[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009053567A - 立体画像表示用プロジェクタ - Google Patents

立体画像表示用プロジェクタ Download PDF

Info

Publication number
JP2009053567A
JP2009053567A JP2007222068A JP2007222068A JP2009053567A JP 2009053567 A JP2009053567 A JP 2009053567A JP 2007222068 A JP2007222068 A JP 2007222068A JP 2007222068 A JP2007222068 A JP 2007222068A JP 2009053567 A JP2009053567 A JP 2009053567A
Authority
JP
Japan
Prior art keywords
screen
light
lens array
image
stereoscopic image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007222068A
Other languages
English (en)
Inventor
Akinari Suehiro
晃也 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2007222068A priority Critical patent/JP2009053567A/ja
Publication of JP2009053567A publication Critical patent/JP2009053567A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

【課題】観察者の位置に応じて立体映像を構成する光線状態を制御でき、最適な立体表示を可能とする。
【解決手段】プロジェクタ1の投射レンズ11から投影された光により、IPの原理により三次元の空間像31が再生される。レーザー光源4からのレーザー光41は、レンズアレイ3に照射され、レンズアレイ3の個々のレンズのいずれかにより屈折されて、スクリーン2に入射してスポットを形成する。このスポットの径はレンズアレイ3の焦点位置にスクリーン2が位置するときは最小となり、そのスポットの径によりレンズアレイ3とスクリーン2との間隔を検出できる。プロジェクタ1は、カメラ5により上記のスポットを撮像して得たモニタ画像信号により上記間隔を検出し、制御信号を生成して駆動機構6に供給し、駆動機構6により上記の間隔を可変制御することで、立体画像を最適化する。
【選択図】図1

