしているが、エンジン停止後に高圧燃料配管内の燃圧が高圧に維持されると、エンジン停止中に燃料噴射弁からの燃料漏れ量(油密漏れ量)が多くなる傾向があり、その漏れ燃料が筒内に溜まって次の始動時に未燃焼のまま排出されてしまい、始動時の排気エミッションが悪化するという問題がある。   In general, a high pressure pump is provided with a check valve that prevents a reverse flow of discharged fuel so that the fuel pressure (fuel pressure) in the high pressure fuel pipe is maintained at a high pressure. If the fuel pressure is maintained at a high pressure, the amount of fuel leakage from the fuel injection valve (oil-tight leakage amount) tends to increase while the engine is stopped, and the leaked fuel accumulates in the cylinder and remains unburned at the next start-up. There is a problem that exhaust emissions at the time of start-up deteriorate.

この対策として、特許文献2(特開平10−89176号公報)、特許文献3(特開2005−264902号公報)等に記載されているように、高圧ポンプから燃料噴射弁に高圧燃料を供給する高圧燃料系の所定部位(デリバリパイプ、高圧燃料配管、高圧ポンプ等)に電磁駆動式のリリーフバルブを設けて、エンジン停止時にリリーフバルブを開弁して高圧燃料系内の燃圧を低下させるようにしたものがある。
特開2003−322048号公報 特開平10−89176号公報 特開2005−264902号公報
As a countermeasure, as described in Patent Document 2 (Japanese Patent Laid-Open No. 10-89176), Patent Document 3 (Japanese Patent Laid-Open No. 2005-264902), etc., high-pressure fuel is supplied from the high-pressure pump to the fuel injection valve. An electromagnetically driven relief valve is provided at a predetermined part of the high-pressure fuel system (delivery pipe, high-pressure fuel pipe, high-pressure pump, etc.) so that the fuel pressure in the high-pressure fuel system is lowered by opening the relief valve when the engine is stopped. There is what I did.
JP 2003-322048 A Japanese Patent Laid-Open No. 10-89176 JP 2005-264902 A

近年、燃費節減のために、一時停車中にエンジンを自動停止(アイドルストップ)させ、その後、運転者が車両発進のための準備操作(ブレーキ解除、シフトレバー操作等)や発進操作(アクセル踏込み等)を行ったときにエンジンを自動再始動させるアイドルストップシステムを搭載した車両が実用化されている。このようなアイドルストップシステムと筒内噴射式エンジンを搭載した車両に上記特許文献2,3の技術を適用すると、アイドルストップ時にも、高圧燃料系内の燃圧を、通常のエンジン停止時(イグニッションスイッチのオン操作によるエンジン停止時)の設定燃圧まで減圧して、アイドルストップ中の燃料噴射弁からの燃料漏れを防止することが考えられる。   In recent years, in order to save fuel consumption, the engine is automatically stopped (idle stop) while the vehicle is temporarily stopped, and then the driver prepares for starting the vehicle (brake release, shift lever operation, etc.) and starts operation (accelerator depression, etc.) Vehicles equipped with an idle stop system that automatically restarts the engine when the operation is performed are put into practical use. When the techniques of Patent Documents 2 and 3 are applied to a vehicle equipped with such an idle stop system and an in-cylinder injection engine, the fuel pressure in the high-pressure fuel system is reduced during normal engine stop (ignition switch) even during idle stop. It is conceivable to reduce the fuel pressure to the set fuel pressure (when the engine is stopped by turning on the engine) to prevent fuel leakage from the fuel injection valve during idle stop.

しかし、一般に、アイドルストップの時間は短く、すぐに再始動が行われることが多いため、アイドルストップ時に高圧燃料系内の燃圧を通常のエンジン停止時の設定燃圧まで減圧してしまうと、運転者にアイドルストップ後の再始動の遅れ(もたつき)を感じさせてしまう。これは、アイドルストップ後の再始動時に、良好な再始動性(燃焼性)を確保するには、高圧燃料系内の燃圧を迅速に再始動に適した燃圧まで上昇させる必要があり、アイドルストップ中の高圧燃料系内の燃圧が低くなり過ぎると、その分、再始動時の燃圧上昇に要する時間が長くなるためである。再始動時に燃圧が不足すると、筒内噴射式エンジンの始動に適した噴射時期である圧縮行程後半に気筒内に燃料を噴射することが困難になったり、或は、圧縮行程後半に噴射できたとしても、燃料噴霧形状や微粒化が悪くなり、良好な再始動性(燃焼性)が得られない。   However, in general, the idling stop time is short and restarting is often performed immediately. Therefore, if the fuel pressure in the high pressure fuel system is reduced to the set fuel pressure at the time of normal engine stop at the time of idling stop, the driver Makes you feel the delay of restart after idle stop. In order to ensure good restartability (combustibility) during restart after idle stop, it is necessary to quickly increase the fuel pressure in the high-pressure fuel system to a fuel pressure suitable for restart. This is because if the fuel pressure in the inside high-pressure fuel system becomes too low, the time required to increase the fuel pressure at the time of restart increases accordingly. If the fuel pressure is insufficient at the time of restart, it becomes difficult to inject fuel into the cylinder in the latter half of the compression stroke, which is an injection timing suitable for starting an in-cylinder injection engine, or it was possible to inject in the latter half of the compression stroke However, the fuel spray shape and atomization deteriorate, and good restartability (combustibility) cannot be obtained.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、アイドルストップ機能付きの筒内噴射式内燃機関において、アイドルストップ中の燃料噴射弁からの燃料漏れを極力低減しながら、アイドルストップ後の再始動性を向上させることができる筒内噴射式内燃機関の燃圧制御装置を提供することにある。   The present invention has been made in view of such circumstances, and therefore the object of the present invention is to reduce fuel leakage from the fuel injection valve during idle stop as much as possible in a cylinder injection internal combustion engine with an idle stop function. However, an object of the present invention is to provide a fuel pressure control device for a direct injection internal combustion engine that can improve the restartability after idle stop.

上記目的を達成するために、請求項1に係る発明は、筒内噴射式内燃機関の自動停止及び自動再始動を制御するアイドルストップ手段と、高圧ポンプから燃料噴射弁に高圧の燃料を供給する高圧燃料系内の燃料の圧力(以下「燃圧」という)を減圧するための減圧機構と、前記高圧燃料系内の燃圧を検出する燃圧検出手段と、この燃圧検出手段で検出した燃圧を設定燃圧まで減圧するように前記減圧機構を制御する制御手段とを備えた筒内噴射式内燃機関の燃圧制御装置において、前記制御手段は、前記アイドルストップ手段による自動停止時(以下「アイドルストップ時」という)の設定燃圧をイグニッションスイッチのオフ操作による手動停止時の設定燃圧よりも高い燃圧に設定することを特徴とするものである。   In order to achieve the above object, an invention according to claim 1 is directed to idle stop means for controlling automatic stop and automatic restart of a direct injection internal combustion engine, and to supply high pressure fuel from a high pressure pump to a fuel injection valve. A pressure reducing mechanism for reducing the pressure of the fuel in the high pressure fuel system (hereinafter referred to as “fuel pressure”), a fuel pressure detecting means for detecting the fuel pressure in the high pressure fuel system, and a fuel pressure detected by the fuel pressure detecting means is set as a fuel pressure. In the fuel pressure control apparatus for a direct injection internal combustion engine, the control means includes a control means for controlling the pressure reducing mechanism so as to reduce the pressure until the automatic stop by the idle stop means (hereinafter referred to as “idle stop time”). ) Is set to a fuel pressure higher than the fuel pressure set at the time of manual stop by turning off the ignition switch.

この構成では、アイドルストップ時の設定燃圧を手動停止時の設定燃圧よりも高い燃圧に設定するため、アイドルストップ時の設定燃圧を手動停止時の設定燃圧と同一に設定する場合と比較して、アイドルストップ時の燃圧と再始動時の燃焼性確保に必要な最低燃圧との圧力差が小さくなり、アイドルストップ後の再始動時に高圧燃料系内の燃圧を迅速に再始動時の燃焼性確保に必要な最低燃圧まで上昇させることができて、再始動性を向上させることができ、運転者に再始動の遅れ(もたつき)を感じさせないようにすることができる。しかも、一般に、アイドルストップの時間は短く、すぐに再始動が行われることが多いため、アイドルストップ時の設定燃圧を手動停止時の設定燃圧よりも高い燃圧に設定しても、アイドルストップ中の燃料噴射弁からの燃料漏れ(以下「油密漏れ」という)は少なく、油密漏れによる排気エミッションの悪化を防止できる。   In this configuration, the set fuel pressure at idle stop is set to a fuel pressure higher than the set fuel pressure at manual stop, so compared to the case where the set fuel pressure at idle stop is set the same as the set fuel pressure at manual stop, The pressure difference between the fuel pressure at idling stop and the minimum fuel pressure necessary to ensure combustibility at restart is reduced, and the fuel pressure in the high-pressure fuel system is quickly secured at restart after idling stop. The required minimum fuel pressure can be increased, the restartability can be improved, and the driver can be prevented from feeling the delay in restarting (shaking). Moreover, in general, the idling stop time is short, and restarting is often performed immediately. Therefore, even if the set fuel pressure during idle stop is set higher than the set fuel pressure during manual stop, There is little fuel leakage from the fuel injection valve (hereinafter referred to as “oil-tight leakage”), and deterioration of exhaust emission due to oil-tight leakage can be prevented.

