JP2009062342A - Selection method of solvent for nitration of solid organic compound, and nitration reaction method of substrate organic compound - Google Patents
Selection method of solvent for nitration of solid organic compound, and nitration reaction method of substrate organic compound Download PDFInfo
- Publication number
- JP2009062342A JP2009062342A JP2007233464A JP2007233464A JP2009062342A JP 2009062342 A JP2009062342 A JP 2009062342A JP 2007233464 A JP2007233464 A JP 2007233464A JP 2007233464 A JP2007233464 A JP 2007233464A JP 2009062342 A JP2009062342 A JP 2009062342A
- Authority
- JP
- Japan
- Prior art keywords
- nitration
- reaction
- solvent
- organic compound
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、固体有機化合物のニトロ化溶媒の選定方法及び基質有機化合物のニトロ化反応方法に関するものであり、更に詳しくは、高温高圧水の環境下のニトロ化反応において、ニトロ化させる基質のニトロ化温度領域と溶媒のニトロ化温度領域を対比させて、使用する溶媒を判別、選定すること、及びそれによりニトロ化合物の収率と選択率を向上させることを特徴とする、特に、高温高圧水の環境下のニトロ化反応における固体有機化合物のニトロ化溶媒の選定方法及びニトロ化合物の収率及び選択率を向上させることを可能とするニトロ化反応方法に関するものである。 The present invention relates to a method for selecting a nitration solvent for a solid organic compound and a nitration reaction method for a substrate organic compound. More specifically, the present invention relates to a nitration reaction of a substrate to be nitrated in a nitration reaction in an environment of high-temperature high-pressure water. Characterized by distinguishing and selecting the solvent to be used by comparing the nitrating temperature region and the nitrating temperature region of the solvent, and thereby improving the yield and selectivity of the nitro compound. The present invention relates to a method for selecting a nitrating solvent for a solid organic compound in a nitration reaction under an environment of the above, and a nitration reaction method capable of improving the yield and selectivity of the nitro compound.
ニトロ化合物は、爆薬などの用途のほかに、還元によるアミン誘導体として、染料、医薬品など、広範囲な有機工業製品の重要な出発原料である。実際に、世界的に見たニトロ化合物の消費量は、莫大である(非特許文献1)。現在の工業的なニトロ化合物の合成は、Mitscherichのニトロ化法(非特許文献2)が実用的な方法として採用されている。ニトロ化反応は、しばしば、強発熱反応の振舞いを示すことから、工業プロセス中における爆発事故等の危険性を内在しており(非特許文献3)、従来、このことが、ニトロ化プロセスにおける反応制御技術上の重大な課題であると認識されている。 In addition to uses such as explosives, nitro compounds are important starting materials for a wide range of organic industrial products such as dyes and pharmaceuticals as amine derivatives by reduction. In fact, the consumption of nitro compounds worldwide is enormous (Non-patent Document 1). In the present industrial synthesis of nitro compounds, Mitscherich's nitration method (Non-patent Document 2) has been adopted as a practical method. Since nitration reaction often shows the behavior of strong exothermic reaction, there is inherent danger such as explosion accidents in industrial processes (Non-patent Document 3), and this is conventionally the reaction in nitration processes. It is recognized as a serious problem in control technology.
本発明者らは、これまで、高温高圧水場の小さな反応容積のマイクロ反応場は、反応暴走のリスクを最小にでき、また、マイクロリアクターは、効率的な熱伝達と混合を実現でき、良好な反応制御が可能であることから、有機合成の場として、鋭意研究を展開してきた。更に、耐硝酸環境用マイクロチューブ連続反応装置の開発を行い、高温高圧水中のニトロ化反応によるベンゼンからニトロベンゼンの合成手法を開発してきた。 To date, the inventors have shown that a micro reaction field with a small reaction volume in a high-temperature, high-pressure water field can minimize the risk of reaction runaway, and the micro-reactor can achieve efficient heat transfer and mixing. Since it is possible to control the reaction smoothly, research has been conducted as an organic synthesis field. Furthermore, we have developed a continuous microtube reactor for nitric acid resistant environment, and have developed a synthesis method of nitrobenzene from benzene by nitration reaction in high temperature and high pressure water.
有機工業製品として、経済的に最も重要な芳香族ニトロ化合物の原料となる化合物、例えば、ナフタリンは、融点80℃の固体であり、1−ニトロナフタレンは、化成品として、医薬品、農薬、色素などの原料として利用される。 Compounds that are the raw materials for the most economically important aromatic nitro compounds as organic industrial products, for example, naphthalene is a solid with a melting point of 80 ° C., and 1-nitronaphthalene is a chemical product such as pharmaceuticals, agricultural chemicals, and pigments. Used as a raw material.
高温高圧水環境に、基質であるナフタレンを送り込むために、一般的に使用される液体導入用の高圧ポンプでは、結晶固体のナフタリンを供給することができない。一般に、このような場合には、基質を溶媒に溶かすことによって、その目的を達している。図1に、本発明者らが開発したナフタリンをn−ヘキサンに溶解し、高温高圧水のニトロ化反応系に送り込む場合の概略図を示す。 In order to feed naphthalene as a substrate into a high-temperature and high-pressure water environment, a high-pressure pump for liquid introduction generally used cannot supply naphthalene as a crystalline solid. Generally, in such a case, the object is achieved by dissolving the substrate in a solvent. FIG. 1 shows a schematic diagram when naphthalene developed by the present inventors is dissolved in n-hexane and fed into a nitration reaction system of high-temperature high-pressure water.
しかしながら、高温高圧水の環境のニトロ化反応では、その溶媒の酸化分解やニトロ化が進行するケースがあることが本発明者らの研究によって明らかになった。即ち、ニトロ化反応に使用する溶媒がニトロ化された場合には、本来のニトロ化合物の収率と選択率の両者を大きく低下させることともに、窒素源が減少することとなる。 However, the present inventors have clarified that there are cases where the oxidative decomposition or nitration of the solvent proceeds in the nitration reaction in the environment of high-temperature and high-pressure water. That is, when the solvent used for the nitration reaction is nitrated, both the yield and selectivity of the original nitro compound are greatly reduced, and the nitrogen source is reduced.
従って、高温高圧水の環境のニトロ化反応に使用する溶媒は、ニトロ化されない溶媒を選択する必要がある。同時に、その溶媒は、反応器への損傷や第三の有害物(ダイオキシンなど)を生じないことが求められる。 Accordingly, it is necessary to select a solvent that is not nitrated as the solvent used in the nitration reaction in the environment of high-temperature and high-pressure water. At the same time, the solvent is required not to cause damage to the reactor or third toxic substances (such as dioxins).
