[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009051955A - Method for producing masterbatch and rubber composition - Google Patents

Method for producing masterbatch and rubber composition Download PDF

Info

Publication number
JP2009051955A
JP2009051955A JP2007220595A JP2007220595A JP2009051955A JP 2009051955 A JP2009051955 A JP 2009051955A JP 2007220595 A JP2007220595 A JP 2007220595A JP 2007220595 A JP2007220595 A JP 2007220595A JP 2009051955 A JP2009051955 A JP 2009051955A
Authority
JP
Japan
Prior art keywords
rubber
silica
water glass
latex
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007220595A
Other languages
Japanese (ja)
Other versions
JP5594556B2 (en
Inventor
Yoshihiko Komori
佳彦 小森
Yoji Imoto
洋二 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2007220595A priority Critical patent/JP5594556B2/en
Publication of JP2009051955A publication Critical patent/JP2009051955A/en
Application granted granted Critical
Publication of JP5594556B2 publication Critical patent/JP5594556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a masterbatch in which a silica fine particle is uniformly dispersed in a rubber by mixing a rubber latex with water glass, departing from a conventional kneading method in which a bumbury's mixer etc. are used. <P>SOLUTION: This method for producing the masterbatch containing the fine particle silica and the rubber comprises mixing the fine particle silica of ≤100 nm produced from the water glass with a rubber latex of 100 parts by mass, so that the silica component becomes ≥5 parts by mass and ≤70 parts by mass, and then aggregating and solidifying a solid content by adding at least either an acid or a salt, wherein the pH of the water glass is adjusted to 9-11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はゴム製品の成形加工に用いられるゴム組成物に用いられるマスターバッチの製造方法およびそのマスターバッチを用いたゴム組成物に関する。   The present invention relates to a method for producing a masterbatch used for a rubber composition used for molding a rubber product and a rubber composition using the masterbatch.

従来、ゴムとシリカの組成物を製造する場合、固形ゴムと乾燥シリカをゴム練り工程を経て混合していた。天然ゴムでは原料はラテックスであり、凝固、乾燥して固形ゴムを得る。一方、シリカに湿式シリカを使用する場合、水ガラスから微粒子を作成し、濾過工程、乾燥工程を経て乾燥シリカを得る。シリカには通常、粒子径が20〜60nm程度の微粒子シリカを用いる。つまり、ゴム中に、補強剤としてのシリカを配合する方法としては、従来はバンバリーミキサ、オープンロール、ニーダーなどを用いて混練する、いわゆる混練法が採用されている。   Conventionally, when producing a rubber and silica composition, solid rubber and dry silica have been mixed through a rubber kneading step. In natural rubber, the raw material is latex, which is solidified and dried to obtain solid rubber. On the other hand, when using wet silica for silica, fine particles are prepared from water glass, and dried silica is obtained through a filtration step and a drying step. As the silica, fine particle silica having a particle diameter of about 20 to 60 nm is usually used. That is, as a method of compounding silica as a reinforcing agent in rubber, conventionally, a so-called kneading method in which kneading is performed using a Banbury mixer, an open roll, a kneader or the like is employed.

この混練法では固形ゴムとシリカを別々にラテックスおよび水ガラスから固形分を分離し、乾燥する工程を経るため製造効率がよくない。しかもシリカは、その表面にシラノール基を有しており、親水性を示すことから、一般に疎水性を示すゴムとの親和性が低い。しかも、シリカは自己凝集性が強いことからゴム中にシリカを均一に分散させることは容易ではない。   In this kneading method, solid rubber and silica are separately separated from the latex and water glass, and the process of drying is performed, so that the production efficiency is not good. Moreover, since silica has silanol groups on its surface and exhibits hydrophilicity, it generally has low affinity with rubber that exhibits hydrophobicity. Moreover, since silica has a strong self-aggregation property, it is not easy to uniformly disperse silica in rubber.

一方、ラテックスと水ガラスを液体状態で混合し、複合体を得る手法は既に報告されている。水ガラスをラテックスに混合しているものの、水ガラスから微粒子シリカが生成せず、シリカ成分が不定形な状態で凝集する傾向にある。したがって、ラテックスと水ガラスを単に混合しただけではシリカは微粒子としては存在せず、したがってゴム中にシリカ微粒子が均一に分散したゴム組成物を製造するのは困難である。   On the other hand, a method for obtaining a composite by mixing latex and water glass in a liquid state has already been reported. Although water glass is mixed with latex, fine particle silica is not generated from water glass, and the silica component tends to aggregate in an amorphous state. Therefore, silica is not present as fine particles simply by mixing latex and water glass, and therefore it is difficult to produce a rubber composition in which silica fine particles are uniformly dispersed in rubber.

なお特許文献1には、アクリロニトリルーブタジエンゴムラテックスと水ガラスを混合した後、このラテックスを酸にて滴下してゴム成分を凝固させることで、ケイ酸が微細な状態で分散したケイ酸ーNBR複合材料を製造する方法が開示されている。   In Patent Document 1, after mixing acrylonitrile-butadiene rubber latex and water glass, this latex is dropped with an acid to solidify the rubber component, thereby silicic acid-NBR in which silicic acid is dispersed in a fine state. A method of manufacturing a composite material is disclosed.

また特許文献2には、エポキシ化天然ゴムと水ガラスとを含む配合ラテックスを、酸または塩により凝固させてゴム組成物を製造する方法が開示されている。この製造方法において、シリカがゴム組成物中に凝集体を形成することなく微細にかつ均一に分散されることが記載されている。   Patent Document 2 discloses a method for producing a rubber composition by coagulating a compounded latex containing an epoxidized natural rubber and water glass with an acid or a salt. In this production method, it is described that silica is finely and uniformly dispersed without forming an aggregate in the rubber composition.

