[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009051985A - Manufacturing method of biomass-based molded fuel - Google Patents

Manufacturing method of biomass-based molded fuel Download PDF

Info

Publication number
JP2009051985A
JP2009051985A JP2007221942A JP2007221942A JP2009051985A JP 2009051985 A JP2009051985 A JP 2009051985A JP 2007221942 A JP2007221942 A JP 2007221942A JP 2007221942 A JP2007221942 A JP 2007221942A JP 2009051985 A JP2009051985 A JP 2009051985A
Authority
JP
Japan
Prior art keywords
biomass
raw material
mass
slaked lime
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007221942A
Other languages
Japanese (ja)
Inventor
Toshihiko Maruyama
敏彦 丸山
Chuichi Mizoguchi
忠一 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007221942A priority Critical patent/JP2009051985A/en
Publication of JP2009051985A publication Critical patent/JP2009051985A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture molded fuels having various shapes and sizes, which are obtained without dry distillation of a biomass at a predetermined temperature and without addition of a binder and which have high mechanical strengths and good storage properties. <P>SOLUTION: First, an aqueous solution or suspension 13 of slaked lime is stuck to a biomass raw material 12 consisting of biomass powders or a biomass pulverent. Next, into the biomass raw material 12 attached with this aqueous solution or suspension 13 of the slaked lime a coal raw material 14 having a particle size of ≤3 mm is added in a proportion of ≤100% by mass per 100% by mass of the biomass raw material and heated at a temperature of 80-100°C. Further, the heated mixture 16 is applied with a pressure of 100-500 MPa under a temperature of 80-100°C using a double roll type press 17 to heat and mold into a briquette or plate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、農林産廃棄物、未利用植物、植物性繊維等のバイオマス原料を主成分とし、このバイオマス原料に石炭原料を混合したバイオマス系の成型燃料を製造する方法に関するものである。   The present invention relates to a method for producing a biomass-type molded fuel in which a biomass raw material such as agricultural / forestry waste, unused plant, plant fiber or the like is a main component and a coal raw material is mixed with the biomass raw material.

火力発電所の石炭火力の混焼におけるバイオマスによる代替率は、これまでの実証実験では3%程度に止まっている。既設のロールミル等による石炭の微粉砕設備では、粉砕特性の大きく異なる石炭及びバイオマスを同時に効率良く混合微粉砕処理することが難しく、バイオマスの所定粒径への微粉砕化とそれに伴うミル出力の増大等の技術的及び経済的な問題がある。またバイオマス専用の微粉砕機を用いることによってその代替率を高めることができたとしても、物性及び燃焼性が大きく異なる石炭及びバイオマスを効率良く混焼させるための技術的な課題も残されている。   The biomass replacement rate for coal-fired thermal power plants has been limited to about 3% in previous demonstration experiments. It is difficult to efficiently mix and pulverize coal and biomass with greatly different pulverization characteristics at the same time using existing roll mills and other coal pulverization equipment. There are technical and economic problems. In addition, even if the substitution rate can be increased by using a pulverizer dedicated to biomass, there remains a technical problem for efficiently co-firing coal and biomass having greatly different physical properties and combustibility.

これらの点を解消するために、揮発分が15%以上である粉状の石炭に籾殻、木屑などからなるバイオマス乾留物を3重量%以上混合し、着火性、燃焼持続性を向上するとともに、燃焼時の煤煙の発生を低減させることができるバイオマス乾留物複合石炭ブリケット燃料が開示されている(例えば、特許文献1参照。)。このバイオマス乾留物複合石炭ブリケット燃料では、先ず石炭を粒子形状3mm以下の粉状に粉砕する。次に籾殻や木屑等のバイオマスを300〜650℃程度の低温で乾留し、揮発分の一部を残留させて着火性及び燃焼性を良くした乾留物であって、石炭と同級サイズの粉粒体にしたものを、石炭との重量比3%以上で粒子が均一に分散するように混合した後に、ブリケットに成形する。上記混合状態では石炭粒子間に多くのバイオマス乾留物が散在する。また硫黄含有量の多い石炭を使用する場合には、ブリケット燃料にカルシウム、マグネシウムなどを含む粉状の脱硫剤を添加して、更に燃焼時の硫黄酸化物の発生を低減させる。即ち、ブリケット製造時に脱硫剤として石灰石(CaCO3)又は消石灰(Ca(OH)2)を添加混合すると、燃焼中に石炭から発生する硫黄酸化物を硫化カルシウムとして固定し、硫黄酸化物の大気中への排出を低減できる。なお、粘結剤としてモラセス及び粘土が混合される。
特開2004−331928号公報(請求項1及び2、段落[0005]、段落[0006]、図1)
In order to eliminate these points, 3% by weight or more of biomass dry distillate composed of rice husks, wood chips and the like is mixed with powdered coal having a volatile content of 15% or more to improve ignitability and combustion sustainability. A biomass dry distillate composite coal briquette fuel that can reduce the generation of soot during combustion has been disclosed (for example, see Patent Document 1). In this biomass dry distillate composite coal briquette fuel, first, coal is pulverized into a powder form having a particle shape of 3 mm or less. Next, it is a dry-distilled product in which biomass such as rice husks and wood chips is dry-distilled at a low temperature of about 300 to 650 ° C. and part of the volatile matter remains to improve ignitability and combustibility. The body is mixed so that the particles are uniformly dispersed at a weight ratio of 3% or more with coal, and then formed into briquettes. In the above mixed state, a lot of biomass dry matter is scattered between coal particles. When coal with a high sulfur content is used, a powdery desulfurizing agent containing calcium, magnesium and the like is added to briquette fuel to further reduce the generation of sulfur oxides during combustion. That is, when limestone (CaCO 3 ) or slaked lime (Ca (OH) 2 ) is added and mixed as a desulfurizing agent during briquette production, sulfur oxide generated from coal during combustion is fixed as calcium sulfide, and the sulfur oxide in the atmosphere Emissions can be reduced. In addition, molasses and clay are mixed as a binder.
Japanese Patent Laying-Open No. 2004-331928 (Claims 1 and 2, paragraphs [0005] and [0006], FIG. 1)

しかし、上記従来の特許文献1に示されたバイオマス乾留物複合石炭ブリケット燃料では、籾殻や木屑等のバイオマスを石炭と混合する前に、予め300〜650℃程度の低温で乾留する必要があった。また、上記従来の特許文献1に示されたバイオマス乾留物複合石炭ブリケット燃料では、石灰石(CaCO3)や消石灰(Ca(OH)2)を粉状(固体)の脱硫剤としてのみ用いており、また成形時に加熱していないため、モラセスや粘土等の粘結剤(バインダ)を混合しないと、ブリケットの強度が低下してブリケットが脆くなり、ブリケットの貯蔵性及び輸送性が低下する問題点もあった。更に、上記従来の特許文献1に示されたバイオマス乾留物複合石炭ブリケット燃料では、石炭にバイオマス乾留物を3重量%以上混合すると記載されているけれども、実質的には石炭にバイオマス乾留物を5重量%程度しか混合しておらず、未だ石炭からバイオマスへの代替率が低く、地球温暖化ガスの発生を低減できない問題点もあった。 However, in the biomass dry distillate composite coal briquette fuel shown in the above-mentioned conventional patent document 1, it is necessary to dry-distill at a low temperature of about 300 to 650 ° C. in advance before mixing biomass such as rice husk and wood chips with coal. . Moreover, in the biomass dry distillation composite coal briquette fuel shown in the above-mentioned conventional patent document 1, limestone (CaCO 3 ) or slaked lime (Ca (OH) 2 ) is used only as a powdery (solid) desulfurization agent, In addition, since it is not heated during molding, if a binder such as molasses or clay is not mixed, the briquette strength decreases and the briquette becomes brittle, and the storage and transportability of the briquette also deteriorate. there were. Furthermore, in the biomass dry distillate composite coal briquette fuel shown in the above-mentioned conventional patent document 1, it is described that 3% by weight or more of biomass dry distillate is mixed with coal. There is also a problem that only about wt% is mixed, and the rate of substitution from coal to biomass is still low, and the generation of global warming gas cannot be reduced.

本発明の第1の目的は、予めバイオマスを所定の温度で乾留することなく、また粘結剤(バインダ)を添加せずに、機械的強度が高く貯蔵性の良好な種々の形状及び寸法の成型燃料を製造できる、バイオマス系成型燃料の製造方法を提供することにある。本発明の第2の目的は、火力発電所の石炭火力の混焼におけるバイオマスによる代替率を向上できるとともに、地球温暖化ガスの発生を低減できる、バイオマス系成型燃料の製造方法を提供することにある。   The first object of the present invention is to obtain various shapes and sizes having high mechanical strength and good storage properties without previously carbonizing biomass at a predetermined temperature and without adding a binder. It is providing the manufacturing method of biomass type | mold molded fuel which can manufacture a molded fuel. The second object of the present invention is to provide a method for producing a biomass-based molded fuel capable of improving the substitution rate by biomass in coal-fired co-firing of a thermal power plant and reducing the generation of global warming gas. .

請求項1に係る発明は、バイオマス粉又はバイオマス粉砕物からなるバイオマス原料に、消石灰の水溶液又は懸濁液を付着させる工程と、この液の付着したバイオマス原料を80〜100℃に加熱する工程と、この加熱したバイオマス原料を80〜100℃の温度下でダブルロール式プレスにより100〜500MPaの圧力をかけてブリケット状又は板状に加熱・成型する工程とを含むバイオマス系成型燃料の製造方法である。この請求項1に記載されたバイオマス系成型燃料の製造方法では、先ず主原料であるバイオマス原料に消石灰懸濁液を付着させることにより、バイオマス成分中のリグニン・ヘミセルロース分を主体とする化学的作用でバイオマス原料に可塑性を付与する。このような作用が期待できるアルカリ処理液としてNaOH、KOH等の溶液があるけれども、それによって可塑性が付与されたとしても、得られた成型燃料の高い吸湿性により機械的強度が低下してしまうおそれが高いため、本発明では消石灰[Ca(OH)2]の水溶液又は懸濁液に限定した。次にこの消石灰の水溶液等を80〜100℃の温度に加熱してバイオマス原料に可塑性を更に付与する。更にこの加熱したバイオマス原料を80〜100℃の温度下で高圧のダブルロール式プレスにより連続的にブリケット状等に成型してバイオマス系成型燃料を製造する。このとき蒸気の共存下でダブルロール式プレスにより強い剪断力を繊維質のバイオマス原料に与えながら高い圧縮力で燃料が成型されるので、繊維質のバイオマス原料が互いに強く絡み合い、比較的密度の高い成型燃料を得ることができる。 The invention which concerns on Claim 1 attaches the aqueous solution or suspension of slaked lime to the biomass raw material which consists of biomass powder or a biomass ground material, The process of heating the biomass raw material which this liquid adhered to 80-100 degreeC, And a method for producing a biomass-based molded fuel comprising a step of heating and molding the heated biomass raw material into a briquette or plate shape by applying a pressure of 100 to 500 MPa by a double roll press at a temperature of 80 to 100 ° C. is there. In the manufacturing method of the biomass type | mold molded fuel described in this Claim 1, the chemical action which mainly has the lignin and hemicellulose content in a biomass component by attaching a slaked lime suspension to the biomass raw material which is the main raw material first. To add plasticity to the biomass material. Although there is a solution such as NaOH or KOH as an alkali treatment liquid that can be expected to have such an action, even if plasticity is imparted thereby, the mechanical strength may be lowered due to the high hygroscopicity of the obtained molded fuel. Therefore, the present invention is limited to an aqueous solution or suspension of slaked lime [Ca (OH) 2 ]. Next, this aqueous solution of slaked lime is heated to a temperature of 80 to 100 ° C. to further impart plasticity to the biomass material. Further, the heated biomass material is continuously formed into a briquette or the like by a high-pressure double roll press at a temperature of 80 to 100 ° C. to produce a biomass-based molded fuel. At this time, the fuel is molded with a high compressive force while giving a strong shearing force to the fibrous biomass raw material by a double roll press in the presence of steam, so the fibrous biomass raw materials are intertwined strongly and have a relatively high density. A molded fuel can be obtained.

