[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009068894A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP2009068894A
JP2009068894A JP2007235333A JP2007235333A JP2009068894A JP 2009068894 A JP2009068894 A JP 2009068894A JP 2007235333 A JP2007235333 A JP 2007235333A JP 2007235333 A JP2007235333 A JP 2007235333A JP 2009068894 A JP2009068894 A JP 2009068894A
Authority
JP
Japan
Prior art keywords
ultrasonic
transmitting
receiving
receiving element
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007235333A
Other languages
Japanese (ja)
Inventor
Hikari Wada
光 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WADA ENGINEERING KK
Original Assignee
WADA ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WADA ENGINEERING KK filed Critical WADA ENGINEERING KK
Priority to JP2007235333A priority Critical patent/JP2009068894A/en
Publication of JP2009068894A publication Critical patent/JP2009068894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flow meter whose measurement accuracy is less likely to deteriorate, having superior durability. <P>SOLUTION: This device for measuring fluid velocity has a pair of ultrasonic transmitting element A and receiving element B, installed opposite so that ultrasonic propagation path is orthogonal to the flow velocity direction; and an operation program for calculating V from measured T, based on the formula: V=ä(CT)<SP>2</SP>-D<SP>2</SP>}<SP>1/2</SP>/T, if the flow velocity is V, the sound velocity is C, an ultrasonic propagation time from the transmitting element A to the receiving element B is T, and the distance from the transmitting element A to the receiving element B is D. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、超音波流速計に関する。   The present invention relates to an ultrasonic current meter.

トンネル内の風速、ガス管内のガス流速などの流速を測る計器として超音波流速計が汎用されている。従来の超音波流速計では、いずれも図4に示すように超音波伝搬路が流速方向に対して傾斜するように上流側と下流側に超音波素子a、bが配置され、交互に超音波が送受信される。そして、流速に対する伝搬路の傾斜角度をθとするとき、素子aから素子bへの伝搬時間Tabと逆方向の伝搬時間Tbaに基づいて下記の式より流速Vが求められる(非特許文献1)。
V=(L/2cosθ)(1/Tab−1/ba)
http://www.oval.co.jp/techinfo/ultrasonic/ultrasonic1.html
An ultrasonic anemometer is widely used as an instrument for measuring a flow velocity such as a wind velocity in a tunnel and a gas flow velocity in a gas pipe. In the conventional ultrasonic velocimeter, as shown in FIG. 4, the ultrasonic elements a and b are arranged on the upstream side and the downstream side so that the ultrasonic propagation path is inclined with respect to the flow velocity direction, and ultrasonic waves are alternately generated. Are sent and received. Then, when the inclination angle of the propagation path with respect to the flow velocity is θ, the flow velocity V is obtained from the following equation based on the propagation time Tba in the direction opposite to the propagation time Tab from the element a to the element b (Non-patent Document 1). .
V = (L / 2 cos θ) (1 / Tab−1 / ba)
http://www.oval.co.jp/techinfo/ultrasonic/ultrasonic1.html

しかし、従来の超音波流速計は、伝搬路を流速に対して傾斜させる必要上、図4に示したように発信面及び受信面と管内面とを同一平面にすることができなかった。このため、発信面及び受信面と管内面とで段差が生じ、図示の如く発信面及び受信面が管内面よりも窪んでいる構造の場合はくぼみにゴミが溜まって測定精度が低下するし、逆に突出している場合は摩耗により素子が劣化するという問題があった。
それ故、この発明の課題は、測定精度が低下しにくく、耐久性に優れた超音波流速計を提案することにある。
However, since the conventional ultrasonic anemometer needs to incline the propagation path with respect to the flow velocity, the transmitting surface, the receiving surface, and the tube inner surface cannot be made flush with each other as shown in FIG. For this reason, a step occurs between the transmitting surface and the receiving surface and the inner surface of the pipe, and in the case of the structure in which the transmitting surface and the receiving surface are recessed from the inner surface of the tube as shown in the figure, dust accumulates in the recess and the measurement accuracy decreases. On the contrary, when it protrudes, there is a problem that the element deteriorates due to wear.
Therefore, an object of the present invention is to propose an ultrasonic anemometer that is less likely to reduce measurement accuracy and has excellent durability.

