[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009059515A - Forming method of conductive film - Google Patents

Forming method of conductive film Download PDF

Info

Publication number
JP2009059515A
JP2009059515A JP2007224056A JP2007224056A JP2009059515A JP 2009059515 A JP2009059515 A JP 2009059515A JP 2007224056 A JP2007224056 A JP 2007224056A JP 2007224056 A JP2007224056 A JP 2007224056A JP 2009059515 A JP2009059515 A JP 2009059515A
Authority
JP
Japan
Prior art keywords
substrate
conductive film
film
forming
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007224056A
Other languages
Japanese (ja)
Inventor
Atsuo Kishu
淳雄 旗手
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007224056A priority Critical patent/JP2009059515A/en
Publication of JP2009059515A publication Critical patent/JP2009059515A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deterioration of a resin part even if the resin part exists on the surface of a substrate by controlling oxygen concentration in a film-forming device and suppress occurrence of a large interface resistance between the conductive substrate and a conductive film when they are electrically connected. <P>SOLUTION: This is a formation method of a conductive film to form the conductive film by a spray thermal decomposition method on the surface of a substrate 18, and sprays particulates of a material solution on the surface of the heated substrate in a film-forming device using an atmospheric gas of which the oxygen concentration is 2 vol% or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基板上に導電性膜をスプレー熱分解法によって形成する導電性膜の形成方法に関するものである。   The present invention relates to a conductive film forming method for forming a conductive film on a substrate by spray pyrolysis.

ITO膜等の導電性膜の形成方法としては、従来スパッタリング法、スプレー熱分解法、蒸着法、ゾルゲル法などの方法があるが、低抵抗な導電性膜の成膜には主にスパッタリング法が用いられてきた。しかし、近年、スプレー熱分解法による低抵抗なITO膜の成膜方法が開発されている(例えば、非特許文献1を参照)。非特許文献1に記載された方法によれば、比抵抗が1.9×10−4ΩcmであるITO膜が得られ、さらに熱処理によって7.1×10−5Ωcmの膜が得られる。従って、スプレー熱分解法によっても、望ましい特性の導電性膜が得られるとともに、簡便な方法で導電性膜を形成することができるなどの利点があり、さまざまな応用が期待されている。 As a method for forming a conductive film such as an ITO film, there are conventional methods such as a sputtering method, a spray pyrolysis method, a vapor deposition method, and a sol-gel method, but a sputtering method is mainly used for forming a low resistance conductive film. Has been used. However, in recent years, a method for forming a low-resistance ITO film by spray pyrolysis has been developed (see, for example, Non-Patent Document 1). According to the method described in Non-Patent Document 1, an ITO film having a specific resistance of 1.9 × 10 −4 Ωcm is obtained, and a film of 7.1 × 10 −5 Ωcm is obtained by heat treatment. Therefore, the spray pyrolysis method is advantageous in that a conductive film having desirable characteristics can be obtained and the conductive film can be formed by a simple method, and various applications are expected.

上記のスプレー熱分解法は、基板を加熱して、その基板に原料溶液を噴霧することによって、基板の表面に導電性膜等を形成する方法である。従来のスプレー熱分解法の一例を図2に示す(非特許文献2参照)。この方法では、炉体1の一方の口にある原料投入口2から原料を入れ、ホットプレート3に接触して加熱されてある基板4に原料を吹き付けて、基板4の表面に導電性膜を成膜する。なお、図2において5は炉体1内の雰囲気ガスを排出する他方の口である。   The spray pyrolysis method is a method of forming a conductive film or the like on the surface of a substrate by heating the substrate and spraying a raw material solution onto the substrate. An example of a conventional spray pyrolysis method is shown in FIG. 2 (see Non-Patent Document 2). In this method, a raw material is introduced from a raw material inlet 2 in one of the furnace bodies 1, the raw material is sprayed onto a substrate 4 that is heated in contact with a hot plate 3, and a conductive film is formed on the surface of the substrate 4. Form a film. In FIG. 2, 5 is the other port for discharging the atmospheric gas in the furnace body 1.

また、別の例を図3に示す(非特許文献3参照)。この例では、成膜装置10の外部にあるスプレーノズル6から噴霧された原料7が、ホットプレート8上に置かれて加熱されている基板9に吹き付けられて、基板9の表面に膜が成膜される。なお、図3において11は原料7のタンクである。   Another example is shown in FIG. 3 (see Non-Patent Document 3). In this example, the raw material 7 sprayed from the spray nozzle 6 outside the film forming apparatus 10 is sprayed onto the heated substrate 9 placed on the hot plate 8 to form a film on the surface of the substrate 9. Be filmed. In FIG. 3, 11 is a tank for the raw material 7.

また、別の例を図4に示す(特許文献1参照)。この例では、図3の構成に加圧気体を送る送気管12を付加した装置を用いており、原料供給管と加圧気体(アルゴンガス等)を混合して原料7の溶液を霧化して基板に吹き付けることにより、基板9の表面に導電性膜が成膜される。
特開2004−167394号公報 “透明導電膜の新展開II”澤田豊監修 シーエムシー出版(2002) 長友隆男、大本修著、「スプレー法による酸化インジウム膜の電気的・光学的性質」、応用物理、日本、1978年、第47巻、7号、p.618-623 T.M.Ratcheva,M.D.Nanova,L.V.Vassilev,M.G.Mikhailov著,Properties of In2O3:Te films prepared by spraying method,Thin Solid Films,オランダ,Elsevier Sequoia,1986年,第139巻,p.189-199
Another example is shown in FIG. 4 (see Patent Document 1). In this example, an apparatus in which an air supply pipe 12 for sending pressurized gas is added to the configuration of FIG. 3 is used, and the raw material supply pipe and pressurized gas (such as argon gas) are mixed to atomize the solution of the raw material 7. By spraying on the substrate, a conductive film is formed on the surface of the substrate 9.
JP 2004-167394 A “New development of transparent conductive film II” supervised by Yutaka Sawada, CMC Publishing (2002) Takao Nagatomo, Osamu Omoto, “Electrical and Optical Properties of Indium Oxide Films by Spray Method”, Applied Physics, Japan, 1978, 47, 7, p.618-623 TMRatcheva, MDNanova, LVVassilev, MGMikhailov, Properties of In2O3: Te films prepared by spraying method, Thin Solid Films, The Netherlands, Elsevier Sequoia, 1986, 139, p.189-199