Description

本発明は立体画像表示用プロジェクタに係り、特にインテグラルフォトグラフィの原理に基づいて、三次元空間像を再生する立体ディスプレイに用いられる立体画像表示用プロジェクタに関する。
リップマン(M.G.Lippmann)が1908年に提案したインテグラルフォトグラフィ(Integral Photography:IP)の原理に基づき、実物表面からの光線と同等な光線を空間に再現することにより、自然な三次元画像を再生する三次元ディスプレイの研究開発が盛んに行われている(例えば、非特許文献1、非特許文献2、非特許文献3、特許文献1参照)。
非特許文献1には、レンズアレイと写真乾板を用いて被写体を撮影した後に、現像後の写真をレンズアレイの背後から照明することにより、元の被写体の位置に光線が逆行して集まることから三次元像が再生されることが報告されている。
特許文献1及び非特許文献2には、上記プロセスを電子化し、撮像と表示をリアルタイムに行うインテグラル立体テレビシステムが報告されている。非特許文献3には、本出願人により、プロジェクタを用いたインテグラル立体テレビシステムが報告されている。
M.G Lippmann,"Epreuves reversibles. Photographies integrals.",Comptes-Rendus Academie des Sciences-146,pp.446-451(1908) 洗井淳,星野春男,岡野文男,湯山一郎,「屈折率分布レンズを用いたインテグラルフォトグラフィ撮像実験」、3次元画像コンファレンス'98,pp.76-81 Koya Suehiro, Hiroya Nakanura,Kunio Yamada,Shinji Nakamura,Takayuki Sugahara,"Integral 3D imaging system using monocular 2D video and depth data",Proceedings of SPIE Volume 5664, Stereoscopic Displays and Virtual Reality Systems XII, p.230-240 (2005) 特許第3678792号公報
しかしながら、上記の各文献に記載の従来の投射型IP用プロジェクタは、スクリーン上の平面画像の画質を最適化することはできても、レンズアレイから射出され、IP方式により空間に再生される立体画像を最適化できないという課題がある。
その理由は次の通りである。レンズアレイから射出される立体画像を最適化するためには、スクリーン上の平面画像のサイズをレンズアレイのサイズに適合するように微調整すると同時に、その画像サイズに応じてスクリーンとレンズアレイとの間の距離や傾きを更に調整しなければならない。しかし、従来の投射型IP用プロジェクタは、スクリーンとレンズアレイとの間の距離や傾きを検出する機能を有しておらず、単にスクリーン上の平面画像の投射サイズを調節するズーム機構及びピントを調節するフォーカス機構を有するのみである。従って、従来の投射型IP用プロジェクタで画像の最適化が行えるのはスクリーン上の平面画像のみであり、立体画像の最適化は、プロジェクタの機能としては行うことができない。
本発明は上記の点に鑑みなされたもので、観察者の位置に応じて立体映像を構成する光線状態を制御でき、最適な立体表示が可能となる立体画像表示用プロジェクタを提供することを目的とする。
上記の目的を達成するため、第1の発明は、第1面を拡散面とし、第1面に対向する第2面を光の偏向機能を有する面とする光学部材の第1面の近傍に、二次元画像のインコヒーレント光を照射することにより、第2面の近傍の空間位置に多方向の光線群を集光させて、インテグラルフォトグラフィの原理により三次元の空間像を再生させる立体画像表示用プロジェクタであって、
光学部材の第1面と第2面の相対的な間隔又は相対的な傾きを制御する駆動機構を駆動する制御信号を生成する制御信号生成手段を有し、制御信号により駆動機構を駆動して光学部材の光学的特性を変化させることで、第2面から出射する光線の広がり角を制御すると共に、空間像を観察する観察者の視域を制御することを特徴とする。
また、上記の目的を達成するため、第2の発明は、コヒーレント光を光学部材の第2面側から入射することにより第1面に形成されるスポットを撮像する撮像手段と、撮像手段により撮像して得られたスポットのモニタ画像信号に基づき、光学部材の第1面と第2面の相対的な間隔又は相対的な傾きを検出する検出手段とを第1の発明の構成に加え、検出手段により検出された第1面と第2面の相対的な間隔又は相対的な傾きに応じて、制御信号生成手段を介して駆動機構を制御することを特徴とする。
また、上記の目的を達成するため、第3の発明は、二次元画像のインコヒーレント光をスクリーンに照射して多数の平面画像をスクリーンに形成させ、その多数の平面画像をスクリーンを透過させて拡散させ、スクリーンに離間対向して設けられた偏向光学素子アレイにより、スクリーンからの拡散光を画素位置に応じて異なる方向にほぼ平行な光線群として投射し、これらの光線群を空間に集光させて、インテグラルフォトグラフィの原理により三次元の空間像を再生させる立体画像表示用プロジェクタであって、