請求項2に係る発明は、図1及び図2に示すように、バイオマス粉又はバイオマス粉砕物からなるバイオマス原料12に消石灰の水溶液又は懸濁液13を付着させる工程と、この液13の付着したバイオマス原料12に粒径3mm以下の石炭原料14をバイオマス原料100質量%に対して100質量%以下の割合で混合しかつ80〜100℃の温度で加熱する工程と、この加熱した混合物16を80〜100℃の温度下でダブルロール式プレス17により100〜500MPaの圧力をかけてブリケット状又は板状に加熱・成型する工程とを含むバイオマス系成型燃料の製造方法である。この請求項2に記載されたバイオマス系成型燃料の製造方法では、先ず主原料であるバイオマス原料12に消石灰懸濁液13を付着させることにより、バイオマス成分中のリグニン・ヘミセルロース分を主体とする化学的作用でバイオマス原料12に可塑性を付与する。次に上記消石灰の水溶液又は懸濁液13の付着したバイオマス原料12に石炭原料14を所定の割合で混合しかつ80〜100℃の温度で加熱して混合物16を調製することにより、バイオマス原料に可塑性を付与する。更にこの混合物16を80〜100℃の温度下で高圧のダブルロール式プレス17により連続的にブリケット状又は板状に成型してバイオマス系成型燃料11を製造する。このとき蒸気の共存下でダブルロール式プレス17により強い剪断力を繊維質のバイオマス原料12に与えながら高い圧縮力で燃料11が成型され、また比較的硬質の石炭原料の存在により上記圧縮力が燃料11内部まで速やかに伝達されるので、繊維質のバイオマス原料12が互いに強く絡み合い、ロール表面と混合物16の間における摩擦抵抗や混合物16の各粒子間における摩擦抵抗により発熱して混合物16の温度が更に上昇し、混合物16中のバイオマス原料12に可塑性が更に付与され、スプリングバックが少なくかつ密度の高い成型燃料11を得ることができる。これによりバインダ的性質を有するバイオマス原料12間に石炭原料14を圧着し一体化させることができるので、バイオマス系成型燃料11を微粉砕化処理しても、バイオマス原料12及び石炭原料14の単離が起り難い。またバイオマス原料のみを用いた成型燃料よりも、バイオマス原料に石炭原料を加えた成型燃料11はその発熱量が高くなる。   As shown in FIG. 1 and FIG. 2, the invention according to claim 2 includes a step of attaching an aqueous solution or suspension 13 of slaked lime to a biomass raw material 12 made of biomass powder or pulverized biomass, and the liquid 13 is attached. The step of mixing the biomass raw material 12 with the coal raw material 14 having a particle size of 3 mm or less at a ratio of 100% by mass or less with respect to 100% by mass of the biomass raw material and heating at a temperature of 80 to 100 ° C. It is a manufacturing method of biomass type | mold molded fuel including the process of applying the pressure of 100-500 Mpa by the double roll-type press 17 at the temperature of -100 degreeC, and heating and shape | molding in briquette shape or plate shape. In the method for producing a biomass-based molded fuel described in claim 2, first, a slaked lime suspension 13 is attached to a biomass raw material 12 which is a main raw material, so that a chemical mainly composed of lignin and hemicellulose in a biomass component. The plasticity is imparted to the biomass raw material 12 by the target action. Next, the biomass raw material 12 to which the aqueous solution or suspension 13 of the slaked lime is adhered is mixed with the coal raw material 14 at a predetermined ratio and heated at a temperature of 80 to 100 ° C. Gives plasticity. Furthermore, this mixture 16 is continuously molded into a briquette or plate shape by a high-pressure double roll press 17 at a temperature of 80 to 100 ° C. to produce a biomass-based molded fuel 11. At this time, the fuel 11 is molded with a high compressive force while applying a strong shearing force to the fibrous biomass raw material 12 by the double roll press 17 in the presence of steam, and the compressive force is increased by the presence of a relatively hard coal raw material. Since the fiber biomass raw material 12 is entangled strongly with each other because it is quickly transmitted to the inside of the fuel 11, heat is generated due to frictional resistance between the roll surface and the mixture 16 and frictional resistance between each particle of the mixture 16, and the temperature of the mixture 16. Is further increased, plasticity is further imparted to the biomass raw material 12 in the mixture 16, and the molded fuel 11 with less spring back and high density can be obtained. Thereby, since the coal raw material 14 can be pressure-bonded and integrated between the biomass raw materials 12 having a binder property, the biomass raw material 12 and the coal raw material 14 are isolated even if the biomass-based molded fuel 11 is pulverized. Is unlikely to occur. Further, the calorific value of the molded fuel 11 in which the coal raw material is added to the biomass raw material is higher than that of the molded fuel using only the biomass raw material.

またバイオマス原料12への消石灰の水溶液又は懸濁液13の付着が、バイオマス乾質量1kgに対して30×10-3〜60×10-3gに相当する質量の消石灰を水に混合して得られる水溶液又は懸濁液13をバイオマス原料12に添加することにより行われることが好ましい。ここで、バイオマス乾質量とは、バイオマス原料12を絶乾状態にしたときの質量をいう。更にバイオマス原料12が農林産廃棄物、未利用植物及び植物性繊維からなる群より選ばれた1種又は2種以上の産業廃棄物を粉砕した原料であることが好ましい。 Moreover, adhesion of the aqueous solution or suspension 13 of slaked lime to the biomass raw material 12 is obtained by mixing water with a mass of slaked lime corresponding to 30 × 10 −3 to 60 × 10 −3 g per 1 kg of biomass dry mass. The aqueous solution or suspension 13 to be produced is preferably added to the biomass raw material 12. Here, the biomass dry mass refers to the mass when the biomass raw material 12 is completely dried. Furthermore, it is preferable that the biomass raw material 12 is a raw material obtained by pulverizing one or more industrial wastes selected from the group consisting of agricultural and forestry wastes, unused plants and plant fibers.

請求項5に係る発明は、請求項1に係る発明であって、更に図2に示すように、加熱・混合工程時に発生する水蒸気を混合物16中に保持し、加熱・成型工程時に水蒸気の共存下で混合物16に剪断力を伴う圧縮力を作用させた後にこの圧縮力が瞬時に解放されることにより、混合物16中の水分の逸散と空冷に伴う成型物の収縮を行うことを特徴とする。この請求項5に記載されたバイオマス系成型燃料の製造方法では、加熱・混合工程時に混合物16から発生する水蒸気を混合物16中に保持した状態で、混合物16の加熱・成型工程時に上記水蒸気の共存下で混合物をダブルロール式プレス17により剪断力を伴う圧縮力を作用させると、上記水蒸気が圧縮されて水になり、この状態でダブルロール式プレス17の圧力が瞬時に解放されると、上記圧縮水が瞬時に逸散するとともに、急激な空冷に伴って成型物が収縮することによって、実用に耐え得る機械的強度を有するとともに、嵩密度の増大による省スペース化と脱水による熱発生性に優れたバイオマス系成型燃料11を製造できる。   The invention according to claim 5 is the invention according to claim 1, and further, as shown in FIG. 2, water vapor generated during the heating / mixing process is held in the mixture 16, and water vapor coexists during the heating / molding process. It is characterized in that after compressing force with shearing force is applied to the mixture 16 below, the compressing force is instantaneously released, thereby causing the dissipation of moisture in the mixture 16 and shrinkage of the molded product due to air cooling. To do. In the method for producing a biomass-based molded fuel according to claim 5, the water vapor generated from the mixture 16 during the heating / mixing step is retained in the mixture 16, and the coexistence of the water vapor during the heating / molding step of the mixture 16 is performed. When a compressive force with shear force is applied to the mixture under the double roll press 17, the water vapor is compressed into water, and when the pressure of the double roll press 17 is instantaneously released in this state, Compressed water dissipates instantaneously, and the molded product shrinks with rapid air cooling, so that it has mechanical strength that can withstand practical use, saves space by increasing bulk density, and generates heat by dehydration. An excellent biomass-based molded fuel 11 can be produced.

本発明によれば、バイオマス粉等からなるバイオマス原料に消石灰の水溶液等を付着させることにより、バイオマス原料に可塑性を付与し、この液の付着したバイオマス原料を80〜100℃に加熱することにより、バイオマス原料に可塑性を更に付与し、この加熱したバイオマス原料にを80〜100℃の温度下でダブルロール式プレスにより100〜500MHzの圧力をかけてブリケット状等に加熱・成型することにより、蒸気の共存下で強い剪断力を繊維質のバイオマス原料に与えながら高い圧縮力で燃料が成型される。この結果、繊維質のバイオマス原料が互いに強く絡み合い、比較的密度の高い成型燃料を得ることができる。また従来のようなバイオマスを所定の温度で乾留する工程を設けなくても、或いは従来のような粘結剤(バインダ)の添加を行わなくても、機械的強度の高い成型燃料を製造できる。更に本発明の方法では、ブリケット状の成型燃料に加え、大型で薄い板状の成型燃料も製造できるので、これらの成型燃料の破砕及び粉砕処理によって、各種ボイラーに用いられるフレーク状燃料や、火力発電に用いられる微粉状燃料など、多目的用途に対応したバイオマス系成型燃料を製造できる。   According to the present invention, by attaching an aqueous solution of slaked lime to a biomass raw material made of biomass powder or the like, the biomass raw material is plasticized, and the biomass raw material to which this liquid is attached is heated to 80 to 100 ° C. By further imparting plasticity to the biomass material, the heated biomass material is heated and molded into a briquette or the like by applying a pressure of 100 to 500 MHz with a double roll press at a temperature of 80 to 100 ° C. The fuel is molded with high compressive force while giving a strong shearing force to the fibrous biomass raw material in the presence of coexistence. As a result, fibrous biomass raw materials are strongly entangled with each other, and a molded fuel having a relatively high density can be obtained. Further, a molded fuel having high mechanical strength can be produced without providing a conventional process of carbonizing biomass at a predetermined temperature or without adding a conventional binder. Furthermore, in the method of the present invention, in addition to briquette-shaped molded fuel, large and thin plate-shaped molded fuel can also be manufactured. By crushing and pulverizing these molded fuels, flaky fuel used in various boilers, thermal power Biomass-based molded fuel that can be used for multiple purposes, such as pulverized fuel used in power generation, can be manufactured.

