JP2009076272A - 燃料電池 - Google Patents
燃料電池 Download PDFInfo
- Publication number
- JP2009076272A JP2009076272A JP2007242948A JP2007242948A JP2009076272A JP 2009076272 A JP2009076272 A JP 2009076272A JP 2007242948 A JP2007242948 A JP 2007242948A JP 2007242948 A JP2007242948 A JP 2007242948A JP 2009076272 A JP2009076272 A JP 2009076272A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- passage
- fuel cell
- flow path
- distribution mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
【課題】気泡詰まりを生じることなく、所望流量の液体燃料を燃料分配機構の分岐通路の末端に至るまで供給できるとともに、送液ポンプの負荷を軽減することができる燃料電池を提供する。
【解決手段】燃料極13と、空気極16と、電解質膜17とを有する膜電極接合体2と、燃料分配機構3と、燃料収容部4と、燃料収容部を燃料分配機構に接続する供給流路5とを具備する燃料電池であって、前記燃料分配機構3は、供給流路に連通する燃料注入口31と、燃料注入口から一様に連続する所定の流路断面を有する主通路20と、燃料極と対向するように開口する複数の燃料排出口と、主通路から燃料排出口までの間に設けられ、主通路から燃料排出口までの間において上流側から下流側に移行するに従って流路断面形状および分岐構造がそれぞれ調整され、所望の流路抵抗を有する複数の分岐通路21〜27とを有する。
【選択図】図1
【解決手段】燃料極13と、空気極16と、電解質膜17とを有する膜電極接合体2と、燃料分配機構3と、燃料収容部4と、燃料収容部を燃料分配機構に接続する供給流路5とを具備する燃料電池であって、前記燃料分配機構3は、供給流路に連通する燃料注入口31と、燃料注入口から一様に連続する所定の流路断面を有する主通路20と、燃料極と対向するように開口する複数の燃料排出口と、主通路から燃料排出口までの間に設けられ、主通路から燃料排出口までの間において上流側から下流側に移行するに従って流路断面形状および分岐構造がそれぞれ調整され、所望の流路抵抗を有する複数の分岐通路21〜27とを有する。
【選択図】図1
Description
本発明は、携帯機器の動作に有効な平面配置の燃料電池に係り、特に内部気化型直接メタノール燃料電池(DMFC;Direct Methanol Fuel Cell)に関する。
近年、パーソナルコンピュータ、携帯電話等の各種電子機器は、半導体技術の発達と共に小型化され、燃料電池をこれらの小型機器用の電源に用いることが試みられている。燃料電池は、燃料と酸化剤を供給するだけで発電することができ、燃料のみを補充・交換すれば連続して発電できるという利点を有している。このため、小型化ができれば携帯電子機器の作動に極めて有利なシステムといえる。特に直接メタノール燃料電池(DMFC)は、エネルギー密度の高いメタノールを燃料に用い、メタノールから電極触媒上で直接電流を取り出せるため、小型化が可能であり、また燃料の取り扱いも水素ガス燃料に比べて容易なことから小型機器用電源として有望であり、携帯電話、携帯オーディオ、携帯ゲーム機、ノートパソコンなどのコードレス携帯機器に最適な電源としてその実用化が期待されている。
DMFCの燃料の供給方法としては、液体燃料を気化してからブロア等で燃料電池内に送り込む気体供給型DMFC、液体燃料をそのままポンプ等で燃料電池内に送り込む液体供給型DMFC、および液体燃料をセル内で気化させる内部気化型DMFC等が知られている。
これらのうち内部気化型DMFCは、例えば特許文献1では、燃料極、電解質膜および空気極を有する膜電極接合体(MEA;Membrane Electrode Assembly)を樹脂製の箱状容器からなる燃料収容部上に配置した構造が提案されている。燃料収容部から気化した燃料を直接MEAに供給する場合、燃料電池の出力の制御性を高めることが重要となるが、従来の内部気化型DMFCでは必ずしも十分な出力制御性が得られていないのが実情である。
一方、特許文献2〜4では、DMFCのMEAと燃料収容部とを流路を介して接続することが提案されている。燃料収容部から供給された液体燃料をMEAに流路を介して供給することによって、流路の形状や径等に基づいて液体燃料の供給量を調整することができる。但し、流路からの液体燃料の供給構造によっては、MEAに対する燃料の供給状態が不均一になり、燃料電池の出力が低下するおそれがある。例えば、溝上の流路に沿って液体燃料を通流させる場合、流路内を液体燃料が流れるに従って燃料が順次消費されていくため、流路の出口側では燃料濃度が減少する。このため、MEAの流路出口に近い部分では発電反応が低下し、その結果として出力の低下を招いてしまう。
特許文献3は、燃料収容部から流路を介してMEAにポンプで液体燃料を供給する燃料電池システムを提案している。また、特許文献3には、汎用ポンプの代わりに、流路に電気浸透流を形成する電界形成手段(電気浸透流ポンプ)を用いることも記載されている。
