[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009058405A - Optical analysis apparatus - Google Patents

Optical analysis apparatus Download PDF

Info

Publication number
JP2009058405A
JP2009058405A JP2007226746A JP2007226746A JP2009058405A JP 2009058405 A JP2009058405 A JP 2009058405A JP 2007226746 A JP2007226746 A JP 2007226746A JP 2007226746 A JP2007226746 A JP 2007226746A JP 2009058405 A JP2009058405 A JP 2009058405A
Authority
JP
Japan
Prior art keywords
light
sample
irradiation
emitted
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007226746A
Other languages
Japanese (ja)
Inventor
Akiyoshi Suzuki
明美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007226746A priority Critical patent/JP2009058405A/en
Publication of JP2009058405A publication Critical patent/JP2009058405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical analysis apparatus that irradiates a sample with a plurality of irradiation lights and measures and analyzes a plurality of radiation lights, and can acquire measurement data without crosstalk without increasing a signal processing burden of the measurement data. <P>SOLUTION: This optical analysis apparatus includes light irradiating means for selectively irradiating the sample with the plurality of irradiation lights, a plurality of light detecting means for selectively detecting each of the plurality of radiation lights, and measurement controlling means for controlling measurement of the radiation light. When the measurement controlling means selects one of the plurality of irradiation lights to be emitted to the sample, photodetection permitting means permits the detection of the radiation light of only the light detecting means for detecting the radiation light to be emitted from the sample correspondingly to the selected irradiation light. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料に対して光(照明光、励起光又はその他の照射光)を照射し、その試料から発せられる光(蛍光、りん光、散乱光、化学発光、生物発光又はその他の放射光)を計測し分析する光分析装置に係り、より詳細には、試料に対して複数の波長帯域又は波長特性の照射光を照射してそれらの照射光に対応して発せられる試料からの放射光を計測し分析する光分析装置に係る。   The present invention irradiates a sample with light (illumination light, excitation light or other irradiation light), and emits light (fluorescence, phosphorescence, scattered light, chemiluminescence, bioluminescence or other emitted light) from the sample. ), And more specifically, radiated light from the sample emitted in response to the irradiated light by irradiating the sample with irradiated light of a plurality of wavelength bands or wavelength characteristics The present invention relates to an optical analysis device that measures and analyzes the above.

分光分析技術の分野に於いて、しばしば、上記の如く、計測又は分析されるべき試料に対し、波長帯域又は波長特性の互いに異なる少なくとも2種類の照射光を照射し、それらの照射光の各々に対応して試料から放射される波長帯域又は波長特性の互いに異なる放射光を別々に計測して分析するといったことが行われる。例えば、蛍光相互相関分光分析法(FCCS、Fluorescence Cross-Correlation Spectroscopy−非特許文献1参照)や共焦点蛍光コインシデンス分析(CFCA、Confocal fluorescence coincidence analysis−非特許文献2参照)では、励起・蛍光波長特性の互いに異なる複数種類の蛍光標識を有する生体分子等の試料に対しそれらの複数種類の蛍光分子を各々励起する励起光を照射し、これにより発せられる複数種類の蛍光分子の各々からの蛍光の強度をそれぞれ別々の受光器によって時系列的に計測して、その計測された複数種類の蛍光分子からの蛍光強度の相互相関関数(FCCS)或いは複数種類の蛍光分子の蛍光強度の揺らぎが一致する頻度(CFCA)が算出される。かくして得られる相互相関関数又は頻度の値は、試料中の複数種類の蛍光分子が一体的にブラウン運動しているか否かを表しているので、それらの値から試料中の複数の分子の結合・解離状態、構造変化又は分子間相互作用に関する種々の情報を得ることが可能となる。こういった情報は、一つの試料を単一の照射光にて照射し該試料からの単一の放射光を計測する手法により容易に得ることは困難である。   In the field of spectroscopic analysis technology, as described above, a sample to be measured or analyzed is often irradiated with at least two types of irradiation lights having different wavelength bands or wavelength characteristics, and each of these irradiation lights is irradiated. Correspondingly, radiated light having different wavelength bands or wavelength characteristics emitted from the sample is separately measured and analyzed. For example, in fluorescence cross-correlation spectroscopy (FCCS, Fluorescence Cross-Correlation Spectroscopy-see Non-Patent Document 1) and confocal fluorescence coincidence analysis (CFCA, Confocal fluorescence coincidence analysis-see Non-Patent Document 2), excitation and fluorescence wavelength characteristics Intensity of fluorescence from each of a plurality of types of fluorescent molecules emitted by irradiating a sample such as a biomolecule having a plurality of different types of fluorescent labels with excitation light that excites each of the plurality of types of fluorescent molecules. Are measured in time series with separate optical receivers, and the cross-correlation function (FCCS) of the fluorescence intensities from the multiple types of fluorescent molecules or the frequency with which the fluctuations in the fluorescence intensities of the multiple types of fluorescent molecules coincide (CFCA) is calculated. The cross-correlation function or frequency value thus obtained indicates whether or not a plurality of types of fluorescent molecules in the sample are in Brownian motion integrally. It is possible to obtain various information related to the dissociation state, structural change, or intermolecular interaction. Such information is difficult to obtain easily by a method of irradiating one sample with a single irradiation light and measuring a single radiated light from the sample.

上記の如き複数の波長帯域又は波長特性の照射光を試料に照射してその試料からの複数の波長帯域又は波長特性の放射光を計測する光分析手法に於いては、或る一つの波長帯域の照射光に対応して試料から発せられる放射光の計測値を、他の波長帯域の照射光に対応して試料から発せられる放射光から完全に分離した状態で取得すること、即ち、一方の照射光に対応して試料から発せられる放射光を受光する受光器の計測値に於いて、他方の照射光に対応して試料から発せられる放射光による寄与がない状態とすることが要求される場合がある。例えば、上記のFCCSやCFCAの例の場合、或る蛍光分子からの蛍光強度の計測値に、別の蛍光分子からの蛍光強度の寄与が含まれていると、複数種類の蛍光分子からの蛍光強度の相互相関関数等を正確に算出することができなくなる(相関関数の値がみかけ上増大してしまう。)。従って、装置に於いて、各蛍光分子の蛍光強度を別々に計測するために、複数の蛍光分子の各々の発光波長帯域の光のみを受光する受光器がそれぞれ準備され、且つ、複数の蛍光分子の選択が各蛍光分子の発光波長が別の蛍光分子のための受光器の検出波長帯域と重複しないように為され、これにより、一つの受光器が一種類の蛍光分子からの蛍光のみを計測する状態を達成することが試みられる。   In the optical analysis method of irradiating a sample with irradiation light having a plurality of wavelength bands or wavelength characteristics as described above and measuring radiation light having a plurality of wavelength bands or wavelength characteristics from the sample, a certain wavelength band is used. The measurement value of the radiated light emitted from the sample in response to the irradiated light is acquired in a state completely separated from the radiated light emitted from the sample in response to the irradiated light in the other wavelength bands, that is, It is required that the measured value of the photoreceiver that receives the radiated light emitted from the sample in response to the irradiated light be in a state where there is no contribution from the radiated light emitted from the sample in response to the other irradiated light. There is a case. For example, in the case of the above-mentioned examples of FCCS and CFCA, if the measurement value of the fluorescence intensity from one fluorescent molecule includes the contribution of the fluorescence intensity from another fluorescent molecule, the fluorescence from a plurality of types of fluorescent molecules It becomes impossible to accurately calculate the cross-correlation function of the intensity (the value of the correlation function is apparently increased). Therefore, in the apparatus, in order to separately measure the fluorescence intensity of each fluorescent molecule, a light receiver that receives only light in each emission wavelength band of the plurality of fluorescent molecules is prepared, and the plurality of fluorescent molecules The selection is made so that the emission wavelength of each fluorescent molecule does not overlap with the detection wavelength band of the receiver for another fluorescent molecule, so that one receiver only measures the fluorescence from one type of fluorescent molecule An attempt is made to achieve a state to do.

しかしながら、上記の如き一つの照射光に対応して試料から発せられる放射光の計測値から他の照射光に対応して試料から発せられる放射光からの寄与を除去するという要求を実現することは、しばしば、困難である。前記のFCCSやCFCAの場合でいえば、試料(特に、生体分子等)に対するアーティファクトを考慮すると、蛍光プローブとして選択可能な蛍光分子の種類の範囲は限られるので、全ての蛍光分子についての発光波長の帯域各々が、別の蛍光分子のための受光器の検出波長帯域に重複しないように、使用する蛍光分子を選択することは、通常、困難であり、従って、或る蛍光分子の蛍光が別の蛍光分子のための受光器で検出されてしまうといったことが起き得る。即ち、複数の照射光を同時に試料に照射した状態で、一方の照射光に対応して試料から発せられる一方の放射光の計測値から、他方の照射光に対応して試料から発せられる他方の放射光の寄与が除去されている状態を達成することは困難である(一つの放射光の計測値に含まれる別の放射光の寄与は、「クロストーク」と称される。)。   However, realizing the requirement to remove the contribution from the radiation emitted from the sample in response to the other illumination light from the measured value of the radiation emitted from the sample corresponding to the one illumination light as described above. , Often difficult. In the case of the above-mentioned FCCS and CFCA, the range of types of fluorescent molecules that can be selected as a fluorescent probe is limited in consideration of artifacts with respect to samples (particularly biomolecules). It is usually difficult to select the fluorescent molecules to be used so that each of the bands does not overlap with the detection wavelength band of the receiver for another fluorescent molecule, so the fluorescence of one fluorescent molecule is different. May be detected by a light receiver for the fluorescent molecules. That is, in a state in which a sample is irradiated with a plurality of irradiation lights at the same time, from the measured value of one radiated light emitted from the sample corresponding to one irradiation light, the other emitted from the sample corresponding to the other irradiation light. It is difficult to achieve a state where the contribution of synchrotron radiation is removed (the contribution of another synchrotron radiation included in the measurement of one synchrotron radiation is called “crosstalk”).