コヒーレント光である略平行光線を偏向光学素子アレイに入射することにより、スクリーン上に形成される一又は二以上のスポットを平面画像と共に撮像する撮像手段と、撮像手段により撮像して得られたスポットのモニタ画像信号に基づき、スクリーンと偏向光学素子アレイとの相対的な間隔又は相対的な傾きを検出する検出手段と、検出手段により検出されたスクリーンと偏向光学素子アレイとの間隔又は傾きに応じて、スクリーンと偏向光学素子アレイとの間隔及び傾きを可変する駆動機構を制御する制御信号を生成する制御信号生成手段とを有し、制御信号生成手段は、偏向光学素子アレイから空間に出射する光線の広がり角、及び空間像を観察する観察者の視域の一方又は両方を制御するための制御信号を生成することを特徴とする。
本発明では、光学部材の第1面と第2面の相対的な間隔又は相対的な傾き、あるいはスクリーンと偏向光学素子アレイとの間隔又は傾きを、光学部材の第1面又はスクリーンに形成されるスポットのモニタ画像信号に基づいて、スポット径やスポットが複数の場合はそれらの相対位置関係などにより検出し、その検出結果に基づいて上記の間隔又は傾きを制御するようにしたため、光学部材の第2面や偏向光学素子アレイから空間に出射する光線の広がり角、及び空間像を観察する観察者の視域の一方又は両方を制御することができる。
本発明によれば、観察者の位置に応じて立体画像を構成する光線状態(光線の広がり角や観察者の視域)を制御でき、これにより最適な立体画像表示ができる。
次に、発明を実施するための最良の形態について図面と共に詳細に説明する。
図1は本発明になる立体画像表示用プロジェクタを備えた立体画像表示システムの一例のシステム構成図を示す。同図に示すよう、この立体画像表示システム100は、本発明の立体画像表示用プロジェクタ1の前面に設けられたスクリーン2と、スクリーン2に離間対向して設けられた偏向光学素子アレイの一例としてのレンズアレイ3と、レンズアレイ3をスクリーン2からの光の照射面とは反対側面から照射するレーザー光41を出射するレーザー光源4と、レンズアレイ3の位置を調整するための駆動機構6とからなる。駆動機構6を制御する駆動信号は立体画像表示用プロジェクタ1により生成される。
この構成の立体画像表示システム100において、本発明の立体画像表示用プロジェクタ1の投射レンズ11から投影された光はスクリーン2上で結像して多数の平面画像21を形成する。この多数の平面画像21からの光はスクリーン2を透過して拡散し、その拡散光はスクリーン2に対してプロジェクタ1とは反対側面に離間対向して設けられたレンズアレイ3に入射する。
レンズアレイ3は多数個のレンズが規則的に二次元配置された構成であり、スクリーン2からの拡散光を画素位置に応じて異なる方向にほぼ平行な光線群として投射し、これらの光線群を空間に集光させる。この集光位置に、インテグラルフォトグラフィ(IP)の原理により三次元の空間像31が再生される。
この立体画像表示システム100では、空間像31を観察する観察者(その眼球を7で示す)の近傍に、コヒーレント光であるレーザー光を出射するレーザー光源4が配置される。具体的には、レーザー光源4としては小型レーザーポインタが適している。このレーザー光源4からのレーザー光41はレンズアレイ3に照射され、レンズアレイ3の個々のレンズのいずれかにより屈折されて、スクリーン2に入射する。もし、スクリーン2がレンズアレイ3の焦点面に配置されていれば、レーザー光41はスクリーン2上で結像することになる。
図2(A)、(B)は、かかる結像の様子を示す図である。図2(A)、(B)において、レーザー光源4から射出されたレーザー光線41a、41bは、レンズアレイ3により屈折されてスクリーン2付近で集光する。図2(A)、(B)に示すように、レンズアレイ3がスクリーン2に対して傾いていた場合、スクリーン2のレンズアレイ3の焦点面とずれた位置では同図(A)に示すように、レーザー光線41aがスクリーン2上ではデフォーカスした状態となる。これに対し、スクリーン2のレンズアレイ3の焦点面に一致した位置では同図(B)に示すように、レーザー光線41bがオンフォーカスされた状態となり、スクリーン2上のスポットの径は最小となる。従って、スクリーン2上のスポットの径により、レンズアレイ3とスクリーン2との距離と傾きが分かる。
このレーザー光源4から射出されたレーザー光41(41a、41b)によりスクリーン2上に形成されるスポットは、図2(A)、(B)に示すように、プロジェクタ1に装着したカメラ5により、スクリーン2の背後(レーザー光源4に対して反対側位置)からモニタされる。カメラ5により撮像して得られたスクリーン2上のレーザー光41のスポットのモニタ画像信号は、レンズアレイ3とスクリーン2との相対位置(距離)と傾きを示しているので、後述する方法によりモニタ画像信号から上記の相対位置(距離)と傾きを検出する。
それらを検出した後は、スクリーン2上の上記のスポットが例えば最小の径になるように(換言すると、レンズアレイ3とスクリーン2との間隔がレンズアレイ2の各レンズの焦点距離になるように)、レンズアレイ3を図1に示す駆動機構6により駆動する。この場合、駆動機構6によりレンズアレイ3を前後に微小に変位させて、上記のスポットのモニタ画像信号を観察することにより、スポットの径を判別することができる。
なお、上記のスクリーン2とレンズアレイ3とは広義のスクリーンを構成しており、スクリーン2はこの広義のスクリーンの第1の面(拡散面)を構成し、レンズアレイ3はこの広義のスクリーンの第2の面(光の偏向機能を有する面)を構成しているともいうことができる。そして、上記の駆動機構6によりレンズアレイ3とスクリーン2との相対位置(距離)と傾きが変化するようにレンズアレイ3を駆動することは、この広義のスクリーンの光学的特性を変化させることと等価である。