しかしながら、図2,図3,図4に示すようなスプレー熱分解法による成膜装置では、基板の表面の一部もしくは全部に樹脂部が存在する場合には、基板が加熱されるとともに基板の周囲の雰囲気ガス中に酸素が含まれるため、樹脂が酸化反応を起こして劣化するという問題点があった。   However, in the film forming apparatus using the spray pyrolysis method as shown in FIGS. 2, 3, and 4, when the resin portion is present on a part or all of the surface of the substrate, the substrate is heated and the substrate is heated. Since oxygen is contained in the surrounding atmosphere gas, there has been a problem that the resin deteriorates due to an oxidation reaction.

また、従来のスプレー熱分解法による成膜方法では、図4の例のように原料7の溶液の霧化のための加圧気体を用いたり、図2の例のように原料の霧を基板4付近へ運ぶためのキャリアガスとして窒素ガスを用いているが、基板の表面に達した後の霧は排気され、成膜装置の外へ取り出される。これは、霧の成膜装置内への付着、高濃度の有機溶媒のガスの滞留による発火を抑制するためである。しかし、この排気によって、基板の周囲の雰囲気ガス中の酸素濃度を制御することが極めて難しくなり、その結果、基板の表面に樹脂部があった場合には樹脂部が劣化することになる。   Further, in the conventional film formation method by the spray pyrolysis method, a pressurized gas for atomizing the solution of the raw material 7 is used as in the example of FIG. 4, or the mist of the raw material is used as a substrate as in the example of FIG. Nitrogen gas is used as a carrier gas for transporting to the vicinity of 4, but the mist after reaching the surface of the substrate is exhausted and taken out of the film forming apparatus. This is in order to suppress ignition due to adhesion of fog in the film forming apparatus and retention of gas of a high concentration organic solvent. However, this exhaust makes it extremely difficult to control the oxygen concentration in the ambient gas around the substrate, and as a result, the resin portion deteriorates when there is a resin portion on the surface of the substrate.

また、基板が導電性基板であり、基板と導電性膜が電気的に接続される場合には、基板の表面に樹脂部があると、基板と導電性膜との間に樹脂部に由来する大きな抵抗が発生し、良好な電気的接続が得られないという問題点があった。例えば、図5に示すような電子素子(具体的には光電変換素子)において、導電性膜15を従来のスプレー熱分解法で形成しようとした場合、導電性の基板13と導電性膜15との間に樹脂部14に由来する界面抵抗が発生する。導電性基板と導電性膜との界面抵抗は、接触面積1cm当たり約15Ωになり、電子素子に必要な性能が得られないという問題点があった。 Further, when the substrate is a conductive substrate and the substrate and the conductive film are electrically connected, if there is a resin portion on the surface of the substrate, the resin portion is derived between the substrate and the conductive film. There was a problem that a large resistance was generated and a good electrical connection could not be obtained. For example, in an electronic device (specifically, a photoelectric conversion device) as shown in FIG. 5, when the conductive film 15 is to be formed by a conventional spray pyrolysis method, the conductive substrate 13 and the conductive film 15 In the meantime, the interface resistance derived from the resin part 14 occurs. The interface resistance between the conductive substrate and the conductive film is about 15Ω per 1 cm 2 of the contact area, and there is a problem that the performance required for the electronic device cannot be obtained.

基板と導電性膜との間に樹脂部に由来する大きな抵抗が発生するという問題点は、以下のようなメカニズムが原因と推定される。即ち、そのメカニズムは明確には分かっていないが、成膜時に樹脂部が300℃以上の温度及びガス化した原料溶液の溶媒にさらされて表面が分解し、この分解生成物が基板と導電性膜の間に汚染層を形成する、また、分解生成物が導電性膜の膜質を劣化させることが抵抗増大の原因と推定される。   The problem that a large resistance derived from the resin portion is generated between the substrate and the conductive film is presumed to be caused by the following mechanism. That is, although the mechanism is not clearly understood, the surface of the resin part is exposed to a temperature of 300 ° C. or higher and the solvent of the gasified raw material solution during film formation, and the decomposition product becomes conductive with the substrate. It is presumed that the cause of the increase in resistance is that a contamination layer is formed between the films, and the decomposition products deteriorate the film quality of the conductive film.

従って、本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、基板の表面に樹脂部が存在していても樹脂部の劣化を抑制することができ、また、導電性の基板と導電性膜が電気的に接続される場合、それらの間に大きな界面抵抗が生じるのを抑制することができるようにすることである。   Therefore, the present invention has been completed in view of the above-mentioned conventional problems, and the purpose thereof is to suppress the deterioration of the resin part even if the resin part exists on the surface of the substrate, In the case where the conductive substrate and the conductive film are electrically connected, it is possible to suppress the occurrence of a large interface resistance between them.

本発明の導電性膜の形成方法は、表面に樹脂部を有する基板の前記表面に導電性膜をスプレー熱分解法によって形成する導電性膜の形成方法であって、酸素濃度が2体積%以下である雰囲気ガスを用いた成膜装置内において加熱された前記基板の前記表面に原料溶液の微粒子をスプレーすることを特徴とするものである。   The method for forming a conductive film of the present invention is a method for forming a conductive film by forming a conductive film on the surface of a substrate having a resin portion on the surface by a spray pyrolysis method, wherein the oxygen concentration is 2% by volume or less. The fine particles of the raw material solution are sprayed on the surface of the substrate heated in the film forming apparatus using the atmospheric gas.