この場合、請求項2のように、アイドルストップ時の設定燃圧を、アイドルストップ後の再始動時の第1噴射を圧縮行程の後半に行ったときに良好な燃焼が得られる最低燃圧に設定するようにすると良い。このようにすれば、アイドルストップ後の再始動時に第1噴射から良好な燃焼が得られるようになり、非常に素早い再始動を実現できる。   In this case, as set forth in claim 2, the set fuel pressure at the time of idling stop is set to the minimum fuel pressure at which good combustion can be obtained when the first injection at the time of restart after idling stop is performed in the second half of the compression stroke. It is good to do so. In this way, good combustion can be obtained from the first injection at the restart after the idle stop, and a very quick restart can be realized.

また、請求項3のように、アイドルストップ時の設定燃圧を、アイドルストップ時の冷却水温、油温、外気温のうちのいずれか1つ又は複数の温度に基づいて設定するようにしても良い。一般に、再始動時の混合気の温度や筒内の温度が高くなるほど、混合気が燃焼しやすくなるため、これらの温度が高くなるほど、良好な燃焼が得られる最低燃圧が低くなるという特性がある。従って、請求項4のように、アイドルストップ時の冷却水温、油温、外気温のうちのアイドルストップ時の設定燃圧の設定時に用いる温度が高くなるほどアイドルストップ時の設定燃圧を低く設定するようにすれば、混合気の温度や筒内の温度に応じてアイドルストップ時の設定燃圧を良好な燃焼が得られる燃圧範囲内でほぼ最低の燃圧に設定することが可能となり、アイドルストップ後の再始動性を確保しながら、アイドルストップ中の油密漏れをより一層低減することができる。   Further, as set forth in claim 3, the set fuel pressure at the time of idling stop may be set based on any one or a plurality of temperatures of the cooling water temperature, the oil temperature, and the outside air temperature at the time of idling stop. . In general, the higher the temperature of the air-fuel mixture at the time of restart or the temperature in the cylinder, the easier the air-fuel mixture burns. Therefore, the higher the temperature, the lower the minimum fuel pressure at which good combustion can be obtained. . Therefore, as set forth in claim 4, the set fuel pressure at the idle stop is set lower as the temperature used for setting the set fuel pressure at the idle stop among the cooling water temperature, the oil temperature, and the outside air temperature at the idle stop is increased. This makes it possible to set the set fuel pressure during idle stop to the lowest fuel pressure within the fuel pressure range where good combustion can be obtained according to the temperature of the mixture and the temperature in the cylinder. The oil-tight leak during idling stop can be further reduced while securing the property.

また、アイドルストップ状態の継続時間が長くなり過ぎると、アイドルストップ中の油密漏れの影響が排気エミッションに現れる可能性があるため、請求項5のように、アイドルストップ時の設定燃圧をアイドルストップ状態の継続時間に応じて変化させるようにしても良い。例えば、アイドルストップ状態の継続時間が長くなるほど、アイドルストップ時の設定燃圧を段階的又は徐々に低下させれば、アイドルストップ状態の継続時間が長くなるに従って、単位時間当たりの油密漏れ量を少なくするという制御が可能となり、アイドルストップ状態の継続時間が長くなっても、アイドルストップ中の油密漏れによる排気エミッションの悪化を少なくすることができる。   In addition, if the duration of the idle stop state becomes too long, the effect of oil-tight leakage during the idle stop may appear in the exhaust emission. Therefore, the set fuel pressure at the idle stop is set to the idle stop as in claim 5. You may make it change according to the duration of a state. For example, if the set fuel pressure during idle stop is decreased stepwise or gradually as the duration of the idle stop state increases, the amount of oil-tight leak per unit time decreases as the duration of the idle stop state increases. Therefore, even if the duration of the idling stop state becomes longer, the deterioration of exhaust emission due to oiltight leakage during idling stop can be reduced.

この場合、請求項6のように、アイドルストップ状態の継続時間が所定時間以上継続したときに、アイドルストップ時の設定燃圧をイグニッションスイッチのオフ操作による手動停止時の設定燃圧と同一の燃圧又はそれに近い燃圧まで低下させるようにしても良い。このようにすれば、アイドルストップ状態の継続時間が所定時間以上継続した後は、手動停止時と同様の油密漏れ防止効果を得ることができ、アイドルストップ時間が長くなることによる排気エミッションの悪化を抑制することができる。   In this case, as described in claim 6, when the duration of the idle stop state continues for a predetermined time or more, the set fuel pressure at the idle stop is the same as the set fuel pressure at the manual stop by turning off the ignition switch or You may make it reduce to the near fuel pressure. In this way, after the duration of the idle stop state continues for a predetermined time or more, the same oil-tight leak prevention effect as that at the time of manual stop can be obtained, and the exhaust emission deterioration due to the longer idle stop time. Can be suppressed.

また、請求項7のように、手動停止時の設定燃圧を、手動停止時の冷却水温、油温、外気温、燃料温度、デリバリパイプ温度のうちのいずれか1つ又は複数の温度に基づいて設定するようにしても良い。手動停止中の高圧燃料系内の燃圧が低くなり過ぎると、高圧燃料系内の燃料中にベーパ(気泡)が生じて始動性を低下させる要因となる。また、高圧燃料系内の燃料温度が高くなるほど、ベーパが発生しやすくなり、燃圧が低くなるほど、ベーパが発生しやすくなるという関係がある。従って、請求項8のように、手動停止時の冷却水温、油温、外気温、燃料温度、デリバリパイプ温度のうちの手動停止時の設定燃圧の設定時に用いる温度が高くなるほど、手動停止時の設定燃圧を高く設定するようにすれば、高圧燃料系内の燃料温度が高くなってベーパが発生しやすい温度環境になるほど、手動停止時の設定燃圧を高く設定して、ベーパの発生を抑制するという制御が可能となり、ベーパによる始動性悪化を効果的に防止できる。   Further, as in claim 7, the set fuel pressure at the time of manual stop is based on any one or a plurality of temperatures of the coolant temperature, the oil temperature, the outside air temperature, the fuel temperature, and the delivery pipe temperature at the time of manual stop. You may make it set. If the fuel pressure in the high-pressure fuel system during manual stop becomes too low, vapor (bubbles) is generated in the fuel in the high-pressure fuel system, which causes a decrease in startability. Further, there is a relationship that vapor is more likely to be generated as the fuel temperature in the high-pressure fuel system is higher, and vapor is more likely to be generated as the fuel pressure is lower. Therefore, as in claim 8, the higher the temperature used for setting the set fuel pressure during manual stop out of the coolant temperature, oil temperature, outside air temperature, fuel temperature, and delivery pipe temperature during manual stop, the higher the temperature during manual stop. If the set fuel pressure is set higher, the fuel temperature in the high-pressure fuel system becomes higher and the temperature environment is more likely to generate vapor. This makes it possible to effectively prevent deterioration of startability due to vapor.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1に基づいて筒内噴射式のエンジン(内燃機関)の高圧燃料供給システム全体の概略構成を説明する。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the entire high-pressure fuel supply system of a cylinder injection engine (internal combustion engine) will be described with reference to FIG.

燃料を貯溜する燃料タンク11内には、燃料を汲み上げる低圧ポンプ12が設置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、燃料配管13を通して高圧ポンプ14に供給される。燃料配管13には、プレッシャレギュレータ15が接続され、このプレッシャレギュレータ15によって低圧ポンプ12の吐出圧(高圧ポンプ14への燃料供給圧力)が所定圧力に調圧され、その圧力を越える燃料の余剰分が燃料戻し管16により燃料タンク11内に戻されるようになっている。   A low pressure pump 12 that pumps up the fuel is installed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low pressure pump 12 is supplied to the high pressure pump 14 through the fuel pipe 13. A pressure regulator 15 is connected to the fuel pipe 13, and the discharge pressure of the low-pressure pump 12 (fuel supply pressure to the high-pressure pump 14) is adjusted to a predetermined pressure by the pressure regulator 15, and surplus fuel exceeding that pressure Is returned to the fuel tank 11 by the fuel return pipe 16.