特許文献4は、電気浸透流ポンプを用いて液体燃料を供給する燃料電池システムを提案している。燃料の循環構造を適用した燃料電池ではポンプが有効であるものの、内部気化型DMFCのように燃料を循環させない場合には、単にポンプを適用しても燃料消費量が増大するだけで、MEA全体での均一な発電反応を生起させることは難しい。
国際公開第2005/112172号パンフレット
特表2005−518646号公報
特開2006−085952号公報
米国特許出願公開番号2006/0029851号公報
しかしながら、従来の内部気化型DMFCでは、液体燃料をMEA燃料極の全面に均等に供給するために、気化室の気液分離膜の直前に分配板を配置し、分配板の内部に形成された多数の分岐流路に液体燃料を通流させるようにしているが、分岐流路における圧力損失が大きいことからポンプ背圧を大きくする必要があり、ポンプの負荷が大きい。また、ポンプ背圧を過大にすると、流路内で気泡が発生しやすくなり、液体燃料の円滑な流れを阻害する所謂気泡詰まりを生じるおそれがある。気泡詰まりが発生すると、発電出力の低下やばらつきを生じる。
本発明は上記課題を解決するためになされたものであり、気泡詰まりを生じることなく、所望流量の液体燃料を燃料分配機構の分岐通路の末端に至るまで供給できるとともに、送液ポンプの負荷を軽減することができる燃料電池を提供することを目的とする。
本発明者らは、先の特願2006−353947号の出願明細書等により燃料分配機構の基本的な構造を提案しているが、その後に鋭意研究開発を進めた結果、これに更に改良を加えて、気泡詰まりを生じるおそれがなく、燃料極に対して均一かつ効率的に液体燃料を供給する技術を以下のように確立した。
本発明に係る燃料電池は、燃料極と、空気極と、前記燃料極と前記空気極との間に挟持された電解質膜とを有する膜電極接合体と、前記膜電極接合体の燃料極側に配置され、前記燃料極の複数箇所に対して燃料を分配供給する燃料分配機構と、液体燃料を収容する燃料収容部と、前記燃料収容部を前記燃料分配機構に接続する供給流路と、を具備する燃料電池であって、前記燃料分配機構は、前記供給流路に連通する燃料注入口と、前記燃料注入口から一様に連続する所定の流路断面を有する主通路と、前記燃料極と対向するように開口する複数の燃料排出口と、前記主通路から前記燃料排出口までの間に設けられ、前記主通路から前記燃料排出口までの間において上流側から下流側に移行するに従って流路断面形状および分岐構造がそれぞれ調整され、所望の流路抵抗を有する複数の分岐通路と、を有することを特徴とする。
上記の場合に、分岐通路は、上流側から下流側に移行するに従って流路断面が段階的に減少するように、主通路または上流側の分岐通路から分岐し、その末端が燃料排出口に連通していることが好ましい。このようにするとポンプ背圧を過大にすることなく、適正なポンプ背圧を用いて複数の分岐通路に対して適正量の液体燃料を分配できるようになる。また、通路内において液体燃料中に気泡が発生しなくなり、気泡詰まりを生じなくなる。
主通路および分岐通路は、単一または複数の細管で形成されていることが望ましい。特に主通路は、一様な直径をもつ単一の細管であることが望ましい。主通路は、複数の分岐通路に対して液体燃料を分配するヘッダ機能を有するため、各分岐通路に対して均等に液体燃料を分配・供給する必要があるからである。
上流側の分岐通路よりも下流側の分岐通路のほうが相当直径が小さいことが好ましい。相当直径は次のように定義される。
「相当直径」とは、円形以外の形状(例えば矩形)を円形(真円)の直径に換算した指数をいい、流路の断面積(a×b)を流路断面の周長(2a+2b)で割ったものを4倍することにより与えられる。すなわち、流路の断面サイズaとbを下式(1)に代入することにより相当直径deを算出することができる。例えば、高さaが50μm、幅bが25μmの流路では、その相当直径deは1.33となる。
de=4ab/(2a+2b) …(1)
主通路および分岐通路は、流路断面の縦横比が1に近くなるように形成されていることが好ましい。特に主通路の縦横比を1に近似させると、主通路自体における圧力損失が抑えられ、主通路のヘッダ機能が十分に発揮されるようになる。
主通路および分岐通路は、流路断面の縦横比が1に近くなるように形成されていることが好ましい。特に主通路の縦横比を1に近似させると、主通路自体における圧力損失が抑えられ、主通路のヘッダ機能が十分に発揮されるようになる。
分岐通路は、毛管力を主体とする駆動力により液体燃料の輸送量が制御されるように、燃料排出口の近傍で流路断面積を小さくすることが好ましい。毛管力とポンプ駆動力とを組合せて液体燃料を膜電極接合体に供給・分配する所謂セミパッシブ方式の燃料分配機構では、燃料排出口の数が増加するにしたがって、ポンプに掛かる負荷が指数関数的に増加するため、毛管力の果たす役割が相対的に大きくなるからである。分岐通路の末端を上記のように例えば縦a=50μm,横b=25μm(相当直径1.33)にすると、十分な毛管力を生じ、ポンプの負荷が大幅に軽減されるようになる。
液体燃料が分岐通路内でレイノルズ数2000以下の層流状態で流れるように、主通路および分岐通路が形成されていることが好ましい。流体の流れが層流から乱流に変わる臨界レイノルズ数Recが約2000〜3000の範囲にあるとされているからである。
レイノルズ数Re(無次元)は、流路内の流れの状態、すなわち流体の粘性に対する慣性の大きさを表す指数であり、下式(2)で与えられる。
Re=(u×de×ρ)/μ …(2)
但し、u:流速、de:相当直径、ρ:流体密度、μ:流体粘度