また、特許文献3には、水ガラスとゴムラテックスとの混合物を、酸を用いて共同沈殿させることにより、粗粒状の加硫可能な混合物を製造する方法が提案されている。しかし、一般に水ガラスをゴムラテックスに混合する方法ではシリカ成分が不定形な状態で凝集する傾向は解消できない。
特開2006−2011号公報 特開2007−2177号公報 特開昭47−1090号公報
Patent Document 3 proposes a method for producing a coarse-grain vulcanizable mixture by coprecipitation of a mixture of water glass and rubber latex using an acid. However, generally, the method of mixing water glass with rubber latex cannot eliminate the tendency of the silica component to aggregate in an amorphous state.
JP 2006-2011 JP 2007-2177 A JP 47-1090 A

本発明の目的は、バンバリーミキサーなどを用いる従来の混練法に換えて、ゴムラテックスと水ガラスの混合によりゴム中にシリカ微粒子が均一に分散したマスターバッチの製造方法を提供する。かかるマスターバッチを用いてモジュラス、伸びおよび硬度などの機械的強度に優れたゴム製品を得ることのできるゴム組成物を提供する。   An object of the present invention is to provide a method for producing a masterbatch in which silica fine particles are uniformly dispersed in rubber by mixing rubber latex and water glass, instead of the conventional kneading method using a Banbury mixer or the like. Provided is a rubber composition capable of obtaining a rubber product excellent in mechanical strength such as modulus, elongation and hardness using such a master batch.

本発明は、ゴムラテックス100質量に対して、水ガラスから製造される100nm以下の粒子径の微粒子シリカを、シリカ成分が5質量部以上で70質量部以下になるように混合した後、少なくとも酸または塩のいずれかを添加して固形分を凝固させて、微粒子シリカとゴムを含むマスターバッチの製造方法である。   In the present invention, 100 parts by mass of rubber latex is mixed with fine particle silica having a particle diameter of 100 nm or less produced from water glass so that the silica component is 5 parts by mass or more and 70 parts by mass or less, and then at least an acid. Or it is a manufacturing method of the masterbatch containing fine particle silica and rubber | gum by adding any of salt and solidifying solid content.

前記水ガラスは、pHが9〜11に調整されたものが微粒子シリカの製造に好適に使用される。そして微粒子シリカの粒子径は30nm以下のものが好ましい。そして前記ゴムラテックスは天然ゴムラテックスまたはエポキシ化天然ゴムが好適に使用される。   The water glass whose pH is adjusted to 9 to 11 is suitably used for producing fine particle silica. The particle diameter of the fine particle silica is preferably 30 nm or less. The rubber latex is preferably natural rubber latex or epoxidized natural rubber.

本発明は、前記製造方法で得られるマスターバッチを用いたゴム組成物に関する。   The present invention relates to a rubber composition using a master batch obtained by the production method.

本発明は従来の混練法に換えてゴムラテックスと微粒子シリカを含む水ガラスの水溶液を混合し、配合ラテックスを製造して、これを凝固してマスターバッチを製造する。そのため微粒子シリカがゴム中に均一に分散し、それを用いた加硫ゴム組成物は、モジュラス、伸びおよび硬度などの機械的強度に優れる。   In the present invention, instead of the conventional kneading method, an aqueous solution of water glass containing rubber latex and fine particle silica is mixed to produce a compounded latex, which is coagulated to produce a master batch. Therefore, the fine particle silica is uniformly dispersed in the rubber, and the vulcanized rubber composition using the silica is excellent in mechanical strength such as modulus, elongation and hardness.

また本発明のマスターバッチおよび、それを用いたゴム組成物はゴムラテックスと水ガラス水溶液を製造初期段階で混合するため、エネルギー消費量を大幅に減ずることができ、従来のゴム成分とシリカを別々に乾燥した後に混練りする方法に比べて、大幅なコストダウンになる。   Also, the masterbatch of the present invention and the rubber composition using the same mix the rubber latex and water glass aqueous solution at the initial stage of production, so that the energy consumption can be greatly reduced, and the conventional rubber component and silica are separated. Compared to the method of kneading after drying, the cost is greatly reduced.

本発明は、ゴムラテックス100質量に対して、水ガラスから製造される100nm以下の粒子径の微粒子シリカを、シリカ成分(SiO2)が5質量部以上で70質量部以下になるように混合した後、少なくとも酸または塩のいずれかを添加して固形分を凝集固化させて、微粒子シリカとゴムを含むマスターバッチの製造方法である。 In the present invention, 100 parts by mass of rubber latex was mixed with fine particle silica having a particle diameter of 100 nm or less produced from water glass so that the silica component (SiO 2 ) was 5 parts by mass or more and 70 parts by mass or less. Thereafter, at least either an acid or a salt is added to agglomerate and solidify the solid content, thereby producing a masterbatch containing fine particle silica and rubber.

<ゴムラテックス>
本発明において、ゴムラテックスは、天然ゴム(NR)、エポキシ化天然ゴム、スチレンとブタジエンとの共重合体(SBR)、スチレンとイソプレンとブタジエンとの共重合体(SBIR)、α−メチルスチレンとブタジエンとの共重合体(MSBR)、p−メチルスチレンとイソブチレンとの共重合体の臭素化物、アクリロニトリルとブタジエンとの共重合体(NBR)、アクリロニトリルとブタジエンとイソプレンとの共重合体(NBIR)、アクリロニトリルとイソプレンとの共重合体(NIR)、イソプレンゴム(IR)、イソブテンとイソプレンとの共重合体(IIR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、エチレンとプロピレンとジエンとの共重合体(EPDM)などが挙げられる。特に、天然ゴム(NR)またはエポキシ化天然ゴムが好適に使用される。
<Rubber latex>
In the present invention, the rubber latex includes natural rubber (NR), epoxidized natural rubber, a copolymer of styrene and butadiene (SBR), a copolymer of styrene, isoprene and butadiene (SBIR), α-methylstyrene, Copolymer of butadiene (MSBR), brominated product of copolymer of p-methylstyrene and isobutylene, copolymer of acrylonitrile and butadiene (NBR), copolymer of acrylonitrile, butadiene and isoprene (NBIR) Copolymer of acrylonitrile and isoprene (NIR), isoprene rubber (IR), copolymer of isobutene and isoprene (IIR), butadiene rubber (BR), chloroprene rubber (CR), ethylene, propylene and diene A copolymer (EPDM) etc. are mentioned. In particular, natural rubber (NR) or epoxidized natural rubber is preferably used.