図2に示すように、高圧ポンプ14は、円筒状のポンプ室18内でピストン19を往復運動させて燃料を吸入/吐出するピストンポンプであり、ピストン19は、エンジンのカム軸20に嵌着されたカム21の回転運動によって駆動される。この高圧ポンプ14の吸入口22側には、燃圧制御弁23が設けられている。この燃圧制御弁23は、常開型の電磁弁であり、吸入口22を開閉する弁体24と、この弁体24を開弁方向に付勢するスプリング25と、弁体24を閉弁方向に電磁駆動するソレノイド26とから構成されている。   As shown in FIG. 2, the high-pressure pump 14 is a piston pump that sucks / discharges fuel by reciprocating a piston 19 in a cylindrical pump chamber 18. The piston 19 is fitted to a camshaft 20 of the engine. It is driven by the rotational movement of the cam 21. A fuel pressure control valve 23 is provided on the suction port 22 side of the high-pressure pump 14. The fuel pressure control valve 23 is a normally open type electromagnetic valve, and includes a valve body 24 that opens and closes the suction port 22, a spring 25 that urges the valve body 24 in the valve opening direction, and a valve body 24 in the valve closing direction. And a solenoid 26 that is electromagnetically driven.

高圧ポンプ14の吸入行程(ピストン19の下降時)においては、燃圧制御弁23が開弁されてポンプ室18内に燃料が吸入され、吐出行程(ピストン19の上昇時)においては、燃圧制御弁23の閉弁時間(閉弁開始時期からピストン19の上死点までの閉弁状態の時間)を制御することで、高圧ポンプ14の吐出量を制御して燃圧(吐出圧力)を制御する。   During the intake stroke of the high-pressure pump 14 (when the piston 19 is lowered), the fuel pressure control valve 23 is opened and fuel is sucked into the pump chamber 18, and during the discharge stroke (when the piston 19 is raised), the fuel pressure control valve. By controlling the valve closing time 23 (the valve closing state time from the valve closing start time to the top dead center of the piston 19), the discharge amount of the high-pressure pump 14 is controlled to control the fuel pressure (discharge pressure).

つまり、燃圧を上昇させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を進角させることで、燃圧制御弁23の閉弁時間を長くして高圧ポンプ14の吐出量を増加させ、逆に、燃圧を低下させるときには、燃圧制御弁23の閉弁開始時期(通電時期)を遅角させることで、燃圧制御弁23の閉弁時間を短くして高圧ポンプ14の吐出量を減少させる。   That is, when increasing the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is advanced, thereby extending the valve closing time of the fuel pressure control valve 23 and increasing the discharge amount of the high pressure pump 14. Conversely, when lowering the fuel pressure, the valve closing start timing (energization timing) of the fuel pressure control valve 23 is retarded, thereby shortening the valve closing time of the fuel pressure control valve 23 and reducing the discharge amount of the high pressure pump 14. .

一方、高圧ポンプ14の吐出口27側には、吐出した燃料の逆流を防止する逆止弁28が設けられている。図1に示すように、高圧ポンプ14から吐出された燃料は、高圧燃料配管32を通してデリバリパイプ33に送られ、このデリバリパイプ33からエンジンのシリンダヘッドに気筒毎に取り付けられた燃料噴射弁34に高圧の燃料が分配される。高圧燃料配管33(又はデリバリパイプ33)には、高圧燃料配管32内(高圧燃料系内)の燃圧を検出する燃圧センサ35(燃圧検出手段)が設けられ、エンジンのシリンダブロックには、冷却水温を検出する冷却水温センサ36が設けられている。その他、外気温を検出する外気温センサ39等が設けられている。   On the other hand, a check valve 28 for preventing the backflow of discharged fuel is provided on the discharge port 27 side of the high-pressure pump 14. As shown in FIG. 1, the fuel discharged from the high-pressure pump 14 is sent to a delivery pipe 33 through a high-pressure fuel pipe 32, and from this delivery pipe 33 to a fuel injection valve 34 attached to the cylinder head of the engine for each cylinder. High pressure fuel is dispensed. The high-pressure fuel pipe 33 (or delivery pipe 33) is provided with a fuel pressure sensor 35 (fuel pressure detection means) for detecting the fuel pressure in the high-pressure fuel pipe 32 (inside the high-pressure fuel system). A cooling water temperature sensor 36 for detecting the above is provided. In addition, an outside air temperature sensor 39 for detecting the outside air temperature is provided.

本実施例では、高圧ポンプ14から燃料噴射弁34に高圧の燃料を供給する高圧燃料系の所定部位、例えばデリバリパイプ33には、高圧燃料系内の燃圧を減圧するための減圧機構としてリリーフバルブ41(減圧弁)が設けられ、このリリーフバルブ41の排出ポートがリリーフ配管42を介して低圧側の燃料配管13に接続されている。   In the present embodiment, a relief valve as a pressure reducing mechanism for reducing the fuel pressure in the high pressure fuel system is provided in a predetermined portion of the high pressure fuel system that supplies high pressure fuel from the high pressure pump 14 to the fuel injection valve 34, for example, the delivery pipe 33. 41 (pressure reducing valve) is provided, and the discharge port of the relief valve 41 is connected to the fuel pipe 13 on the low pressure side via the relief pipe 42.

このリリーフバルブ41は、例えば常閉型の電磁駆動式のものが用いられ、後述するECU37によってリリーフバルブ41への通電のオン/オフが制御される。高圧燃料系内の燃圧が設定燃圧よりも高い場合は、リリーフバルブ41に通電してこれを開弁することで、デリバリパイプ33内の燃料の一部をリリーフバルブ41からリリーフ配管42を通して低圧側の燃料配管13に流出させて燃料タンク11内に戻して、高圧燃料系内の燃圧を低下させる。その後、高圧燃料系内の燃圧が設定燃圧まで低下した時点で、リリーフバルブ41への通電をオフしてこれを閉弁することで、高圧燃料系内の燃圧を設定燃圧に維持する。   As this relief valve 41, for example, a normally closed electromagnetic drive type is used, and on / off of energization to the relief valve 41 is controlled by an ECU 37 described later. When the fuel pressure in the high-pressure fuel system is higher than the set fuel pressure, by energizing the relief valve 41 and opening it, a part of the fuel in the delivery pipe 33 passes from the relief valve 41 through the relief pipe 42 to the low-pressure side. To the fuel pipe 13 and returned to the fuel tank 11 to reduce the fuel pressure in the high-pressure fuel system. Thereafter, when the fuel pressure in the high-pressure fuel system drops to the set fuel pressure, the energization of the relief valve 41 is turned off and the valve is closed to maintain the fuel pressure in the high-pressure fuel system at the set fuel pressure.

図1の構成例では、リリーフバルブ41をデリバリパイプ33に設けているが、高圧ポンプ14から燃料噴射弁34までの高圧燃料系であれば、デリバリパイプ33以外の箇所にリリーフバルブ41を設けても良く、例えば、高圧燃料配管32又は高圧ポンプ14にリリーフバルブ41を設けても良い。また、図1の構成例では、リリーフ配管42の出口を低圧側の燃料配管13のうちの低圧ポンプ12の吐出側に接続しているが、リリーフ配管42の出口を燃料タンク11内に開口させて、リリーフ配管42から流出する燃料を燃料タンク11内に直接戻すようにしても良い。   In the configuration example of FIG. 1, the relief valve 41 is provided in the delivery pipe 33. However, in the case of a high-pressure fuel system from the high-pressure pump 14 to the fuel injection valve 34, the relief valve 41 is provided in a place other than the delivery pipe 33. For example, the relief valve 41 may be provided in the high-pressure fuel pipe 32 or the high-pressure pump 14. In the configuration example of FIG. 1, the outlet of the relief pipe 42 is connected to the discharge side of the low-pressure pump 12 in the low-pressure side fuel pipe 13, but the outlet of the relief pipe 42 is opened in the fuel tank 11. Thus, the fuel flowing out from the relief pipe 42 may be returned directly into the fuel tank 11.

本実施例の車両は、上記高圧燃料供給システムと筒内噴射式のエンジンを搭載すると共に、一時停車中にエンジンを自動停止(アイドルストップ)させ、その後、運転者が車両発進のための準備操作(ブレーキ解除、シフトレバー操作等)や発進操作(アクセル踏込み等)を行ったときにエンジンを自動再始動させるアイドルストップシステム(アイドルストップ手段)を搭載している。   The vehicle of the present embodiment is equipped with the high-pressure fuel supply system and the in-cylinder injection engine, and automatically stops (idle stop) the engine during a temporary stop, and then the driver performs a preparatory operation for starting the vehicle. It is equipped with an idle stop system (idle stop means) that automatically restarts the engine when a brake operation (brake release, shift lever operation, etc.) or a start operation (accelerator depression, etc.) is performed.