分岐通路は、分岐前の流路断面積と分岐後の流路断面積との総和が等しく、かつ分岐後の複数の流路断面積が実質的に同等になるように分岐していることが好ましい。このような分岐構造をもつ燃料分配機構では、流路抵抗が最小限度に抑えられ、気泡詰まりの発生が有効に防止される。
但し、u:流速、de:相当直径、ρ:流体密度、μ:流体粘度
分岐通路は、分岐前の流路断面積と分岐後の流路断面積との総和が等しく、かつ分岐後の複数の流路断面積が実質的に同等になるように分岐していることが好ましい。このような分岐構造をもつ燃料分配機構では、流路抵抗が最小限度に抑えられ、気泡詰まりの発生が有効に防止される。
燃料注入口は一つのみとすることが好ましい。単一の燃料注入口から燃料分配機構に液体燃料を導入すると、燃料の供給圧力や濃度のばらつきを最小限に抑え、燃料極の全体に液体燃料を均等に分配しやすくなるからである。勿論、燃料注入口を複数個所に配置して、複数の燃料注入口から液体燃料を燃料分配機構に導入するようにしてもよい。
液体燃料は、メタノール濃度が80モル%以上のメタノール水溶液または純メタノール液であることが望ましい。燃料濃度が80モル%以下では出力が低下しやすく、液体燃料の供給頻度が増加するからである。
本発明によれば、気泡詰まりを生じることなく、燃料分配機構の分岐通路の末端まで所望流量の液体燃料を供給できるとともに、送液ポンプの負荷を軽減できるため、携帯電話、携帯オーディオ、携帯ゲーム機、ノートパソコンなどのコードレス携帯機器などに優れた電源となる燃料電池が提供される。
以下、添付の図面を参照して本発明を実施するための最良の形態を説明する。
先ず、燃料電池の全体概要について図1を参照して説明する。
燃料電池1は、外側が外装ケース18と燃料分配機構3の分配板30とで覆われ、内部に膜電極接合体(MEA)2が収納されている。外装ケース18と分配板30とは、その間にMEA2を挟み込んでネジ止めされるとともに、外装ケース18の端部を分配板30にかしめ加工して一体化されている。MEA2の外周には一対のオーリング19が設けられ、外装ケース18とMEA2との間、および分配板30とMEA2との間がシールされ、内部の燃料が外部に漏れ出さないようにされている。
MEA2は、短冊状の複数の単電極(単位セル)を有する多極構造の発電要素である。複数の単電極は、ほぼ同一平面上に並んで配置され、直列に電気接続されている。本実施形態では、4つの単電極を直列に接続した4直列配置の燃料電池とした例を説明する。単電極の各々は、MEA2、図示しない正極集電体(カソード導電層)および負極集電体(アノード導電層)を備えている。
正極集電体の側には保湿板(図示せず)が設けられ、外気の空気の通過を阻害せず、外部からの微笑の埃や異物の混入、さらには接触などを防止するようになっている。この保湿板としては、好ましくは気孔率が例えば20〜60%の多孔性フィルムなどが用いられる。なお、空気導入のために、外装ケース18の主面に複数の通気孔(図示せず)が開口している。空気は、これらの通気孔を通って内部に入り、保湿板を透過してMEA2の空気極(カソード)16に供給される。
燃料極13および空気極16に含有される触媒としては、例えば、白金族元素の単体金属(Pt、Ru、Rh、Ir、Os、Pd等)、白金族元素を含有する合金などを挙げることができる。アノード触媒には、メタノールや一酸化炭素に対する耐性の強いPt−Ru、カソード触媒には、白金を用いることが望ましいが、これに限定されるものでは無い。また、炭素材料のような導電性担持体を使用する担持触媒を使用しても、あるいは無担持触媒を使用してもよい。
電解質膜17は、燃料極13において発生したプロトンを空気極16に輸送するためのものであり、電子伝導性を持たず、プロトンを輸送することが可能な材料により構成されている。例えば、スルホン酸基を有するフッ素系樹脂(例えば、パーフルオロスルホン酸重合体)、スルホン酸基を有するハイドロカーボン系樹脂、タングステン酸やリンタングステン酸などがあげられるが、具体的には、デュポン社製のナフィオン膜(登録商標)、旭硝子社製のフレミオン膜(登録商標)、あるいは旭化成工業社製のアシプレックス膜(登録商標)などにより構成されている。なお、ポリパーフルオロスルホン酸系の樹脂膜以外にも、トリフルオロスチレン誘導体の共重合膜、リン酸を含浸させたポリベンズイミダゾール膜、芳香族ポリエーテルケトンスルホン酸膜、あるいは脂肪族炭化水素系樹脂獏などプロトンを輸送可能な電解質膜17を構成するようにしてもよい。
MEA2の燃料極(アノード)13側には、図1に示すように燃料分配機構3が配置されている。この燃料分配機構3は、供給流路5を介して燃料収容部4に接続されている。燃料分配機構3には所定の燃料供給方式により燃料収容部4から供給流路5を介して液体燃料41が導入されるようになっている。燃料供給方式として純パッシブ方式またはセミパッシブ方式を採用することができる。図1に示す本実施形態の燃料電池1では毛管力のみを利用する純パッシブ方式としているが、毛管力とポンプ駆動力とを組み合わせたセミパッシブ方式を用いてもよい。なお、セミパッシブ方式は、本発明者らの先の出願である特願2006−353947号の出願明細書等に詳しく記載されている。なお、供給流路5は燃料分配機構3や燃料収容部4から独立した配管に限られるものではない。例えば、燃料分配機構3と燃料収容部4とを積層して一体化する場合、これらを繋ぐ液体燃料の流路であってもよい。