また、本発明の導電性膜の形成方法は好ましくは、前記導電性膜がITO膜であり、前記雰囲気ガス中の前記酸素濃度が0.3体積%乃至2体積%であることを特徴とするものである。   In the method for forming a conductive film of the present invention, preferably, the conductive film is an ITO film, and the oxygen concentration in the atmospheric gas is 0.3% by volume to 2% by volume. Is.

また、本発明の導電性膜の形成方法は好ましくは、前記基板は、導電性基板上に、表層に第2導電型の半導体部が形成された球状の第1導電型の結晶半導体粒子が多数個接合され、前記結晶半導体粒子間の前記導電性基板上に樹脂から成る絶縁層が形成されている光電変換装置用の基板であり、前記半導体部及び前記絶縁層の上に前記導電性膜を形成することを特徴とするものである。   In the method for forming a conductive film of the present invention, it is preferable that the substrate has a large number of spherical first-conductivity-type crystalline semiconductor particles in which a second-conductivity-type semiconductor portion is formed on a surface layer on the conductive substrate. A substrate for a photoelectric conversion device in which an insulating layer made of a resin is formed on the conductive substrate between the crystal semiconductor particles, and the conductive film is formed on the semiconductor portion and the insulating layer. It is characterized by forming.

本発明の導電性膜の形成方法は、表面に樹脂部を有する基板の前記表面に導電性膜をスプレー熱分解法によって形成する導電性膜の形成方法であって、酸素濃度が2体積%以下である雰囲気ガスを用いた成膜装置内において加熱された基板の表面に原料溶液の微粒子をスプレーすることから、基板の表面に樹脂部が存在していても酸素によって樹脂部が劣化するのを抑制することができる。また、酸素濃度が2体積%以下であることから、基板自体の酸化、成膜装置内の各部位の酸化による劣化を抑制することができる。さらに、導電性の基板と導電性膜が電気的に接続される場合には、酸素によって樹脂部が殆ど劣化しないので、導電性の基板と導電性膜の間に大きな界面抵抗が生じるのを抑制することができる。   The method for forming a conductive film of the present invention is a method for forming a conductive film by forming a conductive film on the surface of a substrate having a resin portion on the surface by a spray pyrolysis method, wherein the oxygen concentration is 2% by volume or less. Since the fine particles of the raw material solution are sprayed on the surface of the heated substrate in the film forming apparatus using the atmospheric gas, the resin portion is deteriorated by oxygen even if the resin portion exists on the surface of the substrate. Can be suppressed. In addition, since the oxygen concentration is 2% by volume or less, deterioration due to oxidation of the substrate itself and each part in the film forming apparatus can be suppressed. Furthermore, when the conductive substrate and the conductive film are electrically connected, the resin portion is hardly deteriorated by oxygen, so that the generation of a large interface resistance between the conductive substrate and the conductive film is suppressed. can do.

従って、基板は表面に樹脂部があることから、劣化が極めて小さい樹脂部を有する電子素子等を製造することができる。即ち、導電性膜及び絶縁体等としての樹脂部を有する電子素子、電気回路、光電変換装置等の電子製品、電気製品を、樹脂部の劣化を極めて小さくして製造することができる。   Therefore, since the substrate has a resin portion on the surface, an electronic element or the like having a resin portion with extremely small deterioration can be manufactured. That is, an electronic device having a resin part as a conductive film, an insulator, and the like, an electronic product such as an electric circuit and a photoelectric conversion device, and an electric product can be manufactured with extremely small deterioration of the resin part.

また、本発明の導電性膜の形成方法は好ましくは、導電性膜がITO膜であり、雰囲気ガス中の酸素濃度が0.3体積%乃至2体積%であることから、導電性膜が酸化物導電性膜であるITO膜である場合、雰囲気ガス中の酸素濃度が0.3体積%未満であると、導電性膜の抵抗が増加することになるが、ITO膜から成る導電性膜の抵抗の増加を有効に抑制することができる。   In the method for forming a conductive film of the present invention, preferably, the conductive film is an ITO film, and the oxygen concentration in the atmospheric gas is 0.3 volume% to 2 volume%. In the case of an ITO film which is a physical conductive film, if the oxygen concentration in the atmospheric gas is less than 0.3% by volume, the resistance of the conductive film will increase. An increase in resistance can be effectively suppressed.

また、本発明の導電性膜の形成方法は好ましくは、基板は、導電性基板上に、表層に第2導電型の半導体部が形成された球状の第1導電型の結晶半導体粒子が多数個接合され、結晶半導体粒子間の導電性基板上に樹脂から成る絶縁層が形成されている光電変換装置用の基板であり、半導体部及び絶縁層の上に導電性膜を形成することから、結晶半導体粒子及び導電性基板と、導電性膜とが電気的に接続される際に、酸素によって樹脂から成る絶縁層が殆ど劣化しないので、結晶半導体粒子と導電性膜との間に大きな界面抵抗が生じるのを抑制することができる。その結果、高い光電変換効率を有する光電変換装置を得ることができる。   In the method for forming a conductive film of the present invention, it is preferable that the substrate has a large number of spherical first-conductivity-type crystalline semiconductor particles in which a second-conductivity-type semiconductor portion is formed on the surface of the conductive substrate. It is a substrate for a photoelectric conversion device in which an insulating layer made of a resin is formed on a conductive substrate between crystal semiconductor particles, and since a conductive film is formed on a semiconductor portion and an insulating layer, a crystal When the semiconductor particles and the conductive substrate are electrically connected to the conductive film, the insulating layer made of the resin is hardly deteriorated by oxygen, so that there is a large interface resistance between the crystalline semiconductor particles and the conductive film. It can be suppressed from occurring. As a result, a photoelectric conversion device having high photoelectric conversion efficiency can be obtained.