その課題を解決するために、この発明の超音波流速計は、
流体の速度を計測するものにおいて、
超音波の伝搬路が流速方向と直交するように対向して設置された一対の超音波発信素子及び受信素子と、
流速をV、音速をC、発信素子から受信素子までの超音波の伝搬時間をT、発信素子から受信素子までの距離をDとするとき、
V={(CT)2−D21/2/T
に基づいて、計測されたTからVを算出する演算プログラムと
を備えることを特徴とする。
In order to solve the problem, the ultrasonic anemometer of the present invention is
For measuring fluid velocity,
A pair of ultrasonic transmitting elements and receiving elements installed so that the ultrasonic propagation path is orthogonal to the flow velocity direction;
When the flow velocity is V, the sound velocity is C, the ultrasonic wave propagation time from the transmitting element to the receiving element is T, and the distance from the transmitting element to the receiving element is D,
V = {(CT) 2 −D 2 } 1/2 / T
And an arithmetic program for calculating V from the measured T.

超音波は本来一方向ではなく、発信素子を中心とする同心円の波紋が広がるように伝搬する。従って、図1に示すように発信素子Aから発せられた波紋Pは、受信素子Bに到達するまでの間に流速V方向に距離Xだけ移動する。
そこで、伝搬距離をLとすると、L2=X2+D2にL=CT、X=VTを代入し、Vを求めると前記の式となる。従って、伝搬時間Tを測定することで流速Vを計測することができる。
しかも発信素子及び受信素子は、伝搬路が流速方向と直交するように対向して設置されているので、前記流体が管内を流れるものであるとき、前記発信素子の発信面及び受信素子の受信面が管内面と同一平面になるように発信素子及び受信素子を管内面に取り付けることができる。従って、ゴミが溜まることはなく、素子が摩耗することもない。
Ultrasound propagates in such a way that concentric ripples centering on the transmitting element spread, rather than in one direction. Therefore, as shown in FIG. 1, the ripple P emitted from the transmitting element A moves by the distance X in the direction of the flow velocity V before reaching the receiving element B.
Therefore, when the propagation distance is L, L = CT and X = VT are substituted into L 2 = X 2 + D 2 , and V is obtained as described above. Therefore, the flow velocity V can be measured by measuring the propagation time T.
In addition, since the transmitting element and the receiving element are disposed so that the propagation path is orthogonal to the flow velocity direction, when the fluid flows in the pipe, the transmitting surface of the transmitting element and the receiving surface of the receiving element The transmitting element and the receiving element can be attached to the inner surface of the tube so that is flush with the inner surface of the tube. Therefore, no dust is collected and the element is not worn.

ゴミが溜まらないので測定精度が低下しにくく、素子が摩耗しないので耐久性に優れる。よって、一定の精度で長期的に計測することができる。   Since dust does not accumulate, measurement accuracy is unlikely to deteriorate, and the element does not wear, resulting in excellent durability. Therefore, long-term measurement can be performed with a certain accuracy.

図2は、この発明の実施形態に係る超音波流速計のブロック図である。流速計1は、図3の如く管W内の気体の流速を計測するもので、発信部2、受信部3及びマイクロプロセッサ4を備える。発信部2及び受信部3の接続端子にはそれぞれ超音波発信素子A、及び受信素子Bが接続されている。発信素子A及び受信素子Bを結ぶ直線は管軸と直交している。発信素子Aの発信面及び受信素子Bの受信面は管W内面と同一平面になるように発信素子A及び受信素子Bが管W内面に取り付けられている。マイクロプロセッサ4は、演算部41を有し、前記式V={(CT)2−D21/2/Tに基づいて、計測されたTからVを算出する演算プログラムが組み込まれている。 FIG. 2 is a block diagram of the ultrasonic current meter according to the embodiment of the present invention. As shown in FIG. 3, the anemometer 1 measures the flow velocity of the gas in the tube W and includes a transmitter 2, a receiver 3, and a microprocessor 4. An ultrasonic transmission element A and a reception element B are connected to connection terminals of the transmission unit 2 and the reception unit 3, respectively. A straight line connecting the transmitting element A and the receiving element B is orthogonal to the tube axis. The transmitting element A and the receiving element B are attached to the inner surface of the tube W so that the transmitting surface of the transmitting device A and the receiving surface of the receiving device B are flush with the inner surface of the tube W. The microprocessor 4 includes a calculation unit 41 and includes a calculation program for calculating V from the measured T based on the formula V = {(CT) 2 −D 2 } 1/2 / T. .