図2に示すように、燃料分配機構3は分配板30を備えている。分配板30は、単一の燃料注入口31と、燃料注入口31に連通する導入管20と、導入管20に連通する主通路21と、主通路21から次々にシーケンシャルに分岐する第1〜第6の分岐通路22〜27と、最後尾の第6の分岐通路27の末端にて開口する燃料排出口27aとを有する。燃料注入口31は導入管20の一端(始端部)側に連続している。導入管20は、一様な径(例えば相当内径が0.05〜5mm)を有する矩形断面の細管からなり、これに続く通路21〜27に対して液体燃料を分配するヘッダとして機能するものである。
導入管20からは4本の主通路21が分岐し、主通路21の各々からは2本の第1の分岐通路22がそれぞれ分岐し、第1の分岐通路22の各々からは2本の第2の分岐通路23がそれぞれ分岐し、第2の分岐通路23の各々からは2本の第3の分岐通路24がそれぞれ分岐し、第3の分岐通路24の各々からは2本の第4の分岐通路25がそれぞれ分岐し、第4の分岐通路25の各々からは2本の第5の分岐通路26がそれぞれ分岐し、第5の分岐通路26の各々からは2本の第6の分岐通路27がそれぞれ分岐している。最後尾に位置する第6の分岐通路27は、総数が128本であり、各末端にて燃料排出口27aがそれぞれ開口している。これらの燃料排出口27aは、すべてMEA2の燃料極13のほうを向いている。
次に、図3および表1を参照して燃料分配機構における分岐通路について詳しく説明する。
本実施形態では、導入管20として相当内径が1.2mmの矩形断面角管(樹脂またはセラミックなどの非金属)を用いた。主通路21には内のりの高さ400μm×幅400μm×長さ3mmの正方断面角管(樹脂またはセラミックなどの非金属)を用いた。第1の分岐通路22は、高さaが50μm、幅bが800μmの矩形断面で、長さが2mm、第2の分岐通路23は、高さaが50μm、幅bが400μmの矩形断面で、長さが6mm、第3の分岐通路24は、高さaが50μm、幅bが200μmの矩形断面で、長さが5mm、第4の分岐通路25は、高さaが50μm、幅bが100μmの矩形断面で、長さが14mm、第5の分岐通路26は、高さaが50μm、幅bが50μmの正方形断面で、長さが25mm、第6の分岐通路27は、高さaが50μm、幅bが25μmの矩形断面で、長さが45mmとした。このように、主通路21を除いて、第1乃至第6の分岐通路22〜27をすべて同じ高さa(=50μm)としたのは、後述する製作上の事情に起因している。なお、燃料注入口31から燃料排出口27aに至るまでの流路の全長を約100mmとした。
次に、燃料分配機構3の分配板30を製作する方法について簡単に説明する。
分配板30は、ポリエチレン(PE)のようなパターンエッチング可能な材質の樹脂でつくられている。2枚の樹脂板を準備し、一方の樹脂板の片面にフォトリソグラフィ・プロセスを利用するパターンエッチングにより第1〜第6の分岐通路22〜27、主通路21等用のスペースおよび燃料排出口27aを形成する。このパターンエッチングした樹脂板と他方の樹脂板(平板)との間にセラミック角管を挟み込み、これらを接着剤で接着して貼り合わせる。セラミック角管は導入管20および主通路21となるべきものである。接着により2枚の樹脂板とセラミック角管とが一体化する。この予成形体の周囲をトリミング加工するとともに燃料排出口27aからバリを除去する。これにより所望の分配板30を得る。このようにして製作した分配板30の燃料注入口31に燃料収容部41からの流路5を接続し、さらに外装ケース18およびMEA2と組み合わせると、所望の燃料電池1が得られる。このようなマイクロチャネル流路の製造方法は特開2006−181740号公報に詳しく記載されている。
液体燃料は、燃料電池1内を次のようにして通流する。
燃料注入口31から分配板30に導入された液体燃料は、導入管20から主通路21を通って、複数に分岐した第1乃至第6の分岐通路22〜27を介して複数の燃料排出口27aにそれぞれ導かれる。複数の燃料排出口27aには、例えば液体燃料の気化成分のみを透過し、液体成分は透過させない気液分離膜(図示せず)が配置されており、液体燃料の気化成分のみが透過してMEA2の燃料極(アノード)13に供給されるようになっている。従って、液体燃料の気化成分は複数の燃料排出口27aから燃料極13の複数個所に向けて排出される。なお、分離体は燃料分配機構3と燃料極13との間に気液分離膜等として設置してもよい。
燃料分配機構3とMEA2との間に気液分離膜(図示せず)が設けられ、複数の燃料排出口27aから排出される液体燃料またはその気化成分を燃料極13のガス拡散層12に透過させる。気液分離膜は、液体燃料(例えばメタノール溶液)の気化成分のみを透過させて、液体燃料そのものは透過させない性質を有するものである。気液分離膜には例えばシリコンシートやPTFE膜などの多孔膜を用いる。ここで、液体燃料の気化成分とは、液体燃料として液体のメタノールを使用した場合は気化したメタノールを意味し、液体燃料としてメタノール水溶液を使用した場合にはメタノールの気化成分と水の気化成分からなる混合ガスを意味する。
燃料排出口27aはMEA2の全体に燃料を供給することが可能なように、分配板30の燃料極13と接する面に複数設けられている。燃料排出口27aの個数は4直列接続の場合には4個以上であればよいが、MEA2の面内における燃料供給量を均一化する上で、1〜16個/cm2の燃料排出口27aが存在するように形成することが好ましい。燃料排出口27aの個数が1個/cm2未満であると、MEA2に対する燃料供給量を十分に均一化することができない。燃料排出口27aの個数を16個/cm2を超えて形成しても、それ以上の効果が得られない。