前記エポキシ化天然ゴムは、天然ゴムを、例えば、過酸化水素とギ酸とで処理することにより、または、過酢酸で処理することにより、製造することができる。この反応により、天然ゴムの分子中に存在する二重結合がエポキシ化される。エポキシ化の構造は、プロトン核磁気共鳴スペクトル(1H−NMR)や赤外吸収スペクトル(IR)から明らかにすることができ、また、IRと元素分析の結果から、エポキシ基の含有割合(エポキシ化率)を測定することができる。 The epoxidized natural rubber can be produced by treating natural rubber with, for example, hydrogen peroxide and formic acid, or by treating with peracetic acid. This reaction epoxidizes the double bonds present in the natural rubber molecule. The structure of epoxidation can be clarified from proton nuclear magnetic resonance spectrum ( 1 H-NMR) and infrared absorption spectrum (IR), and from the results of IR and elemental analysis, the content of epoxy group (epoxy group) Conversion rate) can be measured.

エポキシ化率は、好ましくは、3〜70モル%以上であり、より好ましくは、5〜65モル%、さらに好ましくは、7〜60モル%である。本発明においては、エポキシ化率が上記範囲にあるエポキシ化天然ゴムを、2種以上混合して使用してもよい。   The epoxidation rate is preferably 3 to 70 mol% or more, more preferably 5 to 65 mol%, and still more preferably 7 to 60 mol%. In the present invention, two or more types of epoxidized natural rubber having an epoxidation rate within the above range may be used.

エポキシ化天然ゴムのエポキシ化率が、5モル%を下回ったときは、水ガラスから生成されるシリカ成分と相互作用する部位が少なくなって、ゴム組成物に所望の特性を付与することができなくなったり、ゴム組成物から形成されるゴム製品の機械的強度や動的機械特性を向上させる効果が不十分になったりするおそれが生じる。逆に、エポキシ化天然ゴムのエポキシ化率が、70モル%を上回ったときは、ゴム組成物の粘着性が大きくなりすぎて、ゴム弾性が損なわれたり、ガラス転移点が高くなりすぎて、低温での耐久性が低下したりするといったおそれや、混練機などの内壁に付着して機械的なブレンドが困難になるといったおそれが生じる。   When the epoxidation rate of the epoxidized natural rubber is less than 5 mol%, the number of sites that interact with the silica component generated from water glass is reduced, and desired properties can be imparted to the rubber composition. There is a risk that the effect of improving the mechanical strength and dynamic mechanical properties of the rubber product formed from the rubber composition may be insufficient. Conversely, when the epoxidation rate of the epoxidized natural rubber exceeds 70 mol%, the rubber composition becomes too sticky, the rubber elasticity is impaired, or the glass transition point is too high. There are fears that durability at low temperatures may be reduced, and that mechanical blending may be difficult due to adhesion to an inner wall of a kneader or the like.

但し、エポキシ化天然ゴム以外のゴムが、分子中に、ピリジル基、カルボキシル基、アミノ基、カルバモイル基またはN−ヒドロキシメチルカルバモイル基を有しているゴム(いわゆる、ピリジン変性ゴム、カルボキシ変性ゴム、アミノ変性ゴム、アミド変性ゴム)である場合には、かかる他のゴムのラテックスを、水ガラスとの共存下において酸または塩により凝固させた場合に、練り加工が不可能な微粉末状のゴム組成物が生成する場合があることから、上記他のゴムのラテックスの配合量は、ゴム組成物全体として練り加工が可能な状態を維持することのできる範囲で設定される。   However, the rubber other than the epoxidized natural rubber has a pyridyl group, carboxyl group, amino group, carbamoyl group or N-hydroxymethylcarbamoyl group in the molecule (so-called pyridine-modified rubber, carboxy-modified rubber, Amino-modified rubber or amide-modified rubber), when the other rubber latex is coagulated with an acid or salt in the presence of water glass, it is a finely powdered rubber that cannot be kneaded. Since the composition may be produced, the amount of the other rubber latex is set within a range in which the rubber composition as a whole can maintain a kneadable state.

なお、本発明においては、水ガラスと混合する前にゴムラテックスの2種類以上を混合するか、あるいは1種類のゴムラテックスと水ガラスの混合物に、酸または塩により凝固させる前に、前記配合ラテックス中に、他のゴムラテックスを配合することもできる。   In the present invention, before mixing with water glass, two or more kinds of rubber latex are mixed, or before mixing with one acid latex and water glass with an acid or salt, the compounded latex is mixed. Other rubber latex can also be mix | blended in it.

<水ガラス>
水ガラスは、通常、下記式で示される組成で表される。
Na2O・nSiO2・mH2
上記係数nは、SiO2/Na2Oの分子比で示される値であって、一般にモル比と呼ばれる(JIS K 1408-1966)に規定の範囲である。この係数nは、特に限定されないが、好ましくは、2.1〜3.1であり、より好ましくは、3.1である。上記係数nが3.1であるときは、水ガラス中のシリカ成分(SiO2換算量)が多くなることから、ゴムとの複合化処理の効率が向上する。
<Water glass>
The water glass is usually represented by a composition represented by the following formula.
Na 2 O · nSiO 2 · mH 2 O
The coefficient n is a value represented by a molecular ratio of SiO 2 / Na 2 O, and is a range specified in (JIS K 1408 -1966 ), generally called a molar ratio. Although this coefficient n is not specifically limited, Preferably it is 2.1-3.1, More preferably, it is 3.1. When the coefficient n is 3.1, the silica component (in terms of SiO 2 ) in the water glass increases, so that the efficiency of the composite treatment with rubber is improved.