この点に関し、FCCS又はCFCAに於ける上記の如きクロストークを回避するべく、特許文献1及び2に於いては、複数の蛍光分子を励起するための複数の励起光を同時に試料に対して照射するのでなく、複数の励起光を一つずつ順々に試料に照射し、即ち、一時に試料に照射される励起光が一つとなる状態にして、一時に計測される試料からの蛍光が一種類の蛍光分子からのものとなるよう構成された装置及び方法が提案されている。かかる装置又は方法によれば、各励起光が照射されている期間を把握することにより、各々の励起光に対応する蛍光が計測される時間が分かるので、クロストークのない計測データを取得することが可能となる(この場合、各蛍光分子の蛍光強度の計測値が間欠的になるが、複数の励起光の切換のタイミングを、計測される試料の蛍光強度の時間変化、即ち、蛍光分子を担持する分子がブラウン運動により蛍光観察領域を通過する速さに比して十分に速くなるよう設定することにより、複数の蛍光分子からの蛍光強度の相互相関関数を有意に算定することが可能となる。)。
特開2006−93370公報 特開2006−93371公報 "Dual-Color Fluorescence Cross-CorrelationSpectroscopy for Multicomponent Diffusional Analysis in Solution", Petra. Schwilleet al, Biophysical Journal 1997, 72, 1878-1886 Confocalfluorescence coincidence analysis (CFCA), Winkler et al., Proc. Natl. Acad. Sci.U.S.A. 96: 1375-1378, 1999
In this regard, in order to avoid the above-described crosstalk in FCCS or CFCA, Patent Documents 1 and 2 simultaneously irradiate a sample with a plurality of excitation lights for exciting a plurality of fluorescent molecules. Rather than irradiating the sample one by one with a plurality of excitation light one by one, that is, in a state where the excitation light irradiated to the sample becomes one at a time, the fluorescence from the sample measured at one time is one. Devices and methods have been proposed that are configured to be from a variety of fluorescent molecules. According to such an apparatus or method, it is possible to know the time during which fluorescence corresponding to each excitation light is measured by grasping the period during which each excitation light is irradiated, so that measurement data without crosstalk is acquired. (In this case, the measured value of the fluorescence intensity of each fluorescent molecule becomes intermittent, but the timing of switching the excitation light is changed with time, that is, the fluorescence molecule It is possible to calculate the cross-correlation function of the fluorescence intensity from multiple fluorescent molecules significantly by setting it so that it is sufficiently faster than the speed at which the supported molecules pass through the fluorescence observation region by Brownian motion. Become.).
JP 2006-93370 A JP 2006-93371 A "Dual-Color Fluorescence Cross-Correlation Spectroscopy for Multicomponent Diffusional Analysis in Solution", Petra. Schwilleet al, Biophysical Journal 1997, 72, 1878-1886 Confocalfluorescence coincidence analysis (CFCA), Winkler et al., Proc. Natl. Acad. Sci. USA 96: 1375-1378, 1999

特許文献1、2にて提案されている蛍光分光分析装置に於ける光計測の手法の場合、或る波長帯域の励起光が試料に対して照射されている際に発光する蛍光分子の発光波長帯域が別の蛍光分子の蛍光を受光するための受光器の検出波長帯域にも重複するときには、その受光器の計測値には、そのときに励起されている蛍光分子の蛍光によるクロストークが生ずる(図2(A)参照)。そこで、同文献の装置の場合、各受光器の計測データの取得後、相互相関関数等の算定をする際に、対応する励起光の照射時間に対応する期間以外のデータを0値に修正するといった信号処理又は演算処理によって各受光器の計測データ中のクロストークの影響が排除される。即ち、かかる構成の場合、計測データを解析する際に、クロストークを除去する信号処理又は演算処理過程を実行する必要がある。   In the case of the optical measurement method in the fluorescence spectroscopic analyzer proposed in Patent Documents 1 and 2, the emission wavelength of the fluorescent molecule that emits light when the sample is irradiated with excitation light in a certain wavelength band When the band also overlaps the detection wavelength band of a photoreceiver for receiving the fluorescence of another fluorescent molecule, crosstalk occurs due to the fluorescence of the fluorescent molecule excited at that time in the measured value of the photoreceiver (See FIG. 2A). Therefore, in the case of the apparatus of the same document, after obtaining the measurement data of each light receiver, when calculating the cross-correlation function or the like, data other than the period corresponding to the irradiation time of the corresponding excitation light is corrected to zero value. By such signal processing or arithmetic processing, the influence of crosstalk in the measurement data of each light receiver is eliminated. That is, in such a configuration, when analyzing measurement data, it is necessary to execute signal processing or arithmetic processing for removing crosstalk.

この点に関し、上記の如き光分析に於いて時系列に計測される放射光の計測データの量は、時間分解能によっては、しばしば、膨大となり、しかも、観測される蛍光分子の種類の数が増えれば、その分、膨大な時系列の計測データ量が更に増えることとなるので、信号処理又は演算処理されるべきデータ量が相当に大きく、信号解析に多大な時間を要する場合がある。その上、特許文献1、2に於ける手法の如く、試料に照射される照射光(励起光)を選択的に切り換えて対応する放射光を計測する場合には、既に触れたように、計測されるべき放射光の変化(FCCS又はCFCAの場合には、分子のブラウン運動の速さ)よりも速く且つ頻繁に実行されるので、計測データからクロストークの寄与を除去するための信号処理又は演算処理量も大きい。従って、特許文献1、2に於ける手法による場合、計測データの分析又は解析のための信号処理又は演算処理負担が、更に大きくなり、信号解析に多大な時間が更に必要となってしまう場合がある。   In this regard, the amount of synchrotron radiation measurement data measured in time series in the optical analysis as described above is often enormous depending on the time resolution, and the number of types of fluorescent molecules observed is increased. For this reason, the enormous amount of time-series measurement data is further increased accordingly, so that the amount of data to be subjected to signal processing or calculation processing is considerably large, and signal analysis may take a long time. In addition, as described in Patent Documents 1 and 2, when the corresponding radiated light is measured by selectively switching the irradiation light (excitation light) irradiated to the sample, as described above, the measurement is performed. Signal processing to remove the contribution of crosstalk from the measurement data, since it is performed faster and more frequently than the change in synchrotron radiation to be done (in the case of FCCS or CFCA, the speed of the molecular Brownian motion) The amount of calculation processing is also large. Therefore, in the case of the methods in Patent Documents 1 and 2, the signal processing or calculation processing burden for the analysis or analysis of the measurement data is further increased, and much time is required for the signal analysis. is there.

かくして、本発明の一つの課題は、複数の波長帯域又は波長特性の照射光を試料に照射して複数の波長帯域又は波長特性の試料からの放射光を計測し分析する光分析装置であって、計測データの信号処理又は演算処理負担を増やすことなく、上記の如きクロストークのない計測値又は計測データを取得することが可能な装置を提案することである。   Thus, one object of the present invention is an optical analyzer that measures and analyzes radiation emitted from a sample having a plurality of wavelength bands or wavelength characteristics by irradiating the sample with irradiation light having a plurality of wavelength bands or wavelength characteristics. An object of the present invention is to propose an apparatus capable of acquiring measurement values or measurement data without crosstalk as described above without increasing the signal processing or calculation processing burden of the measurement data.

また、本発明のもう一つの課題は、上記の如き装置であって、クロストークの寄与が排除された放射光の強度の計測値が得られ、その計測値が殆どそのまま分析又は解析演算処理に用いることができる装置を提案することである。   Another object of the present invention is an apparatus as described above, in which a measurement value of the intensity of radiated light from which the contribution of crosstalk has been eliminated is obtained, and the measurement value is almost directly subjected to analysis or analysis calculation processing. It is to propose a device that can be used.

更にまた、本発明のもう一つの課題は、上記の如き装置であって、蛍光相互相関分光分析又は共焦点コインシデンス解析に於いて有利に用いることができる装置を提案することである。   Still another object of the present invention is to propose an apparatus as described above, which can be advantageously used in fluorescence cross-correlation spectroscopy or confocal coincidence analysis.

本発明によれば、上記の如き課題を達成するべく、放射光を検出する受光器又は光検出手段の各々の出力又は計測値に於いてクロストーク(即ち、一つの放射光の計測値に含まれる別の放射光の寄与)がない状態を達成し、光検出手段の出力値又は計測値からクロストークを除去する必要のない光分析装置が提供される。   According to the present invention, in order to achieve the above-described problems, the crosstalk (that is, included in the measurement value of one radiated light) in the output or the measurement value of each of the light receiver or the light detection means for detecting the radiated light. There is provided an optical analysis device that achieves a state in which there is no contribution of another radiated light that does not need to be removed from the output value or measurement value of the light detection means.