一方、バイオマス粉等からなるバイオマス原料に消石灰の水溶液等を付着させることにより、バイオマス原料に可塑性を付与し、この液の付着したバイオマス原料に石炭原料を所定の割合で混合しかつ80〜100℃の温度で加熱することにより、バイオマス原料に可塑性を付与し、この加熱した混合物を80〜100℃の温度下でダブルロール式プレスにより100〜500MPaの圧力をかけてブリケット状等に加熱・成型することにより、蒸気の共存下で強い剪断力を繊維質のバイオマス原料に与えながら高い圧縮力で燃料が成型され、また比較的硬質の石炭原料の存在により上記圧縮力が燃料内部まで速やかに伝達される。この結果、繊維質のバイオマス原料が互いに強く絡み合い、ロール表面と混合物の間における摩擦抵抗や混合物の各粒子間における摩擦抵抗により発熱して混合物の温度が更に上昇し、混合物中のバイオマス原料に可塑性が更に付与されるので、バインダ的性質を有するバイオマス原料間に石炭原料を圧着し一体化させることができ、スプリングバックが少なくかつ密度及び発熱量の高い成型燃料を得ることができる。従って、バイオマス系成型燃料を微粉砕化処理しても、バイオマス原料及び石炭原料の単離が起り難いので、機械的強度が高く貯蔵性の良好な種々の形状及び寸法の成型燃料を製造できるとともに、火力発電所の石炭火力の混焼におけるバイオマスによる代替率を向上でき、地球温暖化ガスの発生を低減できる。   On the other hand, by attaching an aqueous solution of slaked lime to a biomass raw material made of biomass powder or the like, plasticity is imparted to the biomass raw material, and a coal raw material is mixed with the biomass raw material to which this liquid is adhered at a predetermined ratio and 80 to 100 ° C. By heating at a temperature of 100 ° C., plasticity is imparted to the biomass raw material, and the heated mixture is heated and molded into a briquette or the like by applying a pressure of 100 to 500 MPa by a double roll press at a temperature of 80 to 100 ° C. Therefore, the fuel is molded with a high compressive force while giving a strong shearing force to the fibrous biomass raw material in the presence of steam, and the compressive force is quickly transmitted to the inside of the fuel due to the presence of a relatively hard coal raw material. The As a result, fibrous biomass materials are strongly entangled with each other, and heat is generated due to frictional resistance between the roll surface and the mixture and frictional resistance between the particles of the mixture, and the temperature of the mixture further rises, and the biomass material in the mixture is plasticized. Therefore, coal raw materials can be pressure-bonded and integrated between biomass raw materials having binder properties, and a molded fuel with less springback and high density and heat generation can be obtained. Therefore, even if the biomass-based molded fuel is pulverized, it is difficult to isolate the biomass raw material and the coal raw material, so that it is possible to produce molded fuels of various shapes and sizes with high mechanical strength and good storage properties. In addition, it is possible to improve the substitution rate with biomass in coal-fired co-fired thermal power plants and reduce the generation of global warming gas.

更に加熱・混合工程時に混合物から発生する水蒸気を混合物中に保持し、混合物の加熱・成型工程時に上記水蒸気の共存下で混合物をダブルロール式プレスにより剪断力を伴う圧縮力を作用させると、上記水蒸気が圧縮されて水になり、この状態でダブルロール式プレスの圧力が瞬時に解放されると、上記圧縮水が瞬時に逸散するとともに、急激な空冷に伴って成型物が収縮する。この結果、実用に耐え得る機械的強度を有するとともに、嵩密度の増大による貯蔵性及び輸送性に優れ、更に脱水による発熱量を高めたバイオマス系成型燃料を製造できる。   Furthermore, water vapor generated from the mixture during the heating / mixing step is retained in the mixture, and when the mixture is subjected to a compressive force with shear force by a double roll press in the presence of the water vapor during the heating / molding step of the mixture, When the water vapor is compressed into water, and the pressure of the double roll press is instantaneously released in this state, the compressed water is instantly dissipated and the molded product contracts with rapid air cooling. As a result, it is possible to produce a biomass-based molded fuel that has mechanical strength that can withstand practical use, is excellent in storage and transportability due to an increase in bulk density, and has an increased calorific value due to dehydration.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
<第1の実施の形態>
図1及び図2に示すように、バイオマス原料12を主成分とするバイオマス系成型燃料11の製造方法は、バイオマス原料12に消石灰の水溶液又は懸濁液13を付着させる工程と、この液13の付着したバイオマス原料12に石炭原料14を混合しかつ加熱する工程と、この混合物16を加熱下でダブルロール式プレス17により所定の形状に加熱・成型する工程とを含む。バイオマスは農林産廃棄物、未利用植物及び植物性繊維からなる群より選ばれた1種又は2種以上の産業廃棄物である。例えば、オガ屑、樹皮などの木質廃材、バガス(サトウキビの絞り粕)、ビートパルプ、籾殻、稲藁、綿実油の絞り粕、エンプティフルーツバンチなどの植物のみならず、段ボール紙や建築廃材が挙げられる。エンプティフルーツバンチは、ヤシ科の植物であるパームの実から油脂を含有する果肉を取除いた残滓をいい、パーム果房とも呼ばれる。これらのバイオマスのうち籾殻及びエンプティフルーツバンチは公知の成型法では極めて成型し難いバイオマスであり、これらのバイオマスを用いて比較的容易に成型燃料を製造する方法が本発明である。これらのバイオマスの粉又は粉砕物を用いて、水分率が10〜16質量%、好ましくは13〜15質量%に自然乾燥され、かつ粒径が3mm以下、好ましくは2mm以下の粒状物であれば粉砕せずに、これより大きい場合には粒径が3mm以下、好ましくは2mm以下の粒状に粉砕されて、或いは直径が3mm以下、好ましくは2mm以下であって直径が5mm以下、好ましくは2mm以下の繊維状又は棒状に粉砕されて、バイオマス原料12が生成される。ここで、バイオマス原料12の水分率を10〜16質量%の範囲内に限定したのは、10質量%未満では自然乾燥だけで達成することが難しく乾燥コストが増大してしまい、16質量%を越えると消石灰懸濁液を加えることによって水分過多となり燃料11としての発熱量が低下するとともに成形後の燃料11の機械的強度が不足してしまうからである。またバイオマス原料12を粒径3mm以下の粒状又は直径及び長さが3mm以下及び5mm以下の繊維状又は棒状に限定したのは、これらの範囲外では成型後の燃料11の機械的強度が不足するからである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
<First Embodiment>
As shown in FIGS. 1 and 2, the method for producing the biomass-based molded fuel 11 mainly composed of the biomass raw material 12 includes a step of attaching an aqueous solution or suspension 13 of slaked lime to the biomass raw material 12, It includes a step of mixing and heating the coal raw material 14 to the biomass raw material 12 attached, and a step of heating and molding the mixture 16 into a predetermined shape by a double roll press 17 under heating. Biomass is one or more industrial wastes selected from the group consisting of agricultural and forestry wastes, unused plants and plant fibers. For example, wood waste such as sawdust, bark, bagasse (cane sugar cane), beet pulp, rice husk, rice straw, cottonseed oil cane, empty fruit bunch, as well as corrugated paper and construction waste . The empty fruit bunch is a residue obtained by removing the pulp containing fats and oils from palm fruit, which is a plant of the palm family, and is also called palm fruit bunch. Of these biomass, rice husks and empty fruit bunches are biomass that are extremely difficult to mold by known molding methods, and the present invention is a method for producing molded fuel relatively easily using these biomasses. If these biomass powders or pulverized products are used, the moisture content is naturally dried to 10 to 16% by mass, preferably 13 to 15% by mass, and the particle size is 3 mm or less, preferably 2 mm or less. If the particle size is larger than this without pulverization, the particle size is 3 mm or less, preferably 2 mm or less, or the diameter is 3 mm or less, preferably 2 mm or less and the diameter is 5 mm or less, preferably 2 mm or less. The biomass raw material 12 is produced by being pulverized into a fiber shape or a rod shape. Here, the moisture content of the biomass raw material 12 is limited to the range of 10 to 16% by mass, and if it is less than 10% by mass, it is difficult to achieve only by natural drying, and the drying cost increases. This is because if the slaked lime suspension is added, the amount of water becomes excessive due to the addition of the slaked lime suspension, and the calorific value of the fuel 11 decreases, and the mechanical strength of the molded fuel 11 becomes insufficient. Further, the biomass raw material 12 is limited to a granular material having a particle diameter of 3 mm or less or a fiber shape or a rod shape having a diameter and length of 3 mm or less and 5 mm or less, and the mechanical strength of the molded fuel 11 is insufficient outside these ranges. Because.

上記バイオマス原料12への消石灰の水溶液又は懸濁液13の付着は、バイオマス乾質量1kgに対して30×10-3〜60×10-3g、好ましくは30×10-3〜40×10-3gに相当する質量の消石灰を水に混合して得られる水溶液又は懸濁液13をバイオマス原料12に添加することにより行われる。ここで、バイオマス乾質量とは、バイオマス原料12を絶乾状態にしたとき、即ちバイオマス原料12の水分率を0質量%にしたときの質量をいう。また消石灰の水に対する溶解度は20℃で0.16g/100g(1.6g/1リットル)であるため、溶解度以下の消石灰は水に溶けてイオンとなり、溶解度を越える消石灰は水に分散するように構成される。即ち、溶解度以下の消石灰を水に混合した場合は、消石灰の水溶液となり、溶解度を越える消石灰を水に混合した場合は、消石灰の一部が水に溶解しかつ消石灰の残部が水に分散する消石灰の懸濁液となる。更に上記消石灰の水溶液又は懸濁液13を得るために水に混合する消石灰の質量を、バイオマス乾質量1kgに対して30×10-3〜60×10-3gの範囲に限定したのは、30×10-3g未満ではバイオマス原料12に消石灰の水溶液又は懸濁液13の調製上、量的に十分な可塑性を付与できず、60×10-3gを越えるとバイオマスの可塑性に関与せずかつ水に溶解しない消石灰が増えるからである。またバイオマス原料12に消石灰の水溶液又は懸濁液13を接触させてバイオマス原料12の表面全体に消石灰懸濁液13を付着させる方法としては、図2に示すように、第1粉砕機21で粉砕されかつ第1篩31で分級されて所定の太さ及び長さを有するバイオマス原料12をベルトコンベヤ15に載せて搬送しているときにこのバイオマス原料12に消石灰の水溶液又は懸濁液13を噴霧する方法が挙げられる。この方法では、バイオマス原料12の表面全体に比較的効率良く消石灰の水溶液又は懸濁液13を付着させることができる。なお、この実施の形態では、バイオマス原料に消石灰の水溶液又は懸濁液を噴霧して付着させたが、バイオマス原料を消石灰の水溶液又は懸濁液中に通したり、或いはバイオマス原料を消石灰の水溶液又は懸濁液中で煮沸してもよい。 Attachment of the aqueous solution or suspension 13 of slaked lime to the biomass raw material 12 is 30 × 10 −3 to 60 × 10 −3 g, preferably 30 × 10 −3 to 40 × 10 − with respect to 1 kg of biomass dry mass. It is performed by adding an aqueous solution or suspension 13 obtained by mixing slaked lime having a mass corresponding to 3 g to water to the biomass raw material 12. Here, the biomass dry mass refers to the mass when the biomass raw material 12 is completely dried, that is, when the moisture content of the biomass raw material 12 is 0 mass%. Since the solubility of slaked lime in water is 0.16 g / 100 g (1.6 g / 1 liter) at 20 ° C., slaked lime below the solubility is dissolved in water to become ions, and slaked lime exceeding the solubility is dispersed in water. Composed. That is, when slaked lime having a solubility or lower is mixed with water, an aqueous solution of slaked lime is formed.When slaked lime exceeding the solubility is mixed with water, a portion of the slaked lime is dissolved in water and the remaining slaked lime is dispersed in water Suspension. Furthermore, the mass of slaked lime mixed with water to obtain the aqueous solution or suspension 13 of the slaked lime was limited to the range of 30 × 10 −3 to 60 × 10 −3 g with respect to 1 kg of biomass dry mass. If the amount is less than 30 × 10 −3 g, the biomass raw material 12 cannot be provided with sufficient plasticity in terms of the preparation of the aqueous solution or suspension 13 of slaked lime, and if it exceeds 60 × 10 −3 g, it is involved in the plasticity of the biomass. This is because slaked lime that does not dissolve in water increases. As a method of bringing the slaked lime aqueous solution or suspension 13 into contact with the biomass raw material 12 and attaching the slaked lime suspension 13 to the entire surface of the biomass raw material 12, as shown in FIG. When the biomass raw material 12 classified by the first sieve 31 and having a predetermined thickness and length is placed on the belt conveyor 15 and conveyed, the biomass raw material 12 is sprayed with an aqueous solution or suspension 13 of slaked lime. The method of doing is mentioned. In this method, the slaked lime aqueous solution or suspension 13 can be attached to the entire surface of the biomass raw material 12 relatively efficiently. In this embodiment, the slaked lime aqueous solution or suspension is sprayed and adhered to the biomass raw material, but the biomass raw material is passed through the slaked lime aqueous solution or suspension, or the biomass raw material is passed through the slaked lime aqueous solution or suspension. You may boil in suspension.

