[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009076127A - Magnetic head and magnetic recording device - Google Patents

Magnetic head and magnetic recording device Download PDF

Info

Publication number
JP2009076127A
JP2009076127A JP2007242748A JP2007242748A JP2009076127A JP 2009076127 A JP2009076127 A JP 2009076127A JP 2007242748 A JP2007242748 A JP 2007242748A JP 2007242748 A JP2007242748 A JP 2007242748A JP 2009076127 A JP2009076127 A JP 2009076127A
Authority
JP
Japan
Prior art keywords
magnetic
layer
pole
main
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007242748A
Other languages
Japanese (ja)
Inventor
Junzo Toda
順三 戸田
Maki Maeda
麻貴 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007242748A priority Critical patent/JP2009076127A/en
Publication of JP2009076127A publication Critical patent/JP2009076127A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable magnetic head capable of preventing occurrence of pole erasing caused by residual magnetization of a laminated structure magnetic film even in the main magnetic pole of a narrow core width made to correspond to high recording density, and preventing output deterioration and data erasure. <P>SOLUTION: A main magnetic pole 21 for generating a magnetic field for recording in a direction vertical to a medium opposite surface is provided with a laminated structure magnetic film 30 constituted of a plurality of magnetic layers 31 to 34 which are stacked in the thickness direction of the main magnetic pole 21 and where nonmagnetic layers 36 to 38 are interposed, and an end surface magnetic layer 35 which is formed along the stacked end surface of the medium opposite surface side of the laminated structure magnetic film 30 and where a surface opposite the stacked end surface becomes a medium opposite surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁気ヘッド及び磁気記録装置に関し、特に、垂直記録方式に用いられる磁気ヘッド及び磁気記録装置に関する。   The present invention relates to a magnetic head and a magnetic recording apparatus, and more particularly to a magnetic head and a magnetic recording apparatus used in a perpendicular recording system.

コンピュータ等で処理される情報量は目覚しい勢いで増大しており、そのコンピュータと共に使用される記録装置に対してはさらなる高記録密度化が求められている。記録装置のうち磁気記録装置は歴史的に古く、一般に広く普及している。   The amount of information processed by a computer or the like is increasing at a remarkable speed, and a higher recording density is required for a recording apparatus used with the computer. Among the recording devices, magnetic recording devices are historically old and are widely spread.

現在まで市場に供給されている磁気記録方式の大部分は、記録層に記録される磁化の方向が面方向に向いた面内磁気記録方式と呼ばれるものである。この面内磁気記録方式において高記録密度を得るためには、記録層を薄くするととともに、記録層を構成する磁性結晶粒を微細化することが必要となる。   Most of the magnetic recording systems supplied to the market so far are called in-plane magnetic recording systems in which the direction of magnetization recorded in the recording layer is in the plane direction. In order to obtain a high recording density in this in-plane magnetic recording method, it is necessary to make the recording layer thin and to make the magnetic crystal grains constituting the recording layer fine.

しかしながら、記録層を薄くすると、磁気ディスクに熱が加わったときに情報が消失する現象、即ち熱揺らぎ現象が起きてしまい、高記録密度化を阻む一つの要因となっている。
これに対して、記録層における磁化の方向を記録層の面に垂直方向に向ける垂直磁気記録方式があり、近年実用化されてきている。
However, if the recording layer is made thin, a phenomenon that information is lost when heat is applied to the magnetic disk, that is, a thermal fluctuation phenomenon occurs, which is one factor that prevents high recording density.
On the other hand, there is a perpendicular magnetic recording method in which the direction of magnetization in the recording layer is directed to the direction perpendicular to the surface of the recording layer, which has been put into practical use in recent years.

垂直磁気記録方式は、面内磁気記録方式と比較して、記録層の表面における一つ一つの磁区の面積を小さくできるので、より大きな記録密度を達成することが可能となる。さらに、記録層の膜面に対して垂直方向に磁化が向いているので、記録層を厚くすることが可能となり、記録層を薄膜化した場合に発生する熱揺らぎ現象の発生が防止される。   In the perpendicular magnetic recording system, the area of each magnetic domain on the surface of the recording layer can be reduced as compared with the in-plane magnetic recording system, so that a higher recording density can be achieved. Further, since the magnetization is oriented in the direction perpendicular to the film surface of the recording layer, the recording layer can be made thicker, and the occurrence of the thermal fluctuation phenomenon that occurs when the recording layer is made thinner is prevented.

しかし、垂直磁気記録方式では、記録磁界を発生するヘッド主磁極の残留磁化に起因する出力劣化やポールイレーズと呼ばれる残留磁化によるデータ消去が問題となる。主磁極での残留磁化は、記録動作終了後に、主磁極に磁化が残存する現象である。   However, in the perpendicular magnetic recording system, there are problems such as output deterioration due to residual magnetization of the head main pole that generates a recording magnetic field and data erasure due to residual magnetization called pole erase. Residual magnetization at the main pole is a phenomenon in which magnetization remains in the main pole after the end of the recording operation.

ポールイレーズを低減する手段として、図8に示すように、非磁性層102a〜102cを間に挟んで積層した複数の磁性層101a〜101dにより構成される主磁極103を用いることが知られている。   As means for reducing pole erase, as shown in FIG. 8, it is known to use a main magnetic pole 103 composed of a plurality of magnetic layers 101a to 101d stacked with nonmagnetic layers 102a to 102c interposed therebetween. .

そのような主磁極103の先端部のコア部104では、コア幅が広い場合には、磁性膜101のそれぞれの残留磁化の方向は矢印Aに示すようにコア幅方向に向き、しかも、非磁性層102a〜102cを介して反強磁性結合をするため互いに反平行となる。   In the core portion 104 at the tip of the main magnetic pole 103, when the core width is wide, the direction of the remanent magnetization of the magnetic film 101 is directed in the core width direction as shown by the arrow A, and is nonmagnetic. Since antiferromagnetic coupling occurs through the layers 102a to 102c, they are antiparallel to each other.

そして、最も近い上と下の磁性膜101a,101b、101c,101dの残留磁化により生じる磁界は、矢印Bで示すように両側方で互いに還流されるようになっていて、主磁極103から磁気記録媒体に漏洩する磁界が低減される。
なお、主磁極を複数の磁性層から構成することは、下記の特許文献1、2に記載がある。
特開2006−18985号公報 特開2006−302421号公報
The magnetic fields generated by the residual magnetizations of the nearest upper and lower magnetic films 101a, 101b, 101c, and 101d are returned to each other on both sides as indicated by arrow B, and are transferred from the main pole 103 to the magnetic recording medium. The leaking magnetic field is reduced.
The construction of the main pole from a plurality of magnetic layers is described in Patent Documents 1 and 2 below.
JP 2006-18985 A JP 2006-302421 A

しかし、図9に示すように、記録密度を高めるために主磁極103のコア部104のコア幅wを狭窄化すると、コア幅wに対する主磁極103のハイト方向の長さhの比、即ちアスペクト比(=h/w)が相対的に大きくなる。   However, as shown in FIG. 9, when the core width w of the core portion 104 of the main pole 103 is narrowed to increase the recording density, the ratio of the length h in the height direction of the main pole 103 to the core width w, that is, the aspect ratio. The ratio (= h / w) becomes relatively large.