次に、本発明の立体画像表示用プロジェクタ1の構成について説明する。
図3は、本発明になる立体画像表示用プロジェクタの一実施の形態の概略ブロック図を示す。同図中、図1、図2と同一構成部分には同一符号を付してある。図3に示すように、立体画像表示用プロジェクタ1は、光源101と、照明光学系102〜102と、液晶表示素子103〜103と、投射レンズユニット104と、投影レンズ11とよりなる従来のプロジェクタと同様の構成に加えて、撮像素子105、信号処理部106、演算回路107、制御信号生成部108及び入力部109が追加された構成である。
光源101は、発光ダイオード(LED)、レーザー光源、あるいはキセノンランプなどで構成されている。照明光学系102〜102は水平方向(図3の紙面と平行方向)及び垂直方向(図3の紙面の直交方向)にそれぞれ全部でn個規則的に配列されており、光源101からの入射光を均一な照明光にそれぞれ変換して出射する。光源101が出射する照明光は三原色光(白色光)でもよいし、単色光であってもよい。
液晶表示素子103〜103は、水平方向及び垂直方向にそれぞれ全部でn個規則的に配置されており、対応して設けられた照明光学系102〜102からの照明光が入射され、表示しようとする画像を構成する各画素の画像を表示する。液晶表示素子103〜103は、例えばLCOS(Liquid Crystal On Silicon)による反射型液晶表示素子でもよいし、HTPS(High Temperature Poly-Silicon:高温ポリシリコンTFT結晶)に代表される透過型液晶表示素子やDLP(Digital Light Processing:登録商標)などの他のマイクロデバイスを用いることも可能である。
投射レンズユニット104は、例えば複数のレンズが二次元的に複数配置されたレンズアレイと、そのレンズアレイを構成する各レンズに対応して形成された開口が二次元的に複数配置された開口アレイとからなる。投射レンズユニット104内の開口アレイから射出された液晶表示素子103〜103からの二次元画像の光線は、レーザー光源以外の一般的な光源を使用した場合にはインコヒーレント光であり、投影レンズ11を透過して前記スクリーン2に投射される。
この立体画像表示用プロジェクタ1は、投影光学系を有する二次元画像表示装置であり、全体としては水平方向及び垂直方向に二次元的に配置されて、二次元画像表示装置アレイを構成している。このアレイ数は使用する液晶表示素子103の解像度(画素数)に依存する。もし、十分に解像度が高い液晶表示素子が使用可能な場合には、アレイを構成せずに通常の1枚(単板式)または3枚(すなわちRGB3板式)の構成で実施してもよい。その場合には、投射レンズユニット104は不要であり、単板式の場合には液晶表示素子103から直接に投射レンズ11に入射させ、3板式の場合には図示しない公知の色合成光学系により合成した後に投射レンズ11に入射させればよい。
撮像素子105は、CCD(Charge Coupled Devise:電荷結合素子)やCMOSセンサなどの公知の固体撮像素子であり、入射光を光電変換して撮像信号を出力する。信号処理部106は、撮像信号に対して相関二重サンプリング(CDS)によるノイズ低減処理その他公知の撮像信号処理を行って映像信号を出力する。この撮像素子105及び信号処理部106は図1、図2に示したカメラ5を構成している。演算回路107は、信号処理部106からの映像信号に対して所定の演算処理を行って、例えば撮像被写体のスポット径などを算出する。制御信号生成部108は、演算回路107からの信号に基づいて、駆動機構6を駆動制御するための制御信号を生成する。この駆動機構6によりスクリーン2とレンズアレイ3との間隔をどの程度にするかを、入力部109からの入力情報により制御することが可能である。
次に、本実施の形態の動作について説明する。光源101から出射した照明光は、照明光学系102〜102に入射してそれぞれ直線偏光でテレセントリックな状態とされた後、液晶表示素子103〜103をそれぞれ照明する。液晶表示素子103〜103はそれぞれ図示しない再生装置とドライブ回路により二次元画像を表示する。液晶表示素子103〜103から出射された二次元画像の光線は、投射レンズユニット104に入射する。投射レンズユニット104は、投影レンズ11を通して液晶表示素子103〜103から出射された二次元画像の拡大像をスクリーン2付近に結像させる。
一方、撮像素子105は図1のレーザー光源4から出射されたレーザー光41によるスクリーン2上のスポットを撮像して光電変換した撮像信号を信号処理部106に供給する。信号処理部106は、入力された撮像信号に対して、公知の信号を施してモニタ画像信号を生成して演算回路107に供給する。演算回路107はモニタ画像信号から上記のスポットの径を判定し、その判定結果に基づいて、制御信号生成部108により制御信号を生成させる。その制御信号は駆動機構6に供給され、駆動機構6によりレンズアレイ3の位置や傾きを変化させる。
このように、本実施の形態の立体画像表示用プロジェクタ1は、カメラ5で撮像して得られたスクリーン2上のレーザー光41のスポットのモニタ画像信号に基づき駆動機構6を駆動制御して、レンズアレイ3とスクリーン2との距離がレンズアレイ2の各レンズの焦点距離になるように、あるいは後述するように視域を拡大したり、立体像を飛び出させるなどのために、レンズアレイ3とスクリーン2の相対位置(距離)と傾きを変化させることで、レンズアレイ3からの光線の広がり角(あるいは指向性)を最適化するのみならず、観察者の視域をも自動的に最適化可能とする。