一方、石炭原料14は、表面付着水分率が3質量%以下、好ましくは1質量%以下に乾燥され、かつ粒径が1mm以下、好ましくは0.5mm以下に粉砕される。ここで、石炭原料14の表面付着水分率を3質量%以下に限定したのは、3質量%を越えると水分過多により石炭原料14がダブルロール式プレス17等の装置に付着するとともに成型後の燃料11の機械的強度が低下するからである。また石炭原料14の粒径を1mm以下に限定したのは、1mmを越えるとバイオマス原料12間に石炭原料14を圧着し一体化させることができなくなるからである。図2に示すように、第2粉砕機22で粉砕されかつ第2篩32で分級されて所定の粒径を有する石炭原料14は混合機18に供給される。この石炭原料14のバイオマス原料12に対する混合割合は、バイオマス原料100質量%に対して石炭原料が100質量%以下、好ましくは25〜75質量%の割合である。この混合物16は加熱機20に供給されて80〜100℃、好ましくは90〜100℃の温度に加熱されて乾燥される。この加熱機20としては、フラッシュドライヤ(気流乾燥器)、流動層乾燥器(横型)、ドラムドライヤ(ドラム型乾燥器)などが挙げられる。またこの加熱は、加熱ガス発生炉(図示せず)からのO2の少ないガスを吹込むことにより行うことが好ましく、この加熱により混合物16の乾燥が同時に行われる。この加熱により供給されたガスの大部分は循環されるけれども、ガスの一部の過剰分は排出される。また上記ガスは水蒸気を多く含みかつO2の少ない安全な雰囲気で循環される。ここで、石炭原料14をバイオマス原料12に対する混合割合を100質量%以下に限定したのは、100質量%を越えるとバイオマス原料12を主体とするバイオマス系成型燃料11とはいえず、火力発電所の石炭火力の混焼におけるバイオマスによる代替率を向上できないからである。また上記混合物16の混合時の加熱温度を80〜100℃の範囲内に限定したのは、80℃未満ではバイオマス原料12中に十分な量の水蒸気が保持されず、100℃を越えると圧力を大気圧以上の圧力に上昇させる必要があるからである。 On the other hand, the coal raw material 14 is dried to a surface moisture content of 3% by mass or less, preferably 1% by mass or less, and pulverized to a particle size of 1 mm or less, preferably 0.5 mm or less. Here, the moisture content on the surface of the coal raw material 14 is limited to 3% by mass or less, and if it exceeds 3% by mass, the coal raw material 14 adheres to an apparatus such as a double roll press 17 or the like due to excessive moisture and after molding. This is because the mechanical strength of the fuel 11 decreases. The reason why the particle size of the coal raw material 14 is limited to 1 mm or less is that if it exceeds 1 mm, the coal raw material 14 cannot be compressed and integrated between the biomass raw materials 12. As shown in FIG. 2, the coal raw material 14 pulverized by the second pulverizer 22 and classified by the second sieve 32 and having a predetermined particle size is supplied to the mixer 18. The mixing ratio of the coal raw material 14 to the biomass raw material 12 is 100% by mass or less, preferably 25 to 75% by mass of the coal raw material with respect to 100% by mass of the biomass raw material. The mixture 16 is supplied to a heater 20 and heated to a temperature of 80 to 100 ° C., preferably 90 to 100 ° C., and dried. Examples of the heater 20 include a flash dryer (airflow dryer), a fluidized bed dryer (horizontal type), and a drum dryer (drum type dryer). Further, this heating is preferably performed by blowing a gas having a small amount of O 2 from a heating gas generation furnace (not shown), and the mixture 16 is simultaneously dried by this heating. Although most of the gas supplied by this heating is circulated, some excess of the gas is discharged. Further, the gas is circulated in a safe atmosphere containing a large amount of water vapor and a small amount of O 2 . Here, the mixing ratio of the coal raw material 14 with respect to the biomass raw material 12 is limited to 100% by mass or less, and if it exceeds 100% by mass, it cannot be regarded as the biomass-based molded fuel 11 mainly composed of the biomass raw material 12, but a thermal power plant. This is because the rate of replacement with biomass cannot be improved in co-fired coal-fired power. Further, the heating temperature at the time of mixing the mixture 16 is limited to the range of 80 to 100 ° C. The reason is that if the temperature is less than 80 ° C., a sufficient amount of water vapor is not retained in the biomass raw material 12. This is because it is necessary to increase the pressure to atmospheric pressure or higher.

この加熱された混合物16は、80〜100℃、好ましくは90〜100℃の温度に保たれた状態で、成型用ホッパ19に貯留される。このときの混合物16の水分率は少ない方が良いけれども、実際には、成型燃料の輸送過程、貯蔵過程での平衡水分になることから、10〜18質量%、好ましくは10〜15質量%程度で成型することが経済的である。上記成形用ホッパ19内の混合物16は、このホッパ19内のスクリューフィーダ(図示せず)により成形用ホッパ19の下方に配設されたダブルロール式プレス17の一対のロール17a,17b間に圧送され、100〜500MPa、好ましくは300〜400MPaの圧力をかけてブリケット(briquette:炭団)状又は板状に加熱・成型される。ここで、混合物16を80〜100℃の温度範囲内に限定したのは、80℃未満ではバイオマス原料12中に十分な量の水蒸気が保持されず、100℃を越えると圧力を大気圧以上の圧力に上昇させる必要があるからである。また混合物16のダブルロール式プレス17による成型圧力を100〜500MPaの範囲内に限定したのは、100MPa未満では所定の機械的強度を有する成型燃料11が得られず、500MPaを越えると必要以上にエネルギを消費してしまうためである。なお、この実施の形態では、混合物をブリケット状(briquette:炭団)に成型したが、ブリケット状に形成するための凹部の無い一対のロール、即ち外周面が平滑な一対のロールを有するダブルロール式プレスで連続的に薄い板状に成型してもよい。具体的には、後述の第2の実施の形態において説明する。   The heated mixture 16 is stored in the molding hopper 19 while being kept at a temperature of 80 to 100 ° C., preferably 90 to 100 ° C. Although it is better that the moisture content of the mixture 16 is small at this time, in practice, it becomes equilibrium moisture in the transportation process and storage process of the molded fuel, so that it is 10 to 18% by mass, preferably about 10 to 15% by mass. It is economical to mold with. The mixture 16 in the molding hopper 19 is pumped between a pair of rolls 17 a and 17 b of a double roll press 17 disposed below the molding hopper 19 by a screw feeder (not shown) in the hopper 19. It is heated and molded into a briquette or plate shape under a pressure of 100 to 500 MPa, preferably 300 to 400 MPa. Here, the mixture 16 is limited to a temperature range of 80 to 100 ° C. The reason why the sufficient amount of water vapor is not retained in the biomass raw material 12 is less than 80 ° C., and the pressure exceeds the atmospheric pressure when the temperature exceeds 100 ° C. This is because it is necessary to increase the pressure. Further, the molding pressure of the mixture 16 by the double roll press 17 is limited to the range of 100 to 500 MPa because the molding fuel 11 having a predetermined mechanical strength cannot be obtained when the pressure is less than 100 MPa, and more than necessary when the pressure exceeds 500 MPa. This is because energy is consumed. In this embodiment, the mixture is formed into a briquette shape, but a pair of rolls without a recess for forming a briquette shape, that is, a double roll type having a pair of rolls with a smooth outer peripheral surface. You may shape | mold continuously into a thin plate shape with a press. Specifically, this will be described in a second embodiment described later.

スクリューフィーダはフィーダ用モータ24により駆動され、成形用ホッパ19内の混合物16を成形用ホッパ19の下方に圧送するように構成される。一対のロール17a,17bは一対の回転軸17c,17dによりそれぞれ支持される。一方の回転軸17cは一方のロール17aを回転可能に支持する従動軸であるとともに、油圧シリンダ(図示せず)により他方の回転軸17dに向って所定の圧力で圧接される。他方の回転軸17dは軸受(図示せず)により回転可能に支持されかつロール用モータ(図示せず)により駆動される駆動軸であり、他方のロール17bは他方の回転軸17dに固定される。上記一対のロール17a,17bの外周面には多数の凹部17e,17fがそれぞれ整列して形成され、これらのロール17a,17bの外周面が互いに圧接された状態で互いに反対方向に回転することにより、スクリューフィーダ23にて圧送された混合物16が圧縮成形されてブリケット状成型燃料11が成型されるように構成される。なお、上記ブリケット状成型燃料11を空冷等により室温まで冷却した後に、この冷却されたブリケット状の成型燃料11にスクリーニング処理(分級処理)を施して燃料11の大きさが揃えられる。なお、この実施の形態では、一方の回転軸を従動軸とし、他方の回転軸を駆動軸としたが、一対の回転軸がそれぞれ別個のロール用モータで駆動される駆動軸であってもよい。   The screw feeder is driven by a feeder motor 24 and is configured to pump the mixture 16 in the molding hopper 19 below the molding hopper 19. The pair of rolls 17a and 17b are supported by a pair of rotating shafts 17c and 17d, respectively. One rotating shaft 17c is a driven shaft that rotatably supports one roll 17a, and is pressed against the other rotating shaft 17d with a predetermined pressure by a hydraulic cylinder (not shown). The other rotary shaft 17d is a drive shaft that is rotatably supported by a bearing (not shown) and is driven by a roll motor (not shown), and the other roll 17b is fixed to the other rotary shaft 17d. . A large number of recesses 17e and 17f are formed in alignment on the outer peripheral surfaces of the pair of rolls 17a and 17b, respectively, and the outer peripheral surfaces of these rolls 17a and 17b are in pressure contact with each other to rotate in opposite directions. The mixture 16 pumped by the screw feeder 23 is compression-molded to form the briquette-shaped molded fuel 11. In addition, after cooling the briquette-shaped molded fuel 11 to room temperature by air cooling or the like, the cooled briquette-shaped molded fuel 11 is subjected to a screening process (classification process) so that the size of the fuel 11 is made uniform. In this embodiment, one rotary shaft is a driven shaft and the other rotary shaft is a drive shaft. However, the pair of rotary shafts may be drive shafts driven by separate roll motors. .