燃料分配機構3から放出された燃料は、上述したようにMEA2の燃料極13に供給される。MEA2内において、燃料はアノードガス拡散層12を拡散してアノード触媒層11に供給される。液体燃料としてメタノール燃料を用いた場合、アノード触媒層11で下記の(1)式に示すメタノールの内部改質反応が生じる。なお、メタノール燃料として純メタノールを使用した場合には、カソード触媒層14で生成した水や電解質膜17中の水をメタノールと反応させて(1)式の内部改質反応を生起させる。あるいは、水を必要としない他の反応機構により内部改質反応を生じさせる。
CH3OH+H2O → CO2+6H++6e- …(1)
この反応で生成した電子(e-)は集電体を経由して外部に導かれ、いわゆる電気として携帯用電子機器等を動作させた後、カソード(空気極)16に導かれる。また、(1)式の内部改質反応で生成したプロトン(H+)は電解質膜17を経てカソード16に導かれる。カソード16には酸化剤として空気が供給される。カソード16に到達した電子(e-)とプロトン(H+)は、カソード触媒層14で空気中の酸素と下記の(2)式にしたがって反応し、この反応に伴って水が生成する。
この反応で生成した電子(e-)は集電体を経由して外部に導かれ、いわゆる電気として携帯用電子機器等を動作させた後、カソード(空気極)16に導かれる。また、(1)式の内部改質反応で生成したプロトン(H+)は電解質膜17を経てカソード16に導かれる。カソード16には酸化剤として空気が供給される。カソード16に到達した電子(e-)とプロトン(H+)は、カソード触媒層14で空気中の酸素と下記の(2)式にしたがって反応し、この反応に伴って水が生成する。
6e-+6H++(3/2)O2 → 3H2O …(2)
複数の燃料排出口27aはMEA2の全面に燃料が供給されるように配置されているため、MEA2に対する燃料供給量を均一化することができる。すなわち、アノード(燃料極)13の面内における燃料の分布が平準化され、MEA2内での発電反応に必要とされる燃料を全体的に過不足なく供給することができる。従って、燃料電池1の大型化や複雑化等を招くことなく、MEA2で効率的に発電反応を生起させることができる。これによって、燃料電池1の出力を向上させることが可能となる。言い換えると、燃料を循環させないパッシブ型燃料電池1の利点を損なうことなく、出力やその安定性を高めることができる。
複数の燃料排出口27aはMEA2の全面に燃料が供給されるように配置されているため、MEA2に対する燃料供給量を均一化することができる。すなわち、アノード(燃料極)13の面内における燃料の分布が平準化され、MEA2内での発電反応に必要とされる燃料を全体的に過不足なく供給することができる。従って、燃料電池1の大型化や複雑化等を招くことなく、MEA2で効率的に発電反応を生起させることができる。これによって、燃料電池1の出力を向上させることが可能となる。言い換えると、燃料を循環させないパッシブ型燃料電池1の利点を損なうことなく、出力やその安定性を高めることができる。
このような構造の燃料分配機構3を使用することによって、燃料注入口31から燃料分配機構3内に注入された液体燃料を方向や位置に係わりなく、複数の燃料排出口27aに均等に分配することができる。従って、MEA2の面内における発電反応の均一性をより一層高めることが可能となる。
本実施形態の燃料電池1においては、上述したように複数の燃料排出口27aを有する燃料分配機構3を適用している。液体燃料41は、供給流路5を通って燃料注入口31から燃料分配機構3に導入される。燃料分配機構3において、液体燃料41は、ストレート形状の細管からなる導入管20のなかに流れ込み、導入管20からシーケンシャルに分岐する4本の主通路21および第1〜第6の分岐通路22〜27に分配され、最終的には第6の分岐通路27の末端に連通する総計128箇所の燃料排出口27aからMEA2の燃料極13に向けて一斉に噴き出す。
導入管20と主通路21はヘッダとして機能するため、複数の燃料排出口27aの各々から規定濃度の液体燃料41がそれぞれ排出される。また、複数の燃料排出口27aはMEA2の全面に燃料が供給されるように配置されているため、MEA2に対する燃料供給量を均一化することができる。すなわち、燃料極13の面内における燃料の分布が平準化され、MEA2での発電反応に必要とされる燃料を全体的に過不足なく供給することができる。従って、燃料電池1の大型化や複雑化等を招くことなく、MEA2で効率的に発電反応を生起させることができる。これによって燃料電池1の出力が向上する。
上記実施の形態で用いた燃料分配機構3は、その内部に設けた導入管20から液体燃料を複数の燃料排出口27aに分配している。このため、厳密には燃料注入口31に近い側の温度が若干高く、奥に行くに従って温度が低下する現象が観察される。
燃料注入口31から燃料分配機構3に導入された液体燃料41は、複数に分岐した主通路21および分岐通路22〜27を介して複数の燃料排出口27aにそれぞれ導かれる。このような構造の燃料分配機構3を使用することによって、燃料注入口31から燃料分配機構3内に注入された液体燃料41を方向や位置に拘わりなく、複数の燃料排出口27aに均等に分配することができる。従って、MEA2の面内における発電反応の均一性をより一層高めることが可能となる。