エンジンの運転を制御するエンジン制御回路(以下「ECU」と表記する)37は、マイクロコンピュータを主体として構成され、エンジン運転中に燃圧センサ35で検出した高圧燃料系内の燃圧(燃料噴射弁34に供給する燃料の圧力)を目標燃圧に一致させるように高圧ポンプ14の吐出量(燃圧制御弁23の通電時期)をフィードバック制御する。   An engine control circuit (hereinafter referred to as “ECU”) 37 that controls the operation of the engine is configured mainly with a microcomputer, and the fuel pressure (fuel injection valve 34) in the high-pressure fuel system detected by the fuel pressure sensor 35 during engine operation. The discharge amount of the high-pressure pump 14 (the energization timing of the fuel pressure control valve 23) is feedback-controlled so that the pressure of the fuel to be supplied) matches the target fuel pressure.

更に、ECU37は、アイドルストップ時とイグニッションスイッチ(以下「IGスイッチ」と表記する)38のオフ操作による手動停止時に、燃圧センサ35で検出した高圧燃料系内の燃圧を設定燃圧まで減圧するようにリリーフバルブ41の開閉動作(通電のオン/オフ)を制御する。   Further, the ECU 37 reduces the fuel pressure in the high-pressure fuel system detected by the fuel pressure sensor 35 to the set fuel pressure at the time of idle stop and at the time of manual stop by turning off an ignition switch (hereinafter referred to as “IG switch”) 38. Controls the opening / closing operation (energization on / off) of the relief valve 41.

ところで、アイドルストップ時に、高圧燃料系内の燃圧を、手動停止時の設定燃圧まで減圧して、アイドルストップ中の燃料噴射弁34からの燃料漏れ(以下「油密漏れ」という)を防止することが考えられる。   By the way, during idle stop, the fuel pressure in the high-pressure fuel system is reduced to the set fuel pressure during manual stop to prevent fuel leakage from the fuel injection valve 34 during idle stop (hereinafter referred to as “oil-tight leak”). Can be considered.

しかし、一般に、アイドルストップの時間は短く、すぐに再始動が行われることが多いため、アイドルストップ時に高圧燃料系内の燃圧を、IGスイッチ38のオフ操作による手動停止時の設定燃圧まで減圧してしまうと、運転者にアイドルストップ後の再始動の遅れ(もたつき)を感じさせてしまう。これは、アイドルストップ後の再始動時に、良好な再始動性(燃焼性)を確保するには、高圧燃料系内の燃圧を迅速に再始動に適した燃圧まで上昇させる必要があり、アイドルストップ中の高圧燃料系内の燃圧が低くなり過ぎると、その分、再始動時の燃圧上昇に要する時間が長くなるためである。再始動時に燃圧が不足すると、筒内噴射式エンジンの始動に適した噴射時期である圧縮行程後半に気筒内に燃料を噴射することが困難になったり、或は、圧縮行程後半に噴射できたとしても、燃料噴霧形状や微粒化が悪くなり、良好な再始動性(燃焼性)が得られない。   However, in general, the idling stop time is short, and restarting is often performed immediately. Therefore, the fuel pressure in the high-pressure fuel system is reduced to the set fuel pressure at the time of manual stop by turning off the IG switch 38 during idling stop. If this happens, the driver may feel a delay in restart after idle stop. In order to ensure good restartability (combustibility) during restart after idle stop, it is necessary to quickly increase the fuel pressure in the high-pressure fuel system to a fuel pressure suitable for restart. This is because if the fuel pressure in the inside high-pressure fuel system becomes too low, the time required to increase the fuel pressure at the time of restart increases accordingly. If the fuel pressure is insufficient at the time of restart, it becomes difficult to inject fuel into the cylinder in the latter half of the compression stroke, which is an injection timing suitable for starting an in-cylinder injection engine, or it was possible to inject in the latter half of the compression stroke However, the fuel spray shape and atomization deteriorate, and good restartability (combustibility) cannot be obtained.

そこで、本実施例では、ECU37は、アイドルストップ時の設定燃圧を、IGスイッチ38のオフ操作による手動停止時の設定燃圧よりも高い燃圧に設定することで、アイドルストップ後の再始動性を向上させながら、アイドルストップ中の油密漏れを極力低減すると共に、アイドルストップ状態の継続時間が所定時間以上継続したときに、アイドルストップ時の設定燃圧を手動停止時の設定燃圧と同一の燃圧(又はそれに近い燃圧)まで低下させることで、アイドルストップ時間が長くなることによる油密漏れ量の増加を抑制するようにしている。   Therefore, in this embodiment, the ECU 37 improves the restartability after the idle stop by setting the set fuel pressure at the idle stop to a fuel pressure higher than the set fuel pressure at the time of manual stop by turning off the IG switch 38. The oil pressure leakage during idle stop is reduced as much as possible, and the set fuel pressure at idle stop is the same as the set fuel pressure at manual stop (or By reducing the fuel pressure to a fuel pressure close to that, an increase in the amount of oil-tight leak due to an increase in idle stop time is suppressed.

以上説明したアイドルストップ時及び手動停止時の高圧燃料系内の燃圧制御は、ECU37によって図3のエンジン停止時燃圧制御プログラムに従って実行される。本プログラムは、ECU37の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう制御手段としての役割を果たす。尚、IGスイッチ38のオフ後も暫くの間、本プログラムを実行するために、電源ラインのメインリレー(図示せず)をオン状態に維持してECU37への通電が継続されるようになっている。   The fuel pressure control in the high-pressure fuel system at the idle stop and the manual stop described above is executed by the ECU 37 according to the engine stop fuel pressure control program of FIG. This program is repeatedly executed at a predetermined cycle while the power of the ECU 37 is turned on, and plays a role as control means in the claims. Incidentally, in order to execute this program for a while after the IG switch 38 is turned off, the main relay (not shown) of the power supply line is maintained in the on state, and the power supply to the ECU 37 is continued. Yes.

本プログラムが起動されると、まずステップ101で、IGスイッチ38がオン(ON)されているか否かを判定し、IGスイッチ38がオンされていれば、次のステップ102に進み、アイドルストップ条件が成立しているか否かを、例えば次の条件(1) 〜(5) を満たすか否かで判定する。   When this program is started, first, in step 101, it is determined whether or not the IG switch 38 is turned on. If the IG switch 38 is turned on, the process proceeds to the next step 102, where an idle stop condition is established. It is determined whether or not the following condition (1) to (5) is satisfied, for example.

(1) 始動から所定時間経過していること(エンジン暖機完了後であること)
(2) ブレーキ操作中であること
(3) アクセルOFFであること
(4) アイドル運転中であること
(5) 停車中であること
これらの条件(1) 〜(5) のうち、1つでも満たさない条件があれば、アイドルストップ条件が不成立となり、以降の処理を行うことなく、本プログラムを終了する。
(1) The specified time has elapsed since startup (after engine warm-up is complete)
(2) The brake is being operated
(3) Accelerator OFF
(4) Being idle
(5) Being stopped If any one of these conditions (1) to (5) is not satisfied, the idle stop condition is not satisfied, and this program is terminated without performing the subsequent processing. To do.

これに対して、上記条件(1) 〜(5) を全て満たせば、アイドルストップ条件が成立してステップ102に進み、エンジンを自動停止(アイドルストップ)させる。この後、ステップ104に進み、アイドルストップ直後(高圧燃料系の燃圧の減圧開始前)であるか否かを判定し、アイドルストップ直後であれば、ステップ106に進み、アイドルストップ時の設定燃圧Pt1を次のようにして算出する。   On the other hand, if all of the above conditions (1) to (5) are satisfied, the idle stop condition is satisfied and the routine proceeds to step 102, where the engine is automatically stopped (idle stop). Thereafter, the routine proceeds to step 104, where it is determined whether or not it is immediately after the idling stop (before the start of pressure reduction of the high-pressure fuel system), and if it is immediately after the idling stop, the routine proceeds to step 106 and the set fuel pressure Pt1 at the idling stop. Is calculated as follows.