そのようにアスペクト比が大きくなると、形状異方性によってコア部104の磁化が矢印Cに示すようにハイト方向を向くようになる。そして、コア部104を構成する磁性層101a,101b、101c,101dのうち最も近い上と下の層の残留磁化により生じる残留磁界の一部はその先端の近傍で還流される。   When the aspect ratio increases in this way, the magnetization of the core portion 104 faces the height direction as indicated by an arrow C due to the shape anisotropy. A part of the residual magnetic field generated by the residual magnetization of the nearest upper and lower layers of the magnetic layers 101a, 101b, 101c, and 101d constituting the core portion 104 is refluxed in the vicinity of the tip.

しかし、図9に示す複数の磁性層101a,101b、101c,101dのそれぞれの先端面の面積の差が図8に比べて大きくなるため、コア部104全体の系では残留磁化による磁気記録媒体への一方向の漏洩磁界成分H1が大きくなり、ポールイレーズ等の問題は依然として存在することになる。 However, since the difference in the area of the tip surfaces of the plurality of magnetic layers 101a, 101b, 101c, and 101d shown in FIG. 9 is larger than that in FIG. 8, the entire core unit 104 is changed to a magnetic recording medium due to residual magnetization. The leakage magnetic field component H 1 in one direction increases, and problems such as pole erasure still exist.

本発明の目的は、高記録密度に対応してコア幅を狭くした主磁極におけるポールイレーズの発生を防止することができる垂直磁気ヘッド及び磁気記録装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a perpendicular magnetic head and a magnetic recording apparatus capable of preventing the occurrence of pole erasure in a main pole having a narrow core width corresponding to a high recording density.

本発明の1つの観点によれば、磁気記録媒体の面に対向して配置され且つ垂直方向に記録磁界が通るコアの媒体対向面を備えた主磁極を有し、主磁極は、主磁極の厚さ方向に積層されて非磁性層が間に挟まれる複数の磁性層からなる積層構造磁性膜と、積層構造磁性膜のうち媒体対向面側の積層端面に沿って形成されて且つ積層端面と反対側の面が媒体対向面となる端面磁性層とを有することを特徴とする磁気ヘッドが提供される。   According to one aspect of the present invention, there is provided a main magnetic pole having a core medium facing surface that is disposed opposite to a surface of a magnetic recording medium and through which a recording magnetic field passes in a vertical direction. A laminated structure magnetic film composed of a plurality of magnetic layers laminated in the thickness direction and sandwiching a nonmagnetic layer therebetween, and a laminated end face formed along the laminated end face on the medium facing surface side of the laminated structured magnetic film; There is provided a magnetic head having an end face magnetic layer whose opposite surface is a medium facing surface.

本発明によれば、主磁極の積層構造磁性層のうち記録磁界が通るコアの媒体対向側の積層端面上に沿って端面磁性層を形成している。
従って、高記録密度に対応した狭コア幅においても、積層構造磁性膜の残留磁化により発生する磁界が端面磁性層を介して媒体対向面に平行な方向に還流する。この結果、残留磁化によって発生する磁気記録媒体への漏洩磁界が低下してポールイレーズの発生を防ぐことができ、出力劣化やデータ消去のない信頼性の高い垂直記録ヘッドが得られる。
According to the present invention, the end face magnetic layer is formed along the laminated facet on the medium facing side of the core through which the recording magnetic field passes in the laminated magnetic layer of the main pole.
Therefore, even in a narrow core width corresponding to a high recording density, the magnetic field generated by the residual magnetization of the laminated structure magnetic film flows back in the direction parallel to the medium facing surface via the end face magnetic layer. As a result, the leakage magnetic field to the magnetic recording medium caused by the residual magnetization can be reduced to prevent the occurrence of pole erase, and a highly reliable perpendicular recording head free from output deterioration and data erasure can be obtained.

以下に、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の実施形態に係る磁気ヘッドを示す断面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing a magnetic head according to an embodiment of the present invention.

図1に示す磁気ヘッド1は、アルチック(Al2O3−TiC)のような非磁性材からなる基板1と、その上にアルミナ(Al2O3)などの絶縁層2を介して形成された再生磁気ヘッド10と、再生磁気ヘッド10の上にアルミナなどの絶縁分離層3を介して形成された垂直記録磁気ヘッド20とを有している。 A magnetic head 1 shown in FIG. 1 is formed through a substrate 1 made of a nonmagnetic material such as AlTiC (Al 2 O 3 —TiC) and an insulating layer 2 such as alumina (Al 2 O 3 ) thereon. The reproducing magnetic head 10 and a perpendicular recording magnetic head 20 formed on the reproducing magnetic head 10 via an insulating separation layer 3 such as alumina.

そして、再生磁気ヘッド10はリーディング側に、垂直記録磁気ヘッド20はトレーリング側に配置され、それらから構成される磁気ヘッドは磁気記録媒体5の記録面に対向して配置される。
なお、非磁性基板1は、切断、研磨等の加工によってスライダとなる。
再生磁気ヘッド10は、絶縁層2の上に順に形成された下部磁気シールド層11、絶縁ギャップ層12、再生用素子13及び上部磁気シールド層14から構成されている。
The reproducing magnetic head 10 is arranged on the leading side, the perpendicular recording magnetic head 20 is arranged on the trailing side, and the magnetic head constituted by these is arranged facing the recording surface of the magnetic recording medium 5.
The nonmagnetic substrate 1 becomes a slider by processing such as cutting and polishing.
The reproducing magnetic head 10 includes a lower magnetic shield layer 11, an insulating gap layer 12, a reproducing element 13, and an upper magnetic shield layer 14 that are sequentially formed on the insulating layer 2.

下部磁気シールド層11と上部磁気シールド層14は例えばNiFe合金層から構成され、また、絶縁層ギャップ12はアルミナのような絶縁材から構成される。再生用素子13は、絶縁ギャップ層12内に形成される一対の電極(不図示)に接続されるが、その素子構造によっては、下部及び上部磁気シールド層11、14が一対の電極として兼用されることもある。   The lower magnetic shield layer 11 and the upper magnetic shield layer 14 are made of, for example, a NiFe alloy layer, and the insulating layer gap 12 is made of an insulating material such as alumina. The reproducing element 13 is connected to a pair of electrodes (not shown) formed in the insulating gap layer 12, but depending on the element structure, the lower and upper magnetic shield layers 11 and 14 are also used as a pair of electrodes. Sometimes.

再生用素子13として、例えば磁気抵抗(Magneto Resistance:MR)効果素子、巨大磁気抵抗(Giant Magneto Resistance: GMR)効果素子又はトンネル磁気抵抗(Tunneling Magneto Resistance:TMR)効果素子が形成される。
再生用素子13は、磁気ヘッドの浮上面(ABS面:Air Bearing Surface)、即ち媒体対向面となる領域に形成される。
As the reproducing element 13, for example, a magneto-resistance (MR) effect element, a giant magneto-resistance (GMR) effect element, or a tunneling magneto-resistance (TMR) effect element is formed.
The reproducing element 13 is formed on the air bearing surface (ABS surface) of the magnetic head, that is, the region that becomes the medium facing surface.