本発明による複数の波長帯域又は波長特性の照射光を試料に照射してそれらの照射光に対応して発せられる試料からの複数の波長帯域又は波長特性の放射光を計測し分析する光分析装置(以下、「多重光照射−多重光検出型光分析装置」と称する。)は、試料に複数の照射光を選択的に照射するための光照射手段と、複数の波長帯域又は波長特性の放射光の各々を選択的に検出するための複数の光検出手段と、試料に照射する照射光を選択して放射光の計測を実行するための計測制御手段とを含む。そして、本発明の装置に於ける計測制御手段は、試料に対して出射される照射光を選択する照射光選択手段と、複数の光検出手段の各々による放射光の検出を選択的に許可する光検出許可手段とを含んでおり、照射光選択手段が前記の複数の照射光のうちの一つを試料に対して出射されるよう選択したときに、光検出許可手段は、複数の照射光のうち選択されている照射光に対応して試料から発せられるべき放射光を検出するための光検出手段の放射光の検出を許可することを特徴とする。なお、光照射手段に於ける光源としては、典型的にはレーザーであるが、水銀ランプ、キセノンランプ等のその他光分析技術の分野で用いられている任意のものであってよい。また、光検出手段に於いて、光を実際に受光する受光素子は、フォトダイオード、CCD等の光分析技術の分野で用いられている任意のものであってよい。   An optical analyzer for irradiating a sample with irradiation light having a plurality of wavelength bands or wavelength characteristics according to the present invention and measuring and analyzing emitted light having a plurality of wavelength bands or wavelength characteristics emitted from the sample corresponding to the irradiation light (Hereinafter referred to as “multiple light irradiation-multiple light detection type optical analyzer”) includes a light irradiation means for selectively irradiating a sample with a plurality of irradiation lights, and radiation of a plurality of wavelength bands or wavelength characteristics. A plurality of light detection means for selectively detecting each of the light, and a measurement control means for selecting the irradiation light to be irradiated on the sample and executing the measurement of the emitted light. And the measurement control means in the apparatus of the present invention selectively permits the detection of the emitted light by each of the irradiation light selection means for selecting the irradiation light emitted to the sample and the plurality of light detection means. A light detection permission means, and when the irradiation light selection means selects one of the plurality of irradiation lights to be emitted from the sample, the light detection permission means includes the plurality of irradiation lights. The detection of the radiated light of the light detection means for detecting the radiated light to be emitted from the sample corresponding to the selected irradiation light is permitted. The light source in the light irradiation means is typically a laser, but may be any one used in the field of other optical analysis techniques such as a mercury lamp and a xenon lamp. In the light detection means, the light receiving element that actually receives the light may be any one used in the field of optical analysis technology such as a photodiode or CCD.

従前の多重光照射−多重光検出型光分析装置に於いては、既に述べた如く、試料の放射光の波長特性に依って、一つの放射光を検出するべき光検出手段に別の放射光の寄与が混在するクロストークが生じ、これにより、目的とする光分析の結果の精度が悪化する場合には、計測データを用いた信号解析又は分析に際して、その計測データからクロストーク成分を除去する必要があり、このことが、信号処理又は演算処理負担の増大となっていた。そこで、本発明の装置に於いては、上記の構成から理解される如く、更に、複数の光検出手段の各々による放射光の検出を選択的に許可する光検出許可手段が設けられ、複数の照射光のうち選択されている照射光に対応して試料から発せられるべき放射光を検出するための光検出手段だけが放射光の検出を許可されるよう構成されている。かかる構成によれば、或る照射光が試料に照射されている間は、その照射光に対応して試料から発せられる放射光の波長帯域を検出する光検出手段のみが放射光の検出が許可され、それ以外の光検出手段の放射光の検出が禁止されることとなる。従って、各々の光検出手段の出力値には、それぞれ対応する照射光とは別の照射光に対応して発せられるべき放射光のクロストークが含まれなくなり、それぞれの光検出手段の出力値が、クロストーク除去のための信号処理過程を実行することなく、計測データとしてその後の信号解析又は分析に使用できることとなる。なお、多重光照射−多重光検出型の光検出、即ち、複数の照射光による複数の放射光の検出を実行するために、本発明の分析装置に於いては、照射光選択手段が複数の照射光を一つずつ順々に試料に対して照射されるよう選択し、光検出許可手段が照射光選択手段の照射光の選択に同期して選択された照射光に対応して試料から発せられるべき放射光を検出するための光検出手段の放射光の検出を許可するようになっていてよい。   In the conventional multiple light irradiation-multiple light detection type optical analyzer, as already described, depending on the wavelength characteristic of the radiation light of the sample, another radiation light is used as the light detection means for detecting one radiation light. If crosstalk occurs in which the contributions of both are mixed and the accuracy of the result of the desired optical analysis deteriorates, the crosstalk component is removed from the measurement data during signal analysis or analysis using the measurement data. This is necessary, and this increases the burden of signal processing or arithmetic processing. Therefore, in the apparatus of the present invention, as can be understood from the above configuration, a light detection permission unit that selectively permits detection of the emitted light by each of the plurality of light detection units is provided, and a plurality of light detection permission units are provided. Only the light detection means for detecting the radiated light to be emitted from the sample corresponding to the selected radiated light among the radiated light is configured to allow detection of the radiated light. According to such a configuration, while a certain irradiation light is irradiated on the sample, only the light detection means for detecting the wavelength band of the emitted light emitted from the sample corresponding to the irradiation light is allowed to detect the emitted light. Accordingly, the detection of the radiated light by other light detection means is prohibited. Therefore, the output value of each light detection means does not include the crosstalk of the radiated light that should be emitted corresponding to the irradiation light different from the corresponding irradiation light, and the output value of each light detection means is Thus, the measurement data can be used for subsequent signal analysis or analysis without executing a signal processing process for removing crosstalk. In order to execute multiple light irradiation-multiple light detection type light detection, that is, detection of a plurality of radiated lights by a plurality of irradiation lights, in the analysis apparatus of the present invention, there are a plurality of irradiation light selecting means. Select the irradiation light to irradiate the sample one by one in sequence, and the light detection permission means emits from the sample corresponding to the selected irradiation light in synchronization with the selection of the irradiation light of the irradiation light selection means. It may be adapted to allow detection of the emitted light of the light detection means for detecting the emitted light to be performed.

上記の本発明の実施の形態に於いて、試料に複数の照射光のうちのいずれかを選択的に照射する構成としては、光照射手段が複数の光源を含み、その光源の各々が特定の波長の照射光を発生する場合には、照射光選択手段が選択的に複数の光源のうちのいずれかの光源からの照射光を試料に与えられるよう光源のうちの一つを選択的に照射光が発生可能な状態とするようになっていてよい。また、別の構成として、照射光選択手段が複数の照射光のうちのいずれかの照射光の波長帯域の光を選択的に透過させる光学素子、例えば、音響光学素子(AOTF)、を含み、光学素子の透過波長帯域を選択的に変更するようになっていてよい。   In the above-described embodiment of the present invention, as a configuration for selectively irradiating the sample with any one of a plurality of irradiation lights, the light irradiation means includes a plurality of light sources, and each of the light sources is a specific light source. When generating irradiation light of a wavelength, the irradiation light selection means selectively irradiates one of the light sources so that irradiation light from any one of the plurality of light sources can be given to the sample. The light may be generated. As another configuration, the irradiation light selection unit includes an optical element that selectively transmits light in the wavelength band of any of the plurality of irradiation lights, for example, an acousto-optic element (AOTF), The transmission wavelength band of the optical element may be selectively changed.

また、上記の本発明の実施の形態に於いて、各光検出許可手段に於ける試料からの放射光の検出を選択的に許可又は禁止を行う構成としては、光検出許可手段は、試料から光検出手段までの放射光の光路を選択的に開放することにより光検出手段への放射光の入射を許すシャッター手段を含み、かかるシャッター手段の作動を制御して、光検出手段への放射光を透過又は遮断するようになっていてよい。なお、そのようなシャッター手段としては、音響光学素子(AOTF)、液晶を用いて光の透過率が制御される光学フィルタなどが用いられてよい。また、放射光の検出を選択的に許可又は禁止を行う構成の別の態様として、光検出許可手段が、選択されている照射光に対応して試料から発せられるべき放射光を検出するための光検出手段を選択的に放射光の検出が可能な状態とし、各光検出手段に対応しない照射光が照射されている期間は、放射光の検出が不可能な状態となるよう光検出手段の作動を制御するになっていてもよい。ここで、光検出手段を放射光の検出が可能な状態又は不可能な状態にもたらす具体的な構成は、光検出手段に於いて採用される受光器に応じて、適宜構成されてよいことは理解されるべきである。重要なことは、各光検出手段が、各々対応する照射光が試料に照射されていない期間は、放射光が受光器に到達しても放射光に対応した出力が発生しないようになっていることである。   Further, in the above-described embodiment of the present invention, as a configuration for selectively permitting or prohibiting detection of radiated light from the sample in each light detection permission means, the light detection permission means includes the sample from the sample. Including shutter means that allows radiation light to enter the light detection means by selectively opening the optical path of the radiation light to the light detection means, and controlling the operation of the shutter means to emit light to the light detection means May be transmitted or blocked. As such shutter means, an acousto-optic element (AOTF), an optical filter whose light transmittance is controlled using liquid crystal, or the like may be used. Further, as another aspect of the configuration for selectively permitting or prohibiting the detection of the emitted light, the light detection permission means is for detecting the emitted light that should be emitted from the sample in response to the selected irradiation light. The light detection means is set in a state in which radiation light can be selectively detected, and the light detection means is in a state in which radiation light cannot be detected during a period in which irradiation light that does not correspond to each light detection means is irradiated. The operation may be controlled. Here, the specific configuration that brings the light detection means into a state where radiation light can be detected or cannot be detected may be appropriately configured according to the light receiver employed in the light detection means. Should be understood. What is important is that each light detection means does not generate an output corresponding to the radiated light even if the radiated light reaches the light receiver during a period in which the corresponding irradiated light is not irradiated on the sample. That is.