このような状況の中で、本発明者らは、上記従来技術に鑑みて、高温高圧水の環境下のニトロ化反応において、ターゲットのニトロ化合物の収率と選択率を低下させることのないニトロ化反応方法を開発することを目標として鋭意研究を積み重ねた結果、基質のニトロ化温度領域と溶媒のニトロ化温度領域を対比させて、ニトロ化反応に使用する溶媒を判別、選定することにより所期の目的を達成し得ることを見出し、本発明を完成するに至った。 Under such circumstances, in view of the above prior art, the present inventors, in nitration reaction under the environment of high temperature and high pressure water, do not reduce the yield and selectivity of the target nitro compound. As a result of accumulating extensive research with the goal of developing a nitrification reaction method, it is possible to compare the nitration temperature region of the substrate with the nitration temperature region of the solvent, and identify and select the solvent used in the nitration reaction. The inventors have found that the purpose of the period can be achieved and have completed the present invention.
本発明は、本発明者らが、その様な観点から高温高圧水の環境下のニトロ化反応の研究を行う過程において、ニトロ化反応温度帯を利用する適正な溶媒判別方法を発見し、完成されるに至ったものである。本発明は、特に、固体有機化合物のニトロ化溶媒の選定方法及び高温高圧水のニトロ化反応系におけるニトロ化合物の収率及び選択率を向上させるニトロ化反応方法を提供することを目的とするものである。 The present inventors have discovered and completed an appropriate solvent discrimination method using the nitration reaction temperature zone in the process of conducting the nitration reaction in the environment of high-temperature and high-pressure water from such a viewpoint. It has come to be done. In particular, the present invention aims to provide a method for selecting a nitration solvent for a solid organic compound and a nitration reaction method for improving the yield and selectivity of a nitro compound in a nitration reaction system of high-temperature and high-pressure water. It is.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)高温高圧水の反応場で、基質有機化合物を硝酸を窒素源として、耐硝酸環境用マイクロチューブ連続反応装置を用いて、基質有機化合物のニトロ化反応を行うニトロ化反応方法において用いるための、基質有機化合物のニトロ化溶媒を選定する方法であって、基質のニトロ化温度領域と溶媒のニトロ化温度領域を対比させて、両者の温度領域の違いを利用して溶媒を選定することを特徴とする基質有機化合物のニトロ化溶媒の選定方法。
(2)高温高圧水の反応場が、小さな反応容積のマイクロ反応場である、前記(1)記載のニトロ化溶媒の選定方法。
(3)希硝酸の存在下で耐硝酸環境用マイクロチューブ連続反応装置を用いて基質有機化合物のニトロ化反応を行う、前記(1)記載のニトロ化溶媒の選定方法。
(4)高温高圧水の温度と圧力条件が、それぞれ200〜400℃、25〜40MPaである、前記(1)記載のニトロ化溶媒の選定方法。
(5)耐硝酸環境用マイクロチューブ連続反応器として、設定温度に維持できるオーブン内に設置したマイクロチューブ反応器と、該反応器に高温高圧水を窒素源試薬及び基質を供給する供給装置と、少なくともキャリアー水送液用、窒素源試薬導入用及び基質導入用の高圧ポンプと、反応生成物を冷却する冷却装置とを、連続反応可能に配管系で連結して連続反応系を構成した構造を有することで特徴付けられる耐硝酸環境用マイクロチューブ連続反応装置を用いて基質有機化合物のニトロ化反応を行う、前記(1)記載のニトロ化溶媒の選定方法。
(6)高温高圧水の反応場で、基質有機化合物を硝酸を窒素源として耐硝酸環境用マイクロチューブ連続反応装置を用いて、基質有機化合物のニトロ化反応を行うニトロ化反応方法において、前記(1)から(5)のいずれかに記載の方法で選定されたニトロ化溶媒を用いて、基質有機化合物のニトロ化反応を行うことを特徴とする基質有機化合物のニトロ化反応方法。
(7)上記ニトロ化反応方法により、目的のニトロ化合物の収率及び選択率を向上させる、前記(6)記載の基質有機化合物のニトロ化反応方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) To be used in a nitration reaction method in which nitration of a substrate organic compound is carried out using nitric acid as a nitrogen source and a microtube continuous reaction apparatus for nitric acid resistant environment in a reaction field of high-temperature high-pressure water. The method of selecting the nitration solvent for the substrate organic compound, comparing the nitration temperature region of the substrate with the nitration temperature region of the solvent, and selecting the solvent using the difference between the temperature regions of the two A method for selecting a nitration solvent for a substrate organic compound, characterized by:
(2) The method for selecting a nitration solvent according to the above (1), wherein the reaction field of the high-temperature high-pressure water is a micro-reaction field with a small reaction volume.
(3) The method for selecting a nitration solvent according to the above (1), wherein the nitration reaction of the substrate organic compound is performed using a microtube continuous reaction apparatus for nitric acid resistant environment in the presence of dilute nitric acid.
(4) The method for selecting a nitration solvent according to (1), wherein the temperature and pressure conditions of the high-temperature and high-pressure water are 200 to 400 ° C. and 25 to 40 MPa, respectively.
(5) As a microtube continuous reactor for nitric acid-resistant environment, a microtube reactor installed in an oven that can be maintained at a set temperature, a supply device that supplies a high-temperature high-pressure water nitrogen source reagent and a substrate to the reactor, A structure in which a continuous reaction system is constructed by connecting at least a high-pressure pump for carrier water feeding, nitrogen source reagent introduction and substrate introduction, and a cooling device for cooling the reaction product through a piping system so that continuous reaction is possible. The nitration solvent selection method according to the above (1), wherein the nitration reaction of the substrate organic compound is performed using a microtube continuous reaction apparatus for a nitric acid resistant environment characterized by having.
(6) In the nitration reaction method of performing nitration reaction of a substrate organic compound using a microtube continuous reaction apparatus for nitric acid resistant environment using nitric acid as a nitrogen source in a reaction field of high-temperature high-pressure water, A method for nitration of a substrate organic compound, wherein the nitration reaction of the substrate organic compound is performed using the nitration solvent selected by the method according to any one of 1) to (5).
(7) The method for nitration reaction of a substrate organic compound according to (6), wherein the yield and selectivity of the target nitro compound are improved by the nitration reaction method.