垂直記録磁気ヘッド20は、絶縁分離層3の上に形成された主磁極21と、主磁極21の周囲に形成された平坦化絶縁層22と、主磁極21及び平坦化絶縁層22の上に形成された非磁性ギャップ層23と、非磁性ギャップ層23の上に形成された下地絶縁層24aと、下地絶縁層24aの上に形成された励磁コイル25と、励磁コイル25を覆う被覆絶縁層24bと、被覆絶縁層24bのトレーリング側の上に形成されたリターンヨーク26と、リターンヨーク26の媒体対向面側の先端部に接続されるとともに非磁性ギャップ層23の上に形成されて主磁極21に近接するトレーリング磁気シールド層27と、主磁極21のクロストラック側に近接して形成されるサイド磁気シールド(不図示)等を有している。   The perpendicular recording magnetic head 20 includes a main magnetic pole 21 formed on the insulating separation layer 3, a planarizing insulating layer 22 formed around the main magnetic pole 21, and the main magnetic pole 21 and the planarizing insulating layer 22. The formed nonmagnetic gap layer 23, a base insulating layer 24a formed on the nonmagnetic gap layer 23, an excitation coil 25 formed on the base insulating layer 24a, and a covering insulating layer covering the excitation coil 25 24 b, a return yoke 26 formed on the trailing side of the covering insulating layer 24 b, and a main portion of the return yoke 26 formed on the nonmagnetic gap layer 23 and connected to the tip of the return yoke 26 on the medium facing surface side. A trailing magnetic shield layer 27 close to the magnetic pole 21 and a side magnetic shield (not shown) formed close to the cross track side of the main magnetic pole 21 are included.

なお、垂直記録ヘッド20においては、主磁極21のトレーリング側だけでなく、リーディング側にも励磁コイルとリターンヨークが配置される構造もある。
主磁極21は、例えば図2の平面図に示すように、四角形のヨーク部21aと、ヨーク部21aから媒体対向面側に突出するテーパー状の絞り部21bと、絞り部21bのうち媒体対向面側の先端から突出するストライプ状のコア部21cとから構成されている。
The perpendicular recording head 20 has a structure in which an excitation coil and a return yoke are arranged not only on the trailing side of the main magnetic pole 21 but also on the leading side.
For example, as shown in the plan view of FIG. 2, the main magnetic pole 21 includes a rectangular yoke portion 21a, a tapered throttle portion 21b protruding from the yoke portion 21a toward the medium facing surface side, and a medium facing surface of the throttle portion 21b. It is comprised from the stripe-shaped core part 21c which protrudes from the front-end | tip of the side.

ヨーク部21aは、励磁コイル25のほぼ中央の隙間を通して形成されるコンタクトホール28を通してリターンヨーク26に接続されている。また、コア部21cと絞り部21bの一部は、図3の斜視図で示すような形状を有している。   The yoke portion 21 a is connected to the return yoke 26 through a contact hole 28 formed through a substantially central gap of the exciting coil 25. Moreover, a part of core part 21c and the aperture | diaphragm | squeeze part 21b have a shape as shown in the perspective view of FIG.

図3において、主磁極21のうちヨーク部21aからコア部21cの途中までの領域、例えば先端を約50nm残した領域は、非磁性層36〜38を間に挟んだ第1〜第4の磁性層31〜34の積層構造磁性膜30から構成されている。   In FIG. 3, the region of the main magnetic pole 21 from the yoke portion 21a to the middle of the core portion 21c, for example, the region where the tip is left about 50 nm is the first to fourth magnetic layers with the nonmagnetic layers 36 to 38 interposed therebetween. The layer 31 is composed of a laminated structure magnetic film 30.

第1〜第4の磁性層31〜34のそれぞれは、図4に示すように、80wt%の割合でNi(ニッケル)を含む厚さ約2nmのNiFe(ニッケル鉄)層31a、32a、33a、34aと、厚さ約50nmのFeCo(鉄コバルト)層31b、32b、33b、34bとを交互に積層した構造を有している。
また、第1〜第4の磁性層31〜34の相互間に形成される複数の非磁性層36〜38はそれぞれ例えばアルミナから構成されている。
As shown in FIG. 4, each of the first to fourth magnetic layers 31 to 34 includes NiFe (nickel) layers 31a, 32a, 33a having a thickness of about 2 nm containing Ni (nickel) at a ratio of 80 wt%. 34a and FeCo (iron cobalt) layers 31b, 32b, 33b, and 34b having a thickness of about 50 nm are alternately stacked.
The plurality of nonmagnetic layers 36 to 38 formed between the first to fourth magnetic layers 31 to 34 are made of alumina, for example.

一方、コア部21cにおける積層構造磁性膜30の媒体対向面側の積層端面には、第1〜第4の磁性層31〜34及び非磁性層36〜38の端面を覆う端面磁性層35が形成されている。端面磁性層35は、積層構造磁性膜30の残留磁化により発生する磁界のうち磁気記録媒体面の垂直方向への成分を低減する厚さ、材料から構成されている。   On the other hand, the end surface magnetic layer 35 that covers the end surfaces of the first to fourth magnetic layers 31 to 34 and the nonmagnetic layers 36 to 38 is formed on the stacked end surface of the stacked structure magnetic film 30 in the core portion 21c on the medium facing surface side. Has been. The end face magnetic layer 35 is formed of a thickness and a material that reduce a component in a direction perpendicular to the magnetic recording medium surface of the magnetic field generated by the residual magnetization of the laminated structure magnetic film 30.

端面磁性層35は、コア部21cを構成する積層構造磁性膜30の積層端面上に沿って形成され、積層構造磁性膜30を構成する第1〜第4の磁性層31〜34のそれぞれの残留磁化により発生する磁界のうち磁気記録媒体面の垂直方向への成分の漏洩を抑制する。
また、端面磁性層35は、図4に示したように、80wt%の割合でNiを含む厚さ約2nmのNiFe層35aと、厚さ約50nmのFeCo層35bとを積層構造磁性膜30の先端から媒体対向面に向けてハイト方向に積層した構造を有している。ここで、ハイト方向とは、コア幅に直交する方向であって絶縁分離層3の面に平行な方向である。
The end face magnetic layer 35 is formed on the laminated end face of the laminated structure magnetic film 30 constituting the core portion 21 c, and each of the first to fourth magnetic layers 31 to 34 constituting the laminated structure magnetic film 30 is left. Of the magnetic field generated by magnetization, leakage of components in the direction perpendicular to the surface of the magnetic recording medium is suppressed.
Further, as shown in FIG. 4, the end face magnetic layer 35 includes a NiFe layer 35 a having a thickness of about 2 nm containing Ni at a rate of 80 wt% and a FeCo layer 35 b having a thickness of about 50 nm. It has a structure in which it is stacked in the height direction from the tip toward the medium facing surface. Here, the height direction is a direction orthogonal to the core width and parallel to the surface of the insulating separation layer 3.

端面磁性層35の厚さ方向はコア部21cのハイト方向となっている。また、端面磁性層35を含むコア部21cのハイト方向の全長は例えば100nm〜200nm程度となる。   The thickness direction of the end face magnetic layer 35 is the height direction of the core portion 21c. The total length in the height direction of the core portion 21c including the end face magnetic layer 35 is, for example, about 100 nm to 200 nm.

主磁極21におけるコア部25cの断面の形状は、例えば三角形となっている。その端面の三角形の底辺は、例えば50〜120nmの幅に形成されてリターンヨーク26寄りに、即ち再生磁気ヘッド10とは反対側に位置する一方、残りの左右の辺により形成される頂点は、再生磁気ヘッド10寄りの絶縁分離層3上に位置している。   The cross-sectional shape of the core portion 25c in the main magnetic pole 21 is, for example, a triangle. The triangular base of the end face is formed with a width of, for example, 50 to 120 nm and is located near the return yoke 26, that is, on the side opposite to the reproducing magnetic head 10, while the vertex formed by the remaining left and right sides is It is located on the insulating separation layer 3 near the reproducing magnetic head 10.