ところで、上記の本発明の装置の構成は、特に、蛍光分光分析に於いて、複数の互いに発光波長特性の異なる蛍光分子を含む試料を用いた蛍光分析に有利に用いることができる。そこで、上記の構成に於いて、試料が複数の互いに発光波長特性の異なる蛍光分子を含む場合には、複数の照射光の各々が複数の蛍光分子のいずれかを選択的に励起するための励起光であり、検出されるべき複数の放射光の各々は、複数の蛍光分子から発せられる蛍光のいずかであってよい。   By the way, the above-described configuration of the apparatus of the present invention can be advantageously used for fluorescence analysis using a plurality of samples containing fluorescent molecules having different emission wavelength characteristics from each other, particularly in fluorescence spectroscopic analysis. Therefore, in the above configuration, when the sample includes a plurality of fluorescent molecules having different emission wavelength characteristics, excitation for selectively exciting each of the plurality of fluorescent lights with one of the plurality of fluorescent molecules. Each of the plurality of emitted light that is light and is to be detected may be any of the fluorescence emitted from the plurality of fluorescent molecules.

また、上記の本発明の装置の構成は、特に、背景技術の欄に於いて記載されている如きFCCS又はCFCAが実行可能する光分析装置に有利に適用することができる。これらのFCCS又はCFCAの測定系に於いては、共焦点顕微鏡の光学系が用いられているので、本発明の構成に於いて、光照射手段から前記試料の位置まで及び試料の位置から光検出手段までの光学系が、共焦点顕微鏡の光学系を構成するようになっていてよい。   The configuration of the apparatus of the present invention described above can be advantageously applied particularly to an optical analyzer capable of executing FCCS or CFCA as described in the background art section. In these FCCS or CFCA measurement systems, an optical system of a confocal microscope is used. In the configuration of the present invention, light detection is performed from the light irradiation means to the position of the sample and from the position of the sample. The optical system up to the means may constitute the optical system of the confocal microscope.

総じて、本発明の装置に於ける特徴的な構成よれば、複数の光検出手段の出力に於いて、上記の如きクロストークが存在せず、従って、光検出手段の出力の段階で、或る一つの波長帯域の照射光に対応して試料から発せられる放射光の計測値を、他の波長帯域の照射光に対応して試料から発せられる放射光から完全に分離した状態で取得するという要求を満たすことが可能となる。従って、特許文献1又は2に記載されている手法に比して、信号処理又は演算処理負担が低減され、信号解析に要する時間が低減される(計測データ上のクロストーク除去処理のためだけに信号解析装置のコンピュータ又は演算処理装置の仕様(演算速度、記憶容量)を上げる必要も無くなる。)。また、計測データ上のクロストークが混在しないこととなるので、計測データは、(通常のノイズ除去・バックグラウンド減算等の通常実行される処理の後)、そのまま、FCCS又はCFCA等に基づく解析に用いることができるので、信号処理又は演算処理のためのプログラムの構成も簡単にすることができる。   In general, according to the characteristic configuration of the apparatus of the present invention, the crosstalk as described above does not exist in the outputs of the plurality of light detection means, and therefore, at the output stage of the light detection means, there is a certain level. Requirement to obtain measured values of radiation emitted from a sample corresponding to irradiation light in one wavelength band in a state completely separated from radiation emitted from a sample corresponding to irradiation light in another wavelength band It becomes possible to satisfy. Therefore, compared with the method described in Patent Document 1 or 2, the signal processing or calculation processing burden is reduced, and the time required for signal analysis is reduced (only for the crosstalk removal processing on the measurement data). (There is no need to increase the specifications (calculation speed, storage capacity) of the computer or arithmetic processing unit of the signal analyzer.) In addition, since crosstalk on the measurement data is not mixed, the measurement data is subjected to analysis based on FCCS or CFCA as it is (after normal processing such as normal noise removal and background subtraction). Since it can be used, the configuration of a program for signal processing or arithmetic processing can be simplified.

本発明のその他の目的及び利点は、以下の本発明の好ましい実施形態の説明により明らかになるであろう。   Other objects and advantages of the present invention will become apparent from the following description of preferred embodiments of the present invention.

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。なお、以下の本発明の実施形態に於いては、共焦点蛍光顕微鏡の光学系を有する蛍光分析装置について説明されるが、本発明の概念は、その他の形式の多重光照射−多重光検出型の光分析装置に適用されてもよく、そのような場合も本発明の範囲に属すると理解されるべきである。また、以下の説明に於いては、試料として、蛍光標識された試料が用いられる場合について説明され、従って、照射光は、励起光として、放射光は、蛍光として記載されるが、試料からの放射光は、りん光、散乱光、化学発光、生物発光等であってよく、照射光は、それらの放射光を発生又は誘発する光であってよい。   The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings. In the following embodiments of the present invention, a fluorescence analyzer having an optical system of a confocal fluorescence microscope will be described. However, the concept of the present invention is another type of multiple light irradiation-multiple light detection type. It should be understood that such a case may be applied to the optical analysis apparatus of the present invention, and such a case also belongs to the scope of the present invention. Further, in the following description, a case where a fluorescently labeled sample is used as the sample will be described. Therefore, the irradiation light is described as excitation light, and the emitted light is described as fluorescence. The emitted light may be phosphorescent light, scattered light, chemiluminescence, bioluminescence, etc., and the irradiation light may be light that generates or induces the emitted light.

装置の構成
図1は、本発明の一つの好ましい実施形態による共焦点蛍光顕微鏡の光学系を有する多重光照射−多重光検出型光分析装置10の構成を模式的に示したものである。光分析装置10に於いては、蛍光標識された分子を含む試料S(典型的には、図示していないセル内に注入された溶液であってよい。)に対して複数の互いに異なる波長帯域又は波長特性の励起光を照射するための励起光学系(光照射手段)と、試料Sからの複数の互いに異なる波長帯域又は波長特性の蛍光を検出するための光検出系(光検出手段)と、光検出系にて検出された蛍光の解析又は分析を行う解析制御系と、励起光学系の励起光及び光検出系の検出光の選択の制御を行う計測制御系(計測制御手段)とが構成される。
Configuration of Apparatus FIG. 1 schematically shows a configuration of a multiple light irradiation-multiple light detection type optical analysis apparatus 10 having an optical system of a confocal fluorescence microscope according to one preferred embodiment of the present invention. In the optical analyzer 10, a plurality of different wavelength bands with respect to a sample S (typically a solution injected into a cell (not shown)) containing fluorescently labeled molecules. Alternatively, an excitation optical system (light irradiation means) for irradiating excitation light with wavelength characteristics, and a light detection system (light detection means) for detecting a plurality of mutually different wavelength bands or fluorescence with wavelength characteristics from the sample S An analysis control system for analyzing or analyzing the fluorescence detected by the light detection system, and a measurement control system (measurement control means) for controlling selection of excitation light of the excitation optical system and detection light of the light detection system Composed.

励起光学系は、複数のレーザーLa〜Lnから出射された励起光が、各々、図示していないビームエキスパンダーを介して拡大されレンズ12a〜nにて平行光にされた後、ダイクロイックミラー14a〜n及び16を経て、対物レンズ18により、試料S中の或る一つの点領域にて焦点を結ぶ(集光される)よう構成される(図では、三つのレーザーが示されているが、その数は、任意であってよい。下記の受光器APDの場合も同様。)。かかる励起光が焦点を結ぶ点領域(通常、光の波長程度の幅の領域)は、本実施形態の光分析装置の観察又は観測領域となり、その領域内に蛍光標識された分子が進入すると、蛍光標識が励起光により励起され、蛍光が発せられる。なお、レーザーは、蛍光分光分析の分野に於いて又は共焦点蛍光顕微鏡に於いて、通常使用されている形式のYAGレーザー、アルゴンレーザー、He−Neレーザー等であってよく、励起光の波長は、400nm〜600nmの範囲の任意の値であってよい。また、ダイクロイックミラー14a〜nは、図に於いて、上方から到来する光を透過し、右方から到来する光を反射するよう適宜調製されたものであってよい(14nは、通常のミラーであってもよい。)。   In the excitation optical system, the excitation light emitted from the plurality of lasers La to Ln is expanded through a beam expander (not shown) and converted into parallel light by the lenses 12a to 12n, and then the dichroic mirrors 14a to 14n. And 16, the objective lens 18 is configured to be focused (condensed) in a certain point region in the sample S (in the figure, three lasers are shown. The number may be arbitrary, as is the case with the following light receiver APD). A point region where the excitation light is focused (usually a region having a width of about the wavelength of the light) serves as an observation or observation region of the optical analyzer of the present embodiment, and when a fluorescently labeled molecule enters the region, The fluorescent label is excited by excitation light, and fluorescence is emitted. The laser may be a YAG laser, an argon laser, a He-Ne laser, or the like of a type normally used in the field of fluorescence spectroscopic analysis or in a confocal fluorescence microscope. , Any value in the range of 400 nm to 600 nm may be used. In the figure, the dichroic mirrors 14a to 14n may be appropriately prepared so as to transmit light arriving from above and reflect light arriving from the right side (14n is a normal mirror). May be.)