以下、本発明の導電性膜の形成方法について、図面を参照しつつ詳細に説明する。   Hereinafter, the method for forming a conductive film of the present invention will be described in detail with reference to the drawings.

図1は本発明の導電性膜の形成方法に用いられる成膜装置の模式的な断面図である。図1において、成膜装置の成膜室16の中にあるホルダー17の上面に基板18が設置されている。ホルダー17の下面は空間を介してホットプレート19に対向している。ホットプレート19は電源及び制御装置20によって加熱を制御される。原料溶液を噴霧するスプレーノズル21が原料溶液のタンク22に原料溶液の供給管を介して接続されている。原料溶液の圧力が圧力制御装置23により制御され、スプレーノズル21からのスプレー(噴霧)の圧力、スプレー量、スプレー速度(原料溶液の流速)等を制御する。   FIG. 1 is a schematic cross-sectional view of a film forming apparatus used in the method for forming a conductive film of the present invention. In FIG. 1, a substrate 18 is placed on the upper surface of a holder 17 in a film forming chamber 16 of the film forming apparatus. The lower surface of the holder 17 faces the hot plate 19 through a space. The heating of the hot plate 19 is controlled by the power source and the control device 20. A spray nozzle 21 for spraying the raw material solution is connected to a raw material solution tank 22 via a raw material solution supply pipe. The pressure of the raw material solution is controlled by the pressure control device 23 to control the pressure of the spray from the spray nozzle 21, the spray amount, the spray speed (flow rate of the raw material solution), and the like.

なお、図1において、31は窒素ガス供給管、32は空気供給管である。   In FIG. 1, 31 is a nitrogen gas supply pipe, and 32 is an air supply pipe.

本発明の導電性膜の形成方法は、基板18の表面に導電性膜をスプレー熱分解法によって形成する導電性膜の形成方法であって、酸素濃度が2体積%以下である雰囲気ガスを用いた成膜装置内において加熱された基板18の表面に原料溶液の微粒子をスプレーする構成である。   The method for forming a conductive film of the present invention is a method for forming a conductive film on the surface of the substrate 18 by spray pyrolysis, and uses an atmospheric gas having an oxygen concentration of 2% by volume or less. The raw material solution fine particles are sprayed on the surface of the substrate 18 heated in the film forming apparatus.

基板18の材料は、アルミニウム,ステンレススチール,シリコン等の導電性材料や半導体性材料、または酸化アルミニウム,ガラス等の絶縁性材料である。   The material of the substrate 18 is a conductive material such as aluminum, stainless steel, or silicon, or a semiconductor material, or an insulating material such as aluminum oxide or glass.

導電性膜は、ITO膜、SnO膜、ZnO膜等から成る。 The conductive film is made of an ITO film, a SnO 2 film, a ZnO film, or the like.

スプレー熱分解法によるスプレーの圧力は0.2MPa〜1MPaが好ましい。0.2MPa未満では、噴霧された原料溶液が霧(微粒子)になりきらずに液ダレが生じ易い。1MPaを超えると、配管の耐圧製を上げるために配管の構造が煩雑化し易くなる。   The pressure of the spray by the spray pyrolysis method is preferably 0.2 MPa to 1 MPa. If it is less than 0.2 MPa, the sprayed raw material solution does not become mist (fine particles), and liquid sag is likely to occur. If the pressure exceeds 1 MPa, the piping structure is likely to become complicated in order to increase the pressure resistance of the piping.

スプレー量は0.3g/sec(グラム/毎秒)〜0.8g/secが好ましい。0.3g/sec未満では、噴霧された原料溶液の微粒子がホットプレート19に起因する上昇気流に撹乱されて基板18に到達し難くなる。0.8g/secを超えると、基板18に到達した原料が基板18表面の熱を奪い、基板18の温度が低下して熱分解による膜形成反応が不完全になり易い。   The spray amount is preferably 0.3 g / sec (gram / second) to 0.8 g / sec. If it is less than 0.3 g / sec, the sprayed fine particles of the raw material solution are disturbed by the ascending air current caused by the hot plate 19 and hardly reach the substrate 18. When it exceeds 0.8 g / sec, the raw material that has reached the substrate 18 takes the heat of the surface of the substrate 18, the temperature of the substrate 18 is lowered, and the film formation reaction due to thermal decomposition tends to be incomplete.

スプレーノズル21から排出される原料溶液のスプレー速度(原料溶液の流速)は、1m/sec(メートル/毎秒)〜10m/secが好ましい。1m/sec未満では、噴霧された原料溶液の微粒子がホットプレート19に起因する上昇気流に撹乱されて基板18に到達し難くなす。10m/secを超えると、基板18に到達した原料溶液の霧の気流が基板18の表面の熱を奪い、基板18の温度が低下して熱分解による膜形成反応が不完全になり易い。   The spray speed of the raw material solution discharged from the spray nozzle 21 (flow rate of the raw material solution) is preferably 1 m / sec (meter / second) to 10 m / sec. If it is less than 1 m / sec, the sprayed fine particles of the raw material solution are disturbed by the rising air flow caused by the hot plate 19 and are difficult to reach the substrate 18. If it exceeds 10 m / sec, the mist of the raw material solution that has reached the substrate 18 takes the heat of the surface of the substrate 18, and the temperature of the substrate 18 is lowered and the film formation reaction due to thermal decomposition tends to be incomplete.