以上のような構成を有する主磁極21において、コア部21cのアスペクト比が大きくなってその磁化方向が形状異方性によってハイト方向を向くようになると、積層構造磁性膜30のうち第1〜第4の磁性層31〜34の残留磁化方向は、それぞれ非磁性層36〜38を介して上下間で反強磁性結合をするため、上下に隣接する第1〜第4の磁性層31〜34の残留磁化は互いに反平行の状態で安定する。   In the main magnetic pole 21 having the above-described configuration, when the aspect ratio of the core portion 21c is increased and the magnetization direction is directed to the height direction due to shape anisotropy, the first to first layers of the laminated structure magnetic film 30 are arranged. The remanent magnetization directions of the four magnetic layers 31 to 34 are antiferromagnetically coupled between the upper and lower sides via the nonmagnetic layers 36 to 38, respectively. The remanent magnetization is stabilized in an antiparallel state.

第1〜第4の磁性層31〜34に残留磁化M1が存在する場合にそれらの先端面から出る漏洩磁界は、積層構造磁性膜30の先端の端面磁性層35内で還流される。
また、アスペクト比の大きなコア部21cにおいては、第1〜第4の磁性層31〜34の先端面のそれぞれの下層に対する上層の先端面の面積比が大きいために、積層構造磁性膜30全体の系では磁気記録媒体面と垂直方向の漏洩磁界成分が存在することもある。
When the residual magnetization M 1 exists in the first to fourth magnetic layers 31 to 34, the leakage magnetic field emitted from the front end surfaces thereof is recirculated in the end surface magnetic layer 35 at the front end of the laminated structure magnetic film 30.
Further, in the core portion 21c having a large aspect ratio, the area ratio of the top surface of the upper layer to the lower layer of each of the front surfaces of the first to fourth magnetic layers 31 to 34 is large. In the system, there may be a leakage magnetic field component perpendicular to the magnetic recording medium surface.

しかし、その漏洩磁界成分は、積層構造磁性膜30の先端面に沿って形成された端面磁性層35の厚さと材料選択によって磁気記録媒体面に平行な向きに変えられるので、端面磁性層35の先端面、即ち媒体対向面から垂直方向に出る漏洩磁界は従来構造に比べて大幅に低減する。   However, the leakage magnetic field component can be changed in a direction parallel to the magnetic recording medium surface by the thickness and material selection of the end surface magnetic layer 35 formed along the front end surface of the laminated structure magnetic film 30. The leakage magnetic field that exits in the vertical direction from the front end surface, that is, the medium facing surface, is greatly reduced as compared with the conventional structure.

これにより、残留磁化によるコア部21cから磁気記録媒体5の垂直方向への漏洩磁界が低減し、ポーズイレーズの発生が防止され、磁気記録媒体5への出力劣化が防止される。   Thereby, the leakage magnetic field in the perpendicular direction of the magnetic recording medium 5 from the core portion 21c due to the residual magnetization is reduced, the occurrence of pause erase is prevented, and the output deterioration to the magnetic recording medium 5 is prevented.

また、端面磁性層35のうち媒体対向面から積層構造磁性膜30の先端面までの距離、即ち端面磁性層35のハイト方向の厚さをt1とし、また端面磁性層35の飽和磁束密度をBs1とする一方、積層構造30における第1〜第4の磁性層31〜34の積層方向のそれぞれの厚さをt2とし、また第1〜第4の磁性層31〜34のそれぞれの飽和磁束密度をBs2とする。 Further, the distance from the medium facing surface of the end face magnetic layer 35 to the tip face of the laminated structure magnetic film 30, that is, the thickness of the end face magnetic layer 35 in the height direction is t 1, and the saturation magnetic flux density of the end face magnetic layer 35 is On the other hand, the thickness of each of the first to fourth magnetic layers 31 to 34 in the stacked structure 30 is t 2, and the saturation of each of the first to fourth magnetic layers 31 to 34 is set to Bs 1. the magnetic flux density and Bs 2.

そして、次式(1)の関係が成立するように厚さ、材料等を調整すると、第1〜第4の磁性層31〜34のどの領域においても磁束量が等しくなり、過不足のない還流磁束がえられ、主磁極21のコア部21cからの漏洩磁界をさらに抑えることができる。
1×Bs1≒t2×Bs2 (1)
なお、t1・Bs1の値とt2・Bs2の値の互いの差の許容範囲は、±10%程度である。
When the thickness, material, etc. are adjusted so that the relationship of the following formula (1) is satisfied, the amount of magnetic flux becomes equal in any region of the first to fourth magnetic layers 31 to 34, and there is no excess or deficiency. Magnetic flux is obtained, and the leakage magnetic field from the core portion 21c of the main magnetic pole 21 can be further suppressed.
t 1 × Bs 1 ≒ t 2 × Bs 2 (1)
The allowable range of the difference between the value of t 1 · Bs 1 and the value of t 2 · Bs 2 is about ± 10%.

また、積層構造磁性膜30を厚さのほぼ等しい2以上の偶数層で磁性層31〜34を構成することにより、主磁極21の先端部の磁化は図3の矢印Cに示すように一方向に還流するので、新たな漏洩磁界の原因となる磁壁の発生を防ぐことができる。   Further, by forming the magnetic layers 31 to 34 with two or more even layers having substantially the same thickness in the laminated structure magnetic film 30, the magnetization at the tip of the main pole 21 is unidirectional as shown by an arrow C in FIG. Therefore, the occurrence of a domain wall that causes a new leakage magnetic field can be prevented.

なお、積層構造磁性膜30を奇数層の磁性層で構成しても、その先端面に端面磁性層35がない従来構造に比べれば、ポールイレーズの抑制は可能である。しかし、そのような構成では、主磁極21のコア部21c先端の端面磁性層35の一部領域で漏洩磁界が逆方向に還流するため、新たな漏洩磁界の原因となる磁壁が発生しやすくなるので、偶数層の磁性膜31〜34により積層構造磁性膜30を構成することが、より望ましい。   Even if the laminated structure magnetic film 30 is composed of an odd number of magnetic layers, pole erasure can be suppressed as compared with the conventional structure in which the end face magnetic layer 35 is not provided on the tip face. However, in such a configuration, the leakage magnetic field recirculates in a reverse direction in a partial region of the end face magnetic layer 35 at the tip of the core portion 21c of the main magnetic pole 21, so that a domain wall that causes a new leakage magnetic field is easily generated. Therefore, it is more desirable to form the laminated structure magnetic film 30 with the even number of magnetic films 31 to 34.

次に、積層構造磁性膜30を構成する磁性層の層数を4とした場合の主磁極21の製造工程の一例を図5A〜5Fに基づいて説明する。
まず、図1に示したような構造の再生磁気ヘッド10を基板1上に絶縁層2を介して形成し、さらに再生磁気ヘッド10の上に絶縁分離層3を形成する。
Next, an example of the manufacturing process of the main magnetic pole 21 when the number of magnetic layers constituting the laminated magnetic film 30 is four will be described with reference to FIGS.
First, the reproducing magnetic head 10 having the structure as shown in FIG. 1 is formed on the substrate 1 via the insulating layer 2, and the insulating separation layer 3 is further formed on the reproducing magnetic head 10.