成形用ホッパ19の上端には脱気パイプ27の一端が接続され、この脱気パイプ27の他端は脱気用ブロア28の吸入口に接続され、その吐出口は大気に開放される。また脱気パイプ27には集塵機29が設けられ、この集塵機29で浮遊する混合物16が捕集されるように構成される。更に一対のロール17a,17bの下方に一端が位置するようにベルトコンベヤ33が設けられ、ベルトコンベヤ33の他端には開口が網34aにより覆われた箱状の粉末分離器34が設けられる。この網34aの目開きは成型燃料11の直径より小さく形成される。粉末分離器34内に貯まった混合物16は搬送路36を通って搬送機37により混合機18に戻されるように構成される。図2の符号38及び39は浮遊する混合物16を捕集するフードであり、これらのフード38,39は第1及び第2枝管41,42を通って脱気パイプ27に接続される。また図2の符号43〜45は脱気パイプ27、第1枝管及び第2枝管を通る空気の流量をそれぞれ調整するために設けられたダンパである。更に図2の符号46は成型用ホッパ19の外周面に設けられこのホッパ19内の混合物16を所定の温度に加熱するヒータである。   One end of a deaeration pipe 27 is connected to the upper end of the molding hopper 19, the other end of the deaeration pipe 27 is connected to the suction port of the deaeration blower 28, and its discharge port is opened to the atmosphere. The deaeration pipe 27 is provided with a dust collector 29, and is configured so that the mixture 16 floating in the dust collector 29 is collected. Further, a belt conveyor 33 is provided so that one end is positioned below the pair of rolls 17a and 17b, and a box-shaped powder separator 34 whose opening is covered with a net 34a is provided at the other end of the belt conveyor 33. The mesh 34a has an opening smaller than the diameter of the molded fuel 11. The mixture 16 stored in the powder separator 34 is configured to be returned to the mixer 18 by a transporter 37 through a transport path 36. Reference numerals 38 and 39 in FIG. 2 denote hoods for collecting the floating mixture 16, and these hoods 38 and 39 are connected to the deaeration pipe 27 through the first and second branch pipes 41 and 42. Reference numerals 43 to 45 in FIG. 2 are dampers provided for adjusting the flow rates of air passing through the deaeration pipe 27, the first branch pipe, and the second branch pipe, respectively. 2 is a heater provided on the outer peripheral surface of the molding hopper 19 to heat the mixture 16 in the hopper 19 to a predetermined temperature.

このように構成されたバイオマス系成型燃料11の製造方法では、先ず主原料であるバイオマス原料12に消石灰懸濁液13を付着させたので、バイオマス成分中のリグニン・ヘミセルロース分を主体とする化学的作用でバイオマス原料12に可塑性を付与する。次に混合機18で上記バイオマス原料12に石炭原料14を混合した後に、加熱機20で80〜100℃の温度に加熱することにより、バイオマス原料12に更に可塑性を付与して、バイオマス原料12を変形し易くする。更に80〜100℃の温度下で上記混合物16を高圧のダブルロール式プレス17により連続的にブリケット状又は板状に成型してバイオマス系成型燃料11を製造する。このとき加熱・混合工程時に発生する水蒸気を混合物16中に保持し、混合物16の加熱・成型工程時に水蒸気の共存下で混合物16をスクリュー式フィーダ23により一対のロール17a,17a間に押込みながら、剪断力を伴う圧縮力を作用させると、上記水蒸気が圧縮されて水となり、この状態で内部が高圧に保たれていた一対のロール17a,17bが離れて、ダブルロール式プレス17の圧力が瞬時に解放されると、上記圧縮水が瞬時に逸散するとともに、急激な空冷に伴って成型物が収縮する。   In the method for producing the biomass-based molded fuel 11 configured as described above, since the slaked lime suspension 13 is first attached to the biomass raw material 12 which is the main raw material, the chemical mainly composed of lignin and hemicellulose in the biomass component. The plasticity is imparted to the biomass raw material 12 by the action. Next, after mixing the coal raw material 14 with the biomass raw material 12 by the mixer 18, the biomass raw material 12 is further plasticized by heating the biomass raw material 12 by heating to a temperature of 80 to 100 ° C. with the heater 20. Make it easy to deform. Further, the biomass-based molded fuel 11 is manufactured by continuously molding the mixture 16 into a briquette or plate shape with a high-pressure double roll press 17 at a temperature of 80 to 100 ° C. At this time, water vapor generated during the heating / mixing step is held in the mixture 16, and the mixture 16 is pushed between the pair of rolls 17a and 17a by the screw feeder 23 in the presence of water vapor during the heating / molding step of the mixture 16, When a compressive force accompanied by a shearing force is applied, the water vapor is compressed into water, and the pair of rolls 17a and 17b whose inside is kept at a high pressure in this state are separated, and the pressure of the double roll press 17 is instantaneously increased. When released, the compressed water dissipates instantly and the molded product shrinks with rapid air cooling.

換言すれば、蒸気の共存下でダブルロール式プレス17により強い剪断力で繊維質のバイオマス原料12に与えながら高い圧縮力で燃料11が成型されるので、繊維質のバイオマス原料12が互いに強く絡み合い、ロール17a,17b表面と混合物16の間における摩擦抵抗や混合物16の各粒子間における摩擦抵抗により発熱し、混合物16の温度が更に上昇してバイオマス原料12に更に可塑性が付与され、スプリングバックが少なくかつ密度の高い成型燃料11を得ることができる。更に詳しく説明すると、粒子状の混合物16を圧縮成型する場合、混合物16の各粒子間のガスを放出させながら、各粒子が互いに近付いて密着し、一対のロール17a,17b間に供給される混合物16の粒子間の空隙には、水蒸気が多く存在した状態で圧縮されることから、一対のロール17a,17b間で圧縮される際に水蒸気が凝結し、各粒子間のガス体積が急激に縮小して、粒子が互いに密着して圧縮されるので、各粒子間のガスを放出する過程が少なくなり、一対のロール17a,17bの圧縮速度を上昇させることができ、成型燃料11の生産性を向上できる。一対のロール17a,17b間で成型された成型燃料11は一対のロール17a,17bから排出されたときに大気圧下になるので、成型燃料11の内部の水分が成型燃料11の表面から蒸発して、成型燃料11の水分は更に低くなる。なお、繊維質のバイオマス原料12は圧縮した際に、この原料12の深部に圧縮力の伝達性が低いけれども、発熱量がバイオマス原料12より多くかつ硬い石炭原料14を混合することにより、バイオマス原料12の内部への圧縮力の伝達を向上でき、密度を高めて硬くしかも発熱量の高い成型燃料11が得られる。上記成型燃料11の水分率は5〜7質量%まで低下し、嵩密度は1.1〜1.2g/cm3と大きくなる。この結果、変形し易くなって成型し易くなったバインダ的性質を有するバイオマス原料12間に石炭原料14が圧着されて一体化されるので、成型燃料11を微粉砕化処理しても、バイオマス原料12及び石炭原料14の単離が起り難い。従って、機械的強度が高く貯蔵性の良好な種々の形状及び寸法の成型燃料11を製造できる。 In other words, since the fuel 11 is molded with a high compressive force while being applied to the fibrous biomass material 12 with a strong shearing force by the double roll press 17 in the presence of steam, the fibrous biomass materials 12 are strongly entangled with each other. , Heat is generated by the friction resistance between the surfaces of the rolls 17a and 17b and the mixture 16 and the friction resistance between the particles of the mixture 16, the temperature of the mixture 16 is further increased, and the biomass raw material 12 is further plasticized, and the spring back is generated. A small and high density molded fuel 11 can be obtained. More specifically, when the particulate mixture 16 is compression-molded, the mixture is supplied between the pair of rolls 17a and 17b while the particles approach each other and come into close contact with each other while releasing the gas between the particles of the mixture 16. Since the space between the 16 particles is compressed with a large amount of water vapor, the water vapor is condensed when compressed between the pair of rolls 17a and 17b, and the gas volume between the particles is rapidly reduced. Since the particles are compressed in close contact with each other, the process of releasing the gas between the particles is reduced, the compression speed of the pair of rolls 17a and 17b can be increased, and the productivity of the molded fuel 11 can be increased. It can be improved. Since the molded fuel 11 molded between the pair of rolls 17a and 17b is under atmospheric pressure when discharged from the pair of rolls 17a and 17b, the water inside the molded fuel 11 evaporates from the surface of the molded fuel 11. Thus, the moisture of the molded fuel 11 is further reduced. When the fibrous biomass raw material 12 is compressed, the biomass raw material 12 is mixed with a harder coal raw material 14 having a calorific value higher than that of the biomass raw material 12 although the compressibility of the compressive force is low in the deep part of the raw material 12. Thus, it is possible to improve the transmission of compressive force to the inside of the molded fuel 11, and to obtain a molded fuel 11 which is harder and has a high calorific value by increasing the density. The moisture content of the molded fuel 11 decreases to 5 to 7% by mass, and the bulk density increases to 1.1 to 1.2 g / cm 3 . As a result, since the coal raw material 14 is pressure-bonded and integrated between the biomass raw materials 12 having binder properties that are easily deformed and easily formed, the biomass raw material can be obtained even if the molded fuel 11 is pulverized. 12 and the coal raw material 14 are hardly isolated. Therefore, the molded fuel 11 having various shapes and sizes with high mechanical strength and good storage properties can be produced.

また石炭とバイオマスを同時に混焼すると、燃焼効率が上昇したり、或いはバイオマスに含まれる窒素分が石炭に含まれる窒素分より少ないため、排ガス中におけるNOxの濃度を低減できるとともに、石炭単味の燃焼において生成される熱合成NOxの低減を図ることもできる。またダブルロール式プレス17による成型燃料11の成型時の高速回転化を図ることにより、成型燃料11の量産性を向上できるとともに、製造コストを低減できる。更にブリケット状の成型燃料11の破砕及び粉砕処理によって、各種ボイラーに用いられるフレーク状燃料や、火力発電に用いられる微粉状燃料など、多目的用途に対応したバイオマス系成型燃料11を製造できる。この結果、微粉状のバイオマス系成型燃料11の混焼により微粉炭の燃焼性を改善できるとともに、低負荷燃焼時における高効率化を図ることができる。   If coal and biomass are co-fired at the same time, the combustion efficiency will increase, or the nitrogen content in the biomass will be less than the nitrogen content in the coal, so the concentration of NOx in the exhaust gas can be reduced and the combustion of coal alone It is also possible to reduce the thermal synthesis NOx produced in the process. Further, by achieving high speed rotation when the molded fuel 11 is molded by the double roll press 17, the mass productivity of the molded fuel 11 can be improved and the manufacturing cost can be reduced. Further, by crushing and pulverizing the briquette-shaped molded fuel 11, it is possible to produce a biomass-based molded fuel 11 corresponding to a multipurpose application such as a flaky fuel used for various boilers and a fine powder fuel used for thermal power generation. As a result, the combustibility of the pulverized coal can be improved by co-firing the pulverized biomass-based molded fuel 11, and the efficiency can be increased during low-load combustion.