スプレーノズル21から排出される原料溶液の温度は、0℃〜75℃程度がよい。0℃未満では、配管においてチャンバー(成膜室)内または大気中の水分が結露し易くなる。75℃を超えると、原料溶液中の溶剤が配管内で気化したり、噴霧直後に気化し易くなる。   The temperature of the raw material solution discharged from the spray nozzle 21 is preferably about 0 ° C to 75 ° C. When the temperature is lower than 0 ° C., moisture in the chamber (film formation chamber) or in the air tends to condense in the piping. When it exceeds 75 ° C., the solvent in the raw material solution is easily vaporized in the pipe, or is easily vaporized immediately after spraying.

スプレーノズル21から排出される原料溶液の微粒子の平均粒径は20μm〜80μm程度がよい。20μm未満では、原料溶液中の溶剤が噴霧直後に気化し易くなる。80μmを超えると、基板18に到達した時点での原料溶液の微粒子の直径が大きいため、熱分解による膜形成反応が不完全になり易い。   The average particle diameter of the fine particles of the raw material solution discharged from the spray nozzle 21 is preferably about 20 μm to 80 μm. If it is less than 20 μm, the solvent in the raw material solution is easily vaporized immediately after spraying. When the thickness exceeds 80 μm, the diameter of the fine particles of the raw material solution when reaching the substrate 18 is large, so that the film formation reaction due to thermal decomposition tends to be incomplete.

原料溶液は、水、エチルアルコール等のアルコール、導電性膜の原料成分である塩化インジウム、塩化スズ等を含む。   The raw material solution contains water, alcohol such as ethyl alcohol, indium chloride, tin chloride, and the like, which are raw material components of the conductive film.

雰囲気ガスは、窒素ガス,アルゴンガス等の不活性ガス、または酸素ガス及び窒素ガスの酸素混合ガス等である。   The atmospheric gas is an inert gas such as nitrogen gas or argon gas, or an oxygen mixed gas of oxygen gas and nitrogen gas.

成膜室16内の酸素濃度は、酸素濃度計によって測定でき、その測定結果に基づいて、酸素濃度を成膜室16内に供給する窒素ガス及び空気の量により制御できる。窒素ガスは窒素ガス供給管31によって成膜室16内に供給でき、空気は空気供給管32によって成膜室16内に供給できる。   The oxygen concentration in the film forming chamber 16 can be measured by an oxygen concentration meter, and based on the measurement result, the oxygen concentration can be controlled by the amount of nitrogen gas and air supplied into the film forming chamber 16. Nitrogen gas can be supplied into the film forming chamber 16 through the nitrogen gas supply pipe 31, and air can be supplied into the film forming chamber 16 through the air supply pipe 32.

基板18の加熱温度は300℃〜600℃程度がよい。300℃未満では、熱分解による膜形成反応が不完全になり易い。600℃を超えると、原料溶液が基板18に到達する前に熱分解による膜形成反応が進んでしまう傾向がある。   The heating temperature of the substrate 18 is preferably about 300 ° C to 600 ° C. If it is less than 300 degreeC, the film formation reaction by thermal decomposition tends to become incomplete. When the temperature exceeds 600 ° C., the film formation reaction due to thermal decomposition tends to proceed before the raw material solution reaches the substrate 18.

本発明の導電性膜の形成方法は、導電性膜がITO膜であり、雰囲気ガス中の酸素濃度が0.3体積%乃至2体積%であることが好ましい。導電性膜が酸化物導電性膜であるITO膜である場合、雰囲気ガス中の酸素濃度が0.3体積%未満であると、導電性膜の抵抗が増加することになるが、ITO膜から成る導電性膜の抵抗の増加を有効に抑制することができる。   In the method for forming a conductive film of the present invention, the conductive film is preferably an ITO film, and the oxygen concentration in the atmospheric gas is preferably 0.3% by volume to 2% by volume. When the conductive film is an ITO film that is an oxide conductive film, if the oxygen concentration in the atmospheric gas is less than 0.3% by volume, the resistance of the conductive film increases. An increase in resistance of the conductive film formed can be effectively suppressed.

また、本発明の導電性膜の形成方法は、基板18は表面に樹脂部がある。従って、劣化が極めて小さい樹脂部を有する電子素子等を製造することができる。即ち、導電性膜及び絶縁体等としての樹脂部を有する電子素子、電気回路、光電変換装置等の電子製品、電気製品を、樹脂部の劣化を極めて小さくして製造することができる。   In the method for forming a conductive film of the present invention, the substrate 18 has a resin portion on the surface. Accordingly, it is possible to manufacture an electronic element or the like having a resin portion with extremely little deterioration. That is, an electronic device having a resin part as a conductive film, an insulator, and the like, an electronic product such as an electric circuit and a photoelectric conversion device, and an electric product can be manufactured with extremely small deterioration of the resin part.

基板18の表面にある樹脂部はポリイミド等から成る。基板18の加熱温度が300℃〜600℃程度であるため、樹脂部は耐熱性を有する樹脂から成ることがよく、ポリイミドの他にポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリアミドイミド等がよい。   The resin portion on the surface of the substrate 18 is made of polyimide or the like. Since the heating temperature of the substrate 18 is about 300 ° C. to 600 ° C., the resin portion is preferably made of a heat-resistant resin, and in addition to polyimide, polyethersulfone, polyetheretherketone, polyamideimide and the like are preferable.