さらに、導入管20、主通路21および分岐通路22〜27で燃料注入口31と複数の燃料排出口27aとを接続することによって、燃料電池1の特定箇所により多くの燃料を供給するような設計が可能となる。例えば、装置装着上の都合から燃料電池1の半分の部位の放熱がよくなってしまうような場合、従来では温度分布が生じてしまい、平均出力の低下が避けられない。これに対して、分岐管22〜27の形成パターンを調整し、予め放熱のよい部分に燃料排出口27aを密に配置することによって、その部分での発電に伴う発熱を多くすることができる。これによって、面内の発電度合いを均一化することができ、出力低下を抑制することが可能となる。
図4は、横軸に管長L(mm)をとり、縦軸に圧力P(相対値)をとって、表1に示す分岐流路を有する実施例1の燃料電池および比較例の燃料電池とを比べて圧力損失を調べた結果を示す特性線図である。図中の特性線Aは実施例1の結果を、特性線Bは比較例の結果をそれぞれ示す。なお、縦軸の圧力Pは、ポンプで送液した直後の燃料注入口31の圧力を基準値(=1)とする相対圧力で表した。
図5の(a)は分岐しない流路概念1を示し、図5の(b)は分岐する流路概念2を示す。図4に示した結果は、図5に示すような流路概念1、2に基づきシミュレーションにより求めた。前提条件として、流入流量Qinを0.5μl/min(燃料排出口の1箇所当たりの流量)、出口圧力Poutは相対圧力をゼロ、管長Lを全長100mmに設定した。
図4から明らかなように、比較例に比べて実施例1では圧力損失が著しく少なくなり、実施例1では比較例よりもポンプ背圧で二桁(100分の1以下)も低下させることが可能となることが分かった。このような知見から、例えば米国特許2006/0029851A1号公報に記載された電気浸透流ポンプ(EOポンプ)を用いるセミパッシブ方式の燃料電池が十分に実用化可能な範囲となる。セミパッシブ方式の燃料電池については後述する。また、燃料分配機構内での液体燃料の流れが改善されることにより、気泡詰まりも発生しなくなるというメリットがある。
次に、セミパッシブ方式の燃料電池について説明する。
燃料収容部4から燃料分配機構3までの間の流路5にポンプを取り付け、毛管力ばかりでなくポンプ駆動力の補助により液体燃料をさらに効率良く輸送することができる。ポンプの種類は特に限定されるものではないが、少量の液体燃料を制御性よく送液することができ、さらに小型軽量化が可能という観点から、電気浸透流ポンプ(EOポンプ)、ロータリーポンプ(ロータリーベーンポンプ)、ダイアフラムポンプ、しごきポンプ等を使用することが好ましい。電気浸透流ポンプは電気浸透流現象を起こすシリカ等の焼結多孔体を用いたものである。電気浸透流ポンプは上述の特許文献2などに記載されている。ロータリーポンプはモータで羽を回転させて送液するものである。ダイアフラムポンプは電磁石や圧電セラミックスによりダイアフラムを駆動して送液するものである。しごきポンプは柔軟性を有する燃料流路の一部を圧迫し、燃料をしごき送るものである。これらのうち、駆動電力や大きさ等の観点から、電気浸透流ポンプや圧電セラミックスを有するダイアフラムポンプを使用することがより好ましい。
ポンプの送液量は燃料電池1の主たる対象物が小型電子機器であることから、10μL/分〜1mL/分の範囲とすることが好ましい。送液量が1mL/分を超えると一度に送液される液体燃料の量が多くなりすぎる。このため、MEA2への燃料の供給量の変動が大きくなり、その結果として出力の変動が大きくなる。これを防止するためのリザーバをポンプと燃料分配機構3との間に設けてもよいが、そのような構成を適用しても燃料供給量の変動を十分に抑制することはできず、さらに装置サイズの大型化等を招いてしまう。
一方、ポンプの送液量が10μL/分未満であると、装置立ち上げ時のように燃料の消費量が増える際に供給能力不足を招くおそれがある。これによって、燃料電池1の起動特性等が低下する。このような点から、10μL/分〜1mL/分の範囲の送液能力を有するポンプを使用することが好ましい。さらに、ポンプの送液量は10〜200μL/分の範囲とすることがより好ましい。このような送液量を安定して実現する上でも、ポンプには電気浸透流ポンプやダイアフラムポンプを適用することが好ましい。
また、燃料分配機構3の内部に積層された液体燃料含浸層を設けるようにしてもよい。液体燃料含浸層として、例えば多孔質ポリエステル繊維、多孔質オレフィン系樹脂等多硬質繊維や、連続気泡多孔質体樹脂が好ましい。液体燃料含浸層は、燃料収容部の液体燃料が減少した場合や燃料電池本体が傾斜して載置され燃料供給が偏った場合においても、図示しない気液分離膜に均等に液体燃料が供給され、その結果、燃料極触媒層11に均等に気化された液体燃料を供給することが可能となる。ポリエステル繊維以外にも、アクリル酸系の樹脂などの各種吸水性ポリマーにより構成してもよく、スポンジまたは繊維の集合体など液体の浸透性を利用して液体を保持することができる材料により構成する。本液体燃料含浸部は,本体の姿勢に関わらず適量の燃料を供給するのに有効である。
なお、液体燃料としては、必ずしもメタノール燃料に限られるものではなく、例えばエタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、もしくはその他の液体燃料であってもよい。いずれにしても、燃料電池に応じた液体燃料が使用される。特に燃料濃度が80モル%を超えるメタノール水溶液または純メタノール液であることが好適である。