例えば、図4に示すように、冷却水温センサ36と外気温センサ39で検出したアイドルストップ時の冷却水温(又は油温)と外気温を読み込み、冷却水温(又は油温)と外気温をパラメータとしてアイドルストップ時の設定燃圧Pt1a を算出する2次元マップを参照して、その時点の冷却水温(又は油温)と外気温に応じたアイドルストップ時の設定燃圧Pt1a を算出する。   For example, as shown in FIG. 4, the cooling water temperature (or oil temperature) and the outside air temperature during idling stop detected by the cooling water temperature sensor 36 and the outside air temperature sensor 39 are read, and the cooling water temperature (or oil temperature) and the outside air temperature are parameters. Referring to the two-dimensional map for calculating the set fuel pressure Pt1a at the time of idling stop, the set fuel pressure Pt1a at the time of idling stop according to the coolant temperature (or oil temperature) and the outside air temperature at that time is calculated.

一般に、再始動時の混合気の温度や筒内の温度が高くなるほど、混合気が燃焼しやすくなるため、これらの温度が高くなるほど、良好な燃焼が得られる最低燃圧が低くなるという特性がある。この特性を考慮して、アイドルストップ時の設定燃圧Pt1a を算出する2次元マップは、冷却水温(又は油温)や外気温が高くなるほど、アイドルストップ時の設定燃圧Pt1a を低くするように設定されている。これにより、混合気の温度や筒内の温度に応じてアイドルストップ時の設定燃圧Pt1a を良好な燃焼が得られる燃圧範囲内でほぼ最低の燃圧に設定することが可能となり、アイドルストップ後の再始動性を確保しながら、アイドルストップ中の油密漏れをより一層低減するという制御が可能となる。   In general, the higher the temperature of the air-fuel mixture at the time of restart or the temperature in the cylinder, the easier the air-fuel mixture burns. Therefore, the higher the temperature, the lower the minimum fuel pressure at which good combustion can be obtained. . In consideration of this characteristic, the two-dimensional map for calculating the set fuel pressure Pt1a at the idling stop is set so that the set fuel pressure Pt1a at the idling stop decreases as the cooling water temperature (or oil temperature) or the outside air temperature increases. ing. This makes it possible to set the set fuel pressure Pt1a at the time of idling stop to the lowest fuel pressure within the fuel pressure range where good combustion can be obtained according to the temperature of the air-fuel mixture and the temperature in the cylinder. Control that further reduces oil-tight leakage during idling stop is possible while ensuring startability.

この場合、アイドルストップ時の設定燃圧Pt1a は、アイドルストップ後の再始動時の第1噴射を圧縮行程の後半に行ったときに良好な燃焼が得られる最低燃圧に設定するように設定されている。これにより、アイドルストップ時の設定燃圧Pt1a は、例えば2〜5[MPa]の範囲内で設定される。   In this case, the set fuel pressure Pt1a at the time of idling stop is set to be set to the minimum fuel pressure at which good combustion is obtained when the first injection at the time of restart after idling stop is performed in the second half of the compression stroke. . Thereby, the set fuel pressure Pt1a at the time of idling stop is set within a range of 2 to 5 [MPa], for example.

更に、図4の例では、2次元マップから算出したアイドルストップ時の設定燃圧Pt1a を圧縮TDC位置での筒内圧力Pt1b と比較して、大きい方を最終的にアイドルストップ時の設定燃圧Pt1として選択する。これは、高圧燃料系内の燃圧(燃料噴射弁34の噴射圧力)が圧縮TDC位置での筒内圧力Pt1b よりも低いと、燃料噴射弁34から燃料を噴射できなくなるためである。   Further, in the example of FIG. 4, the set fuel pressure Pt1a at the time of idling stop calculated from the two-dimensional map is compared with the in-cylinder pressure Pt1b at the compression TDC position, and the larger one is finally set as the set fuel pressure Pt1 at the time of idling stop. select. This is because if the fuel pressure in the high-pressure fuel system (the injection pressure of the fuel injection valve 34) is lower than the in-cylinder pressure Pt1b at the compression TDC position, fuel cannot be injected from the fuel injection valve 34.

尚、本発明は、冷却水温(又は油温)と外気温のいずれか一方のみに基づいてアイドルストップ時の設定燃圧Pt1を設定したり、或は、アイドルストップ時の設定燃圧Pt1を予め設定した一定値に設定するようにしても良い。   In the present invention, the set fuel pressure Pt1 at the time of idling stop is set based on only one of the cooling water temperature (or oil temperature) and the outside air temperature, or the set fuel pressure Pt1 at the time of idling stop is set in advance. You may make it set to a fixed value.

アイドルストップ時の設定燃圧Pt1の算出後、ステップ107に進み、リリーフバルブ41に通電してこれを開弁して高圧燃料系内の燃圧Ps を減圧する。この後、ステップ108に進み、燃圧センサ35で高圧燃料系内の燃圧Ps を検出し、次のステップ109で、高圧燃料系内の燃圧Ps が上記ステップ106で算出したアイドルストップ時の設定燃圧Pt1以下に低下したか否かを判定し、まだ、高圧燃料系内の燃圧Ps がアイドルストップ時の設定燃圧Pt1よりも高ければ、上記ステップ107に戻り、リリーフバルブ41の開弁(通電)を継続して高圧燃料系内の燃圧Ps を減圧し続ける。   After calculating the set fuel pressure Pt1 at the time of idling stop, the routine proceeds to step 107 where the relief valve 41 is energized and opened to reduce the fuel pressure Ps in the high-pressure fuel system. Thereafter, the routine proceeds to step 108, where the fuel pressure sensor 35 detects the fuel pressure Ps in the high-pressure fuel system, and in the next step 109, the fuel pressure Ps in the high-pressure fuel system calculated in the above step 106 is the set fuel pressure Pt1 at idling stop. It is determined whether or not the fuel pressure Ps has decreased below. If the fuel pressure Ps in the high-pressure fuel system is still higher than the set fuel pressure Pt1 at the time of idling stop, the process returns to step 107 and the relief valve 41 continues to be opened (energized). Thus, the fuel pressure Ps in the high-pressure fuel system is continuously reduced.

その後、高圧燃料系内の燃圧Ps がアイドルストップ時の設定燃圧Pt1以下に低下した時点で、ステップ110に進み、リリーフバルブ41への通電をオフしてこれを閉弁して高圧燃料系内の燃圧Ps の減圧を終了し、高圧燃料系内の燃圧Ps をアイドルストップ時の設定燃圧Pt1に維持する。   Thereafter, when the fuel pressure Ps in the high-pressure fuel system drops below the set fuel pressure Pt1 at the time of idling stop, the routine proceeds to step 110, the energization to the relief valve 41 is turned off and this is closed to close the inside of the high-pressure fuel system. The decompression of the fuel pressure Ps is terminated, and the fuel pressure Ps in the high-pressure fuel system is maintained at the set fuel pressure Pt1 at the time of idling stop.

その後、アイドルストップ状態が継続している間は、本プログラムが起動される毎に、上記ステップ104で「No」と判定されてステップ105に進み、アイドルストップ継続時間が所定時間T以上になったか否かを判定し、アイドルストップ継続時間が所定時間Tに達していなければ、そのまま本プログラムを終了する。   Thereafter, while the idle stop state continues, every time this program is started, it is determined as “No” in the above step 104 and proceeds to step 105, and whether the idle stop duration has reached the predetermined time T or more. If the idle stop duration has not reached the predetermined time T, the program is terminated as it is.

そして、アイドルストップ継続時間が所定時間T以上になった時点で、上記ステップ105で「Yes」と判定されて、後述するステップ113〜117の処理を実行して、高圧燃料系内の燃圧Ps を、アイドルストップ当初の設定燃圧Pt1よりも低い手動停止時の設定燃圧Pt2と同じ燃圧まで減圧する。   Then, when the idle stop continuation time becomes equal to or longer than the predetermined time T, it is determined as “Yes” in the above-described step 105, and the processing of steps 113 to 117 described later is executed to set the fuel pressure Ps in the high-pressure fuel system. Then, the fuel pressure is reduced to the same fuel pressure as the set fuel pressure Pt2 at the time of manual stop which is lower than the set fuel pressure Pt1 at the time of idling stop.

一方、ステップ101で、IGスイッチ38がオフ(OFF)されていると判定されれば、ステップ111に進み、エンジンを停止(手動停止)させる。この後、ステップ112に進み、手動停止直後(高圧燃料系の燃圧の減圧開始前)であるか否かを判定し、手動停止直後でなければ、既に高圧燃料系の燃圧減圧が終了していると判断してそのまま本プログラムを終了する。   On the other hand, if it is determined in step 101 that the IG switch 38 is turned off (OFF), the process proceeds to step 111 and the engine is stopped (manually stopped). Thereafter, the routine proceeds to step 112, where it is determined whether or not it is immediately after the manual stop (before the start of pressure reduction of the high-pressure fuel system). If not immediately after the manual stop, the fuel pressure reduction of the high-pressure fuel system has already ended. The program is terminated as it is.