上記の如く励起光が照射されることにより試料Sから発せられた蛍光(の一部)は、対物レンズ18により集光され、ダイクロイックミラー16を透過した後、レンズ20によりピンホール22にて焦点を結ぶように集光される。なお、ピンホール22に於いては、そこで結像した光のみ通過し、対物レンズ18の焦点領域(観察領域)以外からの光は遮断されることとなるので、ピンホール22を通過した後の光は、実質的に、焦点領域から発せられた光のみとなる(共焦点顕微鏡の原理)。かくして、ピンホール22を透過した光は、更に集光レンズ24を通過した後、ダイクロイックミラー26a〜nとバンドパスフィルタ28a〜nにより、その蛍光の波長に依存して選択的に分割され、受光器APDa〜nへ向けて配向され、受光器APDa〜nの各々の受光面(図示せず)に入射される。そして、各受光器APDは、その入射した光の強度に応じた(強度の関数とした)大きさの電気信号Da〜Dnを生成し、下記に説明される電子制御装置50に送出する。即ち、上記の対物レンズから受光器APDまで光学要素が光検出系を構成する。なお、ここで、各受光器APDa〜nは、各々対応するダイクロイックミラー26で反射され、バンドパスフィルタ28を透過する波長を受光することになるので、各受光器は、互いに異なる波長帯域の光を受光することは理解されるべきである。受光器APDは、典型的には、蛍光分光分析又は共焦点蛍光顕微鏡に於いて、通常使用されているアバランシェフォトダイオードであってよい。   The fluorescence emitted from the sample S by being irradiated with the excitation light as described above is collected by the objective lens 18, passes through the dichroic mirror 16, and then is focused on the pinhole 22 by the lens 20. It is condensed so as to tie. In the pinhole 22, only the imaged light passes therethrough, and light from other than the focal region (observation region) of the objective lens 18 is blocked. Light is essentially only light emitted from the focal region (the principle of confocal microscopy). Thus, after passing through the condenser lens 24, the light transmitted through the pinhole 22 is selectively divided by the dichroic mirrors 26a to 26n and the band pass filters 28a to 28n depending on the wavelength of the fluorescence. The light is directed toward the detectors APDi to n and is incident on the light receiving surfaces (not shown) of the receivers APDi to n. Then, each light receiver APD generates electric signals Da to Dn having a magnitude (as a function of intensity) corresponding to the intensity of the incident light, and sends it to the electronic control unit 50 described below. That is, the optical elements from the objective lens to the light receiver APD constitute a light detection system. Here, since each of the light receivers APDi to n is reflected by the corresponding dichroic mirror 26 and receives a wavelength that passes through the band-pass filter 28, each of the light receivers has a wavelength band different from each other. It should be understood that the light is received. The receiver APD may typically be an avalanche photodiode that is commonly used in fluorescence spectroscopy or confocal fluorescence microscopy.

各受光器からの電気信号(検出信号)を受信する電子制御装置50は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM、ハードディスク等の記憶装置、入出力ポート装置及びそれらの駆動回路を有し、ROM又はその他の記憶装置に記憶された制御プログラム(使用者の設定入力が適宜できるようになっていてよい。)に従って動作するコンピュータであってよい。電子制御装置50は、解析制御系として機能し、受信した複数の電気信号の各々にノイズ除去及び/又はA/D変換処理を施した後、それらの複数の信号を用いて、特許文献1、2又は非特許文献1、2に記載されている如く、種々の信号解析・演算処理、例えば、蛍光相互相関分光分析に従った相互相関関数、共焦点コインシデンス解析に従った揺らぎ同時発生頻度(coincidence value)の算出を実行する(図3(A)参照)。   The electronic control unit 50 that receives electrical signals (detection signals) from the respective light receivers is a normal type storage device such as a CPU, ROM, RAM, hard disk, etc., connected to each other via a bidirectional common bus, and input / output. The computer may include a port device and a drive circuit thereof, and may operate according to a control program stored in a ROM or other storage device (a user's setting input may be appropriately performed). The electronic control device 50 functions as an analysis control system, and after performing noise removal and / or A / D conversion processing on each of the plurality of received electrical signals, 2 or non-patent documents 1 and 2, as described in various signal analysis / calculation processes, for example, cross-correlation function according to fluorescence cross-correlation spectroscopic analysis, fluctuation coincidence frequency according to confocal coincidence analysis (coincidence value) is calculated (see FIG. 3A).

更に、本発明の装置では、上記の構成に於いて、後に説明される如き、光の検出値又は計測値のクロストークを除去する目的で、電子制御装置50により作動制御される各レーザーからの出射光路に配置されるシャッタ30a〜n及び各受光器への入射光路に配置されシャッタ32a〜nが設けられ、電子制御装置50と前記のシャッタ30a〜n、32a〜nとにより励起光学系及び光検出系の励起光及び蛍光の伝搬を制御する制御系が構成される。シャッタ30a〜n及びシャッタ32a〜nは、電子制御装置50からの制御指令(on/off)に従って、各々対応するレーザー光及び試料Sから対応する受光器APDa〜nへ向かう光を選択的に遮断することができるよう配置される。従って、各シャッタが、制御指令onが与えられるときのみ光を透過し、制御指令offが与えられているときには光を遮断する形式のものであるときには(この逆であってもよい。)、各レーザー光は、対応するシャッタ30に制御指令onが与えられているときにのみ、試料Sに照射され、同様に、各受光器APDは、対応するシャッタ32に制御指令onが与えられているときにのみ試料Sからの放射光(蛍光)を受光し、その受光した光の強度に対応した信号を出力する。換言すれば、各受光器は、対応するシャッタ32により蛍光の入射が阻止されているときは、光の検出が禁止され、その間は、受光強度が0の状態の電気信号を送出する。シャッタ30a〜n及びシャッタ32a〜nは、電子制御装置からの制御指令に応答して選択的に光の透過又は遮断することが可能な任意の光学素子であってよく、例えば、音響光学素子(AOTF)、液晶フィルタ等が採用されてよい。   Furthermore, in the apparatus of the present invention, as described later, in the above-described configuration, from the respective lasers that are controlled by the electronic control unit 50 for the purpose of removing the crosstalk of the light detection value or the measurement value. Shutters 30a to 30n arranged in the outgoing optical path and shutters 32a to 32n arranged in the incident optical path to each light receiver are provided, and an excitation optical system is provided by the electronic control device 50 and the shutters 30a to n and 32a to n. And a control system for controlling propagation of excitation light and fluorescence of the light detection system. The shutters 30a to 32n and the shutters 32a to 32n selectively block the corresponding laser light and light from the sample S toward the corresponding light receivers APDi to n in accordance with a control command (on / off) from the electronic control unit 50. Arranged to be able to. Accordingly, when each shutter is of a type that transmits light only when the control command on is given and blocks light when the control command off is given (or vice versa). The laser beam is irradiated to the sample S only when the control command on is given to the corresponding shutter 30. Similarly, each light receiver APD is given the control command on to the corresponding shutter 32. Only radiated light (fluorescence) from the sample S is received, and a signal corresponding to the intensity of the received light is output. In other words, when the fluorescence is blocked by the corresponding shutter 32, each light receiver is prohibited from detecting light, and during that time, the light receiver transmits an electric signal having a light reception intensity of zero. The shutters 30a to 30n and the shutters 32a to 32n may be any optical element capable of selectively transmitting or blocking light in response to a control command from the electronic control unit. AOTF), a liquid crystal filter, or the like may be employed.

なお、試料Sへ照射される励起光の選択及び各受光器に於ける光の検出の許可及び禁止の選択は、それぞれ、レーザーの発光作動及び受光器の検出作動を制御することにより行われてもよい。その場合、電子制御装置50は、図1中、点線矢印にて記載されている如く、レーザーに対しては、発光作動の許可及び禁止(on/off)を行うための制御指令を送出し、受光器に対しては、電気信号の送出の許可及び禁止(例えば、電気信号の出力線の接続/絶縁の切換)又は受光器の電気信号の生成の許可及び禁止を行うための制御指令を送出するようになっていてもよい。また、励起光の波長選択は、図中点線にて示されている如く、透過波長の選択可能なAOTFを全ての励起光が合流した後の励起光路に配置し、電子制御装置50の制御指令に基づいて透過波長、即ち、試料Sに到達される光の波長が選択されるようになっていてよい。   The selection of the excitation light applied to the sample S and the selection of permission and prohibition of light detection in each light receiver are performed by controlling the light emission operation of the laser and the detection operation of the light receiver, respectively. Also good. In that case, the electronic control unit 50 sends a control command for permitting and prohibiting (on / off) the light emission operation to the laser, as indicated by the dotted arrow in FIG. Sends a control command for permitting or prohibiting the transmission of an electrical signal (for example, switching of connection / insulation of the output line of the electrical signal) or permitting or prohibiting the generation of an electrical signal of the receiver to the receiver. You may come to do. In addition, as shown by the dotted line in the figure, the wavelength of the excitation light is selected by placing an AOTF whose transmission wavelength can be selected in the excitation light path after all of the excitation light has been merged. The transmission wavelength, that is, the wavelength of the light reaching the sample S may be selected based on.

かくして、上記の励起光波長の選択及び各受光器の光の検出の許可/禁止制御は、いずれの場合も、電子制御装置がその内部に記憶された制御プログラムに従って制御指令on/offに送出することにより実行することが可能となる。即ち、電子制御装置50の作動とシャッタ30a〜n及びシャッタ32a〜nにより、励起光学系及び光検出系の励起光及び蛍光の選択の制御を行う計測制御系が構成される。   Thus, in both cases, the selection of the excitation light wavelength and the light detection permission / prohibition control of each light receiver are sent to the control command on / off according to the control program stored in the electronic control device. Can be executed. That is, the measurement control system for controlling the selection of excitation light and fluorescence of the excitation optical system and the light detection system is configured by the operation of the electronic control device 50 and the shutters 30a to 30n and the shutters 32a to 32n.