その後に、図5Aに示すように、絶縁分離層3の上に、積層構造磁性膜30として、第1の磁性層31、非磁性層36、第2の磁性層32、非磁性層37、第3の磁性層33、非磁性層38及び第4の磁性層34を例えばスパッタリングにより順次形成する。   After that, as shown in FIG. 5A, the first magnetic layer 31, the nonmagnetic layer 36, the second magnetic layer 32, the nonmagnetic layer 37, the first magnetic layer 31, and the laminated structure magnetic film 30 are formed on the insulating separation layer 3. The third magnetic layer 33, the nonmagnetic layer 38, and the fourth magnetic layer 34 are sequentially formed by sputtering, for example.

第1、第2、第3及び第4の磁性層31、32、33、34のそれぞれは、例えば80wt%の割合でNiを含む厚さ2nmのNiFe層31a、32a、33a、34aと、厚さ50nmのFeCo層31b、32b、33b、34bを順にスパッタリングにより形成した二層構造を有している。   Each of the first, second, third, and fourth magnetic layers 31, 32, 33, and 34 includes a NiFe layer 31a, 32a, 33a, and 34a having a thickness of 2 nm containing Ni at a ratio of 80 wt%, for example. It has a two-layer structure in which FeCo layers 31b, 32b, 33b, and 34b having a thickness of 50 nm are sequentially formed by sputtering.

また、複数の非磁性層36、37、38は、それぞれ、例えばスパッタリングにより形成された厚さ1.5nmのアルミナ層が適用される。
ここで、NiFe層31a、32a、33a、34aは、高飽和磁束密度を有するFeCo層31b、32b、33b、34bの結晶を制御するため、即ち軟磁気特性を改善するための下地層として薄く形成される。
For the plurality of nonmagnetic layers 36, 37, and 38, for example, an alumina layer having a thickness of 1.5 nm formed by sputtering is applied.
Here, the NiFe layers 31a, 32a, 33a, and 34a are formed thinly as an underlayer for controlling the crystals of the FeCo layers 31b, 32b, 33b, and 34b having a high saturation magnetic flux density, that is, for improving soft magnetic characteristics. Is done.

次に、図5Bに示すように、フォトレジスト、メタル等からなる第1マスク41を第2の磁性膜32の上に設ける。第1マスク41は、図2に示すような主磁極21のうちの少なくともヨーク部21a、絞り部21b及びコア部21cの一部となる領域及びその周辺を覆う一方、コア部21cのうち端面磁性層35が形成される領域とそこから媒体対向面側にはみ出した領域に開口42を有する形状を有している。   Next, as shown in FIG. 5B, a first mask 41 made of photoresist, metal, or the like is provided on the second magnetic film 32. The first mask 41 covers at least the yoke portion 21a, the narrowed portion 21b, and a part of the core portion 21c in the main magnetic pole 21 as shown in FIG. 2 and the periphery thereof, while the end face magnetism of the core portion 21c. It has a shape having an opening 42 in a region where the layer 35 is formed and a region protruding from the region facing the medium facing surface side.

続いて、図5Cに示すように、イオンミリング法、反応性イオンエッチング(RIE)法等によって、第1マスク41の開口42内で露出する積層構造磁性膜30を垂直方向に除去することにより、主磁極21のコア部21cとなる領域の先端部分とそこから媒体対向面側にはみ出す領域に開口部30aを形成してそこから絶縁分離層3を露出させる。   Subsequently, as shown in FIG. 5C, the stacked structure magnetic film 30 exposed in the opening 42 of the first mask 41 is removed in the vertical direction by an ion milling method, a reactive ion etching (RIE) method, or the like. An opening 30a is formed in the tip portion of the region to be the core portion 21c of the main magnetic pole 21 and the region protruding from the medium facing surface side, and the insulating separation layer 3 is exposed therefrom.

さらに、マスク41を剥離した後に、図5Dに示すように、開口部30a内と積層構造磁性層30の上に、80wt%の割合でNiを含む厚さ2nmのNiFe層35aと、FeCo層35bを順に形成する。NiFe層35aとFeCo層35bのうちハイト方向に垂直な方向の合計の厚さは、第1〜第4の磁性層31〜34とそれらの間の非磁性層36〜38の合計の全膜厚以上の厚さとなるようにスパッタリングで形成する。   Further, after the mask 41 is peeled off, as shown in FIG. 5D, a NiFe layer 35a having a thickness of 2 nm containing Ni at a rate of 80 wt% and an FeCo layer 35b on the inside of the opening 30a and on the laminated structure magnetic layer 30 are formed. Are formed in order. The total thickness of the NiFe layer 35a and the FeCo layer 35b in the direction perpendicular to the height direction is the total thickness of the first to fourth magnetic layers 31 to 34 and the nonmagnetic layers 36 to 38 therebetween. It forms by sputtering so that it may become the above thickness.

次に、化学的機械的研磨(CMP)法により、図5Dの一点鎖線Lで示す位置を研磨終点位置として、FeCo層35bとNiFe層35aを研磨することにより、第4の磁性層34の上面を露出させるとともにFeCo層35bとNiFe層35aを平坦化する。   Next, the upper surface of the fourth magnetic layer 34 is polished by chemical mechanical polishing (CMP) by polishing the FeCo layer 35b and the NiFe layer 35a with the position indicated by the one-dot chain line L in FIG. 5D as the polishing end point position. The FeCo layer 35b and the NiFe layer 35a are planarized.

その後に、主磁極21と同じ平面形状を有する第2マスク(不図示)を積層構造磁性層30、NiFe層35a及びFeCo層35bの上に設ける。この場合、図2に示す主磁極21のコア部21cの一部である先端部分に対応するマスク領域がFeCo層35b及びNiFe層35aに重なるように第2マスクを配置する。なお、第2マスクの材料としてはフォトレジスト、メタル等が用いられる。   Thereafter, a second mask (not shown) having the same planar shape as the main magnetic pole 21 is provided on the laminated structure magnetic layer 30, the NiFe layer 35a, and the FeCo layer 35b. In this case, the second mask is arranged so that the mask region corresponding to the tip portion which is a part of the core portion 21c of the main magnetic pole 21 shown in FIG. 2 overlaps the FeCo layer 35b and the NiFe layer 35a. Note that a photoresist, metal, or the like is used as the material of the second mask.

さらに、主磁極形状の第2マスクに覆われない領域の積層構造磁性層30、NiFe層35a及びFeCo層35bをイオンミリング法、RIE法などによって除去することにより、図2に示した主磁極21を完成させる。   Further, by removing the layered structure magnetic layer 30, NiFe layer 35a, and FeCo layer 35b in a region not covered by the main mask-shaped second mask by ion milling, RIE, or the like, the main magnetic pole 21 shown in FIG. To complete.

ここで、主磁極21のコア部21cの先端部分には、図5Eに示すように、FeCo層35b及びNiFe層35aが存在し、この部分が上記の端面磁性層35となる。
この状態では、主磁極21のコア部21cの断面形状は略四角形となっているので、コア部21cの左側面と右側面をそれぞれ斜め方向にイオンミリングすることによりその断面形状が三角形となるように成形する。
Here, as shown in FIG. 5E, the FeCo layer 35 b and the NiFe layer 35 a exist at the tip portion of the core portion 21 c of the main magnetic pole 21, and this portion becomes the end face magnetic layer 35.
In this state, the cross-sectional shape of the core portion 21c of the main magnetic pole 21 is substantially quadrilateral, so that the cross-sectional shape becomes a triangle by ion milling the left side surface and the right side surface of the core portion 21c in an oblique direction. To form.