これに対して、上記ステップ112で、手動停止直後と判定されれば、ステップ113に進み、手動停止時の設定燃圧Pt2を次のようにして算出する。   On the other hand, if it is determined in step 112 that it is immediately after the manual stop, the routine proceeds to step 113, where the set fuel pressure Pt2 at the time of manual stop is calculated as follows.

例えば、図5に示すように、冷却水温センサ36と外気温センサ39で検出した手動停止時の冷却水温(又は油温)と外気温を読み込み、冷却水温(又は油温)と外気温をパラメータとして手動停止時の設定燃圧Pt2を算出する2次元マップを参照して、その時点の冷却水温(又は油温)と外気温に応じた手動停止時の設定燃圧Pt2を算出する。   For example, as shown in FIG. 5, the cooling water temperature (or oil temperature) and the outside air temperature at the time of manual stop detected by the cooling water temperature sensor 36 and the outside air temperature sensor 39 are read, and the cooling water temperature (or oil temperature) and the outside air temperature are parameters. Referring to the two-dimensional map for calculating the set fuel pressure Pt2 at the time of manual stop, the set fuel pressure Pt2 at the time of manual stop according to the coolant temperature (or oil temperature) and the outside air temperature at that time is calculated.

手動停止中の高圧燃料系内の燃圧Ps が低くなり過ぎると、高圧燃料系内の燃料中にベーパ(気泡)が生じて始動性を低下させる要因となる。また、高圧燃料系内の燃料温度が高くなるほど、ベーパが発生しやすくなり、燃圧Ps が低くなるほど、ベーパが発生しやすくなるという関係がある。   If the fuel pressure Ps in the high-pressure fuel system during manual stop becomes too low, vapor (bubbles) is generated in the fuel in the high-pressure fuel system, which causes a decrease in startability. Further, there is a relationship that vapor is more likely to be generated as the fuel temperature in the high-pressure fuel system is higher, and vapor is more likely to be generated as the fuel pressure Ps is lower.

これらの関係を考慮して、手動停止時の設定燃圧Pt2を算出する2次元マップは、冷却水温(又は油温)や外気温が高くなるほど、手動停止時の設定燃圧Pt2を高くするように設定されている。これにより、高圧燃料系内の燃料温度が高くなってベーパが発生しやすい温度環境になるほど、手動停止時の設定燃圧Pt2を高く設定して、ベーパの発生を抑制するという制御が可能となる。   Taking these relationships into consideration, the two-dimensional map for calculating the set fuel pressure Pt2 at the time of manual stop is set so that the set fuel pressure Pt2 at the time of manual stop increases as the coolant temperature (or oil temperature) and the outside air temperature increase. Has been. As a result, as the fuel temperature in the high-pressure fuel system becomes higher and the temperature environment is more likely to generate vapor, it is possible to control to suppress the generation of vapor by setting the set fuel pressure Pt2 at the time of manual stop higher.

尚、図5の例では、高圧燃料系内の燃料温度を評価する温度情報として、冷却水温(又は油温)と外気温を用いているが、この他、デリバリパイプ33の温度を温度センサで検出して、デリバリパイプ33の温度に応じて手動停止時の設定燃圧Pt2を設定したり、或は、高圧燃料系内の燃料温度を温度センサで直接検出して、実際の燃料温度に応じて手動停止時の設定燃圧Pt2を設定するようにしても良い。   In the example of FIG. 5, the cooling water temperature (or oil temperature) and the outside air temperature are used as temperature information for evaluating the fuel temperature in the high-pressure fuel system. In addition, the temperature of the delivery pipe 33 is measured by a temperature sensor. Detect and set the set fuel pressure Pt2 at the time of manual stop according to the temperature of the delivery pipe 33, or directly detect the fuel temperature in the high pressure fuel system with the temperature sensor, and according to the actual fuel temperature The set fuel pressure Pt2 at the time of manual stop may be set.

手動停止時の設定燃圧Pt2の算出後、ステップ114に進み、リリーフバルブ41に通電してこれを開弁して高圧燃料系内の燃圧Ps を減圧する。この後、ステップ115に進み、燃圧センサ35で高圧燃料系内の燃圧Ps を検出して、次のステップ116で、高圧燃料系内の燃圧Ps が上記ステップ113で算出した手動停止時の設定燃圧Pt2以下に低下したか否かを判定し、まだ、高圧燃料系内の燃圧Ps が手動停止時の設定燃圧Pt2よりも高ければ、上記ステップ114に戻り、リリーフバルブ41の開弁(通電)を継続して高圧燃料系内の燃圧Ps を減圧し続ける。   After calculating the set fuel pressure Pt2 at the time of manual stop, the routine proceeds to step 114 where the relief valve 41 is energized and opened to reduce the fuel pressure Ps in the high-pressure fuel system. Thereafter, the routine proceeds to step 115, where the fuel pressure sensor 35 detects the fuel pressure Ps in the high-pressure fuel system, and in the next step 116, the fuel pressure Ps in the high-pressure fuel system calculated in step 113 is the set fuel pressure at the time of manual stop. It is determined whether or not the pressure has decreased to Pt2 or less. If the fuel pressure Ps in the high-pressure fuel system is still higher than the set fuel pressure Pt2 at the time of manual stop, the routine returns to step 114 and the relief valve 41 is opened (energized). Continue to reduce the fuel pressure Ps in the high-pressure fuel system.

その後、高圧燃料系内の燃圧Ps が手動停止時の設定燃圧Pt2以下に低下した時点で、ステップ117に進み、リリーフバルブ41への通電をオフしてこれを閉弁して高圧燃料系内の燃圧Ps の減圧を終了し、高圧燃料系内の燃圧Ps を手動停止時の設定燃圧Pt2に維持する。   Thereafter, when the fuel pressure Ps in the high-pressure fuel system drops below the set fuel pressure Pt2 at the time of manual stop, the routine proceeds to step 117, the energization to the relief valve 41 is turned off and this is closed to close the inside of the high-pressure fuel system. The decompression of the fuel pressure Ps is terminated, and the fuel pressure Ps in the high-pressure fuel system is maintained at the set fuel pressure Pt2 at the time of manual stop.

以上説明した本実施例によれば、アイドルストップ時の設定燃圧Pt1を手動停止時の設定燃圧Pt2よりも高い燃圧に設定するため、アイドルストップ時の設定燃圧Pt1を手動停止時の設定燃圧Pt2と同一に設定する場合と比較して、アイドルストップ時の燃圧と再始動時の燃焼性確保に必要な最低燃圧との圧力差が小さくなり、アイドルストップ後の再始動時に高圧燃料系内の燃圧を迅速に再始動時の燃焼性確保に必要な最低燃圧まで上昇させることができて、再始動性を向上させることができ、運転者に再始動の遅れ(もたつき)を感じさせないようにすることができる。しかも、一般に、アイドルストップの時間は短く、すぐに再始動が行われることが多いため、アイドルストップ時の設定燃圧Pt1を手動停止時の設定燃圧Pt2よりも高い燃圧に設定しても、アイドルストップ中の油密漏れ(燃料噴射弁34からの燃料漏れ)は少なく、油密漏れによる排気エミッションの悪化を防止できる。   According to the present embodiment described above, since the set fuel pressure Pt1 at the time of idling stop is set higher than the set fuel pressure Pt2 at the time of manual stop, the set fuel pressure Pt1 at the time of idling stop is set to the set fuel pressure Pt2 at the time of manual stop. Compared to the same setting, the pressure difference between the fuel pressure at idle stop and the minimum fuel pressure required to ensure combustibility at restart is reduced, and the fuel pressure in the high-pressure fuel system is reduced at restart after idle stop. It is possible to quickly increase to the minimum fuel pressure necessary for ensuring the combustibility at the time of restart, improve the restartability, and prevent the driver from feeling the delay in restart it can. Moreover, in general, the idling stop time is short and the restart is often performed immediately. Therefore, even if the set fuel pressure Pt1 at the idling stop is set higher than the set fuel pressure Pt2 at the manual stop, the idling stop is performed. There is little oil-tight leakage (fuel leakage from the fuel injection valve 34), and deterioration of exhaust emissions due to oil-tight leakage can be prevented.

しかも、アイドルストップ時の設定燃圧Pt1を、アイドルストップ後の再始動時の第1噴射を圧縮行程の後半に行ったときに良好な燃焼が得られる最低燃圧に設定するようにするようにしたので、アイドルストップ後の再始動時に第1噴射から良好な燃焼が得られるようになり、非常に素早い再始動を実現できる。   Moreover, the set fuel pressure Pt1 at the time of idling stop is set to the minimum fuel pressure at which good combustion can be obtained when the first injection at the restart after idling stop is performed in the second half of the compression stroke. In the restart after the idle stop, good combustion can be obtained from the first injection, and a very quick restart can be realized.