次に、本発明について更に詳細に説明する。
本発明は、高温高圧水の反応場で、基質有機化合物を硝酸を窒素源として、耐硝酸環境用マイクロチューブ連続反応装置を用いて、基質有機化合物のニトロ化反応を行うニトロ化反応方法において用いるための、基質有機化合物のニトロ化溶媒を選定する方法であって、基質のニトロ化温度領域と溶媒のニトロ化温度領域を対比させて、両者の温度領域の違いを利用して溶媒を選定することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is used in a nitration reaction method in which nitration of a substrate organic compound is performed using a microtube continuous reaction apparatus for nitric acid resistant environment using nitric acid as a nitrogen source in a reaction field of high-temperature high-pressure water. A method for selecting a nitration solvent for a substrate organic compound, comparing the nitration temperature region of the substrate with the nitration temperature region of the solvent, and selecting the solvent using the difference between the temperature regions of the two It is characterized by this.
本発明では、高温高圧水の反応場が、小さな反応容積のマイクロ反応場であること、希硝酸の存在下で耐硝酸環境用マイクロチューブ連続反応装置を用いて基質有機化合物のニトロ化反応を行うこと、高温高圧水の温度と圧力条件がそれぞれ200〜400℃、25〜40MPaであること、を好ましい実施の態様としている。 In the present invention, the reaction field of the high-temperature high-pressure water is a micro-reaction field with a small reaction volume, and the nitration reaction of the substrate organic compound is performed using a micro-tube continuous reaction apparatus for nitric acid resistant environment in the presence of dilute nitric acid. That is, the temperature and pressure conditions of the high-temperature and high-pressure water are 200 to 400 ° C. and 25 to 40 MPa, respectively.
また、本発明では、耐硝酸環境用マイクロチューブ連続反応器として、設定温度に維持できるオーブン内に設置したマイクロチューブ反応器と、該反応器に高温高圧水を窒素源試薬及び基質を供給する供給装置と、少なくともキャリアー水送液用、窒素源試薬導入用及び基質導入用の高圧ポンプと、反応生成物を冷却する冷却装置とを、連続反応可能に配管系で連結して連続反応系を構成した構造を有することで特徴付けられる耐硝酸環境用マイクロチューブ連続反応装置を用いて基質有機化合物のニトロ化反応を行うこと、を好ましい実施の態様としている。 Further, in the present invention, as a microtube continuous reactor for nitric acid-resistant environment, a microtube reactor installed in an oven that can be maintained at a set temperature, and a supply of nitrogen source reagent and substrate with high-temperature and high-pressure water to the reactor A continuous reaction system is configured by connecting the equipment, at least a carrier water feed, a high-pressure pump for introducing a nitrogen source reagent and a substrate, and a cooling device for cooling a reaction product through a piping system so that the reaction product can be continuously reacted. In a preferred embodiment, the nitration reaction of the substrate organic compound is performed using a continuous microtube for nitric acid resistant environment characterized by having the above structure.
更に、本発明は、高温高圧水の反応場で、基質有機化合物を硝酸を窒素源として耐硝酸環境用マイクロチューブ連続反応装置を用いて、基質有機化合物のニトロ化反応を行うニトロ化反応方法において、上記の方法で選定されたニトロ化溶媒を用いて、基質有機化合物のニトロ化反応を行うことを特徴とするものである。 Furthermore, the present invention provides a nitration reaction method in which nitration of a substrate organic compound is carried out using a microtube continuous reaction apparatus for nitric acid resistant environment using nitric acid as a nitrogen source in a reaction field of high-temperature high-pressure water. The nitration reaction of the substrate organic compound is carried out using the nitration solvent selected by the above method.
通常、高温高圧水の環境への液体基質の圧入は、高圧ポンプにより行われる。そして、結晶物は、溶媒に溶解して同様の操作を行う。本発明のニトロ化反応のための基質溶媒の選定方法は、基質のニトロ化反応の温度領域と溶媒のニトロ化反応の温度領域の違いを利用してニトロ化反応に好適なニトロ化溶媒を選定するものである。それを、以下に、ナフタリンの例で具体的に示す。 Usually, the liquid substrate is injected into the environment of high-temperature and high-pressure water by a high-pressure pump. The crystal is dissolved in a solvent and the same operation is performed. The method for selecting a substrate solvent for the nitration reaction of the present invention selects a suitable nitration solvent for the nitration reaction using the difference between the temperature range of the substrate nitration reaction and the temperature range of the solvent nitration reaction. To do. This is specifically shown below with an example of naphthalene.
基質のニトロ化温度領域と溶媒のニトロ化温度領域については、本発明者らは、ナフタリンの可溶化の溶媒として、アセトニトリル、アセトン、クロロホルム等では、溶媒のガス分解が進行し、本来のニトロ化は進行しないことを研究により見出している。一方、ヘキサンを溶媒とした場合(溶解度は8.9w/w%程度が限界)を想定し、ヘキサンをニトロ化反応に供した場合には、ニトロヘキサンを生じる(図2)。実際、ヘキサンを溶媒としたナフタリンのニトロ化を実行した場合、ニトロヘキサンとニトロナフタリンの混合物が分析される(図3)。 Regarding the nitration temperature region of the substrate and the nitration temperature region of the solvent, the present inventors have proposed that as the solvent for solubilizing naphthalene, acetonitrile, acetone, chloroform, etc. undergo gas decomposition of the solvent, and the original nitration Has been found through research. On the other hand, assuming that hexane is used as a solvent (solubility is limited to about 8.9 w / w%), when hexane is subjected to a nitration reaction, nitrohexane is produced (FIG. 2). In fact, when performing nitration of naphthalene using hexane as a solvent, a mixture of nitrohexane and nitronaphthalene is analyzed (FIG. 3).
そこで、ニトロベンゼンを溶媒とした場合には、ニトロベンゼンのニトロ化温度とナフタリンのニトロ化温度領域が異なるために、この場合は、最も良好なニトロ化溶媒であることが比較によって示される(図4)。従って、ニトロ化する固形物の溶媒を選択する場合には、予め溶媒のニトロ化温度帯を見出すことにより、好適な溶媒であるかどうかを選択することができる。本発明は、上記の方法で選定されたニトロ化溶媒を用いて基質有機化合物のニトロ化反応を行う基質有機化合物のニトロ化反応方法を提供する。本発明の方法は、使用する基質有機化合物に適合するニトロ化溶媒を選定することを特徴とするものであるから、本発明の方法は、基質有機化合物の種類に制限されることなく適用し得るものである。 Therefore, when nitrobenzene is used as a solvent, the nitration temperature of nitrobenzene and the nitration temperature range of naphthalene are different, and in this case, the comparison shows that it is the best nitration solvent (FIG. 4). . Therefore, when selecting the solvent of the solid substance to be nitrated, it is possible to select whether or not it is a suitable solvent by finding the nitration temperature zone of the solvent in advance. The present invention provides a substrate organic compound nitration reaction method in which the nitration reaction of the substrate organic compound is performed using the nitration solvent selected by the above method. Since the method of the present invention is characterized by selecting a nitration solvent compatible with the substrate organic compound to be used, the method of the present invention can be applied without being limited to the kind of the substrate organic compound. Is.