なお、コア部21cの断面形状は上記のような三角形に限られるものではなく、台形であてもよい。台形の場合には、再生磁気ヘッド10側の底面がリターンヨーク26側の底面に比べて非常に短い形状としてもよい。   In addition, the cross-sectional shape of the core part 21c is not restricted to the above triangles, A trapezoid may be sufficient. In the case of a trapezoidal shape, the bottom surface on the reproducing magnetic head 10 side may have a very short shape compared to the bottom surface on the return yoke 26 side.

続いて、図1に示したような平坦化絶縁層22、非磁性ギャップ層23、下地絶縁層24a、励磁コイル25、被覆絶縁層24b、リターンヨーク26等を公知の記録磁気ヘッドプロセスで形成し、磁気ヘッド用ウェハを完成させる。   Subsequently, the planarization insulating layer 22, the nonmagnetic gap layer 23, the base insulating layer 24a, the exciting coil 25, the covering insulating layer 24b, the return yoke 26, and the like as shown in FIG. 1 are formed by a known recording magnetic head process. Then, a magnetic head wafer is completed.

その後に、磁気ヘッド用ウェハを所定形状に切断、加工し、最終的に磁気ヘッドスライダを形成するが、そのプロセスにおいて媒体対向面を研磨等により形成する際に、図5Fに示すように、主磁極21のコア部21cにおける端面磁性層35のハイト方向の長さが調整される。端面磁性層35の媒体対向面からの距離Dは例えば50nmとなるように調整される。   Thereafter, the magnetic head wafer is cut and processed into a predetermined shape, and finally the magnetic head slider is formed. When the medium facing surface is formed by polishing or the like in the process, as shown in FIG. The length in the height direction of the end face magnetic layer 35 in the core portion 21c of the magnetic pole 21 is adjusted. The distance D from the medium facing surface of the end face magnetic layer 35 is adjusted to be 50 nm, for example.

ところで、上記した主磁極21を構成する積層構造膜30については、第1〜第4の磁性層31〜34、即ち4層の磁性層から構成しているが、図6に示すように、第1の磁性層51、非磁性層52、第2の磁性層53を順に形成することにより、2層の磁性層から構成してもよい。   By the way, the laminated structure film 30 constituting the main magnetic pole 21 is composed of first to fourth magnetic layers 31 to 34, that is, four magnetic layers. As shown in FIG. A single magnetic layer 51, a nonmagnetic layer 52, and a second magnetic layer 53 may be formed in this order to form two magnetic layers.

図6に示す第1、第2の磁性層51,53のそれぞれは、80wt%の割合でNiを含む厚さ2nmのNiFe層51a、53aと、厚さ100nmのFeCo層51b、53bを順にスパッタリングにより形成した構造を有している。   Each of the first and second magnetic layers 51 and 53 shown in FIG. 6 is formed by sequentially sputtering NiFe layers 51a and 53a having a thickness of 2 nm containing Ni at a rate of 80 wt% and FeCo layers 51b and 53b having a thickness of 100 nm. It has the structure formed by.

また、非磁性層52は、例えばスパッタリングにより形成された厚さ1.5nmのアルミナ層が適用される。
さらに、主磁極21のコア部21cの先端部に形成される端面磁性層35は、図4と同様な材料からなる層構造を有しているが、そのハイト方向の長さは100nmとなっている。
As the nonmagnetic layer 52, for example, an alumina layer having a thickness of 1.5 nm formed by sputtering is applied.
Further, the end face magnetic layer 35 formed at the tip of the core 21c of the main magnetic pole 21 has a layer structure made of the same material as that shown in FIG. 4, but its length in the height direction is 100 nm. Yes.

これにより、主磁極21の積層構造磁性層30と端面磁性層35について上記の式(1)に示す条件が満たされる。
なお、図6に示した主磁極21も図5A〜図5Eに示すような工程により形成されることになるが、積層構造膜30の層構造が異なることと端面磁性層35のハイト方向の長さが異なることを除いてほぼ同じ工程となる。
As a result, the condition shown in the above formula (1) is satisfied for the laminated structure magnetic layer 30 and the end face magnetic layer 35 of the main magnetic pole 21.
The main magnetic pole 21 shown in FIG. 6 is also formed by the steps shown in FIGS. 5A to 5E. However, the layer structure of the laminated structure film 30 is different from that of the end face magnetic layer 35 in the height direction. The process is almost the same except for the difference.

ところで、上述した実施形態では、積層構造磁性層30が4層の磁性膜31〜34の場合と、2層の磁性膜51,53で構成された例を示したが、これらに限られるものではなく、非磁性層を介した6層以上の偶数層又は5層以上の奇数層の磁性層で構成されても、上記と同様なプロセスで垂直記録ヘッドを得ることができる。   By the way, in the above-described embodiment, an example in which the laminated magnetic layer 30 is composed of the four magnetic films 31 to 34 and the two magnetic films 51 and 53 has been described. However, the present invention is not limited thereto. However, even if it is composed of an even number of 6 or more layers or an odd number of 5 or more magnetic layers with a nonmagnetic layer interposed therebetween, a perpendicular recording head can be obtained by the same process as described above.

また、積層構造層30を構成する非磁性層30としてアルミナを示したが、これに限定されるものではなく、例えばチタン(Ti)、タンタル(Ta)、クロム(Cr)、ルテニウム(Ru)などの非磁性金属あるいはそれらの金属の非磁性合金を使うこともできる。   Further, although alumina is shown as the nonmagnetic layer 30 constituting the laminated structure layer 30, the present invention is not limited to this. For example, titanium (Ti), tantalum (Ta), chromium (Cr), ruthenium (Ru), etc. These nonmagnetic metals or nonmagnetic alloys of these metals can also be used.

また、図7に示すように、主磁極21のコア部21cの残留磁化の方向は、図3の矢印M1で示したようにハイト方向に平行となるとは限らず、図7の矢印M0で示すようにハイト方向から傾く場合もある。しかし、そのような残留磁化のうちハイト方向に平行な成分による漏洩磁界は、端面磁性層35により還流されるので、上述したと同様に残留磁化によるポールイレーズを大幅に抑制でき、出力劣化を防止できる。 Further, as shown in FIG. 7, the direction of residual magnetization of the core portion 21c of the main magnetic pole 21 is not limited to a parallel to the height direction as indicated by the arrow M 1 in FIG. 3, the arrow M 0 in FIG. 7 In some cases, it may tilt from the height direction. However, since the leakage magnetic field due to the component parallel to the height direction of such residual magnetization is recirculated by the end face magnetic layer 35, the pole erasure due to the residual magnetization can be significantly suppressed as described above, and output deterioration is prevented. it can.

なお、図7における残留磁化のうちコア幅方向の成分は、図8に示したと同様にコア幅方向の側方で還流される。
以上の構成を有する主磁極21を備えた磁気ヘッドは、ハードディスク装置、可撓性のテープ状の磁気記録媒体などの磁気記録装置に適用され、磁気記録媒体に対向して配置される。
Note that the component in the core width direction of the remanent magnetization in FIG. 7 is returned to the side in the core width direction in the same manner as shown in FIG.
The magnetic head including the main magnetic pole 21 having the above configuration is applied to a magnetic recording device such as a hard disk device or a flexible tape-shaped magnetic recording medium, and is disposed to face the magnetic recording medium.