本発明の導電性膜の形成方法は、導電性の基板18の表面に樹脂部で囲まれた部位があり、その部位において基板18の表面と導電性膜とが電気的に接続される構成に適用することが好ましい。樹脂部で囲まれた部位は、樹脂の酸化による劣化の影響が大きいため、界面抵抗が増大し易い。従って、樹脂の酸化を抑えて導電性膜を形成できる本発明の形成方法を好適に適用できる。また、導電性の基板18の表面に樹脂層があり、その樹脂層にビア導体等の貫通導体が形成され、貫通導体と導電性膜が接続される構成についても、上記と同様の理由で本発明の形成方法を好適に適用できる。   In the method for forming a conductive film of the present invention, there is a portion surrounded by a resin portion on the surface of the conductive substrate 18, and the surface of the substrate 18 and the conductive film are electrically connected at that portion. It is preferable to apply. Since the portion surrounded by the resin portion is greatly affected by deterioration due to oxidation of the resin, the interface resistance is likely to increase. Therefore, the formation method of the present invention that can form a conductive film while suppressing oxidation of the resin can be suitably applied. The configuration in which a resin layer is provided on the surface of the conductive substrate 18, a through conductor such as a via conductor is formed on the resin layer, and the through conductor and the conductive film are connected to each other for the same reason as described above. The formation method of the invention can be suitably applied.

また、本発明の導電性膜の形成方法は、図8に示すように、基板18は、導電性基板41上に、表層に第2導電型(例えばn型)の半導体部43が形成された球状の第1導電型(例えばp型)のシリコン等から成る結晶半導体粒子42が多数個接合され、結晶半導体粒子42間の導電性基板41上に樹脂から成る絶縁層44が形成されている光電変換装置用の基板であり、半導体部43及び絶縁層44の上に導電性膜45を形成することがよい。この場合、結晶半導体粒子42及び導電性基板41と、導電性膜45とが電気的に接続される際に、酸素によって樹脂から成る絶縁層44が殆ど劣化しないので、結晶半導体粒子42と導電性膜45との間に大きな界面抵抗が生じるのを抑制することができる。その結果、高い光電変換効率を有する光電変換装置を得ることができる。   Further, according to the method for forming a conductive film of the present invention, as shown in FIG. 8, the substrate 18 has a second conductive type (for example, n-type) semiconductor portion 43 formed on the conductive substrate 41 as a surface layer. A large number of crystalline semiconductor particles 42 made of spherical first conductivity type (for example, p-type) silicon are joined together, and an insulating layer 44 made of resin is formed on the conductive substrate 41 between the crystalline semiconductor particles 42. A conductive film 45 is preferably formed on the semiconductor portion 43 and the insulating layer 44 as a substrate for the conversion device. In this case, when the crystalline semiconductor particles 42 and the conductive substrate 41 are electrically connected to the conductive film 45, the insulating layer 44 made of a resin is hardly deteriorated by oxygen. Generation of a large interface resistance between the film 45 and the film 45 can be suppressed. As a result, a photoelectric conversion device having high photoelectric conversion efficiency can be obtained.

上記のように基板18が光電変換装置用の基板である場合、導電性基板41はアルミニウム等から成り、第2導電型(例えばn型)の半導体部43はn型ドーパントとしてリン(P)等を含むものである。また、球状の第1導電型(例えばp型)のシリコン等から成る結晶半導体粒子42は、直径100〜1000μm程度の粒径であり、p型ドーパントとして硼素(B)等を含むものである。樹脂から成る絶縁層44はポリイミド等から成る。また、光電変換装置は太陽電池等として使用される。   As described above, when the substrate 18 is a substrate for a photoelectric conversion device, the conductive substrate 41 is made of aluminum or the like, and the second conductivity type (for example, n-type) semiconductor portion 43 is phosphorus (P) or the like as an n-type dopant. Is included. The crystalline semiconductor particles 42 made of spherical first conductivity type (for example, p-type) silicon have a diameter of about 100 to 1000 μm and contain boron (B) or the like as a p-type dopant. The insulating layer 44 made of resin is made of polyimide or the like. The photoelectric conversion device is used as a solar cell or the like.

以下に本発明の導電性膜の形成方法の実施例について説明する。   Examples of the method for forming a conductive film of the present invention will be described below.

まず、スプレー熱分解法に用いる原料溶液として、塩化インジウムと塩化スズを、エチルアルコール及び水に完全に溶解させたものを用いた。塩化インジウムと塩化スズは、それらの金属イオン濃度が0.05mol/l(モル/リットル)(1リットル=1000cm3)の濃度となるようにした。インジウムとスズについて、インジウムに対するスズの比率が7重量%となるようにした。 First, as a raw material solution used for the spray pyrolysis method, a solution in which indium chloride and tin chloride were completely dissolved in ethyl alcohol and water was used. Indium chloride and tin chloride were adjusted to have a metal ion concentration of 0.05 mol / l (mol / liter) (1 liter = 1000 cm 3 ). For indium and tin, the ratio of tin to indium was 7% by weight.

また、基板として大きさが50mm×50mmの四角形のシリコンから成る基板を用い、基板の表面にポリイミドから成る樹脂を塗布した後、400℃で焼成したものを作製した。この樹脂層は、面積1cmの正方形の窓が形成されてあり、その窓の内側には基板の表面が露出しているようにした。導電性膜を成膜する前に基板をフッ酸液に浸漬して、基板の表面にあるシリコン酸化膜を除去した。 Further, a substrate made of square silicon having a size of 50 mm × 50 mm was used as the substrate, and a resin made of polyimide was applied to the surface of the substrate, followed by baking at 400 ° C. This resin layer was formed with a square window with an area of 1 cm 2 , and the surface of the substrate was exposed inside the window. Before forming the conductive film, the substrate was immersed in a hydrofluoric acid solution to remove the silicon oxide film on the surface of the substrate.

次に、成膜室内に基板を設置するホルダーが設けられ、ホルダーの下方に基板を加熱するための防爆型のホットプレートが設けられた、スプレー熱分解法による成膜装置を用い、PID制御型の温度調節器によってホットプレートの温度を制御して、基板の表面温度が350℃になるように加熱した。   Next, a PID control type using a spray pyrolysis film forming apparatus in which a holder for setting the substrate is provided in the film forming chamber and an explosion-proof hot plate for heating the substrate is provided below the holder. The temperature of the hot plate was controlled by the temperature controller, and the substrate surface was heated to 350 ° C.