本発明により、次のような効果が奏される。
(1)高温高圧水の環境の基質有機化合物のニトロ化反応方法において、目的のニトロ化合物の収率及び選択率を顕著に向上させることができる。
(2)高温高圧水の反応場において得られるニトロ化合物の収率や選択率を向上させることが可能なニトロ化反応方法を提供することができる。
(3)高温高圧水による新しいニトロ化反応方法を用いた生産システムを構築し、提供することができる。
(4)ニトロ化する固形物の溶媒を選択する場合に、予め基質のニトロ化温度帯と溶媒のニトロ化温度帯を対比することで、好適な溶媒を見出すことが可能となる。
(5)ニトロ化合物の収率と選択率の低下と窒素源の減少を効果的に防ぐことができる。
The present invention has the following effects.
(1) In the nitration reaction method of the substrate organic compound in the environment of high temperature and high pressure water, the yield and selectivity of the target nitro compound can be remarkably improved.
(2) A nitration reaction method capable of improving the yield and selectivity of a nitro compound obtained in a reaction field of high-temperature and high-pressure water can be provided.
(3) A production system using a new nitration reaction method using high-temperature and high-pressure water can be constructed and provided.
(4) When a solid solvent to be nitrated is selected, a suitable solvent can be found by previously comparing the nitration temperature zone of the substrate with the nitration temperature zone of the solvent.
(5) A decrease in the yield and selectivity of the nitro compound and a decrease in the nitrogen source can be effectively prevented.
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
本実施例では、耐硝酸環境用マイクロチューブ連続反応装置を構成し、作製した。
高圧ポンプ;0.001〜100ml/min(ISCO260D連続送液システム)を使用し、キャリアー水送液用(1)、水洗浄及び希釈調整用(2)、窒素源試薬導入用(3)、基質導入用(4)、液均相化溶媒用(5)のポンプで構成した。それに、図5に示されるように、高温高圧水供給装置(6);400°C/40MPa 高温高圧水20ml/min 供給能力、マイクロtube反応器(7);外径1/16インチチタン内張管、内径0.5mm、長さ1m、冷却装置(8);400°C/40MPaの高温高圧水から20°C/40MPaの高圧水の熱交換能力、を設置した。
In this example, a nitric acid resistant environment microtube continuous reaction apparatus was constructed and produced.
High-pressure pump; 0.001 to 100 ml / min (ISCO260D continuous liquid feeding system) for carrier water feeding (1), water washing and dilution adjustment (2), nitrogen source reagent introduction (3), substrate The pump for introduction (4) and the liquid phase-homogenizing solvent (5) were used. In addition, as shown in FIG. 5, high-temperature high-pressure water supply device (6); 400 ° C / 40 MPa high-temperature high-pressure water 20 ml / min supply capacity, microtube reactor (7); outer diameter 1/16 inch titanium lining A pipe, an inner diameter of 0.5 mm, a length of 1 m, a cooling device (8); a heat exchanging capacity of high-temperature water of 20 ° C / 40 MPa from high-temperature high-pressure water of 400 ° C / 40 MPa was installed.
高圧条件を、25〜40MPa(±0.02MPa)、ER3000システム(テスコム社製)、とし、電子天秤(10);常に流量をモニターできる能力、安全装置(11);60MPa(MAX)で作動、温度計測手段(12);外径1/16インチシース熱電対、計測範囲10〜600℃(±0.5℃)、を設置した。 High pressure conditions are 25 to 40 MPa (± 0.02 MPa), ER3000 system (manufactured by Tescom), electronic balance (10); ability to constantly monitor flow rate, safety device (11); operating at 60 MPa (MAX), Temperature measurement means (12): an outer diameter 1/16 inch sheath thermocouple, measurement range of 10 to 600 ° C. (± 0.5 ° C.) was installed.
配管系は、全て1/16インチチタン内張管と同接続部品で構成し、必要に応じて、逆止弁やストップバルブを設けた。マイクロtube反応器を実験実施温度に維持できるオーブン装置内に構成した。 The piping system was all composed of the same connecting parts as the 1/16 inch titanium lining pipe, and a check valve and a stop valve were provided as necessary. The microtube reactor was configured in an oven apparatus that could be maintained at the experimental operating temperature.
本実施例では、ナフタリンの希釈溶媒とするためのヘキサンのニトロ化温度帯の確認を行った。使用試薬として、n−ヘキサンとアセトン(和光純薬(株))、超純水を用いた。反応温度と反応圧力条件は、それぞれ200−400℃、40MPaとした。各高圧ポンプ(1)、(2)、高温高圧水供給装置(6)、冷却装置(8)、圧力制御装置(9)、電子天秤(10)、温度計測手段(12)、マイクロtube反応器(7)、オーブン及び配管系の正常な接続を確認した後、実験圧力(圧力制御装置(9)の正常作動を確認)で、漏れの無いことを確認した。しかる後、冷却装置(8)の正常作動を確認した後、高温高圧水供給装置(6)の正常作動を確認し、オーブンの正常作動を確認し、最終的に、各ポンプの水による導入量を、電子天秤(10)で確認した後、実験条件にセットした。 In this example, the nitration temperature zone of hexane for use as a dilute solvent for naphthalene was confirmed. As reagents used, n-hexane, acetone (Wako Pure Chemical Industries, Ltd.), and ultrapure water were used. The reaction temperature and reaction pressure conditions were 200-400 ° C. and 40 MPa, respectively. Each high-pressure pump (1), (2), high-temperature high-pressure water supply device (6), cooling device (8), pressure control device (9), electronic balance (10), temperature measuring means (12), micro tube reactor (7) After confirming normal connection of the oven and the piping system, it was confirmed that there was no leakage at the experimental pressure (confirmed normal operation of the pressure control device (9)). Then, after confirming the normal operation of the cooling device (8), confirm the normal operation of the high-temperature and high-pressure water supply device (6), confirm the normal operation of the oven, and finally the amount of water introduced by each pump Was confirmed with an electronic balance (10), and then set to experimental conditions.
実験では、ポンプ(1)の送液量5ml/min、(3)の硝酸(3規定)送液量2ml/min、(4)のヘキサン送液量0.5ml/min、そして、(5)より液均相化溶媒用としてアセトン10ml/minで導入した。200−400℃の実験区間は、冷却装置(8)によって、25℃以下に冷却した。サンプルは、マイクロtube反応器の入り口と出口の温度の一致したところで採取した。表1に、ヘキサンのニトロ化反応における最適温度帯を、耐硝酸環境用マイクロチューブ連続反応装置による実験により設定した値を示す。 In the experiment, the pump (1) feed rate was 5 ml / min, (3) nitric acid (3 N) feed rate was 2 ml / min, (4) hexane feed rate was 0.5 ml / min, and (5) More acetone was introduced at a rate of 10 ml / min for a liquid-phase-homogenizing solvent. The experimental section of 200-400 ° C was cooled to 25 ° C or lower by the cooling device (8). Samples were taken at the same temperature at the inlet and outlet of the microtube reactor. Table 1 shows values set by experiments using a microtube continuous reaction apparatus for a nitric acid resistant environment for the optimum temperature zone in the hexane nitration reaction.