次に、本発明の実施形態について特徴を付記する。
(付記1)磁気記録媒体の面に対向して配置され且つ垂直方向に記録磁界が通るコアの媒体対向面を備えた主磁極を有し、前記主磁極は、前記主磁極の厚さ方向に積層されて非磁性層が間に挟まれる複数の磁性層からなる積層構造磁性膜と、前記積層構造磁性膜のうち前記媒体対向面側の積層端面に沿って形成されて且つ前記積層端面と反対側の面が前記媒体対向面となる端面磁性層とを有することを特徴とする磁気ヘッド。
(付記2)前記積層構造磁性膜は、偶数層の前記磁性膜からなることを特徴とする付記1に記載の磁気ヘッド。
(付記3)主磁極の前記媒体対向面から前記積層構造膜までの距離となる前記端面磁性層の厚さをt1とし、前記端面磁性層の飽和磁束密度をBs1とし、前記積層構造磁性膜を構成する前記磁性層のそれぞれの膜厚をt2とし、前記磁性層の飽和磁束密度をBs2として、t1×Bs1≒t2×Bs2の関係にあることを特徴とする付記1または付記2に記載の磁気ヘッド。
(付記4)前記端面磁性層は、鉄とコバルトを有する磁性材からなる第1磁性層から構成されることを特徴とする付記1乃至付記3のいずれか1つに記載の磁気ヘッド。
(付記5)前記端面磁性層において、前記第1磁性層の下にはニッケル及び鉄を含む磁性材からなる第2磁性層が形成されることを特徴とする付記4に記載の磁気ヘッド。
(付記6)前記非磁性層は、非磁性金属、非磁性金属合金、絶縁層のいずれかあることを特徴とする付記1乃至付記5のいずれか1つに記載の磁気ヘッド。
(付記7)前記主磁極のクロストラック側に近接してサイド磁性シールドが配置されていることを特徴とする付記1乃至付記6のいずれか1つに記載の磁気ヘッド。
(付記8)前記主磁極のトレーリング側に近接してトレーリング磁性シールドが配置され、前記トレーリング磁気シールドと前記主磁極の間には励磁コイルが配置されていることを特徴とする付記1〜付記7のいずれか1つに記載の磁気ヘッド。
(付記9)前記付記1乃至付記8のいずれか1つに記載の磁気ヘッドと、前記磁気ヘッドの前記記録媒体対向面に対向して配置される磁気記録媒体とを有することを特徴とする磁気記録装置。
Next, features of the embodiment of the present invention will be described.
(Additional remark 1) It has the main magnetic pole provided with the medium opposing surface of the core which is arrange | positioned facing the surface of a magnetic recording medium, and a recording magnetic field passes in a perpendicular direction, The said main magnetic pole is the thickness direction of the said main magnetic pole. A laminated structure magnetic film composed of a plurality of magnetic layers laminated with a nonmagnetic layer sandwiched therebetween, and is formed along a laminated end face on the medium facing surface side of the laminated structured magnetic film and opposite to the laminated end face A magnetic head comprising: an end surface magnetic layer whose side surface is the medium facing surface.
(Supplementary note 2) The magnetic head according to supplementary note 1, wherein the laminated structure magnetic film is composed of an even number of magnetic films.
(Supplementary Note 3) The thickness of the end surface magnetic layer is t 1 from the medium facing surface of the main magnetic pole becomes the distance to the laminated structure film, the saturation magnetic flux density of the end surface magnetic layer and Bs 1, wherein the laminated structure magnetic Note that the thickness of each of the magnetic layers constituting the film is t 2 and the saturation magnetic flux density of the magnetic layer is Bs 2 , so that t 1 × Bs 1 ≈t 2 × Bs 2. The magnetic head according to 1 or 2
(Additional remark 4) The said end surface magnetic layer is comprised from the 1st magnetic layer which consists of a magnetic material which has iron and cobalt, The magnetic head as described in any one of Additional remark 1 thru | or Additional remark 3 characterized by the above-mentioned.
(Supplementary note 5) The magnetic head according to supplementary note 4, wherein a second magnetic layer made of a magnetic material containing nickel and iron is formed below the first magnetic layer in the end face magnetic layer.
(Supplementary note 6) The magnetic head according to any one of supplementary notes 1 to 5, wherein the nonmagnetic layer is any one of a nonmagnetic metal, a nonmagnetic metal alloy, and an insulating layer.
(Supplementary note 7) The magnetic head according to any one of supplementary notes 1 to 6, wherein a side magnetic shield is disposed close to the cross track side of the main magnetic pole.
(Supplementary note 8) A trailing magnetic shield is disposed adjacent to the trailing side of the main magnetic pole, and an exciting coil is disposed between the trailing magnetic shield and the main magnetic pole. The magnetic head according to any one of?
(Additional remark 9) The magnetic head which has the magnetic head as described in any one of the said additional remarks 1 thru | or appendix 8, and the magnetic recording medium arrange | positioned facing the said recording medium opposing surface of the said magnetic head, Recording device.

図1は、本発明の実施形態に係る磁気ヘッドを示す断面図である。FIG. 1 is a cross-sectional view showing a magnetic head according to an embodiment of the present invention. 図2は、本発明の実施形態に係る磁気ヘッドにおける垂直記録磁気ヘッドに適用される主磁極を示す平面図である。FIG. 2 is a plan view showing the main pole applied to the perpendicular recording magnetic head in the magnetic head according to the embodiment of the present invention. 図3は、図2に示した主磁極の一部を示す斜視図である。FIG. 3 is a perspective view showing a part of the main magnetic pole shown in FIG. 図4は、図2に示した主磁極の一部を示す断面図である。FIG. 4 is a cross-sectional view showing a part of the main pole shown in FIG. 図5A〜図5Cは、図2に示した主磁極の形成工程を示す断面図(その1)である。5A to 5C are cross-sectional views (No. 1) showing a process of forming the main magnetic pole shown in FIG. 図5D〜図5Fは、図2に示した主磁極の形成工程を示す断面図(その2)である。5D to 5F are cross-sectional views (part 2) illustrating the formation process of the main magnetic pole illustrated in FIG. 図6は、図2に示した主磁極を構成する層構造の別の例を示す斜視図である。6 is a perspective view showing another example of the layer structure constituting the main magnetic pole shown in FIG. 図7は、図2に示した主磁極における残留磁化方向の別の例を示す斜視図である。FIG. 7 is a perspective view showing another example of the remanent magnetization direction in the main magnetic pole shown in FIG. 図8は、従来例の記録磁気ヘッドの主磁極のコア部とその周辺を示す斜視図である。FIG. 8 is a perspective view showing the core portion of the main magnetic pole and its periphery in a conventional recording magnetic head. 図9は、別の従来例の磁気ヘッドの主磁極のコア部とその周辺を示す斜視図である。FIG. 9 is a perspective view showing the core portion of the main magnetic pole and its periphery in another conventional magnetic head.