なお、液体燃料を燃料収容部4から燃料分配機構3まで送る機構は特に限定されるものではない。例えば、使用時の設置場所が固定される場合には、重力を利用して液体燃料を燃料収容部4から燃料分配機構3まで落下させて送液することができる。また、多孔体等を充填した供給流路5を用いることによって、毛管力で燃料収容部4から燃料分配機構3まで送液することができる。また、燃料分配機構3からMEA2への燃料供給が行われる構成であればポンプに代えて燃料遮断バルブを配置する構成とすることも可能である。この場合には、燃料遮断バルブは、流路による液体燃料の供給を制御するために設けられるものである。さらに、燃料電池としての安定性や信頼性を高めるために、ポンプと直列に燃料遮断バルブを配置することができる。
ただし、遮断バルブをポンプと燃料収容部4との間の流路5に設置した場合、例えば長期保管時にポンプの燃料が枯渇(蒸発)すると、燃料収容部4からの液体燃料の吸出し機能に支障が生じるおそれがある。このようなことから、遮断バルブはポンプと燃料分配機構3との間の供給流路5に設置し、長期保管時等におけるポンプ31からの液体燃料の蒸発を防止することが好ましい。
このように、燃料収容部4と燃料分配機構3との間に遮断バルブを挿入することによって、燃料電池1の未使用時にも不可避的に発生する微量な燃料の消費や上述したポンプ再運転時の吸い込み不良等を回避することができる。これらは燃料電池1の実用上の利便性の向上に大きく貢献するものである。
1…燃料電池、
2…膜電極接合体(MEA)、
3…燃料分配機構、
4…燃料収容部、41…液体燃料、
5…供給流路、
11…アノード触媒層、12…負極集電体、13…燃料極、
14…カソード触媒層、15…正極集電体、16…空気極、
17…電解質膜(プロトン伝導膜)、
19…オーリング(シール部材)、
20…燃料通路(導入管)、
21…燃料通路(主通路)、
22…燃料通路(第1の分岐通路)、
23…燃料通路(第2の分岐通路)、
24…燃料通路(第3の分岐通路)、
25…燃料通路(第4の分岐通路)、
26…燃料通路(第5の分岐通路)、
27…燃料通路(第6の分岐通路)、
27a…燃料排出口、
30…分配板、31…燃料注入口。
2…膜電極接合体(MEA)、
3…燃料分配機構、
4…燃料収容部、41…液体燃料、
5…供給流路、
11…アノード触媒層、12…負極集電体、13…燃料極、
14…カソード触媒層、15…正極集電体、16…空気極、
17…電解質膜(プロトン伝導膜)、
19…オーリング(シール部材)、
20…燃料通路(導入管)、
21…燃料通路(主通路)、
22…燃料通路(第1の分岐通路)、
23…燃料通路(第2の分岐通路)、
24…燃料通路(第3の分岐通路)、
25…燃料通路(第4の分岐通路)、
26…燃料通路(第5の分岐通路)、
27…燃料通路(第6の分岐通路)、
27a…燃料排出口、
30…分配板、31…燃料注入口。
Claims (10)
- 燃料極と、空気極と、前記燃料極と前記空気極との間に挟持された電解質膜とを有する膜電極接合体と、前記膜電極接合体の燃料極側に配置され、前記燃料極の複数箇所に対して燃料を分配供給する燃料分配機構と、液体燃料を収容する燃料収容部と、前記燃料収容部を前記燃料分配機構に接続する供給流路と、を具備する燃料電池であって、
前記燃料分配機構は、
前記供給流路に連通する燃料注入口と、
前記燃料注入口から一様に連続する所定の流路断面を有する主通路と、
前記燃料極と対向するように開口する複数の燃料排出口と、
前記主通路から前記燃料排出口までの間に設けられ、前記主通路から前記燃料排出口までの間において上流側から下流側に移行するに従って流路断面形状および分岐構造がそれぞれ調整され、所望の流路抵抗を有する複数の分岐通路と、
を有することを特徴とする燃料電池。 - 前記分岐通路は、上流側から下流側に移行するに従って流路断面が段階的に減少するように、前記主通路または上流側の分岐通路から分岐し、その末端が前記燃料排出口に連通していることを特徴とする請求項1記載の燃料電池。
- 前記主通路および前記分岐通路は、単一または複数の細管で形成されていることを特徴とする請求項1または2のいずれか1項に記載の燃料電池。
- 上流側の分岐通路よりも下流側の分岐通路のほうが相当直径が小さいことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池。
- 前記主通路および前記分岐通路は、流路断面の縦横比が1に近くなるように形成されていることを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池。
- 前記分岐通路は、毛管力を主体とする駆動力により液体燃料の輸送量が制御されるように、前記燃料排出口の近傍で流路断面積を小さくすることを特徴とする請求項4に記載の燃料電池。
- 液体燃料が前記分岐通路内でレイノルズ数2000以下の層流状態で流れるように、前記主通路および前記分岐通路が形成されていることを特徴とする請求項1乃至6のいずれか1項に記載の燃料電池。
- 前記分岐通路は、分岐前の流路断面積と分岐後の流路断面積との総和が等しく、かつ分岐後の複数の流路断面積が実質的に同等になるように分岐していることを特徴とする請求項1乃至7のいずれか1項に記載の燃料電池。
- 前記燃料注入口は、一つのみであることを特徴とする請求項1乃至8のいずれか1項に記載の燃料電池。
- 前記液体燃料は、メタノール濃度が80モル%以上のメタノール水溶液または純メタノール液であることを特徴とする請求項1乃至9のいずれか1項記載の燃料電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007242948A JP2009076272A (ja) | 2007-09-19 | 2007-09-19 | 燃料電池 |