更に、アイドルストップ時の冷却水温(又は油温)や外気温が高くなるほど、アイドルストップ時の設定燃圧Pt1を低く設定するようにしたので、混合気の温度や筒内の温度に応じてアイドルストップ時の設定燃圧Pt1を良好な燃焼が得られる燃圧範囲内でほぼ最低の燃圧に設定することが可能となり、アイドルストップ後の再始動性を確保しながら、アイドルストップ中の油密漏れをより一層低減することができる。   Furthermore, as the cooling water temperature (or oil temperature) at the time of idling stop and the outside air temperature become higher, the set fuel pressure Pt1 at idling stop is set to be lower, so the idling stop according to the temperature of the air-fuel mixture and the temperature in the cylinder It is possible to set the fuel pressure Pt1 at the time to the lowest fuel pressure within the fuel pressure range where good combustion can be obtained, and even more oil-tight leakage during idle stop while ensuring restartability after idle stop Can be reduced.

また、アイドルストップ状態の継続時間が所定時間T以上継続したときに、アイドルストップ時の設定燃圧Pt1を手動停止時の設定燃圧Pt2に切り換えるようにしたので、アイドルストップ状態の継続時間が所定時間T以上継続した後は、手動停止時と同様の油密漏れ防止効果を得ることができ、アイドルストップ時間が長くなることによる排気エミッションの悪化を抑制することができる。   Further, when the duration of the idle stop state continues for the predetermined time T or longer, the set fuel pressure Pt1 at the time of idle stop is switched to the set fuel pressure Pt2 at the time of manual stop. After continuing the above, it is possible to obtain the same oil-tight leak prevention effect as that at the time of manual stop, and it is possible to suppress the deterioration of exhaust emission due to the longer idle stop time.

この場合、アイドルストップ状態の継続時間が所定時間T以上継続したときに、アイドルストップ時の設定燃圧Pt1を手動停止時の設定燃圧Pt2よりも少し高い燃圧に設定するようにしても良い。   In this case, when the duration of the idle stop state continues for a predetermined time T or longer, the set fuel pressure Pt1 at the time of idle stop may be set to a fuel pressure slightly higher than the set fuel pressure Pt2 at the time of manual stop.

また、本発明は、アイドルストップ状態の継続時間が長くなるほど、アイドルストップ時の設定燃圧Pt1を段階的又は徐々に低下させるようにしても良く、これにより、アイドルストップ状態の継続時間が長くなるに従って、単位時間当たりの油密漏れ量を少なくするという制御が可能となり、アイドルストップ状態の継続時間が長くなっても、アイドルストップ中の油密漏れによる排気エミッションの悪化を少なくすることができる。   In the present invention, the set fuel pressure Pt1 at the time of idling stop may be decreased stepwise or gradually as the duration of the idling stop state becomes longer, and as a result, the duration of the idling stop state becomes longer. Thus, it is possible to control to reduce the amount of oil-tight leak per unit time, and even if the duration of the idle stop state is increased, the deterioration of exhaust emission due to the oil-tight leak during idle stop can be reduced.

また、本実施例では、手動停止時の燃料温度を評価する温度情報(冷却水温、油温、外気温、燃料温度、デリバリパイプ温度)が高くなるほど、手動停止時の設定燃圧Pt2を高く設定するようにしたので、高圧燃料系内の燃料温度が高くなってベーパが発生しやすい温度環境になるほど、手動停止時の設定燃圧Pt2を高く設定して、ベーパの発生を抑制するという制御が可能となり、ベーパによる始動性悪化を効果的に防止できる。   In this embodiment, the set fuel pressure Pt2 at the time of manual stop is set higher as the temperature information (cooling water temperature, oil temperature, outside air temperature, fuel temperature, delivery pipe temperature) for evaluating the fuel temperature at the time of manual stop is higher. Therefore, as the fuel temperature in the high-pressure fuel system becomes higher and the temperature environment is more likely to generate vapor, the fuel pressure Pt2 is set higher at the time of manual stop and control can be performed to suppress the generation of vapor. The startability deterioration due to vapor can be effectively prevented.

本発明の一実施例における高圧燃料供給システム全体の概略構成図である。It is a schematic structure figure of the whole high-pressure fuel supply system in one example of the present invention. 高圧ポンプの構成図である。It is a block diagram of a high pressure pump. エンジン停止時燃圧制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an engine stop time fuel pressure control program. アイドルストップ時の設定燃圧Pt1の算出方法を説明するブロック図である。It is a block diagram explaining the calculation method of the setting fuel pressure Pt1 at the time of idling stop. 手動停止時の設定燃圧Pt2の算出方法を説明するブロック図である。It is a block diagram explaining the calculation method of the setting fuel pressure Pt2 at the time of a manual stop.

符号の説明Explanation of symbols

11…燃料タンク、12…低圧ポンプ、14…高圧ポンプ、18…ポンプ室、19…ピストン、22…吸入口、23…燃圧制御弁、27…吐出口、28…逆止弁、32…高圧燃料配管、33…デリバリパイプ、34…燃料噴射弁、35…燃圧センサ(燃圧検出手段)、36…冷却水温センサ、37…ECU(アイドルストップ手段,制御手段)、38…イグニッションスイッチ、39…外気温センサ、41…リリーフバルブ(減圧機構)、42…リリーフ配管   DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Low pressure pump, 14 ... High pressure pump, 18 ... Pump chamber, 19 ... Piston, 22 ... Suction port, 23 ... Fuel pressure control valve, 27 ... Discharge port, 28 ... Check valve, 32 ... High pressure fuel Piping, 33 ... Delivery pipe, 34 ... Fuel injection valve, 35 ... Fuel pressure sensor (fuel pressure detection means), 36 ... Cooling water temperature sensor, 37 ... ECU (idle stop means, control means), 38 ... Ignition switch, 39 ... Outside temperature Sensor, 41 ... relief valve (pressure reduction mechanism), 42 ... relief piping

Claims (8)