流速を計測する場合は、マイクロプロセッサ4で周波数決定され、送信波数決定された超音波が発信素子Aより発信される。同時に発信時刻がマイクロプロセッサ4に記録される。前記超音波が受信素子Bで受信され、前置増幅器、帯域制限フィルタ、可変利得増幅器及び検波器を経て電気信号に変換されてマイクロプロセッサ4に入力される。前記発信時刻と入力時刻との差から伝搬時間Tが求められ、演算部41にて流速Vが算出される。   When measuring the flow velocity, the frequency of which is determined by the microprocessor 4 and the ultrasonic wave whose transmission wave number is determined is transmitted from the transmitting element A. At the same time, the transmission time is recorded in the microprocessor 4. The ultrasonic wave is received by the receiving element B, converted into an electric signal through a preamplifier, a band limiting filter, a variable gain amplifier, and a detector, and input to the microprocessor 4. The propagation time T is obtained from the difference between the transmission time and the input time, and the flow velocity V is calculated by the calculation unit 41.

この実施形態によれば、発信素子Aの発信面及び受信素子Bの受信面と管W内面と間に段差が無いので、ゴミが溜まることはなく、素子A、Bが摩耗することもない。よって、一定の精度で長期的に計測することができる。
尚、前記式で本発明の課題は解決されるが、式中に音速が含まれていると流体の質の影響が大きく現れるため、実用に際しては超音波素子の指向性から許せる程度のやや斜めに素子A、Bを配置するとよい。
According to this embodiment, since there is no step between the transmitting surface of the transmitting element A and the receiving surface of the receiving element B and the inner surface of the tube W, dust does not collect and the elements A and B do not wear. Therefore, long-term measurement can be performed with a certain accuracy.
In addition, although the problem of the present invention is solved by the above formula, if the speed of sound is included in the formula, the influence of the quality of the fluid greatly appears. The elements A and B are preferably arranged on the side.

発明の作用を説明する図である。It is a figure explaining the effect | action of invention. 実施形態に係る超音波流速計のブロック図である。It is a block diagram of the ultrasonic current meter concerning an embodiment. 実施形態に係る超音波流速計の取り付け状態を示す断面図である。It is sectional drawing which shows the attachment state of the ultrasonic velocity meter which concerns on embodiment. 従来の超音波流速計の取り付け状態を示す断面図である。It is sectional drawing which shows the attachment state of the conventional ultrasonic velocity meter.

符号の説明Explanation of symbols

1 超音波流速計
2 発信部
3 受信部
4 マイクロプロセッサ
A 発信素子
B 受信素子
W 管
DESCRIPTION OF SYMBOLS 1 Ultrasonic anemometer 2 Transmitter part 3 Receiver part 4 Microprocessor A Transmitter element B Receiver element W Tube

Claims (2)

流体の速度を計測するものにおいて、
超音波の伝搬路が流速方向と直交するように対向して設置された一対の超音波発信素子及び受信素子と、
流速をV、音速をC、発信素子から受信素子までの超音波の伝搬時間をT、発信素子から受信素子までの距離をDとするとき、
V={(CT)2−D21/2/T
に基づいて、計測されたTからVを算出する演算プログラムと
を備えることを特徴とする超音波流速計。
For measuring fluid velocity,
A pair of ultrasonic transmitting elements and receiving elements installed so that the ultrasonic propagation path is orthogonal to the flow velocity direction;
When the flow velocity is V, the sound velocity is C, the ultrasonic wave propagation time from the transmitting element to the receiving element is T, and the distance from the transmitting element to the receiving element is D,
V = {(CT) 2 −D 2 } 1/2 / T
And an arithmetic program for calculating V from the measured T based on the above.
前記流体が管内を流れるものであって、前記発信素子の発信面及び受信素子の受信面が管内面と同一平面になるように発信素子及び受信素子が管内面に取り付けられている請求項1に記載の超音波流速計。   The fluid flows in the pipe, and the transmitting element and the receiving element are attached to the inner surface of the pipe so that the transmitting surface of the transmitting element and the receiving surface of the receiving element are flush with the inner surface of the pipe. The described ultrasonic current meter.
JP2007235333A 2007-09-11 2007-09-11 Ultrasonic flow meter Pending JP2009068894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235333A JP2009068894A (en) 2007-09-11 2007-09-11 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235333A JP2009068894A (en) 2007-09-11 2007-09-11 Ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JP2009068894A true JP2009068894A (en) 2009-04-02