なお、一般に、上記係数nが3.1である水ガラスは、水ガラス3号として市販されている。本発明に使用可能な水ガラスは、これに限定されるものではなく、例えば、JIS K1408に規定の1〜3号水ガラスや、その他各種のグレード品を使用することができる。   In general, the water glass having the coefficient n of 3.1 is commercially available as water glass No. 3. The water glass which can be used for this invention is not limited to this, For example, No. 1-3 water glass prescribed | regulated to JISK1408, and other various grade products can be used.

水ガラスの配合量は、水ガラスから生成されるシリカ成分についての、ゴム組成物中での含有量(SiO2換算量)が、後述する範囲となるように設定すればよい。 The amount of water glass, for the silica component which is generated from the water glass, the content of a rubber composition (SiO 2 equivalent amount) may be set to be in the range described below.

<微粒子シリカの生成>
前記水ガラスの水溶液を調整し、pHが好ましくは9〜11の範囲になるように調整する。pHが9未満の場合、ゲル化しやすく、pHが11を超えると微粒子シリカが溶解する傾向にある。好ましくはpHは9.5〜10.5の範囲に調整される。
<Formation of fine particle silica>
The aqueous solution of water glass is adjusted so that the pH is preferably in the range of 9-11. When the pH is less than 9, gelation tends to occur, and when the pH exceeds 11, the fine particle silica tends to dissolve. Preferably the pH is adjusted in the range of 9.5 to 10.5.

さらに水ガラスの水溶液の温度は10℃〜70℃に調整されることが望ましい。温度が10℃未満では、微粒子シリカの生成速度が遅く、温度が70℃を超えると、水溶液の水の蒸発が激しくなり、水溶液中の水ガラスの濃度が不安定となりやすい。水溶液の温度は、好ましくは15℃〜40℃の範囲である。   Furthermore, the temperature of the aqueous solution of water glass is desirably adjusted to 10 ° C to 70 ° C. If the temperature is less than 10 ° C., the production rate of fine-particle silica is slow, and if the temperature exceeds 70 ° C., the evaporation of water in the aqueous solution becomes violent and the concentration of water glass in the aqueous solution tends to become unstable. The temperature of the aqueous solution is preferably in the range of 15 ° C to 40 ° C.

また水溶液中の水ガラスに含まれるシリカ成分(SiO2)の濃度は、1質量%〜10質量%の範囲が好ましい。濃度が1質量%未満の場合、ゴムラテックスとの複合化のために大量の水ガラスの水溶液が必要となり10質量%を超えると、シリカの凝集が生じやすい。水溶液中のシリカ成分の濃度は、好ましくは1.5〜4質量%の範囲である。ただし、脱塩処理をした水ガラスを使用する場合、シリカの凝集は生じにくいため上記濃度の上限はより高くなる。 The concentration of the silica component (SiO 2 ) contained in the water glass in the aqueous solution is preferably in the range of 1% by mass to 10% by mass. When the concentration is less than 1% by mass, a large amount of water glass aqueous solution is required for complexing with the rubber latex, and when the concentration exceeds 10% by mass, silica aggregation tends to occur. The concentration of the silica component in the aqueous solution is preferably in the range of 1.5 to 4% by mass. However, when water glass that has been desalted is used, the upper limit of the concentration is higher because silica aggregation is less likely to occur.

反応時間は1時間〜72時間の範囲である。1時間未満では、微粒子シリカの生成が十分ではなく、約72時間で反応は終了する。好ましくは、室温において攪拌条件のもとで6〜24時間行われる。   The reaction time ranges from 1 hour to 72 hours. If it is less than 1 hour, the production of fine-particle silica is not sufficient, and the reaction is completed in about 72 hours. Preferably, it is performed at room temperature under stirring conditions for 6 to 24 hours.

上記方法で得られる微粒子シリカの粒子径は100nm以下、好ましくは30nm以下である。ここで粒子径の大きさは、水溶液のpH、シリカ成分の濃度、反応温度、反応時間などを調整することで任意に調整することができる。   The particle diameter of the fine particle silica obtained by the above method is 100 nm or less, preferably 30 nm or less. Here, the size of the particle diameter can be arbitrarily adjusted by adjusting the pH of the aqueous solution, the concentration of the silica component, the reaction temperature, the reaction time, and the like.

<微粒子シリカとゴムラテックスの混合>
次に前述の方法で生成した微粒子シリカを含む水溶液をゴムラテックスと混合し配合ラテックスを得る。その後、配合ラテックスが均一な溶液になるまで十分に攪拌する。ここでゴムラテックス中のゴム固形分は10質量%〜70質量%の範囲のものを使用することが好ましい。
<Mixing of fine particle silica and rubber latex>
Next, an aqueous solution containing fine particle silica produced by the above-described method is mixed with rubber latex to obtain a compounded latex. Thereafter, the mixed latex is sufficiently stirred until it becomes a uniform solution. Here, the rubber solid content in the rubber latex is preferably in the range of 10% by mass to 70% by mass.

一方、微粒子シリカを含む水溶液は、シリカ成分(SiO2換算量)の含有量が、ゴムラテックス100質量部に対して、5〜70質量部、好ましくは、5〜40質量部、より好ましくは、8〜35質量部である。シリカ成分(SiO2換算量)の含有量が、ゴムラテックス100質量部に対して5質量部未満の場合、マスターバッチとして使用する場合に、シリカの配合量が少なくなる。一方、シリカ成分(SiO2換算量)の含有量が、ゴムラテックス100質量部に対して70質量部を超えると、微粒子シリカのゴムラテックス中に均一分散が得られにくくなり、配合ラテックスを凝固した後のゴム組成物中の微粒子シリカの均一分散性が低下する。 On the other hand, the aqueous solution containing fine particle silica has a silica component (SiO 2 equivalent) content of 5 to 70 parts by weight, preferably 5 to 40 parts by weight, more preferably 100 parts by weight of rubber latex. It is 8-35 mass parts. When the content of the silica component (SiO 2 equivalent amount) is less than 5 parts by mass with respect to 100 parts by mass of the rubber latex, the amount of silica is reduced when used as a master batch. On the other hand, when the content of silica component (SiO 2 equivalent amount) exceeds 70 parts by mass with respect to 100 parts by mass of rubber latex, it becomes difficult to obtain uniform dispersion in the rubber latex of fine particle silica, and the compounded latex is coagulated. The uniform dispersibility of the fine particle silica in the later rubber composition is lowered.