この条件で行ったニトロ化反応の結果を、図6に、GC分析のクロマトで示す。このニトロ化反応では、3−ニトロヘキサン、2−ニトロヘキサンと1−ニトロヘキサンが合成された。その中で、3−ニトロヘキサン、2−ニトロヘキサンが主成分である。図7に、この反応における総ニトロヘキサンの収率と温度帯を示した。ヘキサンのニトロ化される温度領域は、主に250℃から400℃の広い範囲であることが分かった。 The results of the nitration reaction performed under these conditions are shown in FIG. 6 by GC analysis chromatography. In this nitration reaction, 3-nitrohexane, 2-nitrohexane and 1-nitrohexane were synthesized. Among them, 3-nitrohexane and 2-nitrohexane are the main components. FIG. 7 shows the total nitrohexane yield and temperature zone in this reaction. It has been found that the temperature range in which hexane is nitrated mainly ranges from 250 ° C to 400 ° C.
本実施例では、ナフタリンをヘキサン溶媒で導入した場合に生成するニトロ化合物を調べた。ヘキサン希釈のナフタリン(8.85w/w%)のニトロ化を同様に耐硝酸環境用マイクロチューブ連続反応装置で行った。但し、反応温度は200−400℃とした。その条件を、表2に示す。 In this example, nitro compounds produced when naphthalene was introduced with a hexane solvent were examined. Nitration of naphthalene diluted with hexane (8.85 w / w%) was similarly carried out in a microtube continuous reactor for nitric acid resistant environment. However, the reaction temperature was 200-400 ° C. The conditions are shown in Table 2.
この条件で行ったニトロ化反応物のGC分析の結果を、図8に示す。このニトロ化反応では、ヘキサンは、ニトロ化されて、3−ニトロヘキサン、2−ニトロヘキサンと1−ニトロヘキサンに変換された。同様に、ナフタリンもニトロ化されて、1−ニトロナフタリンと微量の2−ニトロナフタリンに変換され、結果として合成された混合物である。結果として、ニトロナフタレンの収率や選択性は大きく低下することが分かった。 The results of GC analysis of the nitration reaction product performed under these conditions are shown in FIG. In this nitration reaction, hexane was nitrated and converted to 3-nitrohexane, 2-nitrohexane and 1-nitrohexane. Similarly, naphthalene is nitrated and converted to 1-nitronaphthalene and trace amounts of 2-nitronaphthalene, resulting in a synthesized mixture. As a result, it was found that the yield and selectivity of nitronaphthalene are greatly reduced.
図9に、この反応における総ヘキサンニトロ化物と総ナフタリンニトロ化物の収率と温度帯を示した。ヘキサンのニトロ化される温度領域は、250℃から400℃、ナフタリンの温度領域は、225から400℃の範囲で、両者の高収率のニトロ化する領域は、広く重なっている。これらの結果より、ヘキサンは、ニトロ化するための基質の溶媒としては、高温高圧水環境のニトロ化反応には適していないことが分かる。 FIG. 9 shows the yield and temperature zone of total hexane nitrate and total naphthalene nitrate in this reaction. The temperature range in which hexane is nitrated is 250 ° C. to 400 ° C., the temperature range of naphthalene is in the range of 225 to 400 ° C., and the high yield nitration regions of both are widely overlapped. From these results, it can be seen that hexane is not suitable for the nitration reaction in a high temperature and high pressure water environment as a substrate solvent for nitration.
ヘキサン溶媒の場合の結果を表3に示す。反応流出物の各成分は、0.032Mナフタレンの1リッター当たりの物質のグラム数でまとめた。ニトロヘキサンのモル収率は、3−ニトロヘキサン、2−ニトロヘキサン、1−ニトロヘキサンの総生成モル数を、供給ナフタレンモル数で乗算した。ニトロナフタレンについても、同様に処理した。 The results in the case of hexane solvent are shown in Table 3. Each component of the reaction effluent was summarized in grams of material per liter of 0.032M naphthalene. The molar yield of nitrohexane was obtained by multiplying the total number of moles of 3-nitrohexane, 2-nitrohexane and 1-nitrohexane by the number of moles of naphthalene supplied. Nitronaphthalene was treated in the same manner.
本実施例では、ニトロベンゼンのニトロ化温度領域を調べた。ナフタリンの希釈溶媒と、ニトロベンゼンのニトロ化温度領域が重ならないかどうかを実験で確認した。ニトロベンゼンを同じように耐硝酸環境用マイクロチューブ連続反応装置でニトロ化した。但し、反応温度は200−400℃とした。その条件を、表4及び図10に示す。 In this example, the nitration temperature region of nitrobenzene was examined. The experiment confirmed whether the dilute solvent of naphthalene and the nitration temperature region of nitrobenzene did not overlap. Nitrobenzene was similarly nitrated in a microtube continuous reactor for nitric acid resistant environments. However, the reaction temperature was 200-400 ° C. The conditions are shown in Table 4 and FIG.
その結果、ニトロベンゼンのニトロ化反応が進行し始める温度は350℃以降であり、ナフタリンの250℃付近の最高の収率の始まる温度帯と、約100℃の開きを持っていることが分かる。 As a result, it can be seen that the temperature at which the nitration reaction of nitrobenzene begins to proceed is 350 ° C. or later, and has a temperature range where the highest yield of naphthalene starts around 250 ° C. and an opening of about 100 ° C.
更に、ナフタリンのヘキサンに対する溶解度は、室温で約8.9w/w%であるのに対して、ニトロベンゼンは、溶解度が大きい(30w/w%以上)。このことは、ニトロナフタリンの生産効率を上げる上で大きな利点がある。 Further, the solubility of naphthalene in hexane is about 8.9 w / w% at room temperature, whereas nitrobenzene has a high solubility (30 w / w% or more). This has a great advantage in increasing the production efficiency of nitronaphthalene.
本実施例では、ニトロベンゼン希釈によるナフタリンのニトロ化を試みた。ニトロベンゼンをナフタリンのニトロ化溶媒とした場合の設定は、表4に示した通りである。なお、ナフタリン/ニトロベンゼンのナフタリンの濃度は、25w/w%である。その結果を、図11に示す。 In this example, we tried to nitrate naphthalene by diluting nitrobenzene. Table 4 shows the settings when nitrobenzene was used as the nitrating solvent for naphthalene. The naphthalene concentration of naphthalene / nitrobenzene is 25 w / w%. The result is shown in FIG.