<第2の実施の形態>
図3は本発明の第2の実施の形態を示す。この実施の形態では、加熱された混合物が、80〜100℃、好ましくは90〜100℃の温度に保たれた状態で、高圧のダブルロール式プレスにより100〜500MPa、好ましくは300〜500MPaの圧力をかけて、大型で薄い板状(例えば、幅100cm、厚さ0.5〜1.0cm、長さ30〜250cm、かさ密度1.1〜1.2g/cm3)に加熱・成型される。上記以外は第1の実施の形態と同一に構成される。このように構成されたバイオマス系成型燃料の製造方法では、バイオマス系成型燃料を大型で薄い板状に成型したので、貯蔵性に優れた成型燃料となる。この板状の成型燃料を空冷等により室温まで冷却した後に破砕・粉砕処理し、更にこの破砕・粉砕処理した成型燃料にスクリーニング処理(分級処理)を施すことにより、フレーク状の成型燃料とする。これにより成型燃料の輸送コストを低減できる。このフレーク状の成型燃料は火力発電所に輸送されて、更に微粉砕化処理されて燃料として使用される。このように成型燃料が微粉砕化処理されても、加圧・成型時にバインダ的性質を有するバイオマス原料間で石炭原料が圧着・一体化されているため、この微粉状燃料中のバイオマス原料及び石炭原料の単離が起き難い。従って、火力発電所の石炭火力の混焼におけるバイオマスによる代替率を10〜20%に向上できるとともに、地球温暖化ガスの発生を低減できる。上記以外の動作は第1の実施の形態の動作と略同様であるので、繰返しの説明を省略する。
<Second Embodiment>
FIG. 3 shows a second embodiment of the present invention. In this embodiment, the heated mixture is kept at a temperature of 80 to 100 ° C., preferably 90 to 100 ° C., and a pressure of 100 to 500 MPa, preferably 300 to 500 MPa by a high-pressure double roll press. Is heated and molded into a large and thin plate shape (for example, width 100 cm, thickness 0.5 to 1.0 cm, length 30 to 250 cm, bulk density 1.1 to 1.2 g / cm 3 ). . The configuration other than the above is the same as that of the first embodiment. In the method for producing a biomass-based molded fuel configured in this way, the biomass-based molded fuel is molded into a large and thin plate, so that it becomes a molded fuel with excellent storability. The plate-shaped molded fuel is cooled to room temperature by air cooling or the like, and then crushed and pulverized. Further, the crushed and pulverized molded fuel is subjected to a screening process (classification process) to obtain a flaked molded fuel. This can reduce the transportation cost of the molded fuel. This flaky shaped fuel is transported to a thermal power plant and further pulverized to be used as fuel. Even if the molded fuel is pulverized in this way, the coal raw material is compressed and integrated between the biomass raw materials having binder properties at the time of pressurization and molding. Isolation of raw materials hardly occurs. Accordingly, it is possible to improve the substitution rate by biomass in the coal-fired co-firing of the thermal power plant to 10 to 20% and reduce the generation of global warming gas. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description will be omitted.

なお、上記第1及び第2の実施の形態では、バイオマス原料に石炭原料を混合したが、石炭原料を混合せずにバイオマス原料だけを用いて成型燃料を製造してもよい。この場合、バイオマス原料に消石灰の水溶液又は懸濁液を付着させた後に、この液の付着したバイオマス原料を加熱機で80〜100℃、好ましくは90〜100℃に加熱して乾燥し、更にこの加熱したバイオマス原料12を80〜100℃、好ましくは90〜100℃の温度下でダブルロール式プレスにより100〜500MPa、好ましくは300〜400MPaの圧力をかけてブリケット状又は板状に加熱・成型する。このバイオマス原料のみからなる成型燃料では、成型性及び発熱量が上記第1及び第2の実施の形態の成型燃料より低下するけれども、石炭からバイオマスへの代替率が高くなり、地球温暖化ガスの発生を更に低減できる。   In the first and second embodiments, the coal raw material is mixed with the biomass raw material, but the molded fuel may be manufactured using only the biomass raw material without mixing the coal raw material. In this case, after attaching an aqueous solution or suspension of slaked lime to the biomass raw material, the biomass raw material to which this liquid is attached is heated to 80 to 100 ° C., preferably 90 to 100 ° C. with a heater, and further dried. The heated biomass raw material 12 is heated and molded into a briquette or plate shape by applying a pressure of 100 to 500 MPa, preferably 300 to 400 MPa by a double roll press at a temperature of 80 to 100 ° C., preferably 90 to 100 ° C. . In the molded fuel composed only of the biomass raw material, the moldability and the calorific value are lower than those of the molded fuels of the first and second embodiments, but the replacement rate from coal to biomass is increased, and the global warming gas Generation can be further reduced.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径が2.0mm以下であるバイオマス原料を得た。また濃度1.6g/リットルの消石灰の水溶液又は懸濁液(この場合、全ての消石灰が水に溶けており、消石灰水溶液となっている。以下、消石灰水溶液という。)を調製した。次に上記バイオマス原料を消石灰水溶液に入れて3時間煮沸した後、消石灰水溶液から取り出して水分率が15質量%になるまで乾燥した。更にこのバイオマス原料3.0gを90℃の温度下で240MPaの圧力をかけて、図4の円筒状金型70により直径25mmのタブレット型(錠剤型)のブリケット状成型燃料71を成型した後、室温で24時間放置した。この成型燃料71を実施例1とした。なお、成型燃料71の水分率は6.9質量%であり、嵩密度は1.20g/cm3であった。
<実施例2>
稲ワラに代えてモミ殻を用いたこと以外は、実施例1と同様にしてタブレット状の成型燃料を得た。この成型燃料を実施例2とした。なお、成型燃料の水分率は7.2質量%であり、嵩密度は1.14g/cm3であった。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. Further, an aqueous solution or suspension of slaked lime having a concentration of 1.6 g / liter (in this case, all slaked lime is dissolved in water to form a slaked lime aqueous solution, hereinafter referred to as a slaked lime aqueous solution) was prepared. Next, after putting the said biomass raw material in the slaked lime aqueous solution and boiling for 3 hours, it took out from the slaked lime aqueous solution and dried until the moisture content became 15 mass%. Further, 3.0 g of this biomass raw material was subjected to a pressure of 240 MPa at a temperature of 90 ° C., and a tablet type (tablet type) briquette shaped fuel 71 having a diameter of 25 mm was molded by the cylindrical mold 70 of FIG. Left at room temperature for 24 hours. This molded fuel 71 was referred to as Example 1. The moisture content of the molded fuel 71 was 6.9% by mass, and the bulk density was 1.20 g / cm 3 .
<Example 2>
A tablet-shaped molded fuel was obtained in the same manner as in Example 1 except that fir shell was used instead of rice straw. This molded fuel was designated as Example 2. The moisture content of the molded fuel was 7.2% by mass, and the bulk density was 1.14 g / cm 3 .

<実施例3>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径を2.0mm以下としたバイオマス原料を得た。また濃度1.6g/リットルの消石灰水溶液を調製した。次いで上記バイオマス原料を消石灰水溶液に入れて3時間煮沸した後、消石灰水溶液から取り出して水分率が15質量%になるまで乾燥した。一方、石炭を乾燥してその水分率を11質量%とした後に、粉砕機で粉砕して粒径を1.0mm以下とした石炭原料を得た。次に上記バイオマス原料と石炭原料とを90℃に保った状態で70質量%:30質量%の配合割合で混合した。更にこの混合物3.0gを90℃の温度下で240MPaの圧力をかけて、直径25mmのタブレット型(錠剤型)のブリケット状成型燃料を成型した後、室温で24時間放置した。この成型燃料を実施例3とした。なお、成型燃料の水分率は4.4質量%であり、嵩密度は1.17g/cm3であった。
<実施例4>
稲ワラに代えてモミ殻を用いたこと以外は、実施例3と同様にしてタブレット状の成型燃料を得た。この成型燃料を実施例4とした。なお、成型燃料の水分率は5.6質量%であり、嵩密度は1.14g/cm3であった。
<Example 3>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. A slaked lime aqueous solution having a concentration of 1.6 g / liter was prepared. Subsequently, after putting the said biomass raw material in the slaked lime aqueous solution and boiling for 3 hours, it took out from the slaked lime aqueous solution and dried until the moisture content became 15 mass%. On the other hand, after drying coal and making the moisture content into 11 mass%, it grind | pulverized with the grinder and obtained the coal raw material which made the particle size 1.0mm or less. Next, the biomass raw material and the coal raw material were mixed at a blending ratio of 70% by mass to 30% by mass while being maintained at 90 ° C. Further, 3.0 g of this mixture was subjected to a pressure of 240 MPa at a temperature of 90 ° C. to form a tablet-type (tablet-type) briquette shaped fuel having a diameter of 25 mm, and then allowed to stand at room temperature for 24 hours. This molded fuel was designated as Example 3. The moisture content of the molded fuel was 4.4% by mass, and the bulk density was 1.17 g / cm 3 .
<Example 4>
A tablet-shaped molded fuel was obtained in the same manner as in Example 3 except that fir shell was used instead of rice straw. This molded fuel was designated as Example 4. The moisture content of the molded fuel was 5.6% by mass, and the bulk density was 1.14 g / cm 3 .

<比較例1>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径が2.0mm以下であるバイオマス原料を得た。次にこのバイオマス原料3.0gを室温下で240MPaの圧力をかけて、直径25mmのタブレット型(錠剤型)のブリケット状成型燃料を成型した後、室温で24時間放置した。この成型燃料を比較例1とした。なお、成型燃料の水分率は15質量%と殆ど変化がなく、嵩密度は0.97g/cm3であった。
<比較例2>
稲ワラに代えてモミ殻を用いたこと以外は、比較例1と同様にしてタブレット状の成型燃料を得た。この成型燃料を比較例2とした。なお、成型燃料の水分率は15質量%と殆ど変化がなく、嵩密度は1.00g/cm3であった。
<Comparative Example 1>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. Next, 3.0 g of this biomass material was subjected to a pressure of 240 MPa at room temperature to form a tablet-type (tablet-type) briquette shaped fuel having a diameter of 25 mm, and then allowed to stand at room temperature for 24 hours. This molded fuel was referred to as Comparative Example 1. The moisture content of the molded fuel was almost unchanged at 15% by mass, and the bulk density was 0.97 g / cm 3 .
<Comparative example 2>
A tablet-shaped molded fuel was obtained in the same manner as in Comparative Example 1 except that fir shell was used instead of rice straw. This molded fuel was referred to as Comparative Example 2. The moisture content of the molded fuel was almost unchanged at 15% by mass, and the bulk density was 1.00 g / cm 3 .

<比較例3>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径を2.0mm以下としたバイオマス原料を得た。また石炭を乾燥してその水分率を11質量%とした後に、粉砕機で粉砕して粒径を1.0mm以下とした石炭原料を得た。次に上記バイオマス原料と石炭原料とを室温に保った状態で70質量%:30質量%の配合割合で混合した。更にこの混合物3.0gを室温下で240MPaの圧力をかけて、直径25mmのタブレット型(錠剤型)のブリケット状成型燃料を成型した後、室温で24時間放置した。この成型燃料を比較例3とした。なお、成型燃料の水分率は13.8質量%と殆ど変化がなく、嵩密度は1.06g/cm3であった。
<比較例4>
稲ワラに代えてモミ殻を用いたこと以外は、比較例3と同様にしてタブレット状の成型燃料を得た。この成型燃料を比較例4とした。なお、成型燃料の水分率は13.8質量%と殆ど変化がなく、嵩密度は1.03g/cm3であった。
<Comparative Example 3>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. Moreover, after drying coal and making the moisture content into 11 mass%, it grind | pulverized with the grinder and obtained the coal raw material which made the particle size 1.0mm or less. Next, the biomass raw material and the coal raw material were mixed at a blending ratio of 70% by mass to 30% by mass while being kept at room temperature. Further, 3.0 g of this mixture was subjected to a pressure of 240 MPa at room temperature to form a tablet-type (tablet-type) briquette shaped fuel having a diameter of 25 mm, and then allowed to stand at room temperature for 24 hours. This molded fuel was referred to as Comparative Example 3. The moisture content of the molded fuel was almost unchanged at 13.8% by mass, and the bulk density was 1.06 g / cm 3 .
<Comparative example 4>
A tablet-shaped molded fuel was obtained in the same manner as in Comparative Example 3 except that fir shell was used instead of rice straw. This molded fuel was referred to as Comparative Example 4. The moisture content of the molded fuel was almost unchanged at 13.8% by mass, and the bulk density was 1.03 g / cm 3 .