また、上記のレーザー光源4は観察者が持っているので、観察者の位置に応じてスクリーン2上のスポット位置が移動するので、観察者の位置に応じて立体画像を構成する光線状態を制御でき、最適な立体画像表示が可能となる。
図4は本発明になる立体画像表示用プロジェクタを備えた立体画像表示システムの一実施例のシステム構成図を示す。同図中、図1と同一構成部分には同一符号を付してある。図4において、観察者が保持するレーザー光源40は、同時に複数本の光線が照射可能な光源で、例えば通常のレーザーポインタに光線を分岐する回折光学素子を装着した構成である。レーザー光源40から出射するレーザー光は、レンズアレイ3の中心を照射する光線41と、レンズアレイ3の中心の周辺を照射する光線411,412,413,414の計5本からなる。この5本の光線(レーザー光)41、411、412、413及び414は、レンズアレイ3を同時に照射する。
これにより、スクリーン2には5つのスポットが同時に形成されるので、この5つのスポットをカメラ5で撮像して得られたモニタ画像信号に基づいて、5つのスポットの相対位置関係を判定することで、レンズアレイ3の傾きが検出できる。
次に、本発明の立体画像表示用プロジェクタによるレンズアレイ3とスクリーン2との間の距離(以下、間隔ともいう)の調整方法について説明する。
図5は、レンズアレイ3とスクリーン2の間隔が、レンズアレイ3の焦点距離よりも短い場合について図示したものである。この場合は、図5に示すようにレーザー光源4(図4ではレーザー光源40)から射出されたレーザー光41は、スクリーン2上でぼけた状態で集光する。
一方、立体画像表示用プロジェクタ1の投射レンズ11から投影された光は、スクリーン2上で結像した後スクリーン2を透過して拡散してレンズアレイ3に入射し、レンズアレイ3から画素位置に応じて異なる方向にほぼ平行な光線群として空間に投射される。このとき、レンズアレイ3とスクリーン2との間隔が、レンズアレイ3の焦点距離よりも短い場合は、レンズアレイ3から射出される光線は図5に示すような発散光となる。この状態ではレンズアレイ3の手前の実像としては、図5に示すような、ぼけた空間像32しか表示することができない。
しかしながら、これらの発散光の経路を光の進行方向とは逆向きに、つまりスクリーン2の背後(立体画像表示用プロジェクタ1側)に向かう方向に延長すれば集光するため、上記の延長によりレンズアレイ3の背後の位置には、見かけ上ぼけの少ない虚像としての空間像(図示なし)が表示できる。
従って、スクリーン2に対して奥に表示すべきコンテンツを表示する場合や、立体像の飛び出し量を犠牲にして(立体像をスクリーン2の背後に表示させるようにして)視域をできるだけ広くして多人数で観察したい場合には、立体画像表示用プロジェクタ1は、スクリーン2上のレーザー光41のスポットをカメラ5によりモニタし、そのモニタ画像信号に基づいて、レンズアレイ3とスクリーン2との間隔を図5の状態になるように制御するための制御信号を生成し、図1や図4に示した駆動機構6をその制御信号を供給して駆動制御する。
この場合、レンズアレイ3とスクリーン2との間隔が広がるようにレンズアレイ3を駆動機構6で微小変位させると、スクリーン2上のスポットの径が更に小さくなるので、間隔が狭すぎることが分かる。
図6は、レンズアレイ3とスクリーン2との間隔が、レンズアレイ3の焦点距離である場合について図示したものである。この場合は、図6に示すようにレーザー光源4(図4ではレーザー光源40)から射出されたレーザー光41は、スクリーン2上で集光する。このとき、スクリーン2に投射された要素画像からの光線は、レンズアレイ3によりほぼ平行な状態で射出されて、回折限界では個々のレンズアレイ3の径と同程度の光束の交点に空間像33が形成される。
図6のような平行光線として射出される状態では、先に述べたスクリーン2の背後の虚像についても、ほぼ同じサイズの交点が形成されるため、表示させたい立体像がレンズアレイ3の前後にわたっている場合に適している。
図7は、レンズアレイ3とスクリーン2との間隔が、レンズアレイ3の焦点距離よりも長い場合について図示したものである。この場合は、図7に示すようにレーザー光源4(図4ではレーザー光源40)から射出されたレーザー光41は、スクリーン2上ではデフォーカスした状態で集光する。
一方、立体画像表示用プロジェクタ1の投射レンズ11から投影された光は、スクリーン2上で結像した後スクリーン2を透過して拡散してレンズアレイ3に入射し、レンズアレイ3から画素位置に応じて異なる方向にほぼ平行な光線群として空間に投射される。このとき、レンズアレイ3とスクリーン2との間隔が、レンズアレイ3の焦点距離よりも長い場合は、レンズアレイ3から射出される光線は図7に示すように、図6に示した場合よりもレンズアレイ3に対して遠方位置にレンズアレイ3の径より小径の光束の交点に空間像34が形成される。
従って、空間像34を観察する観察者(その眼球を7で示す)の視域は狭くなるが、できるだけ立体画像を飛び出させたい場合は、図7に示すように、レンズアレイ3とスクリーン2との間隔が、レンズアレイ3の焦点距離よりも長くなるように、本実施の形態のプロジェクタ1はカメラ5のモニタ画像信号に基づいて、図1や図4に示した駆動機構6の制御信号を生成して、駆動機構6を制御する。
この場合、レンズアレイ3とスクリーン2との間隔が広がるようにレンズアレイ3を駆動機構6で微小変位させると、スクリーン2上のスポットの径が更に大きくなるので、間隔が広すぎることが分かる。