符号の説明Explanation of symbols

1 基板
2 絶縁層
3 絶縁分離層
5 磁気記録媒体
10 再生磁気ヘッド
20 垂直記録磁気ヘッド
21 主磁極
21a ヨーク部
21b 絞り部
21c コア部
22 平坦化絶縁層
23 非磁性ギャップ層
25 励磁コイル
28 リターンヨーク
30 積層構造磁性膜
31、32、33、34、51、52 磁性層
35 端面磁性層
36、37、38、52 非磁性層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Insulating layer 3 Insulating separation layer 5 Magnetic recording medium 10 Reproducing magnetic head 20 Perpendicular recording magnetic head 21 Main magnetic pole 21a Yoke part 21b Aperture part 21c Core part 22 Flattening insulating layer 23 Nonmagnetic gap layer 25 Excitation coil 28 Return yoke 30 Laminated structure magnetic film 31, 32, 33, 34, 51, 52 Magnetic layer 35 End face magnetic layer 36, 37, 38, 52 Nonmagnetic layer

Claims (4)

磁気記録媒体の面に対向して配置され且つ垂直方向に記録磁界が通るコアの媒体対向面を備えた主磁極を有し、
前記主磁極は、
前記主磁極の厚さ方向に積層されて非磁性層が間に挟まれる複数の磁性層からなる積層構造磁性膜と、
前記積層構造磁性膜のうち前記媒体対向面側の積層端面に沿って形成されて且つ前記積層端面と反対側の面が前記媒体対向面となる端面磁性層と
を有することを特徴とする磁気ヘッド。
A main magnetic pole provided with a medium facing surface of a core disposed opposite to the surface of the magnetic recording medium and passing a recording magnetic field in a vertical direction;
The main pole is
A laminated structure magnetic film comprising a plurality of magnetic layers laminated in the thickness direction of the main magnetic pole and sandwiching a nonmagnetic layer therebetween,
A magnetic head comprising: an end face magnetic layer formed along a laminated end face on the medium facing surface side of the laminated structure magnetic film and having a surface opposite to the laminated end face serving as the medium facing surface. .
前記積層構造磁性膜は、偶数層の前記磁性膜からなることを特徴とする請求項1に記載の磁気ヘッド。   The magnetic head according to claim 1, wherein the laminated magnetic film is composed of an even number of the magnetic films. 主磁極の前記媒体対向面から前記積層構造膜までの距離となる前記端面磁性層の厚さをt1とし、前記端面磁性層の飽和磁束密度をBs1とし、前記積層構造磁性膜を構成する前記磁性層のそれぞれの膜厚をt2とし、前記磁性層の飽和磁束密度をBs2として、
1×Bs1≒t2×Bs2
の関係にあることを特徴とする請求項1または請求項2に記載の磁気ヘッド。
The thickness of the end face magnetic layer that is the distance from the medium facing surface of the main pole to the laminated structure film is t 1, and the saturation magnetic flux density of the end face magnetic layer is Bs 1 to constitute the laminated structure magnetic film. the respective film thicknesses of the magnetic layer is t 2, the saturation magnetic flux density of the magnetic layer as Bs 2,
t 1 × Bs 1 ≒ t 2 × Bs 2
The magnetic head according to claim 1, wherein the magnetic head is in a relationship of:
前記請求項1乃至請求項3のいずれか1項に記載の磁気ヘッドと、
前記磁気ヘッドの前記記録媒体対向面に対向して配置される磁気記録媒体と
を有することを特徴とする磁気記録装置。
The magnetic head according to any one of claims 1 to 3,
A magnetic recording medium disposed opposite to the recording medium facing surface of the magnetic head.
JP2007242748A 2007-09-19 2007-09-19 Magnetic head and magnetic recording device Withdrawn JP2009076127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242748A JP2009076127A (en) 2007-09-19 2007-09-19 Magnetic head and magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242748A JP2009076127A (en) 2007-09-19 2007-09-19 Magnetic head and magnetic recording device

Publications (1)

Publication Number Publication Date
JP2009076127A true JP2009076127A (en) 2009-04-09

Family

ID=40610955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242748A Withdrawn JP2009076127A (en) 2007-09-19 2007-09-19 Magnetic head and magnetic recording device

Country Status (1)

Country Link
JP (1) JP2009076127A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233235B2 (en) 2009-12-09 2012-07-31 Hitachi Global Storage Technologies Netherlands B.V. PMR writer having a tapered write pole and bump layer and method of fabrication
US8451560B2 (en) 2009-12-09 2013-05-28 HGST Netherlands B.V. Magnetic head with flared write pole with multiple non-magnetic layers thereover
US8498078B2 (en) 2009-12-09 2013-07-30 HGST Netherlands B.V. Magnetic head with flared write pole having multiple tapered regions
US8508885B2 (en) 2010-11-30 2013-08-13 Kabushiki Kaisha Toshiba Magnetic head comprising pole including nonmagnetic layer and disk drive with the same
US8553360B2 (en) 2009-12-09 2013-10-08 HGST Netherlands B.V. Magnetic recording head having write pole with higher magnetic moment towards trailing edge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8233235B2 (en) 2009-12-09 2012-07-31 Hitachi Global Storage Technologies Netherlands B.V. PMR writer having a tapered write pole and bump layer and method of fabrication
US8451560B2 (en) 2009-12-09 2013-05-28 HGST Netherlands B.V. Magnetic head with flared write pole with multiple non-magnetic layers thereover
US8498078B2 (en) 2009-12-09 2013-07-30 HGST Netherlands B.V. Magnetic head with flared write pole having multiple tapered regions
US8553360B2 (en) 2009-12-09 2013-10-08 HGST Netherlands B.V. Magnetic recording head having write pole with higher magnetic moment towards trailing edge
US8508885B2 (en) 2010-11-30 2013-08-13 Kabushiki Kaisha Toshiba Magnetic head comprising pole including nonmagnetic layer and disk drive with the same

Similar Documents

Publication Publication Date Title
US7920358B2 (en) Perpendicular magnetic recording write head with magnetic shields separated by nonmagnetic layers
JP5571626B2 (en) Magnetic head for perpendicular magnetic recording having a shield provided around the main pole
JP5571625B2 (en) Magnetic head for perpendicular magnetic recording having a shield provided around the main pole
JP5571624B2 (en) Magnetic head for perpendicular magnetic recording with tapered main pole
US8018679B2 (en) Perpendicular magnetic recording write head with slanted magnetic write pole
JP5129051B2 (en) Recording magnetic pole structure and method of forming recording magnetic pole structure in perpendicular magnetic recording head
JP5658291B2 (en) Magnetic head for perpendicular magnetic recording with return path section
US11289117B1 (en) Magnetic head including spin torque oscillator
US11211082B1 (en) Magnetic head including spin torque oscillator
JP2006018985A (en) Magnetic head for perpendicular magnetic recording, and manufacturing method thereof
JP2008276817A (en) Perpendicular magnetic recording head
JP2004086961A (en) Magnetic head and magnetic recorder
US8320078B1 (en) Perpendicular magnetic recording write head with antiparallel-coupled laminated main pole having a tapered trailing edge
US8139321B2 (en) Perpendicular magnetic recording write head with improved laminated main pole
US20070139819A1 (en) Perpendicular magnetic recording head device capable of increasing magnetic field gradient to exhibit excellent recording performance while maintaining magnetic field intensity
JP2008305513A (en) Perpendicular magnetic recording head
US10748559B1 (en) Magnetic head including spin torque oscillator and manufacturing method for the same
JP2009076127A (en) Magnetic head and magnetic recording device
US11514931B1 (en) Magnetic head including main pole having top surface including first inclined portion, second inclined portion, and third inclined portion, and spin torque oscillator
JP2005018836A (en) Magnetic head and method for manufacturing the same
US20080225441A1 (en) Magnetic head
JP2006012378A (en) Magnetic head for perpendicular magnetic recording and method of manufacturing the same
JP4549546B2 (en) Spin valve structure, magnetoresistive element, and thin film magnetic head
US7817381B2 (en) Thin film magnetic head which suppresses inflow of magnetic generated by bias-applying layers into a free layer from a layering direction
JP2004164715A (en) Thin-film magnetic head and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207