光検出に於けるクロストークについて
「背景技術」及び「発明の開示」の欄にも記載されているように、図1に例示されている如き、多重光照射−多重光検出型の光分析装置にて任意の蛍光分析を実行するべく、各々の励起光に対して対応する一つの蛍光の強度の検出値又は計測値を取得する場合に、或る一つの励起光に対応して試料Sから発せられる蛍光の計測値を、他の励起光に対応して試料Sから発せられる蛍光から完全に分離した状態で取得する、即ち、一つの励起光に応答して発せられる蛍光の計測値に於いて、他の励起光による蛍光の寄与(クロストーク)がない状態が要求されることがある。しかしながら、一般に、一つの試料に於いて用いられる蛍光色素又は蛍光分子の発光波長は、互いに重複してしまうので、或る蛍光の計測値に於いて、上記の如くクロストークが混在することとなる。
As described in the "Background Art" and "Disclosure of the Invention" sections for crosstalk in light detection , a multiple light irradiation-multiple light detection type optical analyzer as illustrated in FIG. In order to execute an arbitrary fluorescence analysis at the time of obtaining a detection value or measurement value of one fluorescence intensity corresponding to each excitation light, a sample S corresponding to one excitation light is obtained. The measurement value of the emitted fluorescence is acquired in a state completely separated from the fluorescence emitted from the sample S corresponding to other excitation light, that is, the measurement value of the fluorescence emitted in response to one excitation light. In addition, a state where there is no fluorescence contribution (crosstalk) due to other excitation light may be required. However, in general, the emission wavelengths of fluorescent dyes or fluorescent molecules used in one sample overlap each other, and thus crosstalk is mixed as described above in a certain fluorescence measurement value. .

図2(A)は、試料S中に二種類の蛍光分子が存在する場合の、励起光波長、蛍光分子の発光波長、及び、受光器の検出波長帯域の関係を表したものである。同図を参照して、例えば、図示の如く、試料中の一方の蛍光分子A(励起・発光スペクトルλex1、λem1を有する。)をレーザーLaの光にて励起し、その蛍光を、図示の如き検出域を有する受光器APDaにより検出又は計測し、他方の蛍光分子B(励起・発光スペクトルλex2、λem2を有する。)をレーザーLbの光にて蛍光分子Bを励起し、その蛍光を、図示の如き検出域を有する受光器APDbにより検出又は計測するものとする。その場合、励起光La及びLbにて試料Sを励起した場合、受光器APDaは、蛍光分子Aの発光波長λem1のみを受光し検出するが、受光器APDbの検出域には、蛍光分子Bの発光波長λem2だけでなく、蛍光分子Aの発光波長λem1の長波長側の一部が進入することとなるので、受光器APDbの検出値又は計測値には、蛍光分子Aの蛍光の寄与、即ち、クロストークが混在することとなる。そして、かかる受光器APDa及び受光器APDbの検出値を用いて、信号解析、例えば、FCCSの相互相関関数、CFCAの揺らぎ同時発生頻度の算出、を行うと、それらの解析結果の値は、受光器APDbの検出値に蛍光分子Aの蛍光の寄与(クロストーク)が混在するため、精度が低下する(みかけ上、値が増大することとなる。)。   FIG. 2A shows the relationship between the excitation light wavelength, the emission wavelength of the fluorescent molecule, and the detection wavelength band of the light receiver when two types of fluorescent molecules are present in the sample S. FIG. Referring to the figure, for example, as shown in the drawing, one fluorescent molecule A (having excitation / emission spectra λex1 and λem1) in the sample is excited by the light of laser La, and the fluorescence is shown in the drawing. Detection or measurement is performed by a light receiver APPD having a detection area, and the other fluorescent molecule B (having excitation and emission spectra λex2 and λem2) is excited with the light of the laser Lb, and the fluorescence is shown in the figure. It is assumed that detection or measurement is performed by a light receiver APDb having such a detection area. In that case, when the sample S is excited by the excitation light La and Lb, the light receiver APDa receives and detects only the emission wavelength λem1 of the fluorescent molecule A, but the detection region of the light receiver APDb includes the fluorescent molecule B. Since not only the emission wavelength λem2 but also a part on the longer wavelength side of the emission wavelength λem1 of the fluorescent molecule A enters, the detection value or measurement value of the light receiver APDb contributes to the fluorescence of the fluorescent molecule A, that is, Cross talk will be mixed. Then, when signal analysis, for example, calculation of the FCCS cross-correlation function and the frequency of simultaneous occurrence of fluctuations in CFCA, is performed using the detection values of the light receivers APDa and APDb, the values of these analysis results are received. Since the fluorescence contribution of the fluorescent molecule A (crosstalk) is mixed in the detection value of the detector APDb, the accuracy is lowered (the value is apparently increased).

上記の如きクロストークによる影響を光分析の結果から排除するために、特許文献1、2の手法に於いては、既に述べた如く、複数の励起光を逐次的に一つずつ試料Sに対して照射し、一時に試料Sを励起する励起光を一つにした状態で蛍光を検出するといったことが行われる。この場合、各励起光が試料Sを照射する期間が把握されるので、時系列的に得られた検出値から、信号解析又は演算処理の段階で、各受光器に対応する励起光が選択されている期間の検出値を抽出し、これにより、検出値からクロストークを排除される(例えば、レーザーLaが選択されている期間に受光器APDbは、蛍光分子Aの蛍光を受光するが、その間の検出値は、信号解析の段階で排除される。)。   In order to eliminate the influence of the crosstalk as described above from the result of optical analysis, in the methods of Patent Documents 1 and 2, as already described, a plurality of excitation lights are sequentially applied to the sample S one by one. The fluorescence is detected in a state where the excitation light that excites the sample S at one time is combined into one. In this case, since the period during which each excitation light irradiates the sample S is grasped, the excitation light corresponding to each light receiver is selected from the detection values obtained in time series at the stage of signal analysis or arithmetic processing. And the crosstalk is eliminated from the detected value (for example, the receiver APDb receives the fluorescence of the fluorescent molecule A during the period when the laser La is selected. The detected value is excluded at the stage of signal analysis.)

かかる手法によれば、確かに、解析結果からクロストークの影響は排除される。しかしながら、既に述べた如く、膨大な時系列の或る受光器の検出値に於いて、対応する励起光が選択されている期間に於ける検出値を特定して抽出するという演算処理は、信号処理の負担が大きくなる。そこで、本発明の装置では、一つの励起光が試料Sに照射されている間は、一つの受光器のみ光の検出が許可される状態とし、励起光の逐次的な切換に同期して、光の検出が許可される受光器も逐次的に切換られるよう計測制御系が構成される。例えば、図2(A)の例の場合、本発明に於いては、同(B)、(C)に例示されている如く、励起光Laが選択されている場合には、受光器APDaのみが、光の検出が可能な状態(ON)とされ、励起光Lbが選択されている場合には、受光器APDbのみが、光の検出が可能な状態(ON)となるよう受光器の光の検出の許可/禁止が制御される。かかる本発明の制御手法によれば、一時に試料Sに与えられる励起光は、一種類であり、これに対応して、同時に光の検出が許可される受光器は、一つに制限され、その他の受光器の光の検出は禁止されるので、各々の受光器の出力に於いて上記の如きクロストークの混在が回避されることとなる。   According to such a method, the influence of crosstalk is certainly excluded from the analysis result. However, as described above, the calculation process of specifying and extracting the detection value in the period when the corresponding excitation light is selected from the detection values of a certain time-series photoreceiver is a signal. The burden of processing increases. Therefore, in the apparatus of the present invention, while one excitation light is irradiated on the sample S, the detection of light is allowed only for one light receiver, and in synchronization with the sequential switching of the excitation light, The measurement control system is configured so that light receivers that are permitted to detect light are also sequentially switched. For example, in the case of the example of FIG. 2A, in the present invention, as illustrated in FIGS. 2B and 2C, when the excitation light La is selected, only the light receiver APPDa. However, when the light detection is possible (ON) and the excitation light Lb is selected, only the light receiver APDb is in the light detectable state (ON). The permission / prohibition of the detection of is controlled. According to such a control method of the present invention, the excitation light given to the sample S at one time is one kind, and the number of light receivers that are allowed to detect light at the same time is limited to one, Since the detection of light from other light receivers is prohibited, mixing of crosstalk as described above is avoided in the output of each light receiver.

励起光及び受光器の選択及び切換制御
上記に述べた如く、本発明の装置では、電子制御装置による制御下、励起光の逐次的な切換に同期して、光の検出が許可される受光器も逐次的に切換られるよう、レーザーLa〜Lnに対応するシャッタ30a〜n及び受光器APDa〜nに対応するシャッタ32a〜nの光の透過/遮断が制御される。図3(A)は、かかるシャッタの切換制御と、受光器にて検出された信号の処理及び解析を実行する電子制御装置50の構成を機能ブロックの形式にて表したものである。かかる構成は、電子制御装置50に於いて制御プログラムを実行することにより達成されてよい。また、図示の構成は、使用者の指示に従って光分析のための光の計測が実行される際、作動される。なお、簡単のため図示していないが、電子制御装置50に於いては、公知の態様にて、光分析装置の各種の設定、例えば、励起光又は検出光の波長帯域又は使用するレーザー及び受光器の選択、一回の蛍光の計測時間、計測回数等の設定を使用者の入力に基づいて実行する部分、種々の分光分析のためのパラメータの入力する部分等が設けられる。
Selection and switching control of excitation light and light receiver As described above, in the apparatus of the present invention, a light receiver that is allowed to detect light in synchronization with sequential switching of excitation light under the control of the electronic control device. In addition, the light transmission / blocking of the shutters 30a to 30n corresponding to the lasers La to Ln and the shutters 32a to 32n corresponding to the light receivers APDa to n is controlled so as to be sequentially switched. FIG. 3A shows, in the form of functional blocks, the configuration of the electronic control unit 50 that executes such shutter switching control and processing and analysis of signals detected by the light receiver. Such a configuration may be achieved by executing a control program in the electronic control unit 50. The illustrated configuration is activated when light measurement for optical analysis is performed in accordance with a user instruction. Although not shown for simplicity, in the electronic control unit 50, various settings of the optical analyzer, such as the wavelength band of the excitation light or the detection light, the laser to be used, and the light reception in a known manner. There are provided a part for selecting a measuring instrument, setting a measurement time of one fluorescence, the number of times of measurement, etc. based on a user input, a part for inputting parameters for various spectroscopic analyses, and the like.