図で明らかなように、ニトロベンゼンは、ニトロ化せずにナフタリンだけがニトロ化し、ニトロナフタリンが生成される。この実験では、ほぼ225−250℃付近の温度帯で、ナフタリンはニトロ化合物に全て変換されている。このように、ナフタリンのような結晶体の有機化合物の溶媒を選定する場合には、そのニトロ化温度帯を調べることによって、適切なニトロ化反応の溶媒を選ぶことができる。 As is apparent from the figure, nitrobenzene is not nitrated but only naphthalene is nitrated to produce nitronaphthalene. In this experiment, naphthalene is completely converted into a nitro compound in a temperature range of about 225 to 250 ° C. Thus, when selecting a solvent for a crystalline organic compound such as naphthalene, an appropriate solvent for the nitration reaction can be selected by examining the nitration temperature zone.
ニトロベンゼン溶媒の場合の結果を、表5に示す。反応流出物の各成分は、0.292Mナフタレンの1リッター当たりの物質のグラム数でまとめた。各ニトロナフタレンのモル収率は、1−ニトロナフタリン、2−ニトロナフタリンの各温度における生成モル数を供給ナフタレンモル数で乗算した。 The results for the nitrobenzene solvent are shown in Table 5. Each component of the reaction effluent was summarized in grams of material per liter of 0.292 M naphthalene. The molar yield of each nitronaphthalene was obtained by multiplying the number of moles of 1-nitronaphthalene and 2-nitronaphthalene produced at each temperature by the number of moles of naphthalene supplied.
合成ニトロ化合物の構造の同定は、以下により行った。
(1)ニトロ化有機化合物の分析に使用した分析機器
以下の分析機器を使用した。
A. GC−MS分析装置:A−1;HP6890 GC System + 5973 Mass Selective Detector. A−2; 日本電子製JMS .700
B. GC 分析装置: Agilent Technologies 6890N Network GC System.
C. NMR 分析装置: バリアン・イノバ300
D. IR 分析装置: ニコレー・マグナ560 (in KBr or liquid film)
E. 高速液体クロマトグラフィー(HPLC): Agilent 1100 HPLC
F. 構造解析データベース: F−1;有機化合物のスペクトルデータベース 独立行政法人産業技術総合研究所( Spectral Data Base System )(SDBS)、F−2;Wiley 275 Data Base
The structure of the synthetic nitro compound was identified as follows.
(1) Analytical instrument used for analysis of nitrated organic compound The following analytical instrument was used.
A. GC-MS analyzer: A-1; HP6890 GC System + 5973 Mass Selective Detector. A-2: JMS manufactured by JEOL Ltd. 700
B. GC analyzer: Agilent Technologies 6890N Network GC System.
C. NMR analyzer: Varian Innova 300
D. IR analyzer: Nicole Magna 560 (in KBr or liquid film)
E. High performance liquid chromatography (HPLC): Agilent 1100 HPLC
F. Structural analysis database: F-1; Spectral database of organic compounds; National Institute of Advanced Industrial Science and Technology (Spectral Data Base System) (SDBS); F-2; Wiley 275 Data Base
本発明で合成した1−ニトロナフタリン、2−ニトロナフタリンの構造決定は、以下のようにして決定した。
(2)ヘキサン溶媒のケース
図12に、反応液300℃/40MPaのGC分析結果を示す。ニトロ合物に関連する主要なピーク、3.96、4.19、4.80、6.24、9.25、そして9.50について、同定した。尚、6.24は、原料のナフタリンであることを確認している。
The structure of 1-nitronaphthalene and 2-nitronaphthalene synthesized in the present invention was determined as follows.
(2) Case of hexane solvent FIG. 12 shows the GC analysis results of the reaction solution at 300 ° C./40 MPa. Major peaks associated with the nitro compound, 3.96, 4.19, 4.80, 6.24, 9.25, and 9.50 were identified. 6.24 has been confirmed to be naphthalene as a raw material.
1)保持時間9.25のピークに関して、以下の手順で1−ニトロナフタリン(1−nitronaphthalene)と決定した。
反応液をA−1で分析し、構造解析データベース:F−2によってマス開裂パターより一致率95%で1−ニトロナフタリンの構造を支持した。その比較チャートを図13に示す。
1) With respect to the peak having a retention time of 9.25, it was determined as 1-nitronaphthalene by the following procedure.
The reaction solution was analyzed by A-1, and the structure of 1-nitronaphthalene was supported by the structural analysis database: F-2 with a concordance rate of 95% from the mass cleavage pattern. The comparison chart is shown in FIG.
次に、反応液より相当するフラクションは、常にGC分析Bで確認して、カラムクロマトグラフィー法で分画した。得られた融点60℃の黄色結晶は、IR分析、既知サンプル及びBase System (SDBS) in AISTの赤外線スペクトルデータと比較した結果、完全に一致したことから、1−ニトロナフタリンと決定した(図14)。 Next, the corresponding fraction from the reaction solution was always confirmed by GC analysis B, and fractionated by column chromatography. The obtained yellow crystals having a melting point of 60 ° C. were determined to be 1-nitronaphthalene because they were completely in agreement with IR analysis, known samples, and infrared spectrum data of Base System (SDBS) in AIST (FIG. 14). ).
2)保持時間9.50のピークに関して、以下の手順で2−ニトロナフタリン(2−nitronaphthalene)と決定した。
反応液をA−1で分析し、構造解析データベース:F−2によってマス開裂パターより一致率95%で2−ニトロナフタリンの構造を支持した。その比較チャートを図15に示す。
2) With respect to the peak having a retention time of 9.50, it was determined as 2-nitronaphthalene by the following procedure.
The reaction solution was analyzed by A-1, and the structure of 2-nitronaphthalene was supported by the structural analysis database F-2 with a concordance rate of 95% from the mass cleavage pattern. The comparison chart is shown in FIG.
次に、反応液より相当するフラクションは常にGC分析Bで確認してカラムクロマトグラフィー法で分画した。得られた融点79℃の結晶は、IR分析、既知サンプル及びBase System (SDBS) in AISTの赤外線スペクトルデータと比較した結果、完全に一致したことから、2−ニトロナフタリンと決定した(図16)。 Next, the corresponding fraction from the reaction solution was always confirmed by GC analysis B and fractionated by column chromatography. The obtained crystal having a melting point of 79 ° C. was determined to be 2-nitronaphthalene because it was completely matched as a result of comparison with IR analysis, known samples, and infrared spectrum data of Base System (SDBS) in AIST (FIG. 16). .