Family

ID=40605328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235333A Pending JP2009068894A (en) 2007-09-11 2007-09-11 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2009068894A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161035A (en) * 1984-01-18 1984-09-11 Hitachi Ltd Plasma generator
JPS60100616A (en) * 1983-11-08 1985-06-04 Daido Steel Co Ltd Skid structure for heating furnace
JPH06201425A (en) * 1992-10-06 1994-07-19 Caldon Inc Device and method for measuring flow rate of liquid in pipe
JPH08178943A (en) * 1994-12-26 1996-07-12 Fujita Corp Method and device for measuring wind velocity and direction
JP2000241220A (en) * 1999-02-25 2000-09-08 Kansai Gas Meter Co Ltd Method and apparatus for measuring flowing velocity of ultrasonic wave
JP2000258212A (en) * 1999-03-09 2000-09-22 Toho Keisoku Kenkyusho:Kk Method and apparatus for measuring flow velocity in open channel and calibration inspecting method
JP2001074759A (en) * 1999-09-06 2001-03-23 Masahiro Nishikawa Non-contact flow velocity/flow rate measurement method using electromagnetic ultrasonic wave
JP2003202348A (en) * 2001-06-28 2003-07-18 Koden Electronics Co Ltd Flow-velocity measuring device and discharge-volume measuring device
JP2005172547A (en) * 2003-12-10 2005-06-30 Yokogawa Electric Corp Ultrasonic flowmeter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100616A (en) * 1983-11-08 1985-06-04 Daido Steel Co Ltd Skid structure for heating furnace
JPS59161035A (en) * 1984-01-18 1984-09-11 Hitachi Ltd Plasma generator
JPH06201425A (en) * 1992-10-06 1994-07-19 Caldon Inc Device and method for measuring flow rate of liquid in pipe
JPH08178943A (en) * 1994-12-26 1996-07-12 Fujita Corp Method and device for measuring wind velocity and direction
JP2000241220A (en) * 1999-02-25 2000-09-08 Kansai Gas Meter Co Ltd Method and apparatus for measuring flowing velocity of ultrasonic wave
JP2000258212A (en) * 1999-03-09 2000-09-22 Toho Keisoku Kenkyusho:Kk Method and apparatus for measuring flow velocity in open channel and calibration inspecting method
JP2001074759A (en) * 1999-09-06 2001-03-23 Masahiro Nishikawa Non-contact flow velocity/flow rate measurement method using electromagnetic ultrasonic wave
JP2003202348A (en) * 2001-06-28 2003-07-18 Koden Electronics Co Ltd Flow-velocity measuring device and discharge-volume measuring device
JP2005172547A (en) * 2003-12-10 2005-06-30 Yokogawa Electric Corp Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
TWI507665B (en) Ultrasonic flow meter
JP2008134267A (en) Ultrasonic flow measurement method
RU2637381C2 (en) Ultrasonic waveguide
JP5875999B2 (en) Ultrasonic flow meter, fluid velocity measuring method, and fluid velocity measuring program
JP4939907B2 (en) Ultrasonic flow meter for gas
JP2010266345A (en) Flow-rate measuring apparatus
JP2009068894A (en) Ultrasonic flow meter
JP2013250254A (en) Multiple reflection prevention rectifier tube for ultrasonic spirometer
JP2005091332A (en) Ultrasonic flowmeter
RU2672815C1 (en) Measuring flow in ultrasound
JP5345006B2 (en) Ultrasonic flow meter
RU118743U1 (en) ULTRASONIC FLOW METER
JPH11271117A (en) Ultrasonic flowmeter
JP4453341B2 (en) Ultrasonic flow meter
JP2010181321A (en) Ultrasonic flowmeter
JP5316795B2 (en) Ultrasonic measuring instrument
JP2009270882A (en) Ultrasonic flowmeter
RU2517996C1 (en) Ultrasonic flowmeter sensor
JP2008014833A (en) Ultrasonic flowmeter
JP4239106B2 (en) Phase difference type ultrasonic flowmeter
JP5649476B2 (en) Ultrasonic flow meter
JP3480711B2 (en) Ultrasonic vortex flowmeter
JP2012002625A (en) Flow rate measuring apparatus
JP2003161651A (en) Acoustic measuring device
JP2005172547A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124