PCT/JP2008/067033 WO2009038198A1 (ja) | 2007-09-19 | 2008-09-19 | 燃料電池 |
US12/726,236 US20100190087A1 (en) | 2007-09-19 | 2010-03-17 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007242948A JP2009076272A (ja) | 2007-09-19 | 2007-09-19 | 燃料電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009076272A true JP2009076272A (ja) | 2009-04-09 |
Family
ID=40611060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007242948A Pending JP2009076272A (ja) | 2007-09-19 | 2007-09-19 | 燃料電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009076272A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011028865A (ja) * | 2009-07-21 | 2011-02-10 | Toshiba Corp | 燃料電池 |
JP2011070852A (ja) * | 2009-09-24 | 2011-04-07 | Toshiba Corp | 燃料電池 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004520692A (ja) * | 2001-02-12 | 2004-07-08 | ザ・モーガン・クルーシブル・カンパニー・ピーエルシー | フローフィールドプレートジオメトリ |
JP2005129525A (ja) * | 2003-10-22 | 2005-05-19 | Samsung Sdi Co Ltd | 直接メタノール燃料電池及びこれを装着した携帯型コンピュータ |
-
2007
- 2007-09-19 JP JP2007242948A patent/JP2009076272A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004520692A (ja) * | 2001-02-12 | 2004-07-08 | ザ・モーガン・クルーシブル・カンパニー・ピーエルシー | フローフィールドプレートジオメトリ |
JP2005129525A (ja) * | 2003-10-22 | 2005-05-19 | Samsung Sdi Co Ltd | 直接メタノール燃料電池及びこれを装着した携帯型コンピュータ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011028865A (ja) * | 2009-07-21 | 2011-02-10 | Toshiba Corp | 燃料電池 |
JP2011070852A (ja) * | 2009-09-24 | 2011-04-07 | Toshiba Corp | 燃料電池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5579311B2 (ja) | 燃料電池 | |
US20100190087A1 (en) | Fuel cell | |
JP2008192506A (ja) | 燃料電池 | |
CN101853957B (zh) | 燃料电池系统 | |
KR20110018373A (ko) | 연료 전지 | |
JP2009123441A (ja) | 燃料電池 | |
JP2009076272A (ja) | 燃料電池 | |
JP5127267B2 (ja) | 燃料電池および燃料電池システム | |
JPWO2008023634A1 (ja) | 燃料電池 | |
WO2011052650A1 (ja) | 燃料電池 | |
JPWO2008068886A1 (ja) | 燃料電池 | |
JPWO2008068887A1 (ja) | 燃料電池 | |
JP2011096468A (ja) | 燃料電池 | |
JP2009164009A (ja) | 燃料電池 | |
JP2008218030A (ja) | 燃料電池 | |
JP2008210679A (ja) | 燃料電池 | |
JP2010108614A (ja) | 燃料電池 | |
JP2009238647A (ja) | 燃料電池 | |
JP5222481B2 (ja) | 燃料電池セル及び燃料電池 | |
JP2009043720A (ja) | 燃料電池 | |
JP2010049930A (ja) | 燃料電池 | |
JP2008218049A (ja) | 燃料電池セル及び燃料電池 | |
JP2008218048A (ja) | 燃料電池セル及び燃料電池 | |
JP2009123619A (ja) | 燃料電池 | |
WO2010084751A1 (ja) | 燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120529 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121002 |