(ヘキサンのニトロ化合物)
3)保持時間3.96、4.19、そして4.80の3本のピークに関して、全てがミニマス(A−2)によって、分子式C6H13NO2、分子量131であり、n−ヘキサンのニトロ化合物であることが決定された。
次に、ピークの帰属は3成分(3.96、4.19、そして4.80)をそれぞれHPLC(E)で分収し、IR(D)、NMR法(C)によって決定した。
(Hexane nitro compound)
3) For the three peaks with retention times of 3.96, 4.19, and 4.80, all of them have the molecular formula C 6 H 13 NO 2 , molecular weight 131 by n-mass (A-2), It was determined to be a nitro compound.
Next, the peak assignment was determined by fractionating the three components (3.96, 4.19, and 4.80) by HPLC (E) and IR (D), NMR method (C).
保持時間4.80のピークは既知物質及びSpectral Data Base System(SDBS)in AISTの赤外線スペクトルデータと比較した結果、完全に一致したことから、1−ニトロヘキサン(1−nitrohexane)と決定した(図17)。 The peak at a retention time of 4.80 was determined to be 1-nitrohexane because it was completely matched as a result of comparison with the infrared spectrum data of known substances and Spectral Data Base System (SDBS) in AIST (Fig. 17).
保持時間4.19のピークは、ミニマス(A−2)によって、分子式C6H13NO2、分子量131であり、n−ヘキサンのニトロ化合物であるから、NMR法(C)によって、A4.57(J=6.97)、B1.91(J=7.32)、C1.72(J=7.45)、D1.29、E1.25、F0.91(J=7.57)の吸収スペクトルとChemNMR 1H Estimation(ChemDraw)により、構造式を次の2−ニトロヘキサン(2−nitrohexane)と決定した。以下に、その構造式を、図18に、NMRデータを示した。 The peak of retention time 4.19 is a nitro compound of molecular formula C 6 H 13 NO 2 , molecular weight 131 and n-hexane according to minimass (A-2), and therefore according to NMR method (C), A4.57 (J = 6.97), B1.91 (J = 7.32), C1.72 (J = 7.45), D1.29, E1.25, F0.91 (J = 7.57) absorption From the spectrum and ChemNMR 1H Estimate (ChemDraw), the structural formula was determined as the following 2-nitrohexane. The structural formula is shown below, and FIG. 18 shows the NMR data.
保持時間3.96のピークは、ミニマス(A−2)によって、分子式C6H13NO2、分子量131であり、n−ヘキサンのニトロ化合物であるから、NMR法(C)によって、A 4.41 (J=4.65Hz)、B 1.97 (J=7.19Hz)、C 1.78 (J=7.13Hz)、D 1.167 (J=7.70Hz)、E 1.35 (J=7.43Hz)、F 0.95 (J=7.33Hz) スペクトルとChemNMR 1H Estimation(ChemDraw)により、構造式を、次の3−ニトロヘキサン(3−nitrohexane)と決定した。以下に、その構造式を、図19に、NMRデータを示した。 The peak of retention time 3.96 is a nitro compound of molecular formula C 6 H 13 NO 2 , molecular weight 131 and n-hexane according to minimass (A-2). Therefore, according to NMR method (C), A 4. 41 (J = 4.65 Hz), B 1.97 (J = 7.19 Hz), C 1.78 (J = 7.13 Hz), D 1.167 (J = 7.70 Hz), E 1.35 ( J = 7.43 Hz), F 0.95 (J = 7.33 Hz) The spectrum and ChemNMR 1H Estimate (ChemDraw), the structural formula was determined as the following 3-nitrohexane (3-nitrohexane). The structural formula is shown below, and FIG. 19 shows the NMR data.
これらの解析結果より、300℃/40MPaの反応液中のGCの各ピークは、図20のように帰属された。 From these analysis results, each peak of GC in the reaction solution at 300 ° C./40 MPa was assigned as shown in FIG.
(3)ニトロベンゼン溶媒のケース
図21に、反応液275℃/40MPaのGC分析結果を示す。ニトロ合物に関連する主要なピークは9.16と9.39の2本である。尚、5.18と6.16は、溶媒として使用したニトロベンゼンと原料のナフタリンである。
(3) Case of Nitrobenzene Solvent FIG. 21 shows the GC analysis result of the reaction solution at 275 ° C./40 MPa. The two main peaks associated with the nitro compound are 9.16 and 9.39. 5.18 and 6.16 are nitrobenzene used as a solvent and naphthalene as a raw material.
保持時間9.16と9.36は、ヘキサンの場合と同様の手法で構造を決定し、9.16と9.36は、それぞれ1−ニトロナフタリン(1−nitronaphthalene)と2−ニトロナフタリンであった。それぞれの帰属を図22に示す。 Retention times of 9.16 and 9.36 were determined by the same method as in hexane, and 9.16 and 9.36 were 1-nitronaphthalene and 2-nitronaphthalene, respectively. It was. Each attribution is shown in FIG.