次に、本発明の立体表示用プロジェクタ1が形成する立体像を観察可能な範囲である視域について、図8と共に説明する。図8では、レンズアレイ3の背後のスクリーン2に配置された要素画像から射出される多数の光線のうち、最外周の画素からの主光線のみを描いている。
図8において、V字型の太い実線の範囲が視域8を示している。この視域8は観察者が移動しながら立体像を回り込んで見ることのできる範囲を示しており、2本の太線が交わる角度(全角)としてΩで表すことにすると、視域角Ωはレンズアレイ3とスクリーン2との間隔(これをgとする)及びレンズアレイ3のレンズピッチ(これをPLとする)に依存し、図8に示す幾何学的関係から次式で表される。
Ω=2tan-1(2PL/g)
つまり、レンズアレイ3とスクリーン2との間隔gを小さくすると、視域角Ωが大きくなり、逆にレンズアレイ3とスクリーン2との間隔gを大きくすると、視域角Ωが小さくなる。そこで、レンズアレイ3とスクリーン2との間隔gを変化させることで、視域8を調整する。
この視域8内に観察者の眼球7があるときは、観察位置に応じて連続的に変化する立体像を観察することができる。眼球7が視域8から外れると、隣のレンズ越しに要素画像を眺めることになり、立体像の特性が悪化する。また、視域8の境界では立体像の切り替わり(フリッピング)が生じる。従って、視域8をどれくらいの広さに設定するかは立体表示装置における重要な調整事項である。
本発明の立体画像表示用プロジェクタ1は、前述したレンズアレイ3からの光線の広がり角を最適化するのみならず、視域8をも自動的に最適化可能とするものである。すなわち、図8に示すように、レンズアレイ3とスクリーン2との間隔が、レンズアレイ3の焦点距離よりも短い場合、この間隔が焦点距離に一致した場合に比べて視域8は広くなる。この場合、レンズアレイ3から射出される光線としては図5に示すような発散光となり、スクリーン2の奥側に立体像を表示させることになり、手前側の表示はできなくなるが、同時に観察可能な観察者の数を増やすことができる。
従来の立体画像表示用プロジェクタでは視域は固定されていたが、本発明では状況に応じて自動的に視域を拡大することを可能にするものである。逆に、観察者の数が少ないときは、視域を敢えて狭くすることによって、視域内の光線密度を増やし、立体像の飛び出し量を増やすことも可能にする。これは図7の光線状態に対応する。
視域を自動的に調整するためには、現在のレンズアレイ3とスクリーン2との間隔を認識し、図1等に示した駆動機構6で調整を行うようにする。この間隔は、駆動機構6でいずれかの向きに変動したときスクリーン2上のスポットサイズの変化量の傾き(微分係数)をカメラ5でモニタすることにより、焦点距離より長いか短いかを判断することができることは前述した通りである。
なお、レンズアレイ3とスクリーン2との間隔gを小さくしたときは、スクリーン2上の画像(1個のレンズの背後の要素画像)のサイズをレンズピッチPLよりも少し大きくする必要があり、逆に上記間隔gを大きくしたときは、上記要素画像のサイズをレンズピッチPLよりも少し小さくする必要がある。本実施の形態では、スクリーン2上のスポットサイズの変化量の傾き(微分係数)をカメラ5でモニタすることにより、投射レンズ11のズームを調整し、スクリーン2に投射される要素画像サイズの調整を行う。
なお、本発明は以上の実施の形態に限定されるものではなく、例えば偏向光学素子アレイとして上記の実施の形態ではレンズアレイ3を用いたが、これ以外に回折光学素子(光の回折現象を利用した素子)、曲面ミラーアレイ(光の反射を利用した素子)、開口アレイなどを用いることもできる。また、水平方向にも垂直方向にも斜め方向にも偏向機能をもつレンズアレイ3のような素子の代わりに、水平方向にのみ偏向機能をもつ偏向光学素子アレイである公知のレンチキュラーレンズや公知のパララックスバリア等を利用し、垂直方向視差のない裸眼立体ディスプレイに対しても本発明がそのまま適用できることは言うまでもない。
本発明の立体画像表示用プロジェクタを備えた立体画像表示システムの一例のシステム構成図である。 スクリーンとレンズアレイとの間隔に応じた結像の様子を示す図である。 本発明の立体画像表示用プロジェクタの一実施の形態のブロック図である。 本発明の立体画像表示用プロジェクタを備えた立体画像表示システムの一実施例のシステム構成図である。 本発明による調整方法を説明するレンズアレイとスクリーンの間隔の状態(その1)を示す図である。 本発明による調整方法を説明するレンズアレイとスクリーンの間隔の状態(その2)を示す図である。 本発明による調整方法を説明するレンズアレイとスクリーンの間隔の状態(その3)を示す図である。 本発明の立体画像表示用プロジェクタが形成する立体像を観察可能な範囲である視域を説明するための図である。
符号の説明
1 立体画像表示用プロジェクタ
2 スクリーン(広義のスクリーンの拡散面)
3 レンズアレイ(広義のスクリーンの光の偏向機能を有する面)
4、40 レーザー光源
41、411、412、413、414 レーザー光(光線)
5 カメラ
6 駆動機構
7 観察者の眼球
8 視域
11 投影レンズ
31、32、33、34 空間像
101 光源
102〜102 照明光学系
103〜103 液晶表示素子
104 投射レンズユニット
105 撮像素子
106 信号処理部
107 演算回路
108 制御信号生成部
109 入力部