図3(A)を参照して、電子制御装置50に於いては、シャッタの切換制御のために、励起光波長選択制御部50aと、励起光透過/遮断制御指令決定部50bと、検出光透過/遮断制御指令決定部50cとが設けられる。励起光波長選択制御部50aは、予め定められたスキームに従って、試料Sに照射されるべきレーザーLa〜Lnの励起光を逐次的に選択し、指示指令を励起光透過/遮断制御指令決定部50bと、検出光透過/遮断制御指令決定部50cとに同時に送出する。例えば、二つのレーザーLa及びLbの励起光が計測に於いて用いられる場合には、これらの励起光が所定時間毎に交互に試料を照射するよう、LaとLbとのうちのいずれかを選択し、いずれの励起光が使用されるかが二つの制御指令決定部50b、50cへ同時に指示される。制御指令決定部50b、50cは、それぞれ、レーザーLa、Lbの励起光路のシャッタ30a、bのうち、指示された励起光に対応する方及び受光器APDa〜nの受光光路のシャッタ32a、bのうち指示された励起光に対応する方を開放し、それ以外のシャッタを閉鎖して光の透過を遮断する。かくして、励起光波長選択制御部50aは、前記の如く、LaとLbとを交互に選択するので、シャッタ30a、b、32a、bは、図3(B)に例示されている如く、交互に切換られることとなる(ONが開放、OFFが閉鎖)。   Referring to FIG. 3A, in electronic control unit 50, for switching control of the shutter, excitation light wavelength selection control unit 50a, excitation light transmission / cutoff control command determination unit 50b, detection light A transmission / cutoff control command determination unit 50c is provided. The excitation light wavelength selection control unit 50a sequentially selects the excitation light of the lasers La to Ln to be irradiated on the sample S according to a predetermined scheme, and instructs the excitation light transmission / cutoff control command determination unit 50b. And simultaneously transmitted to the detection light transmission / blocking control command determination unit 50c. For example, when excitation light of two lasers La and Lb is used in the measurement, either La or Lb is selected so that these excitation lights alternately irradiate the sample every predetermined time Which excitation light is used is instructed simultaneously to the two control command determining units 50b and 50c. The control command determination units 50b and 50c respectively select one of the shutters 30a and 30b for the excitation light paths of the lasers La and Lb, which corresponds to the designated excitation light, and the shutters 32a and 32b for the light reception light paths of the light receivers APDi to n. The one corresponding to the instructed excitation light is opened, and the other shutters are closed to block light transmission. Thus, since the excitation light wavelength selection control unit 50a alternately selects La and Lb as described above, the shutters 30a, b, 32a, and b are alternately arranged as illustrated in FIG. It will be switched (ON is open, OFF is closed).

一方、上記の如く励起光と検出光の切換を実行する間に、受光器APDa〜nにて検出された蛍光強度に対応する出力は、電子制御装置50へ入力され、この分野で通常実行されているノイズ除去又はバックグラウンド減算及びA/D変換が実行された後、使用者の指定した信号解析を行う信号解析部へ送られる(なお、計測中、リアルタイムに解析が行われる必要はない。)。その際、受光器APDa〜nの各出力には、クロストークが原理的に混在しないこととなるので、信号解析部は、励起光波長選択制御部から、何時、励起光が切り換えられたかという情報をもらう必要はなく、従って、そのためのプログラミングを予め準備する必要がなくなる。又、クロストークを除去する処理が実行されないので、信号処理量が低減され、解析処理に要する時間も低減されることが期待される。   On the other hand, during the switching between the excitation light and the detection light as described above, the output corresponding to the fluorescence intensity detected by the light receivers APDi to n is input to the electronic control unit 50 and is normally executed in this field. After noise removal or background subtraction and A / D conversion are performed, the signal is sent to a signal analysis unit that performs signal analysis designated by the user (in addition, it is not necessary to perform analysis in real time during measurement. ). At that time, since the crosstalk is not mixed in principle in each output of the light receivers APDi to n, the signal analysis unit is information on when the excitation light is switched from the excitation light wavelength selection control unit. Therefore, it is not necessary to prepare programming for that purpose. Further, since the processing for removing the crosstalk is not executed, it is expected that the amount of signal processing is reduced and the time required for the analysis processing is also reduced.

図1は、本発明の光分析装置の一つの好ましい実施形態である多重光照射−多重光検出型の蛍光分光分析装置の光学系を模式的に表したものである。図において、レーザーLa〜Ln及び受光器APDa〜nは、それぞれ、三体ずつ示されているが、それらの数は、任意であってよい。FIG. 1 schematically shows an optical system of a fluorescence spectroscopy analyzer of a multiple light irradiation-multiple light detection type, which is one preferred embodiment of the optical analyzer of the present invention. In the figure, three lasers La to Ln and three light receivers APDi to n are shown, but the number thereof may be arbitrary. 図2(A)は、二種類の蛍光分子を同時励起する場合の励起波長(一点鎖線)、蛍光波長(実太線)、励起光La〜b、受光器APDa〜bの検出域との関係を示した図である。λex1及びλem1は、それぞれ、一方の蛍光分子の励起・蛍光波長スペクトルであり、λex2及びλem2は、それぞれ、他方の蛍光分子の励起・蛍光波長スペクトルを示す。APDbの検出域に於いて、λem1の長波長が侵入している帯域に於いて、クロストークが生ずる(斜線の領域)。図2(B)、(C)は、本発明による励起光及び検出光の選択制御を実行した場合の(A)と同様の図である。なお、蛍光分子の励起スペクトルは省略されている。(B)は、励起光Laが選択されている場合であり、このとき、APDaのみが光検出が許可(ON)されるので、λem1のうち、APDaの検出域の実太線の付された帯域の蛍光が受光され、APDbの検出域に進入する成分は、APDbの出力に反映されない。(C)は、励起光Lbが選択されている場合であり、λem2のうち、APDbのみが光検出が許可(ON)され、APDbの検出域の実太線の付された帯域の蛍光が受光される。FIG. 2A shows the relationship between the excitation wavelength (one-dot chain line), the fluorescence wavelength (solid thick line), the excitation light La to b, and the detection area of the light receivers APDi to b when two types of fluorescent molecules are excited simultaneously. FIG. λex1 and λem1 are excitation and fluorescence wavelength spectra of one fluorescent molecule, respectively, and λex2 and λem2 are excitation and fluorescence wavelength spectra of the other fluorescent molecule, respectively. In the APDb detection area, crosstalk occurs in the band where the long wavelength of λem1 enters (hatched area). FIGS. 2B and 2C are diagrams similar to FIG. 2A when selection control of excitation light and detection light according to the present invention is executed. In addition, the excitation spectrum of the fluorescent molecule is omitted. (B) is a case where the excitation light La is selected. At this time, only APDA is allowed to detect light (ON), and therefore, in λem1, a band indicated by a solid line in the detection area of APDa The component that receives the fluorescence and enters the detection area of APDb is not reflected in the output of APDb. (C) shows the case where the excitation light Lb is selected. Among λem2, only APDb is allowed to detect light (ON), and the fluorescence in the band indicated by the solid line in the detection area of APDb is received. The 図3(A)は、本発明の光分析装置の電子制御装置の内部構成の一部を制御機能ブロックの形式にて表したものである。図3(B)は、計測にレーザーLa〜b及び受光器APDa〜bが用いられる場合の、図3(A)に例示の構成により制御されるシャッタ30a、b及びシャッタ32a、bの作動スキーム(時間変化)を表したものである。ONは、開放(光透過)、OFFは、閉鎖(光遮断)を表す。FIG. 3A shows a part of the internal configuration of the electronic control unit of the optical analyzer of the present invention in the form of a control function block. FIG. 3B illustrates an operation scheme of the shutters 30a and 30b and the shutters 32a and 32b controlled by the configuration illustrated in FIG. 3A when the lasers La to b and the light receivers APDi to b are used for measurement. (Time change). ON represents opening (light transmission), and OFF represents closing (light blocking).