筒内噴射式内燃機関の自動停止及び自動再始動を制御するアイドルストップ手段と、高圧ポンプから燃料噴射弁に高圧の燃料を供給する高圧燃料系内の燃料の圧力(以下「燃圧」という)を減圧するための減圧機構と、前記高圧燃料系内の燃圧を検出する燃圧検出手段と、この燃圧検出手段で検出した燃圧を設定燃圧まで減圧するように前記減圧機構を制御する制御手段とを備えた筒内噴射式内燃機関の燃圧制御装置において、
前記制御手段は、前記アイドルストップ手段による自動停止時の設定燃圧をイグニッションスイッチのオフ操作による手動停止時の設定燃圧よりも高い燃圧に設定することを特徴とする筒内噴射式内燃機関の燃圧制御装置。
Idle stop means for controlling automatic stop and automatic restart of the direct injection internal combustion engine, and the pressure of the fuel in the high pressure fuel system that supplies high pressure fuel from the high pressure pump to the fuel injection valve (hereinafter referred to as “fuel pressure”) A pressure reducing mechanism for reducing pressure, fuel pressure detecting means for detecting a fuel pressure in the high pressure fuel system, and control means for controlling the pressure reducing mechanism so as to reduce the fuel pressure detected by the fuel pressure detecting means to a set fuel pressure. In a fuel injection control device for a cylinder injection internal combustion engine,
The control means sets the set fuel pressure at the time of automatic stop by the idle stop means to a fuel pressure higher than the set fuel pressure at the time of manual stop by turning off the ignition switch, and controls the fuel pressure of the direct injection internal combustion engine apparatus.
前記制御手段は、前記自動停止時の設定燃圧を、自動再始動時の第1噴射を圧縮行程の後半に行ったときに良好な燃焼が得られる最低燃圧に設定することを特徴とする請求項1に記載の筒内噴射式内燃機関の燃圧制御装置。   The control means sets the set fuel pressure at the time of the automatic stop to a minimum fuel pressure at which good combustion is obtained when the first injection at the time of automatic restart is performed in the latter half of the compression stroke. The fuel pressure control device for a cylinder injection internal combustion engine according to claim 1. 前記制御手段は、前記自動停止時の設定燃圧を、自動停止時の冷却水温、油温、外気温のうちのいずれか1つ又は複数の温度に基づいて設定することを特徴とする請求項1,2に記載の筒内噴射式内燃機関の燃圧制御装置。   The said control means sets the set fuel pressure at the time of the said automatic stop based on any one or several temperature among the cooling water temperature at the time of an automatic stop, oil temperature, and external temperature. 2. A fuel pressure control device for a direct injection internal combustion engine according to claim 2. 前記制御手段は、前記自動停止時の冷却水温、油温、外気温のうちの前記自動停止時の設定燃圧の設定時に用いる温度が高くなるほど前記自動停止時の設定燃圧を低く設定することを特徴とする請求項3に記載の筒内噴射式内燃機関の燃圧制御装置。   The control means sets the set fuel pressure at the time of the automatic stop to be lower as the temperature used for setting the set fuel pressure at the time of the automatic stop is higher among the coolant temperature, the oil temperature, and the outside air temperature at the time of the automatic stop. A fuel pressure control device for a direct injection internal combustion engine according to claim 3. 前記制御手段は、前記自動停止時の設定燃圧を自動停止状態の継続時間に応じて変化させることを特徴とする請求項1乃至4のいずれかに記載の筒内噴射式内燃機関の燃圧制御装置。   The fuel pressure control device for a direct injection internal combustion engine according to any one of claims 1 to 4, wherein the control means changes the set fuel pressure at the time of the automatic stop according to the duration of the automatic stop state. . 前記制御手段は、前記自動停止状態の継続時間が所定時間以上継続したときに前記自動停止時の設定燃圧を前記イグニッションスイッチのオフ操作による手動停止時の設定燃圧と同一の燃圧又はそれに近い燃圧まで低下させることを特徴とする請求項5に記載の筒内噴射式内燃機関の燃圧制御装置。   When the duration of the automatic stop state continues for a predetermined time or more, the control means sets the set fuel pressure at the time of the automatic stop to the fuel pressure that is the same as or close to the set fuel pressure at the time of manual stop by turning off the ignition switch. 6. The fuel pressure control device for a cylinder injection internal combustion engine according to claim 5, wherein the fuel pressure control device is reduced. 前記制御手段は、前記イグニッションスイッチのオフ操作による手動停止時の設定燃圧を、手動停止時の冷却水温、油温、外気温、燃料温度、デリバリパイプ温度のうちのいずれか1つ又は複数の温度に基づいて設定することを特徴とする請求項1乃至6のいずれかに記載の筒内噴射式内燃機関の燃圧制御装置。   The control means is configured to set a set fuel pressure at the time of manual stop by turning off the ignition switch to one or more of a coolant temperature, an oil temperature, an outside air temperature, a fuel temperature, and a delivery pipe temperature at the time of manual stop. The fuel pressure control device for a direct injection internal combustion engine according to any one of claims 1 to 6, wherein the fuel pressure control device is set based on the above. 前記制御手段は、前記手動停止時の冷却水温、油温、外気温、燃料温度、デリバリパイプ温度のうちの前記手動停止時の設定燃圧の設定時に用いる温度が高くなるほど前記手動停止時の設定燃圧を高く設定することを特徴とする請求項7に記載の筒内噴射式内燃機関の燃圧制御装置。   The control means is configured such that the set fuel pressure at the time of manual stop increases as the temperature used at the time of setting the set fuel pressure at the time of manual stop among the coolant temperature, the oil temperature, the outside air temperature, the fuel temperature, and the delivery pipe temperature at the time of manual stop is higher The fuel pressure control device for a direct injection internal combustion engine according to claim 7, wherein the fuel pressure control device is set high.
JP2007248588A 2007-09-26 2007-09-26 Fuel pressure control device for cylinder injection type internal combustion engine Pending JP2009079514A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007248588A JP2009079514A (en) 2007-09-26 2007-09-26 Fuel pressure control device for cylinder injection type internal combustion engine
CNA2008101658249A CN101397960A (en) 2007-09-26 2008-09-25 Gas-fired compressor control device and high-pressure pump control device of direct injection engine
DE200810042371 DE102008042371A1 (en) 2007-09-26 2008-09-25 Fuel pressure control device for direct fuel injection engine, has idle running stop system which controls automatic stop and automatic restart of direct injection engine
CN2010105566506A CN101982652A (en) 2007-09-26 2008-09-25 Fuel pressure controller and high pressure pump controller of direct-injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248588A JP2009079514A (en) 2007-09-26 2007-09-26 Fuel pressure control device for cylinder injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009079514A true JP2009079514A (en) 2009-04-16

Family

ID=40516747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248588A Pending JP2009079514A (en) 2007-09-26 2007-09-26 Fuel pressure control device for cylinder injection type internal combustion engine

Country Status (2)

Country Link
JP (1) JP2009079514A (en)
CN (1) CN101397960A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127524A (en) * 2009-12-18 2011-06-30 Bosch Corp Control device and control method of pressure accumulating type fuel injection device, and pressure accumulating type fuel injection device
JP2011132872A (en) * 2009-12-24 2011-07-07 Denso Corp Fuel pressure control device
EP2492480A1 (en) * 2009-10-23 2012-08-29 Bosch Corporation Control device for internal combustion engine
JP2017510743A (en) * 2014-10-14 2017-04-13 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Method of operating a fuel supply system for an internal combustion engine
DE102016207297B3 (en) * 2016-04-28 2017-10-19 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine, device for controlling and / or regulating an internal combustion engine, injection system and internal combustion engine
CN107642440A (en) * 2016-07-20 2018-01-30 豆德旗 Oil way of diesel vehicle leads to self compensating system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116231B (en) * 2009-12-31 2013-01-30 比亚迪股份有限公司 Pressure regulating valve for oil supply line of engine
IT1402820B1 (en) * 2010-11-10 2013-09-27 Magneti Marelli Spa METHOD TO DETERMINE THE LAW OF INJECTION OF A FUEL INJECTOR
US8882635B2 (en) * 2011-06-08 2014-11-11 Ford Global Technologies, Llc Controlling an automatic vehicle restart on a hill

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492480A1 (en) * 2009-10-23 2012-08-29 Bosch Corporation Control device for internal combustion engine
EP2492480A4 (en) * 2009-10-23 2014-01-01 Bosch Corp Control device for internal combustion engine
JP2011127524A (en) * 2009-12-18 2011-06-30 Bosch Corp Control device and control method of pressure accumulating type fuel injection device, and pressure accumulating type fuel injection device
JP2011132872A (en) * 2009-12-24 2011-07-07 Denso Corp Fuel pressure control device
DE102010063586B4 (en) * 2009-12-24 2017-10-19 Denso Corporation Fuel pressure control unit
JP2017510743A (en) * 2014-10-14 2017-04-13 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Method of operating a fuel supply system for an internal combustion engine
US10309335B2 (en) 2014-10-14 2019-06-04 Continental Automotive Gmbh Fuel-supply system for an internal combustion engine
DE102016207297B3 (en) * 2016-04-28 2017-10-19 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine, device for controlling and / or regulating an internal combustion engine, injection system and internal combustion engine
US10641199B2 (en) 2016-04-28 2020-05-05 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine, device for the open-loop and/or closed-loop control of an internal combustion engine, injection system and internal combustion engine
CN107642440A (en) * 2016-07-20 2018-01-30 豆德旗 Oil way of diesel vehicle leads to self compensating system

Also Published As

Publication number Publication date
CN101397960A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
US7801672B2 (en) After-stop fuel pressure control device of direct injection engine
JP5282878B2 (en) In-cylinder injection internal combustion engine control device
US7318421B2 (en) Startup controller for in-cylinder injection internal combustion engine
JP5387538B2 (en) Fail safe control device for in-cylinder internal combustion engine
JP2009079514A (en) Fuel pressure control device for cylinder injection type internal combustion engine
US7822534B2 (en) Fuel supply device and fuel supply method for internal combustion engine
US20100268441A1 (en) Controller for fuel pump
JP4127188B2 (en) Fuel supply device for internal combustion engine
JP2007218144A (en) Fuel pressure control device for cylinder injection internal combustion engine
JP2007285128A (en) Start control device of internal combustion engine
US20140251280A1 (en) Control apparatus for internal combustion engine and control method for internal combustion engine
JP2010019088A (en) Idling stop control device and fuel injection system using same
JP4407827B2 (en) In-cylinder injection internal combustion engine control device
JPH11270385A (en) Fuel injection device of internal combustion engine
JP2006348908A (en) Engine control device, engine control system and engine control method
JP2009079564A (en) High-pressure pump control device of internal combustion engine
JP5989406B2 (en) Fuel pressure control device
JP2010116835A (en) High-pressure pump control device for cylinder injection type internal combustion engine
US10508611B2 (en) Control device and control method for internal combustion engine
JP2009091963A (en) After-stop fuel pressure control device for cylinder injection internal combustion engine
JPH11315730A (en) Fuel pressure controller of accumulation type fuel injection mechanism
JP2005147019A (en) Fuel pressure control device for cylinder injection type internal combustion engine
JP5018374B2 (en) Fuel injection system for internal combustion engine
JP2003328830A (en) Accumulator fuel injection system
JP2009062961A (en) Control device of diesel engine