<比較例5>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径が2.0mm以下であるバイオマス原料を得た。また濃度1.6g/リットルの消石灰水溶液を調製した。次に上記バイオマス原料を消石灰水溶液に入れて3時間煮沸した後、消石灰水溶液から取り出して水分率が15質量%になるまで乾燥した。更にこのバイオマス原料3.0gを室温下で240MPaの圧力をかけて、直径25mmのタブレット型(錠剤型)のブリケット状成型燃料を成型した後、室温で24時間放置した。この成型燃料を比較例5とした。なお、成型燃料の水分率は15質量%と殆ど変化がなく、嵩密度は0.98g/cm3であった。
<比較例6>
稲ワラに代えてモミ殻を用いたこと以外は、比較例5と同様にしてタブレット状の成型燃料を得た。この成型燃料を比較例6とした。なお、成型燃料の水分率は15質量%と殆ど変化がなく、嵩密度は1.00g/cm3であった。
<Comparative Example 5>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. A slaked lime aqueous solution having a concentration of 1.6 g / liter was prepared. Next, after putting the said biomass raw material in the slaked lime aqueous solution and boiling for 3 hours, it took out from the slaked lime aqueous solution and dried until the moisture content became 15 mass%. Further, 3.0 g of this biomass raw material was subjected to a pressure of 240 MPa at room temperature to form a tablet-type (tablet-type) briquette shaped fuel having a diameter of 25 mm, and then allowed to stand at room temperature for 24 hours. This molded fuel was designated as Comparative Example 5. The moisture content of the molded fuel was almost unchanged at 15% by mass, and the bulk density was 0.98 g / cm 3 .
<Comparative Example 6>
A tablet-shaped molded fuel was obtained in the same manner as in Comparative Example 5 except that fir shell was used instead of rice straw. This molded fuel was designated as Comparative Example 6. The moisture content of the molded fuel was almost unchanged at 15% by mass, and the bulk density was 1.00 g / cm 3 .

<比較例7>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径を2.0mm以下としたバイオマス原料を得た。また濃度1.6g/リットルの消石灰水溶液を調製した。次いで上記バイオマス原料を消石灰水溶液に入れて3時間煮沸した後、消石灰水溶液から取り出して水分率が15質量%になるまで乾燥した。一方、石炭を乾燥してその水分率を11質量%とした後に、粉砕機で粉砕して粒径を1.0mm以下とした石炭原料を得た。次に上記バイオマス原料と石炭原料とを室温に保った状態で70質量%:30質量%の配合割合で混合した。更にこの混合物3.0gを室温下で240MPaの圧力をかけて、直径25mmのタブレット型(錠剤型)のブリケット状成型燃料を成型した後、室温で24時間放置した。この成型燃料を比較例7とした。なお、成型燃料の水分率は13.8質量%と殆ど変化がなく、嵩密度は1.06g/cm3であった。
<比較例8>
稲ワラに代えてモミ殻を用いたこと以外は、比較例7と同様にしてタブレット状の成型燃料を得た。この成型燃料を比較例8とした。なお、成型燃料の水分率は13.8質量%と殆ど変化がなく、嵩密度は1.03g/cm3であった。
<Comparative Example 7>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. A slaked lime aqueous solution having a concentration of 1.6 g / liter was prepared. Subsequently, after putting the said biomass raw material in the slaked lime aqueous solution and boiling for 3 hours, it took out from the slaked lime aqueous solution and dried until the moisture content became 15 mass%. On the other hand, after drying coal and making the moisture content into 11 mass%, it grind | pulverized with the grinder and obtained the coal raw material which made the particle size 1.0mm or less. Next, the biomass raw material and the coal raw material were mixed at a blending ratio of 70% by mass to 30% by mass while being kept at room temperature. Further, 3.0 g of this mixture was subjected to a pressure of 240 MPa at room temperature to form a tablet-type (tablet-type) briquette shaped fuel having a diameter of 25 mm, and then allowed to stand at room temperature for 24 hours. This molded fuel was designated as Comparative Example 7. The moisture content of the molded fuel was almost unchanged at 13.8% by mass, and the bulk density was 1.06 g / cm 3 .
<Comparative Example 8>
A tablet-shaped molded fuel was obtained in the same manner as in Comparative Example 7, except that fir shell was used instead of rice straw. This molded fuel was designated as Comparative Example 8. The moisture content of the molded fuel was almost unchanged at 13.8% by mass, and the bulk density was 1.03 g / cm 3 .

<比較例9>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径が2.0mm以下であるバイオマス原料を得た。次にこのバイオマス原料3.0gを90℃の温度下で240MPaの圧力をかけて、直径25mmのタブレット型(錠剤型)のブリケット状成型燃料を成型した後、室温で24時間放置した。この成型燃料を比較例9とした。なお、成型燃料の水分率は7.1質量%であり、嵩密度は1.10g/cm3であった。
<比較例10>
稲ワラに代えてモミ殻を用いたこと以外は、比較例9と同様にしてタブレット状の成型燃料を得た。この成型燃料を比較例10とした。なお、成型燃料の水分率は7.5質量%であり、嵩密度は1.09g/cm3であった。
<Comparative Example 9>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. Next, 3.0 g of this biomass material was subjected to a pressure of 240 MPa at a temperature of 90 ° C. to form a tablet-type (tablet-type) briquette-shaped molded fuel having a diameter of 25 mm, and then allowed to stand at room temperature for 24 hours. This molded fuel was designated as Comparative Example 9. The moisture content of the molded fuel was 7.1% by mass, and the bulk density was 1.10 g / cm 3 .
<Comparative Example 10>
A tablet-shaped molded fuel was obtained in the same manner as in Comparative Example 9, except that fir shell was used instead of rice straw. This molded fuel was designated as Comparative Example 10. The moisture content of the molded fuel was 7.5% by mass, and the bulk density was 1.09 g / cm 3 .

<比較例11>
先ず稲ワラを自然乾燥してその水分率を15質量%とした後に、粉砕機で粉砕して粒径を2.0mm以下としたバイオマス原料を得た。また石炭を乾燥してその水分率を11質量%とした後に、粉砕機で粉砕して粒径を1.0mm以下とした石炭原料を得た。次に上記バイオマス原料と石炭原料とを90℃に保った状態で70質量%:30質量%の配合割合で混合した。更にこの混合物3.0gを90℃の温度下で240MPaの圧力をかけて、直径25mmのタブレット型(錠剤型)のブリケット状成型燃料を成型した後、室温で24時間放置した。この成型燃料を比較例11とした。なお、成型燃料の水分率は4.9質量%であり、嵩密度は1.10g/cm3であった。
<比較例12>
稲ワラに代えてモミ殻を用いたこと以外は、比較例11と同様にしてタブレット状の成型燃料を得た。この成型燃料を比較例11とした。なお、成型燃料の水分率は5.8質量%であり、嵩密度は1.13g/cm3であった。
<Comparative Example 11>
First, rice straw was naturally dried to a moisture content of 15% by mass, and then pulverized by a pulverizer to obtain a biomass material having a particle size of 2.0 mm or less. Moreover, after drying coal and making the moisture content into 11 mass%, it grind | pulverized with the grinder and obtained the coal raw material which made the particle size 1.0mm or less. Next, the biomass raw material and the coal raw material were mixed at a blending ratio of 70% by mass to 30% by mass while being maintained at 90 ° C. Further, 3.0 g of this mixture was subjected to a pressure of 240 MPa at a temperature of 90 ° C. to form a tablet-type (tablet-type) briquette shaped fuel having a diameter of 25 mm, and then allowed to stand at room temperature for 24 hours. This molded fuel was designated as Comparative Example 11. The moisture content of the molded fuel was 4.9% by mass, and the bulk density was 1.10 g / cm 3 .
<Comparative Example 12>
A tablet-shaped molded fuel was obtained in the same manner as in Comparative Example 11 except that fir shell was used instead of rice straw. This molded fuel was designated as Comparative Example 11. The moisture content of the molded fuel was 5.8% by mass, and the bulk density was 1.13 g / cm 3 .

<比較試験1及び評価>
上記実施例1〜4及び比較例1〜12のタブレット型(錠剤型)のブリケット状成型燃料71の破壊強度については、図5に示すように、成型燃料71の外周面に圧縮力をかけて測定した。その結果を図6に示す。図6から明らかなように、バイオマス原料に消石灰水溶液を接触させずかつ室温下で成型した比較例1〜4の成型燃料では、破壊強度が7〜23kgと低く、バイオマス原料に消石灰水溶液を接触させたけれども室温下で成型した比較例5〜8の成型燃料では、破壊強度が16〜25kgと若干向上し、バイオマス原料に消石灰水溶液を接触させずに90℃の温度下で成型した比較例9〜12の成型燃料では、破壊強度が24〜30kgとある程度向上したけれども、バイオマス原料に消石灰水溶液を接触させるとともに90℃の温度下で成型した実施例1〜4の成型燃料では、破壊強度が32〜45kgと相乗的に向上するしたことが分った。
<Comparative test 1 and evaluation>
As for the breaking strength of the tablet-type (tablet-type) briquette shaped molded fuel 71 of Examples 1 to 4 and Comparative Examples 1 to 12, a compressive force is applied to the outer peripheral surface of the molded fuel 71 as shown in FIG. It was measured. The result is shown in FIG. As is clear from FIG. 6, the molded fuels of Comparative Examples 1 to 4 molded at room temperature without contacting the biomass raw material with the slaked lime aqueous solution had a low fracture strength of 7 to 23 kg, and the biomass raw material was contacted with the slaked lime aqueous solution. However, in the molded fuels of Comparative Examples 5 to 8 molded at room temperature, the fracture strength slightly improved to 16 to 25 kg, and Comparative Examples 9 to 9 molded at a temperature of 90 ° C. without contacting the biomass raw material with the slaked lime aqueous solution. With the 12 molded fuel, the fracture strength improved to some extent with 24 to 30 kg. However, the fracture strength of the molded fuel of Examples 1 to 4 with the slaked lime aqueous solution brought into contact with the biomass raw material and molded at a temperature of 90 ° C. was 32 to 30 kg. It turned out that it improved synergistically with 45 kg.

本発明第1実施形態のバイオマス系成型燃料の製造手順を示すブロック線図である。It is a block diagram which shows the manufacture procedure of the biomass type | mold molded fuel of 1st Embodiment of this invention. そのバイオマス系成型燃料の製造手順を示す構成図である。It is a block diagram which shows the manufacturing procedure of the biomass type | mold molded fuel. 本発明第2実施形態のバイオマス系成型燃料の製造手順を示すブロック線図である。It is a block diagram which shows the manufacturing procedure of the biomass type | mold molded fuel of 2nd Embodiment of this invention. タブレット状成型燃料を圧縮成型している状態を示す断面構成図である。It is a section lineblock diagram showing the state where tablet-shaped molding fuel is compression-molded. タブレット試験機にタブレット状成型燃料を装着した状態を示す断面構成図である。It is a section lineblock diagram showing the state where tablet-like molded fuel was equipped in a tablet testing machine. 実施例1〜4及び比較例1〜12のタブレットの成型条件による破壊強度の相違を示す図である。It is a figure which shows the difference in the fracture strength by the molding conditions of the tablet of Examples 1-4 and Comparative Examples 1-12.