符号の説明Explanation of symbols

La〜n…レーザー
APDa〜n…受光器
14a〜n,16,26a…ダイクロイックミラー
18…対物レンズ
22…ピンホール
28a〜n…バンドパスフィルター
30a〜n,32a〜n…シャッタ
50…電子制御装置
La-n ... Laser APDa-n ... Light receivers 14a-n, 16, 26a ... Dichroic mirror 18 ... Objective lens 22 ... Pinhole 28a-n ... Bandpass filters 30a-n, 32a-n ... Shutter 50 ... Electronic control device

Claims (9)

複数の波長帯域又は波長特性の照射光を試料に照射して前記複数の照射光に対応して発せられる前記試料からの複数の波長帯域又は波長特性の放射光を計測し分析する光分析装置であって、
前記試料に前記複数の照射光を選択的に照射するための光照射手段と、
前記複数の波長帯域又は波長特性の放射光の各々を選択的に検出するための複数の光検出手段と、
前記試料に照射する前記照射光を選択して前記放射光の計測を実行するための計測制御手段とを含み、
前記計測制御手段が、前記試料に対して出射される前記照射光を選択する照射光選択手段と、前記複数の光検出手段の各々による前記放射光の検出を選択的に許可する光検出許可手段とを含み、前記照射光選択手段が前記複数の照射光のうちの一つを前記試料に対して出射されるよう選択したときに、前記光検出許可手段が、前記複数の照射光のうち選択されている前記照射光に対応して前記試料から発せられるべき前記放射光を検出するための前記光検出手段の放射光の検出を許可することを特徴とする装置。
An optical analyzer that irradiates a sample with irradiation light having a plurality of wavelength bands or wavelength characteristics and measures and analyzes radiation light having a plurality of wavelength bands or wavelength characteristics emitted from the sample in response to the plurality of irradiation lights. There,
Light irradiation means for selectively irradiating the sample with the plurality of irradiation lights;
A plurality of light detection means for selectively detecting each of the radiation beams of the plurality of wavelength bands or wavelength characteristics;
A measurement control means for performing the measurement of the radiated light by selecting the irradiation light to irradiate the sample,
The measurement control means selects the irradiation light emitted from the sample, and the light detection permission means selectively permits the detection of the emitted light by each of the plurality of light detection means. And when the irradiation light selection means selects one of the plurality of irradiation lights to be emitted to the sample, the light detection permission means selects the plurality of irradiation lights. An apparatus for permitting detection of radiated light of the light detection means for detecting the radiated light to be emitted from the sample in response to the irradiated light being applied.
請求項1の装置であって、前記照射光選択手段が前記複数の照射光を一つずつ順々に前記試料に対して照射されるよう選択し、前記光検出許可手段が前記照射光選択手段の前記照射光の選択に同期して前記選択された照射光に対応して前記試料から発せられるべき前記放射光を検出するための前記光検出手段の放射光の検出を許可することを特徴とする装置。   The apparatus according to claim 1, wherein the irradiation light selection unit selects the plurality of irradiation lights to be sequentially irradiated on the sample one by one, and the light detection permission unit selects the irradiation light selection unit. The detection of the radiated light of the light detecting means for detecting the radiated light to be emitted from the sample corresponding to the selected irradiating light is permitted in synchronization with the selection of the irradiating light of Device to do. 請求項1の装置であって、前記光照射手段が、各々特定の波長の照射光を発生する複数の光源を含み、前記照射光選択手段が選択的に前記複数の光源のうちのいずれかの光源からの照射光を前記試料に与えられるよう前記光源のうちの一つを選択的に照射光が発生可能な状態とすることを特徴とする装置。   The apparatus according to claim 1, wherein the light irradiation unit includes a plurality of light sources each generating irradiation light of a specific wavelength, and the irradiation light selection unit selectively selects any one of the plurality of light sources. An apparatus wherein one of the light sources is selectively brought into a state in which the irradiation light can be generated so that irradiation light from the light source can be applied to the sample. 請求項1の装置であって、前記照射光選択手段が前記複数の照射光のうちのいずれかの照射光の波長帯域の光を選択的に透過させる光学素子を含むことを特徴とする装置。   2. The apparatus according to claim 1, wherein the irradiation light selection unit includes an optical element that selectively transmits light in a wavelength band of any one of the plurality of irradiation lights. 請求項1の装置であって、前記光検出許可手段が前記試料から前記光検出手段までの前記放射光の光路を選択的に開放することにより前記光検出手段への前記放射光の入射を許すシャッター手段を含むことを特徴とする装置。   The apparatus according to claim 1, wherein the light detection permission unit selectively allows the radiation light to enter the light detection unit by selectively opening an optical path of the radiation light from the sample to the light detection unit. An apparatus comprising shutter means. 請求項1の装置であって、前記光検出許可手段が前記選択されている前記照射光に対応して前記試料から発せられるべき前記放射光を検出するための前記光検出手段を選択的に前記放射光の検出が可能な状態とすることを特徴とする装置。   2. The apparatus according to claim 1, wherein the light detection permission means selectively selects the light detection means for detecting the radiated light to be emitted from the sample in response to the selected irradiation light. A device characterized in that radiation light can be detected. 請求項1の装置であって、前記試料が複数の互いに発光波長特性の異なる蛍光分子を含み、前記複数の照射光の各々が前記複数の蛍光分子のいずれかを選択的に励起するための励起光であり、前記複数の放射光の各々が前記複数の蛍光分子から発せられる蛍光のいずかであることを特徴とする装置。   2. The apparatus according to claim 1, wherein the sample includes a plurality of fluorescent molecules having different emission wavelength characteristics from each other, and each of the plurality of irradiation lights selectively excites one of the plurality of fluorescent molecules. An apparatus, wherein each of the plurality of emitted lights is one of fluorescence emitted from the plurality of fluorescent molecules. 請求項1の装置であって、前記光照射手段から前記試料の位置まで及び前記試料の位置から前記光検出手段までの光学系が共焦点顕微鏡の光学系を構成していることを特徴とする装置。   2. The apparatus according to claim 1, wherein the optical system from the light irradiation means to the position of the sample and from the position of the sample to the light detection means constitutes an optical system of a confocal microscope. apparatus. 請求項8の装置であって、前記複数の照射光を前記試料に照射し前記複数の照射光に対応して発せられる前記試料からの前記複数の放射光を計測して蛍光相互相関分光分析を実行することを特徴とする装置。   9. The apparatus according to claim 8, wherein the plurality of irradiation lights are applied to the sample, and the plurality of emitted lights from the sample emitted in response to the plurality of irradiation lights are measured to perform fluorescence cross-correlation spectroscopy analysis. A device characterized by performing.
JP2007226746A 2007-08-31 2007-08-31 Optical analysis apparatus Pending JP2009058405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226746A JP2009058405A (en) 2007-08-31 2007-08-31 Optical analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226746A JP2009058405A (en) 2007-08-31 2007-08-31 Optical analysis apparatus

Publications (1)

Publication Number Publication Date
JP2009058405A true JP2009058405A (en) 2009-03-19

Family

ID=40554265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226746A Pending JP2009058405A (en) 2007-08-31 2007-08-31 Optical analysis apparatus

Country Status (1)

Country Link
JP (1) JP2009058405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122242A (en) * 2014-08-05 2014-10-29 华南农业大学 Method for detecting agila formation ratio of agilawood
KR20180001945A (en) * 2016-06-28 2018-01-05 한국과학기술연구원 Apparatus and method for measuring water pollution based on multi-wavelength light source
JP2019060637A (en) * 2017-09-25 2019-04-18 浜松ホトニクス株式会社 Optical measurement apparatus and optical measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271636A (en) * 1998-03-23 1999-10-08 Olympus Optical Co Ltd Scanning type laser microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271636A (en) * 1998-03-23 1999-10-08 Olympus Optical Co Ltd Scanning type laser microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104122242A (en) * 2014-08-05 2014-10-29 华南农业大学 Method for detecting agila formation ratio of agilawood
CN104122242B (en) * 2014-08-05 2016-06-15 华南农业大学 A kind of detection method of Lignum Aquilariae Resinatum Edgeworthia chrysantha Lindl. rate
KR20180001945A (en) * 2016-06-28 2018-01-05 한국과학기술연구원 Apparatus and method for measuring water pollution based on multi-wavelength light source
KR101866922B1 (en) 2016-06-28 2018-06-15 한국과학기술연구원 Apparatus and method for measuring water pollution based on multi-wavelength light source
JP2019060637A (en) * 2017-09-25 2019-04-18 浜松ホトニクス株式会社 Optical measurement apparatus and optical measurement method

Similar Documents

Publication Publication Date Title
JP5265408B2 (en) Correlation spectroscopy analysis method and correlation spectroscopy analyzer
CN109477784B (en) Fluorescence imaging flow cytometry with enhanced image resolution
JP5485289B2 (en) Resolution-enhanced microscopy
JP5329449B2 (en) How to perform microscopic imaging
JP5189277B2 (en) Method and apparatus for inspecting a sample
US8294985B2 (en) Laser microscope apparatus
KR102165794B1 (en) Determining information for defects on wafers
KR101260051B1 (en) Apparatus and method to perform bright-field microscopy and fluorescence microscopy simultaneously for the live-cell imaging
US8488118B2 (en) Apparatus and method for multi-modal imaging in nonlinear raman microscopy
JP2012032183A (en) Sample observation device and sample observation method
JP4224640B2 (en) Fluorescence spectrometer
WO2010095263A1 (en) Laser microscope
JP2007322389A (en) Spectrum observation technique and spectrum observation system
KR101629576B1 (en) Apprtus and method for obtaining multi-wavelength fluorescence image
JP2007093370A (en) Fluorescence spectroscopic analyzer
JP2009047435A (en) Laser microscope
JP4474582B2 (en) Fluorescence detection method
JP2017502344A (en) Multicolor scanning microscope
JP2009058405A (en) Optical analysis apparatus
KR20150146075A (en) Confocal spectrogram microscope
JP2009294392A (en) Laser scanning type microscope
JP5117966B2 (en) Sample analyzer
JP2005524069A (en) Fluorescence detection apparatus and method having light emitting diode as excitation light source
JP4704052B2 (en) Fluorescence lifetime measuring device
JP2004354346A (en) Measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100630

A977 Report on retrieval

Effective date: 20120126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A02 Decision of refusal

Effective date: 20120612

Free format text: JAPANESE INTERMEDIATE CODE: A02