Claims (3)

  1. 第1面を拡散面とし、前記第1面に対向する第2面を光の偏向機能を有する面とする光学部材の前記第1面の近傍に、二次元画像のインコヒーレント光を照射することにより、前記第2面の近傍の空間位置に多方向の光線群を集光させて、インテグラルフォトグラフィの原理により三次元の空間像を再生させる立体画像表示用プロジェクタであって、
    前記光学部材の前記第1面と前記第2面の相対的な間隔又は相対的な傾きを制御する駆動機構を駆動する制御信号を生成する制御信号生成手段を有し、
    前記制御信号により前記駆動機構を駆動して前記光学部材の光学的特性を変化させることで、前記第2面から出射する光線の広がり角を制御すると共に、前記空間像を観察する観察者の視域を制御することを特徴とする立体画像表示用プロジェクタ。
  2. コヒーレント光を前記光学部材の前記第2面側から入射することにより前記第1面に形成されるスポットを撮像する撮像手段と、
    前記撮像手段により撮像して得られた前記スポットのモニタ画像信号に基づき、前記光学部材の前記第1面と前記第2面の相対的な間隔又は相対的な傾きを検出する検出手段とを更に有し、
    前記検出手段により検出された前記第1面と前記第2面の相対的な間隔又は相対的な傾きに応じて、前記制御信号生成手段を介して前記駆動機構を制御することを特徴とする請求項1記載の立体画像表示用プロジェクタ。
  3. 二次元画像のインコヒーレント光をスクリーンに照射して多数の平面画像を該スクリーンに形成させ、その多数の平面画像を該スクリーンを透過させて拡散させ、該スクリーンに離間対向して設けられた偏向光学素子アレイにより、前記スクリーンからの拡散光を画素位置に応じて異なる方向にほぼ平行な光線群として投射し、これらの光線群を空間に集光させて、インテグラルフォトグラフィの原理により三次元の空間像を再生させる立体画像表示用プロジェクタであって、
    コヒーレント光である略平行光線を前記偏向光学素子アレイに入射することにより、前記スクリーン上に形成される一又は二以上のスポットを前記平面画像と共に撮像する撮像手段と、
    前記撮像手段により撮像して得られた前記スポットのモニタ画像信号に基づき、前記スクリーンと前記偏向光学素子アレイとの相対的な間隔又は相対的な傾きを検出する検出手段と、
    前記検出手段により検出された前記スクリーンと前記偏向光学素子アレイとの間隔又は傾きに応じて、前記スクリーンと前記偏向光学素子アレイとの間隔及び傾きを可変する駆動機構を制御する制御信号を生成する制御信号生成手段と
    を有し、前記制御信号生成手段は、前記偏向光学素子アレイから空間に出射する光線の広がり角、及び前記空間像を観察する観察者の視域の一方又は両方を制御するための制御信号を生成することを特徴とする立体画像表示用プロジェクタ。
JP2007222068A 2007-08-29 2007-08-29 立体画像表示用プロジェクタ Pending JP2009053567A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222068A JP2009053567A (ja) 2007-08-29 2007-08-29 立体画像表示用プロジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222068A JP2009053567A (ja) 2007-08-29 2007-08-29 立体画像表示用プロジェクタ