次に、スプレー熱分解法による成膜装置の成膜室内の雰囲気ガス中の酸素濃度が0%,1%,2%,2.5%,5%,20%(図6参照)となるように、窒素ガス及び空気を成膜室内に導入し、酸素濃度が所定の割合になって30秒以上待ってから酸素濃度が安定になるのを確かめた後、基板をホルダー上に設置した。   Next, the oxygen concentration in the atmospheric gas in the film forming chamber of the film forming apparatus using the spray pyrolysis method becomes 0%, 1%, 2%, 2.5%, 5%, and 20% (see FIG. 6). Then, nitrogen gas and air were introduced into the film formation chamber, and after waiting for 30 seconds or more when the oxygen concentration reached a predetermined ratio, the oxygen concentration was stabilized, and then the substrate was placed on the holder.

次に、原料溶液をスプレーノズルから15秒間隔で0.5秒ずつスプレーするとともに、スプレーしている間の吐出量を0.3g/secとして、基板の表面にスプレーした。スプレーされた原料溶液の微粒子の平均粒径は45μm程度であった。50回スプレーして厚み0.1μmのITO膜を成膜し、基板をホットプレートから取り外して成膜を終了した。   Next, the raw material solution was sprayed from the spray nozzle at intervals of 15 seconds for 0.5 seconds, and the discharge amount during spraying was sprayed to the surface of the substrate at 0.3 g / sec. The average particle size of the fine particles of the sprayed raw material solution was about 45 μm. An ITO film having a thickness of 0.1 μm was formed by spraying 50 times, and the substrate was removed from the hot plate to complete the film formation.

次に、ITO膜と基板の表面との界面抵抗を直流電圧電源および直流電流モニターにより測定した。その結果、図6に示すように、酸素濃度が0%,1%,2%,2.5%のときに界面抵抗が1Ω、酸素濃度が5%のときに界面抵抗が10Ω、酸素濃度が20%のときに界面抵抗が15Ωであった。   Next, the interface resistance between the ITO film and the surface of the substrate was measured with a DC voltage power source and a DC current monitor. As a result, as shown in FIG. 6, when the oxygen concentration is 0%, 1%, 2%, and 2.5%, the interface resistance is 1Ω, and when the oxygen concentration is 5%, the interface resistance is 10Ω and the oxygen concentration is The interface resistance was 15Ω at 20%.

成膜室内の雰囲気ガス中の酸素濃度が0%,0.2%,0.3%,0.7%,1%,3%,5%(図7参照)となるようにし、上記実施例1と同様にしてITO膜を形成した。   The oxygen concentration in the atmosphere gas in the film forming chamber is 0%, 0.2%, 0.3%, 0.7%, 1%, 3%, 5% (see FIG. 7). In the same manner as in Example 1, an ITO film was formed.

そして、ITO膜と基板の表面との直流電圧電源および直流電流モニターにより測定したところ、図7に示すように、酸素濃度が0%のときにITO膜の比抵抗が2.8×10、酸素濃度が0.2%のときにITO膜の比抵抗が2.4×10、酸素濃度が0.3%のときにITO膜の比抵抗が1.4×10、酸素濃度が0.7%のときにITO膜の比抵抗が1.2×10、酸素濃度が1%のときにITO膜の比抵抗が1.1×10、酸素濃度が3%のときにITO膜の比抵抗が1.2×10、酸素濃度が5%のときにITO膜の比抵抗が1.1×10であった。 Then, when measured with a DC voltage power source and a DC current monitor between the ITO film and the surface of the substrate, as shown in FIG. 7, when the oxygen concentration is 0%, the resistivity of the ITO film is 2.8 × 10 3 , When the oxygen concentration is 0.2%, the resistivity of the ITO film is 2.4 × 10 3 , and when the oxygen concentration is 0.3%, the resistivity of the ITO film is 1.4 × 10 3 and the oxygen concentration is 0 The specific resistance of the ITO film is 1.2 × 10 3 when 0.7%, the specific resistance of the ITO film is 1.1 × 10 3 when the oxygen concentration is 1%, and the ITO film when the oxygen concentration is 3%. When the specific resistance of the ITO film was 1.2 × 10 3 and the oxygen concentration was 5%, the specific resistance of the ITO film was 1.1 × 10 3 .

図7に示すように、酸素濃度が0.3%未満である場合、ITO膜の抵抗が増加することが分かった。   As shown in FIG. 7, it was found that the resistance of the ITO film increases when the oxygen concentration is less than 0.3%.

本発明の導電性膜の形成方法に用いる成膜装置の模式的な断面図である。It is typical sectional drawing of the film-forming apparatus used for the formation method of the electroconductive film of this invention. 従来の成膜装置の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the conventional film-forming apparatus. 従来の成膜装置の他例を示す模式的な断面図である。It is typical sectional drawing which shows the other example of the conventional film-forming apparatus. 従来の成膜装置の他例を示す模式的な断面図である。It is typical sectional drawing which shows the other example of the conventional film-forming apparatus. 導電性膜及び樹脂部を有する基板の模式的な断面図である。It is typical sectional drawing of the board | substrate which has an electroconductive film and a resin part. 成膜装置内の雰囲気ガス中の酸素濃度と、基板及び導電性膜の界面抵抗との関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration in atmospheric gas in a film-forming apparatus, and the interface resistance of a board | substrate and a conductive film. 成膜装置内の雰囲気ガス中の酸素濃度と、導電性膜の比抵抗との関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration in atmospheric gas in a film-forming apparatus, and the specific resistance of an electroconductive film. 基板が本発明の光電変換装置用の基板である場合の基板の断面図である。It is sectional drawing of a board | substrate in case a board | substrate is a board | substrate for photoelectric conversion apparatuses of this invention.