<配合ラテックスの凝固>
前記微粒子シリカを含む水溶液をゴムラテックスと均一に混合した配合ラテックスを生成した後、これを凝固しゴム中に微粒子シリカが均一に分散したゴム組成物のマスターバッチを生成する。
<Coagulation of compounded latex>
A compounded latex is produced by uniformly mixing an aqueous solution containing the fine particle silica with a rubber latex, and then coagulated to produce a master batch of a rubber composition in which the fine particle silica is uniformly dispersed in the rubber.

配合ラテックスの凝固は、酸凝固、塩凝固、メタノール凝固などがあるが、ゴムラテックスと微粒子シリカを均一分散させて凝固するためには、酸凝固、塩凝固もしくはこれらの併用が好ましい。凝固させるための酸としては、硫酸、塩酸、蟻酸、酢酸などがある。また、配合ラテックスを凝固させるための塩としては、例えば、1価〜3価の金属塩、例えば塩化ナトリウム、塩化マグネシウム、硝酸カルシウム、塩化カルシウムなどのカルシウム塩などがある。   Solidification of the compounded latex includes acid coagulation, salt coagulation, methanol coagulation and the like, but acid coagulation, salt coagulation, or a combination thereof is preferable in order to coagulate the rubber latex and fine particle silica by uniform dispersion. Examples of the acid for coagulation include sulfuric acid, hydrochloric acid, formic acid, and acetic acid. Examples of the salt for coagulating the blended latex include monovalent to trivalent metal salts such as calcium salts such as sodium chloride, magnesium chloride, calcium nitrate, and calcium chloride.

ゴムラテックスに対して、シリカの配合量が少ない場合は金属塩の種類は問わないが、シリカの配合量が多い場合は1価、2価の金属塩、たとえば、塩化ナトリウム、塩化マグネシウムが好ましい。ここで3価の金属塩を用いた場合は、シリカ同士の凝集力が強すぎて最終的に微分散となりにくい。   When the amount of silica is small relative to the rubber latex, the type of metal salt is not limited, but when the amount of silica is large, monovalent and divalent metal salts such as sodium chloride and magnesium chloride are preferred. Here, when a trivalent metal salt is used, the cohesive force between silicas is too strong, and finally it is difficult to be finely dispersed.

<マスターバッチ>
上記配合ラテックスを凝固して得られたゴム組成物は、マスターバッチとして使用される。該マスターバッチはゴム組成物中に微粒子シリカが均一に分散しているので、その他のゴム成分、ゴム配合剤と混合した場合に得られる最終ゴム組成物においても微粒子シリカは均一に分散させることができる。
<Master batch>
The rubber composition obtained by coagulating the compounded latex is used as a master batch. In the master batch, since the fine particle silica is uniformly dispersed in the rubber composition, the fine particle silica can be evenly dispersed in the final rubber composition obtained when mixed with other rubber components and a rubber compounding agent. it can.

本発明の特徴は、水ガラスから微粒子シリカを作成し、乾燥させることなく、そのままラテックスと混合することにより、微粒子シリカが分散したゴム複合体を得ることができる。水ガラスを直接配合するのではなく、水ガラスのpHなどを調整して、まず微粒子シリカを作成する。そして微粒子シリカを含む水ガラス水溶液とゴムラテックを混合して得られる配合ラテックスに酸、塩などを添加して凝固させることで球状ゴムの周囲に微粒子シリカが取り囲んだ形態の複合体のマスターバッチが得られる。   A feature of the present invention is that a rubber composite in which fine particle silica is dispersed can be obtained by preparing fine particle silica from water glass and mixing it with latex without drying. Instead of directly blending water glass, the pH of the water glass is adjusted to prepare fine particle silica first. Then, by adding acid, salt, etc. to the blended latex obtained by mixing the water glass aqueous solution containing fine silica and rubber latex and coagulating it, a composite masterbatch in which fine silica is surrounded around the spherical rubber is obtained. It is done.

前記マスターバッチをゴム練練りすることで、シリカの微分散を一層改善することができる。微粒子シリカは球状形態であり隣接するシリカ粒子同士の結合力は凝集したシリカと比較して弱いため、ゴム練りの外力により容易にバラバラになるためと考えられる。該マスターバッチのゴム練りより得られるゴム組成物は、従来の乾燥シリカをゴムに配合したものと同等の強度が得られる。   By kneading the master batch with rubber, fine dispersion of silica can be further improved. The fine particle silica is in a spherical form, and the bonding force between adjacent silica particles is weaker than that of the agglomerated silica, so it is considered that the fine particles are easily separated by the external force of rubber kneading. The rubber composition obtained from the rubber kneading of the masterbatch has the same strength as that obtained by blending conventional dry silica with rubber.

従来の乾燥シリカをゴム組成物中に混合すると、シリカ粒子がバラバラに分散するのに対し、本発明のマスターバッチでは、微粒子シリカは、ほぼ葡萄の房の形態で存在する。これはラテックスが球状形態で、その隙間に微粒子シリカが侵入し凝集するためでゴム練り後も、その凝集体が完全にほぐれないためと考えられる。その結果、得られたマスターバッチの微粒子シリカは、さまざまな大きさの葡萄の房の形態で構成される。   When conventional dry silica is mixed into the rubber composition, the silica particles are dispersed apart, whereas in the masterbatch of the present invention, the fine particle silica is present in the form of cocoon bunches. This is presumably because the latex is in a spherical form, and the fine particle silica penetrates into the gaps and aggregates, so that the aggregates are not completely loosened even after rubber kneading. As a result, the resulting masterbatch particulate silica is configured in the form of bunches of various sizes.