以上詳述したように、本発明は、固体有機化合物のニトロ化溶媒の選定方法及び基質有機化合物のニトロ化反応方法に係るものであり、本発明により、高温高圧水の環境の基質有機化合物のニトロ化反応方法において、目的のニトロ化合物の収率及び選択率を顕著に向上させることができる。また、本発明により、高温高圧水の反応場において得られるニトロ化合物の収率や選択率を向上させることが可能なニトロ化反応方法を提供することができる。また、本発明により、高温高圧水による新しいニトロ化反応方法を用いた生産システムを構築し、提供することができる。本発明は、ニトロ化する固形物の溶媒を選択する場合に、予め基質のニトロ化温度帯と溶媒のニトロ化温度帯を対比して、好適ナ溶媒を見出すことが可能なニトロ化溶媒の選定方法と新しいニトロ化反応方法を提供するものとして有用である。 As described above in detail, the present invention relates to a method for selecting a nitration solvent for a solid organic compound and a nitration reaction method for a substrate organic compound. In the nitration reaction method, the yield and selectivity of the target nitro compound can be significantly improved. In addition, according to the present invention, a nitration reaction method capable of improving the yield and selectivity of a nitro compound obtained in a reaction field of high-temperature and high-pressure water can be provided. In addition, according to the present invention, a production system using a new nitration reaction method using high-temperature and high-pressure water can be constructed and provided. In the present invention, when selecting a solid solvent to be nitrated, it is possible to select a nitration solvent capable of finding a suitable solvent by previously comparing the nitration temperature zone of the substrate and the nitration temperature zone of the solvent. It is useful as a method and to provide a new nitration reaction method.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233464A JP2009062342A (en) | 2007-09-08 | 2007-09-08 | Selection method of solvent for nitration of solid organic compound, and nitration reaction method of substrate organic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007233464A JP2009062342A (en) | 2007-09-08 | 2007-09-08 | Selection method of solvent for nitration of solid organic compound, and nitration reaction method of substrate organic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009062342A true JP2009062342A (en) | 2009-03-26 |
Family
ID=40557262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007233464A Pending JP2009062342A (en) | 2007-09-08 | 2007-09-08 | Selection method of solvent for nitration of solid organic compound, and nitration reaction method of substrate organic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009062342A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104230716A (en) * | 2014-08-28 | 2014-12-24 | 厦门大学 | Method for enhancing nitration reaction rate of 2,5-dichloronitrobenzene |
CN114560771A (en) * | 2022-03-07 | 2022-05-31 | 中北大学 | Method for selective nitration of bromophenol by photocatalysis |
JP2023068610A (en) * | 2021-11-02 | 2023-05-17 | 安徽申蘭華色材有限公司 | Nitrification system, synthesis system and method for continuously synthesizing permanent violet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955654A (en) * | 1972-07-06 | 1974-05-30 | ||
JPS5312801A (en) * | 1976-07-23 | 1978-02-04 | Varen Technology | Nitration method of organic compounds |
JPH04264058A (en) * | 1990-10-18 | 1992-09-18 | Bayer Ag | Preparation of 2,2-bis-(aminophenyl)- propane |
JP2001515878A (en) * | 1997-09-08 | 2001-09-25 | バイエル・アクチエンゲゼルシヤフト | Process for producing an isomer mixture of dinitronaphthalene containing a high proportion of 1,5-dinitronaphthalene |
JP2007145800A (en) * | 2005-11-01 | 2007-06-14 | National Institute Of Advanced Industrial & Technology | Method for producing nitro compound and apparatus for producing the same |
-
2007
- 2007-09-08 JP JP2007233464A patent/JP2009062342A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955654A (en) * | 1972-07-06 | 1974-05-30 | ||
JPS5312801A (en) * | 1976-07-23 | 1978-02-04 | Varen Technology | Nitration method of organic compounds |
JPH04264058A (en) * | 1990-10-18 | 1992-09-18 | Bayer Ag | Preparation of 2,2-bis-(aminophenyl)- propane |
JP2001515878A (en) * | 1997-09-08 | 2001-09-25 | バイエル・アクチエンゲゼルシヤフト | Process for producing an isomer mixture of dinitronaphthalene containing a high proportion of 1,5-dinitronaphthalene |
JP2007145800A (en) * | 2005-11-01 | 2007-06-14 | National Institute Of Advanced Industrial & Technology | Method for producing nitro compound and apparatus for producing the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104230716A (en) * | 2014-08-28 | 2014-12-24 | 厦门大学 | Method for enhancing nitration reaction rate of 2,5-dichloronitrobenzene |
JP2023068610A (en) * | 2021-11-02 | 2023-05-17 | 安徽申蘭華色材有限公司 | Nitrification system, synthesis system and method for continuously synthesizing permanent violet |
JP7570752B2 (en) | 2021-11-02 | 2024-10-22 | 安徽申蘭華色材股▲ふん▼有限公司 | Nitrification system, synthesis system and method for continuous synthesis of permanent violet |
CN114560771A (en) * | 2022-03-07 | 2022-05-31 | 中北大学 | Method for selective nitration of bromophenol by photocatalysis |
CN114560771B (en) * | 2022-03-07 | 2023-10-27 | 中北大学 | Method for photocatalytic selective nitration of bromophenol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brocklehurst et al. | Nitration chemistry in continuous flow using fuming nitric acid in a commercially available flow reactor | |
Andersen et al. | Rapid synthesis of aryl azides from aryl halides under mild conditions | |
Takeda et al. | Oxidative dimerization of aromatic amines using tBuOI: entry to unsymmetric aromatic azo compounds | |
Chen et al. | Safe, efficient and selective synthesis of dinitro herbicides via a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent | |
Köckinger et al. | Optimization and scale-up of the continuous flow acetylation and nitration of 4-Fluoro-2-methoxyaniline to prepare a key building block of Osimertinib | |
KR20100034711A (en) | Continuous process for the manufacture of nitrobenzene | |
Sakai et al. | One-pot preparation of azobenzenes from nitrobenzenes by the combination of an indium-catalyzed reductive coupling and a subsequent oxidation | |
Ishikawa et al. | Synthesis of (–)‐Oseltamivir by Using a Microreactor in the Curtius Rearrangement | |
Acke et al. | A HCN-based reaction under microreactor conditions: industrially feasible and continuous synthesis of 3, 4-diamino-1 H-isochromen-1-ones | |
Wang et al. | Visible-light-mediated tungsten-catalyzed CH amination of unactivated alkanes with nitroarenes | |
Rawling et al. | Synthesis of unsymmetrical biaryl ureas from N-carbamoylimidazoles: kinetics and application | |
Martin et al. | Continuous manufacturing as an enabling tool with green credentials in early-phase pharmaceutical chemistry | |
US20140100360A1 (en) | Continuous production and reaction of a diazo compound | |
Chaturbhuj et al. | Copper catalyzed Gomberg–Buchmann–Hey reaction using aryldiazonium tosylate | |
JP2009062342A (en) | Selection method of solvent for nitration of solid organic compound, and nitration reaction method of substrate organic compound | |
Albadi et al. | Melamine trisulfonic acid catalyzed regioselective nitration of aromatic compounds with sodium nitrate under solvent-free conditions | |
CN105121401B (en) | The method that itroparaffin is prepared in micro-structured reactor | |
CN109665963A (en) | A kind of synthetic method of 2,6- dimethyl nitrobenzene | |
Li et al. | A flow strategy for the rapid, safe and scalable synthesis of NH 1, 2, 3-triazoles via acetic acid mediated cycloaddition between nitroalkene and NaN3 | |
JP2013517236A5 (en) | ||
Yu et al. | Dinitration of o-toluic acid in continuous-flow: process optimization and kinetic study | |
CN109320423A (en) | A kind of method of micro passage reaction synthesizing nitryl compound | |
WO2013140369A1 (en) | Process for adiabatic production of mononitrotoluene | |
JP4811764B2 (en) | Nitro compound production method and production apparatus thereof | |
JP2009062341A (en) | Nitration reaction method in deoxidized high-temperature high-pressure water environment and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Effective date: 20091112 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A621 | Written request for application examination |
Effective date: 20100323 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120606 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120711 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120910 |
|
A02 | Decision of refusal |
Effective date: 20130402 Free format text: JAPANESE INTERMEDIATE CODE: A02 |