符号の説明Explanation of symbols

11,71 バイオマス系成型燃料
12 バイオマス原料
13 消石灰の水溶液又は懸濁液
14 石炭原料
16 混合物
17 ダブルロール式プレス
11,71 Biomass shaped fuel 12 Biomass raw material 13 Slaked lime aqueous solution or suspension 14 Coal raw material 16 Mixture 17 Double roll press

Claims (5)

バイオマス粉又はバイオマス粉砕物からなるバイオマス原料に、消石灰の水溶液又は懸濁液を付着させる工程と、
前記液の付着したバイオマス原料を80〜100℃に加熱する工程と、
前記加熱したバイオマス原料を80〜100℃の温度下でダブルロール式プレスにより100〜500MPaの圧力をかけてブリケット状又は板状に加熱・成型する工程と
を含むバイオマス系成型燃料の製造方法。
A step of attaching an aqueous solution or suspension of slaked lime to a biomass raw material made of biomass powder or pulverized biomass; and
Heating the biomass material to which the liquid is adhered to 80 to 100 ° C .;
And heating and molding the heated biomass raw material into a briquette or plate shape by applying a pressure of 100 to 500 MPa by a double roll press at a temperature of 80 to 100 ° C.
バイオマス粉又はバイオマス粉砕物からなるバイオマス原料(12)に消石灰の水溶液又は懸濁液(13)を付着させる工程と、
前記液(13)の付着したバイオマス原料(12)に粒径3mm以下の石炭原料(14)を前記バイオマス原料100質量%に対して100質量%以下の割合で混合しかつ80〜100℃の温度で加熱する工程と、
前記加熱した混合物(16)を80〜100℃の温度下でダブルロール式プレス(17)により100〜500MPaの圧力をかけてブリケット状又は板状に加熱・成型する工程と
を含むバイオマス系成型燃料の製造方法。
Attaching an aqueous solution or suspension (13) of slaked lime to a biomass raw material (12) made of biomass powder or pulverized biomass; and
A coal raw material (14) having a particle size of 3 mm or less is mixed with the biomass raw material (12) to which the liquid (13) is adhered in a proportion of 100% by mass or less with respect to 100% by mass of the biomass raw material, and a temperature of 80 to 100 ° C. Heating with
And heating and molding the heated mixture (16) into a briquette or plate shape by applying a pressure of 100 to 500 MPa by a double roll press (17) at a temperature of 80 to 100 ° C. Manufacturing method.
バイオマス原料(12)への消石灰の水溶液又は懸濁液(13)の付着が、バイオマス乾質量1kgに対して30×10-3〜60×10-3gに相当する質量の消石灰を水に混合して得られる水溶液又は懸濁液(13)を前記バイオマス原料(12)に添加することにより行われる請求項1又は2記載のバイオマス系成型燃料の製造方法。 The adhesion of the aqueous solution or suspension (13) of slaked lime to the biomass raw material (12) is mixed with water with a mass of slaked lime corresponding to 30 × 10 −3 to 60 × 10 −3 g per 1 kg of biomass dry mass. The method for producing a biomass-based molded fuel according to claim 1 or 2, which is carried out by adding an aqueous solution or suspension (13) obtained in this way to the biomass raw material (12). バイオマス原料(12)が農林産廃棄物、未利用植物及び植物性繊維からなる群より選ばれた1種又は2種以上の産業廃棄物を粉砕した原料である請求項1ないし3いずれか1項に記載のバイオマス系成型燃料の製造方法。   The biomass raw material (12) is a raw material obtained by pulverizing one or more industrial wastes selected from the group consisting of agricultural and forestry wastes, unused plants and plant fibers. The manufacturing method of the biomass type | mold molded fuel of description. 加熱・混合工程時に発生する水蒸気を混合物(16)中に保持し、加熱・成型工程時に前記水蒸気の共存下で前記混合物(16)に剪断力を伴う圧縮力を作用させた後に前記圧縮力が瞬時に解放されることにより、前記混合物(16)中の水分の逸散と空冷に伴う成型物の収縮を行う請求項1記載のバイオマス系成型燃料の製造方法。   Water vapor generated during the heating / mixing step is retained in the mixture (16), and the compressive force is applied to the mixture (16) under the coexistence of the water vapor during the heating / molding step after applying a compressive force with a shearing force. The method for producing a biomass-based molded fuel according to claim 1, wherein the molded product shrinks due to the dissipation of moisture in the mixture (16) and air cooling by being released instantaneously.
JP2007221942A 2007-08-29 2007-08-29 Manufacturing method of biomass-based molded fuel Pending JP2009051985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007221942A JP2009051985A (en) 2007-08-29 2007-08-29 Manufacturing method of biomass-based molded fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007221942A JP2009051985A (en) 2007-08-29 2007-08-29 Manufacturing method of biomass-based molded fuel

Publications (1)

Publication Number Publication Date
JP2009051985A true JP2009051985A (en) 2009-03-12

Family

ID=40503341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007221942A Pending JP2009051985A (en) 2007-08-29 2007-08-29 Manufacturing method of biomass-based molded fuel

Country Status (1)

Country Link
JP (1) JP2009051985A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899346A (en) * 2009-05-25 2010-12-01 广州迪森热能技术股份有限公司 Biomass moulding fuel preparation method and system thereof
WO2011092906A1 (en) * 2010-01-28 2011-08-04 株式会社クリエイティブ Solid fuel
JP2011157550A (en) * 2011-02-09 2011-08-18 Creative Co Ltd Solid fuel
JP2011219505A (en) * 2010-04-02 2011-11-04 Jfe Engineering Corp Method for combusting chaff, method for gasifying chaff, method for converting chaff to fuel and chaff fuel
WO2015052759A1 (en) * 2013-10-07 2015-04-16 住友林業株式会社 System and method for treating vegetable oil effluent
CN106221845A (en) * 2016-08-19 2016-12-14 桂林福冈新材料有限公司 A kind of solid fuel
WO2017179603A1 (en) * 2016-04-15 2017-10-19 株式会社神戸製鋼所 Method for producing modified biomass
JP2017193696A (en) * 2016-04-15 2017-10-26 株式会社神戸製鋼所 Method for producing modified biomass
CN108165335A (en) * 2018-02-01 2018-06-15 中薪油武汉化工工程技术有限公司 Gasification of biomass calcium-replenishing biomass moulding raw material and its production method and system
JP2020186362A (en) * 2019-05-13 2020-11-19 バイ ホン メイBai, Hong Mei Method of producing solid biomass fuel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778492A (en) * 1980-10-28 1982-05-17 Toshihiko Maruyama Low sooty-smoke shaped coal
JPS57207697A (en) * 1981-06-15 1982-12-20 Toshihiko Maruyama Preparation of molded fuel
JPH0680976A (en) * 1992-09-02 1994-03-22 Taiyo Ltd Production of composite solid fuel composed of coal and vegetable matter
JP2003071417A (en) * 2001-08-30 2003-03-11 Kurimoto Ltd Compression molding method for plant wastes
JP2003129074A (en) * 2001-10-30 2003-05-08 Yunirekkusu Kk Production method for composite solid fuel and device therefor
JP2006282934A (en) * 2005-04-04 2006-10-19 Nippon Steel Corp Solid fuel and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778492A (en) * 1980-10-28 1982-05-17 Toshihiko Maruyama Low sooty-smoke shaped coal
JPS57207697A (en) * 1981-06-15 1982-12-20 Toshihiko Maruyama Preparation of molded fuel
JPH0680976A (en) * 1992-09-02 1994-03-22 Taiyo Ltd Production of composite solid fuel composed of coal and vegetable matter
JP2003071417A (en) * 2001-08-30 2003-03-11 Kurimoto Ltd Compression molding method for plant wastes
JP2003129074A (en) * 2001-10-30 2003-05-08 Yunirekkusu Kk Production method for composite solid fuel and device therefor
JP2006282934A (en) * 2005-04-04 2006-10-19 Nippon Steel Corp Solid fuel and its production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899346A (en) * 2009-05-25 2010-12-01 广州迪森热能技术股份有限公司 Biomass moulding fuel preparation method and system thereof
WO2011092906A1 (en) * 2010-01-28 2011-08-04 株式会社クリエイティブ Solid fuel
JP2011153257A (en) * 2010-01-28 2011-08-11 Creative Co Ltd Solid fuel
CN102725384A (en) * 2010-01-28 2012-10-10 株式会社创造 Solid fuel
JP2011219505A (en) * 2010-04-02 2011-11-04 Jfe Engineering Corp Method for combusting chaff, method for gasifying chaff, method for converting chaff to fuel and chaff fuel
JP2011157550A (en) * 2011-02-09 2011-08-18 Creative Co Ltd Solid fuel
WO2015052759A1 (en) * 2013-10-07 2015-04-16 住友林業株式会社 System and method for treating vegetable oil effluent
WO2017179603A1 (en) * 2016-04-15 2017-10-19 株式会社神戸製鋼所 Method for producing modified biomass
JP2017193696A (en) * 2016-04-15 2017-10-26 株式会社神戸製鋼所 Method for producing modified biomass
CN106221845A (en) * 2016-08-19 2016-12-14 桂林福冈新材料有限公司 A kind of solid fuel
CN108165335A (en) * 2018-02-01 2018-06-15 中薪油武汉化工工程技术有限公司 Gasification of biomass calcium-replenishing biomass moulding raw material and its production method and system
JP2020186362A (en) * 2019-05-13 2020-11-19 バイ ホン メイBai, Hong Mei Method of producing solid biomass fuel
US11920100B2 (en) 2019-05-13 2024-03-05 Hong Mei Bai Process for producing solid biomass fuel

Similar Documents

Publication Publication Date Title
JP2009051985A (en) Manufacturing method of biomass-based molded fuel
US8753410B2 (en) Method for producing fuel briquettes from high moisture fine coal or blends of high moisture fine coal and biomass
Sokhansanj et al. Binderless pelletization of biomass
Tumuluru et al. A technical review on biomass processing: densification, preprocessing, modeling and optimization
KR101389982B1 (en) Pellet manufacturing method and device using empty fruit bunch of palm
JP2019502013A (en) Biofuel
Liang et al. Physical and combustion properties of binder-assisted hydrochar pellets from hydrothermal carbonization of tobacco stem
AU2008255240B2 (en) Method of producing water-resistant solid fuels
US20130326938A1 (en) Methods of drying biomass and carbonaceous materials
WO2014144051A1 (en) Composite carbonaceous fuel compact
CN106675682B (en) A kind of dehydration upgrading of lignite prepares biomass coal technique
JP6161242B2 (en) Manufacturing method of mixed fuel
JP2011140610A (en) Method for producing composite fuel
RU127068U1 (en) TECHNOLOGICAL LINE FOR THE PRODUCTION OF FUEL BRIQUETTES
El-Sayed et al. Preparation and characterization of fuel pellets from corn cob and wheat dust with binder
RU2402598C1 (en) Method of obtaining solid biofuel from granular wood material
Phanphanich Pelleting characteristics of torrefied forest biomass
AU2012269743B2 (en) Process for upgrading low rank carbonaceous material
Gageanu et al. Experimental research on the process of pelleting salix viminalis depending on humidity and granulation
Tumuluru et al. Binding Mechanism, Densification Systems, Process Variables, and Quality Attributes
JP6283724B2 (en) Manufacturing method of mixed fuel
JP2020183494A (en) Method for producing biomass solid fuel
Obidziński The producing of the fuel pellets from a mixture of oat straw and potato pulp
JPS6116992A (en) Production of fuel briquette
JP6283723B2 (en) Manufacturing method of mixed fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305