Publications (1)

Publication Number Publication Date
JP2009053567A true JP2009053567A (ja) 2009-03-12

Family

ID=40504685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222068A Pending JP2009053567A (ja) 2007-08-29 2007-08-29 立体画像表示用プロジェクタ

Country Status (1)

Country Link
JP (1) JP2009053567A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051627A (ja) * 2011-08-31 2013-03-14 Toshiba Corp 視域調整装置、映像処理装置および視域調整方法
JP2013055665A (ja) * 2012-09-18 2013-03-21 Toshiba Corp 視域調整装置、映像処理装置および視域調整方法
CN103048794A (zh) * 2012-12-21 2013-04-17 Tcl通力电子(惠州)有限公司 利用激光脉冲投影实现3d显示的方法和系统
KR20150112752A (ko) * 2013-01-31 2015-10-07 레이아 인코포레이티드 다중 뷰 3d 손목시계
CN105717736A (zh) * 2016-04-20 2016-06-29 胡晓东 一种vr体验设备、球形模拟器及其视听系统
US10373544B1 (en) 2016-01-29 2019-08-06 Leia, Inc. Transformation from tiled to composite images
JP2021512349A (ja) * 2018-01-14 2021-05-13 ライト フィールド ラボ、インコーポレイテッド 最適化されたホログラフィック投影のための秩序化形状
US11681092B2 (en) 2016-07-15 2023-06-20 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487983B2 (en) 2011-08-31 2013-07-16 Kabushiki Kaisha Toshiba Viewing area adjusting device, video processing device, and viewing area adjusting method based on number of viewers
JP2013051627A (ja) * 2011-08-31 2013-03-14 Toshiba Corp 視域調整装置、映像処理装置および視域調整方法
JP2013055665A (ja) * 2012-09-18 2013-03-21 Toshiba Corp 視域調整装置、映像処理装置および視域調整方法
CN103048794A (zh) * 2012-12-21 2013-04-17 Tcl通力电子(惠州)有限公司 利用激光脉冲投影实现3d显示的方法和系统
KR101964177B1 (ko) * 2013-01-31 2019-04-01 레이아 인코포레이티드 다중 뷰 디스플레이 스크린 및 이를 이용한 다중 뷰 모바일 장치
KR20150112752A (ko) * 2013-01-31 2015-10-07 레이아 인코포레이티드 다중 뷰 3d 손목시계
KR20180089568A (ko) * 2013-01-31 2018-08-08 레이아 인코포레이티드 다중 뷰 3d 손목시계
KR101886757B1 (ko) * 2013-01-31 2018-08-09 레이아 인코포레이티드 다중 뷰 3d 손목시계
US10373544B1 (en) 2016-01-29 2019-08-06 Leia, Inc. Transformation from tiled to composite images
CN105717736B (zh) * 2016-04-20 2018-10-23 胡晓东 一种vr体验设备、球形模拟器及其视听系统
CN105717736A (zh) * 2016-04-20 2016-06-29 胡晓东 一种vr体验设备、球形模拟器及其视听系统
US11681092B2 (en) 2016-07-15 2023-06-20 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
JP2021512349A (ja) * 2018-01-14 2021-05-13 ライト フィールド ラボ、インコーポレイテッド 最適化されたホログラフィック投影のための秩序化形状
US11719864B2 (en) 2018-01-14 2023-08-08 Light Field Lab, Inc. Ordered geometries for optomized holographic projection
JP7440849B2 (ja) 2018-01-14 2024-02-29 ライト フィールド ラボ、インコーポレイテッド 最適化されたホログラフィック投影のための秩序化形状
US12032180B2 (en) 2018-01-14 2024-07-09 Light Field Lab, Inc. Energy waveguide system with volumetric structure operable to tessellate in three dimensions

Similar Documents

Publication Publication Date Title
Okano et al. Real-time integral imaging based on extremely high resolution video system
JP2009053567A (ja) 立体画像表示用プロジェクタ
JP3744559B2 (ja) 立体カメラ、立体ディスプレイ、及び、立体映像システム
US20150201188A1 (en) Light-based caustic surface calibration
US9766471B2 (en) Stereoscopic image display apparatus
JP2008146221A (ja) 画像表示システム
JP7165513B2 (ja) Ip立体映像表示装置及びそのプログラム
JP2009169143A (ja) 投影型三次元画像再生装置
TW200537396A (en) Projection display equipment and projection display system
US9182605B2 (en) Front-projection autostereoscopic 3D display system
Kara et al. Cinema as large as life: Large-scale light field cinema system
TWI498665B (zh) 時間多工多視角投影裝置
US20170134718A1 (en) Rear-projection autostereoscopic 3d display system
CN102262346A (zh) 用以显示多重视角影像的显示装置
JP4741395B2 (ja) 立体映像表示装置
JP4728825B2 (ja) 立体像表示装置
JP2002228974A (ja) 立体画像表示装置
US20080259281A1 (en) Apparatus and method for displaying three-dimensional image
JP4676903B2 (ja) 立体映像表示装置
JP2021064834A (ja) 立体画像表示システム
JP2003307709A (ja) 立体表示装置および立体表示システム
JP5487935B2 (ja) 表示装置および表示方法
US12095977B2 (en) Image display apparatus
JP4492208B2 (ja) 三次元画像再生装置
JP3576630B2 (ja) 投写型立体画像表示装置