<マスターバッチを用いたゴム組成物>
本発明のマスターバッチには、加硫製品の用途や要求される物性などに応じて、公知の添加剤を配合することができる。この添加剤としては、加硫剤、加硫促進剤、加硫促進助剤、充填剤、可塑剤、老化防止剤などがある。
<Rubber composition using masterbatch>
In the masterbatch of the present invention, known additives can be blended according to the use of the vulcanized product and the required physical properties. Examples of the additive include a vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, a filler, a plasticizer, and an antiaging agent.

加硫剤は、例えば、硫黄、トリメチルチオ尿素、N,N’−ジエチルチオ尿素などの有機含硫黄化合物などがある。これらを単独または2種以上の混合物として使用することができる。   Examples of the vulcanizing agent include organic sulfur-containing compounds such as sulfur, trimethylthiourea, and N, N′-diethylthiourea. These can be used alone or as a mixture of two or more.

加硫促進剤は、例えば、住友化学(株)製の商品名「ソクシノールDM」(MBTS)、同社製の「ソクシノールPX」(ZnEPDC)、同社製の「ソクシノールPZ」(ZnMDC)、同社製の「ソクシノールEZ」(ZnEDC)、同社製の「ソクシノールBZ」(ZnBDC)、同社製の「ソクシノールMZ」(ZnMBT)、同社製の「ソクシノールTT」(TMTD)等がある。これらは単独または2種以上の混合物として使用することができる。加硫促進助剤は、例えば亜鉛華などがある。   Vulcanization accelerators include, for example, the trade name “Soccinol DM” (MBTS) manufactured by Sumitomo Chemical Co., Ltd., “Soccinol PX” (ZnEPDC) manufactured by the Company, “Soccinol PZ” (ZnMDC) manufactured by the Company, There are “Soccinol EZ” (ZnEDC), “Soccinol BZ” (ZnBDC), “Soccinol MZ” (ZnMBT), “Soccinol TT” (TMTD), etc. These can be used alone or as a mixture of two or more. Examples of the vulcanization acceleration aid include zinc white.

加硫促進助剤は、例えば、ステアリン酸、オレイン酸、綿実脂肪酸等の脂肪酸、亜鉛華等の金属酸化物などがある。   Examples of the vulcanization acceleration aid include fatty acids such as stearic acid, oleic acid, and cottonseed fatty acid, and metal oxides such as zinc white.

充填剤としては、例えば、シリカ、カーボンブラック、カオリンクレー、ハードクレー、炭酸カルシウム、硫酸バリウム、ケイ藻土などが挙げられる。充填剤の配合量は、加硫製品に要求される機械的強度などに応じて決定される。水ガラスを含有させたことに伴う本発明の作用・効果が損なわれることのない範囲であれば、適宜配合することができる。前記シリカは特に限定されず従来よりゴム補強剤として慣用されているもの、例えば、乾式法シリカ、湿式法シリカ(含水ケイ酸)等から適宜選択して用いることができるが湿式法シリカが好適である。   Examples of the filler include silica, carbon black, kaolin clay, hard clay, calcium carbonate, barium sulfate, and diatomaceous earth. The blending amount of the filler is determined according to the mechanical strength required for the vulcanized product. If it is a range which does not impair the effect | action and effect of this invention accompanying containing water glass, it can mix | blend suitably. The silica is not particularly limited and can be appropriately selected from those conventionally used as rubber reinforcing agents, for example, dry process silica, wet process silica (hydrous silicic acid), etc., but wet process silica is preferred. is there.

本発明ではシランカップリング剤の配合が好ましい。たとえば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシ−エトキシ)シラン、β−(3,4−エポキシシクロヘキシル)−エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、ビス−(3−(トリエトキシシリル)プロピル)テトラスルフィド、ビス−(3−(トリエトキシシリル)プロピル)ジスルフィド、γ−トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、γ−トリメトキシシリルプロピルベンゾチアジルテトラスルフィド等がある。シランカップリング剤は、ゴム組成物に含有される微粒子シリカと追加配合されるシリカとの合計量を100部とした場合に、1〜20質量部とすることが好ましい。   In the present invention, a silane coupling agent is preferably blended. For example, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycine Sidoxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, Bis- (3- (triethoxysilyl) propyl) tetrasulfide, bis- (3- (triethoxysilyl) propyl) disulfide, γ-trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, γ-trimethoxysilylpropyl Examples include benzothiazyl tetrasulfide. The silane coupling agent is preferably 1 to 20 parts by mass when the total amount of fine particle silica contained in the rubber composition and additionally added silica is 100 parts.

可塑剤は、例えば、パラフィン系オイル、エステル系オイル、オレフィン系オイルなどが挙げられる。可塑剤の配合量は、ブリードの発生を防止しつつ、加工製品に要求される硬度などに応じて決定される。水ガラスを含有させたことに伴う本発明の作用、効果が損なわれることのない範囲であれば、適宜配合することができる。   Examples of the plasticizer include paraffinic oil, ester oil, and olefin oil. The blending amount of the plasticizer is determined according to the hardness required for the processed product while preventing the occurrence of bleeding. If it is a range which does not impair the effect | action and effect of this invention accompanying water glass being contained, it can mix | blend suitably.

老化防止剤は、例えば、2−メルカプトベンゾイミダゾールなどのイミダゾール類、例えば、フェニル−α−ナフチルアミン、N,N’−ジ−β−ナフチル−p−フェニレンジアミン、N−フェニル−N’−イソプロピル−p−フェニレンジアミンなどのアミン類、例えば、ジ−tert−ブチル−p−クレゾール、スチレン化フェノールなどのフェノール類などがある。   Anti-aging agents include, for example, imidazoles such as 2-mercaptobenzimidazole, such as phenyl-α-naphthylamine, N, N′-di-β-naphthyl-p-phenylenediamine, N-phenyl-N′-isopropyl- Examples include amines such as p-phenylenediamine, and phenols such as di-tert-butyl-p-cresol and styrenated phenol.