符号の説明Explanation of symbols

16:成膜室
17:ホルダー
18:基板
19:ホットプレート
21:スプレーノズル
22:原料溶液のタンク
23:原料溶液の圧力制御装置
41:導電性基板
42:結晶半導体粒子
43:半導体部
44:絶縁層
45:導電性膜
16: Film formation chamber 17: Holder 18: Substrate 19: Hot plate 21: Spray nozzle 22: Raw material solution tank 23: Raw material solution pressure control device 41: Conductive substrate 42: Crystalline semiconductor particles 43: Semiconductor part 44: Insulation Layer 45: conductive film

Claims (3)

表面に樹脂部を有する基板の前記表面に導電性膜をスプレー熱分解法によって形成する導電性膜の形成方法であって、酸素濃度が2体積%以下である雰囲気ガスを用いた成膜装置内において加熱された前記基板の前記表面に原料溶液の微粒子をスプレーすることを特徴とする導電性膜の形成方法。   A conductive film forming method for forming a conductive film on the surface of a substrate having a resin portion on a surface by a spray pyrolysis method, wherein an atmosphere gas having an oxygen concentration of 2% by volume or less is used. A method for forming a conductive film, comprising spraying fine particles of a raw material solution onto the surface of the substrate heated in step (1). 前記導電性膜がITO膜であり、前記雰囲気ガス中の前記酸素濃度が0.3体積%乃至2体積%であることを特徴とする請求項1記載の導電性膜の形成方法。   The method for forming a conductive film according to claim 1, wherein the conductive film is an ITO film, and the oxygen concentration in the atmospheric gas is 0.3 vol% to 2 vol%. 前記基板は、導電性基板上に、表層に第2導電型の半導体部が形成された球状の第1導電型の結晶半導体粒子が多数個接合され、前記結晶半導体粒子間の前記導電性基板上に樹脂から成る絶縁層が形成されている光電変換装置用の基板であり、前記半導体部及び前記絶縁層の上に前記導電性膜を形成することを特徴とする請求項1または2記載の導電性膜の形成方法。   The substrate includes a plurality of spherical first-conductivity-type crystalline semiconductor particles each having a second-conductivity-type semiconductor portion formed on a surface layer, and a plurality of spherical first-conductivity-type crystal semiconductor particles bonded to the substrate. The conductive film according to claim 1, wherein the conductive film is formed on the semiconductor portion and the insulating layer. Of forming a conductive film.
JP2007224056A 2007-08-30 2007-08-30 Forming method of conductive film Pending JP2009059515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224056A JP2009059515A (en) 2007-08-30 2007-08-30 Forming method of conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224056A JP2009059515A (en) 2007-08-30 2007-08-30 Forming method of conductive film

Publications (1)

Publication Number Publication Date
JP2009059515A true JP2009059515A (en) 2009-03-19

Family

ID=40555086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224056A Pending JP2009059515A (en) 2007-08-30 2007-08-30 Forming method of conductive film

Country Status (1)

Country Link
JP (1) JP2009059515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020195975A (en) * 2019-06-05 2020-12-10 東芝三菱電機産業システム株式会社 Film deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020195975A (en) * 2019-06-05 2020-12-10 東芝三菱電機産業システム株式会社 Film deposition method
JP7280751B2 (en) 2019-06-05 2023-05-24 東芝三菱電機産業システム株式会社 Deposition method

Similar Documents

Publication Publication Date Title
TW201131790A (en) Conductive metal oxide films and photovoltaic devices
WO2013061634A1 (en) Method for forming film on glass substrate
CN103081085A (en) Support substrate
JP2008078113A (en) Device for manufacturing transparent conductive substrate
JP2013501382A5 (en)
CN113764121B (en) Antimony-doped tin dioxide conductive film and preparation method and application thereof
CN108091414A (en) A kind of nano silver wire compound transparent electricity conductive film and its preparation
JP2009059515A (en) Forming method of conductive film
JP4814491B2 (en) Method for forming transparent conductive film and transparent electrode
JPH1053418A (en) Tin oxide ternary function thin film and its production
KR20170020602A (en) A far infrared ray heating element
CN110395714B (en) Antimony doped SnO 2 Preparation method of @ carbon nanotube composite electrothermal film
WO2014061612A1 (en) Conductive thin film-equipped glass substrate, thin-film solar cell, low-emissivity glass substrate, and production method for conductive thin film-equipped glass substrate
KR101359913B1 (en) The manufacturing method of low-resistance, high transmittance, flexible FTO(F-doped Tin Oxide) transparent conductive film including carbon nanotubes
WO2015004767A1 (en) Solar cell manufacturing method
TW200533780A (en) Self-cleaning catalyst chemical vapor deposition device and cleaning method therefor
JP2008010236A (en) Transparent conductive film and forming method therefor, photoelectric transfer device, and photovoltaic generator device
JP3940047B2 (en) Method for manufacturing photoelectric conversion device
CN107195389B (en) The preparation method of metal oxynitride transparent conductive film
CN103716925A (en) Pollution-free manufacturing method for surface electric heating elements
EP3349251B1 (en) High efficiency solar cell and method for manufacturing high efficiency solar cell
JP2009110792A (en) Method of forming of conductive film and method of manufacturing photoelectric conversion device
Castaneda et al. Chemisorptive detection by electrical and nonlinear optical absorption properties of a nanostructured ruthenium-doped zinc oxide film
Lee et al. Deposition heating effect on CdS thin films prepared by thermal evaporation for CdTe solar cells
JP2013222794A (en) Solar cell manufacturing method