上記例示の添加剤以外に、マスターバッチを加工して得られる製品の用途などに応じて、例えば、顔料などを配合してもよい。本発明のマスターバッチを用いたゴム組成物を加硫成形するには、未加硫状態のマスターバッチを十分に素練りした後、加硫促進助剤、加硫促進剤などを配合して混練りし、次いで、加硫剤を配合して混練りを行い、所望の形状に成形した後に、加熱、加硫すればよい。なお、合成ゴムや天然ゴムは、上記したように、ラテックス状態で混合してもよいが、固形ゴムの状態で、上記素練り工程で混合することもできる。   In addition to the additives exemplified above, for example, pigments may be blended depending on the use of the product obtained by processing the master batch. In order to vulcanize and mold a rubber composition using the masterbatch of the present invention, an unvulcanized masterbatch is sufficiently masticated and then mixed with a vulcanization accelerator, a vulcanization accelerator, and the like. After kneading and then kneading with a vulcanizing agent, forming into a desired shape, heating and vulcanization may be performed. Synthetic rubber and natural rubber may be mixed in a latex state as described above, but can also be mixed in the mastication step in a solid rubber state.

以下に本発明を実施例および比較例に基づいて説明するが、本発明は実施例によって限定されるものではない。
実施例1
マスターバッチを、以下の工程にしたがって製造した。
The present invention will be described below based on examples and comparative examples, but the present invention is not limited to the examples.
Example 1
A master batch was produced according to the following steps.

<水ガラス水溶液の調整>
水ガラスとして富士化学(株)製の水ガラス3号(Na2O・nSiO2・mH2O、n=3.2)でシリカ成分(SiO2換算量)含有量28%相当のものを用いた。水ガラス水溶液のシリカ成分含有量(濃度)を2%とし、pH10に調整して25℃で24時間、攪拌を行った。その後シリカを取り出しTEM観察を行ったところ、直径約20nmの微粒子シリカが得られた。そのTEM観察写真を図1に示す。
<Preparation of water glass aqueous solution>
Water glass No. 3 (Na 2 O.nSiO 2 .mH 2 O, n = 3.2) manufactured by Fuji Chemical Co., Ltd. and having a silica component (SiO 2 equivalent) content equivalent to 28% is used as the water glass. It was. The silica component content (concentration) of the water glass aqueous solution was 2%, adjusted to pH 10, and stirred at 25 ° C. for 24 hours. Thereafter, the silica was taken out and subjected to TEM observation, whereby fine silica particles having a diameter of about 20 nm were obtained. The TEM observation photograph is shown in FIG.

<配合ラテックスの調整、凝固>
微粒子シリカを含む前記水ガラス水溶液に、NRラテックス(ハイアンモニアタイプ、ゴム成分60%)を混合して、配合ラテックスを調整した。ゴムラテックス分が100gに対してシリカ成分が10gになるように混合した。配合ラテックスが均一になるまで十分に攪拌した後、配合ラテックスを硫酸によりpH7に調整し、塩化アルミニウムを添加して凝固した。得られた固形物を濾過してゴム分を回収し純水で洗浄して乾燥した。
<Adjustment and coagulation of compounded latex>
NR latex (high ammonia type, rubber component 60%) was mixed with the water glass aqueous solution containing fine particle silica to prepare a compounded latex. The rubber latex was mixed so that the silica component was 10 g with respect to 100 g. After sufficiently stirring until the blended latex became uniform, the blended latex was adjusted to pH 7 with sulfuric acid, and solidified by adding aluminum chloride. The obtained solid was filtered to recover the rubber, washed with pure water and dried.

前記固形物を乾燥した後、マスターバッチを得た。このTEM観察写真を図2に示す。図2において、白い部分のゴムラテックスの周辺に黒い部分の水ガラス由来の微粒子シリカが分散している。微粒子シリカは、数μmを超える大きなシリカの凝集体は生成していないことが認められる。   After drying the solid, a master batch was obtained. This TEM observation photograph is shown in FIG. In FIG. 2, fine silica particles derived from water glass in a black portion are dispersed around a rubber latex in a white portion. It can be seen that the fine-particle silica does not produce large silica aggregates exceeding several μm.

<マスターバッチを用いたゴム組成物>
前記マスターバッチをロールで混練し、表1に示す配合剤(架橋剤、シランカップリング剤など)を添加してゴム組成物を得た。これを150℃で、10分間加硫し、加硫ゴムを作製した。加硫ゴムサンプルのTEM観察写真を図3に示す。図3ではミクロトームでサンプルの切片を切り出して観察した。なお、図2においても同様な観察を行った。
<Rubber composition using masterbatch>
The master batch was kneaded with a roll, and a compounding agent (crosslinking agent, silane coupling agent, etc.) shown in Table 1 was added to obtain a rubber composition. This was vulcanized at 150 ° C. for 10 minutes to produce a vulcanized rubber. A TEM observation photograph of the vulcanized rubber sample is shown in FIG. In FIG. 3, a sample section was cut out and observed with a microtome. Similar observations were made in FIG.

表1で使用した配合剤は以下のとおりである。
(注1)天然ゴム:NRラテックスを凝固させたゴム。
(注2)配合ラテックス:実施例1に基づき作製された配合ラテックスを用いた。
(注3)シリカ:デグサ社製ウルトラジルVN3グラニュータイプを用いた。
(注4)シランカップリング剤:デグサ社製のSi266を用いた。
(注5)ステアリン酸:日本油脂(株)社製のビーズステアリン酸、「椿」を使用した。
(注6)酸化亜鉛:三井金属鉱業社製の酸化亜鉛2種を使用した。
(注7)硫黄:鶴見化学工業社製の200メッシュ5%油入粉末硫黄を用いた。
(注8)加硫促進剤1:大内新興化学工業(株)製の「ノクセラーNS」を用いた。
(注9)加硫促進剤2:、住友化学(株)製の「ソクシノールD」を用いた。
The compounding agents used in Table 1 are as follows.
(Note 1) Natural rubber: Rubber obtained by coagulating NR latex.
(Note 2) Compounded latex: The compounded latex produced based on Example 1 was used.
(Note 3) Silica: Ultrazil VN3 granulated type manufactured by Degussa Co. was used.
(Note 4) Silane coupling agent: Si266 manufactured by Degussa was used.
(Note 5) Stearic acid: Beads stearic acid manufactured by Nippon Oil & Fats Co., Ltd., “Kashiwa” was used.
(Note 6) Zinc oxide: Two types of zinc oxide manufactured by Mitsui Metal Mining Co., Ltd. were used.
(Note 7) Sulfur: 200 mesh 5% oil-filled powder sulfur manufactured by Tsurumi Chemical Co., Ltd. was used.
(Note 8) Vulcanization accelerator 1: “Noxeller NS” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. was used.
(Note 9) Vulcanization accelerator 2: “Soxinol D” manufactured by Sumitomo Chemical Co., Ltd. was used.

<加硫ゴムシートの評価>
各実施例および比較例で得られた加硫ゴムシート(厚さ2mm)について、下記の物性を評価した。
(1) 機械的強度
JIS K 6251「加硫ゴムの引張試験方法」に準拠して、50%、100%、200%、300%伸び時における引張応力M50(MPa)、M100(MPa)M100(MPa)M300(MPa)破断時強度TB(MPa)および切断時伸びEB(%)を測定した。測定には、加硫ゴムシートをくり抜いて得られた試験片(ダンベル3号形)を使用し、測定条件は、温度23℃、引張速度500mm/分とした。
(2) 硬さ
JIS K 6253「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に準拠して、加硫ゴムシートのデュロメータ硬さ(タイプA)を測定した。
<Evaluation of vulcanized rubber sheet>
The following physical properties were evaluated for the vulcanized rubber sheets (thickness 2 mm) obtained in each Example and Comparative Example.
(1) Mechanical strength Based on JIS K 6251 “Tensile test method for vulcanized rubber”, tensile stress at 50%, 100%, 200%, 300% elongation M 50 (MPa), M 100 (MPa) M 100 (MPa) M 300 (MPa) Strength at break T B (MPa) and elongation at break E B (%) were measured. For the measurement, a test piece (dumbbell No. 3 type) obtained by hollowing out a vulcanized rubber sheet was used, and the measurement conditions were a temperature of 23 ° C. and a tensile speed of 500 mm / min.
(2) Hardness The durometer hardness (type A) of the vulcanized rubber sheet was measured according to JIS K 6253 “Method for testing the hardness of vulcanized rubber and thermoplastic rubber”.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明のマスターバッチおよび、それを用いたゴム組成物はゴムラテックスと水ガラス水溶液を製造初期段階で混合するため、エネルギー消費量を大幅に減ずることができ、またその加硫ゴム組成物は機械的強度に優れている。   Since the masterbatch of the present invention and the rubber composition using the same are mixed with a rubber latex and a water glass aqueous solution at the initial stage of production, the energy consumption can be greatly reduced. Excellent mechanical strength.

したがって、エネルギー消費の低減化とともに石油外資源製品の要請が高いタイヤ業界において、大幅な需要が期待できる。   Therefore, significant demand can be expected in the tire industry, where energy consumption is reduced and demand for non-petroleum resource products is high.

実施例1の水ガラス水溶液中の微粒子シリカのTEM写真を示す。The TEM photograph of the fine particle silica in the water glass aqueous solution of Example 1 is shown. 実施例1のマスターバッチのゴム組成物のTEM写真を示す。The TEM photograph of the rubber composition of the masterbatch of Example 1 is shown. 実施例1の加硫ゴム組成物のTEM写真を示す。The TEM photograph of the vulcanized rubber composition of Example 1 is shown.

Claims (5)

ゴムラテックス100質量に対して、水ガラスから製造される100nm以下の粒子径の微粒子シリカを、シリカ成分が5質量部以上で70質量部以下になるように混合した後、少なくとも酸または塩のいずれかを添加して固形分を凝固させて、微粒子シリカとゴムを含むマスターバッチの製造方法。   After mixing 100 mass of rubber latex with fine particle silica having a particle diameter of 100 nm or less produced from water glass so that the silica component is 5 parts by mass or more and 70 parts by mass or less, at least either acid or salt A method for producing a masterbatch containing fine particles of silica and rubber by solidifying the solid content by adding the above. pHが9〜11に調整された水ガラスから微粒子シリカが製造される請求項1記載の製造方法。   The manufacturing method of Claim 1 with which fine particle silica is manufactured from the water glass adjusted to pH 9-11. 微粒子シリカの粒子径が30nm以下である請求項1記載の製造方法。   The production method according to claim 1, wherein the particle diameter of the fine-particle silica is 30 nm or less. ゴムラテックスは、天然ゴムラテックスまたはエポキシ化天然ゴムである請求項1記載の製造方法。   The method according to claim 1, wherein the rubber latex is natural rubber latex or epoxidized natural rubber. 請求項1〜4の製造方法で得られるマスターバッチを用いたゴム組成物。   The rubber composition using the masterbatch obtained with the manufacturing method of Claims 1-4.
JP2007220595A 2007-08-28 2007-08-28 Method for producing masterbatch and rubber composition Active JP5594556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220595A JP5594556B2 (en) 2007-08-28 2007-08-28 Method for producing masterbatch and rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220595A JP5594556B2 (en) 2007-08-28 2007-08-28 Method for producing masterbatch and rubber composition

Publications (2)

Publication Number Publication Date
JP2009051955A true JP2009051955A (en) 2009-03-12
JP5594556B2 JP5594556B2 (en) 2014-09-24

Family

ID=40503314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220595A Active JP5594556B2 (en) 2007-08-28 2007-08-28 Method for producing masterbatch and rubber composition

Country Status (1)

Country Link
JP (1) JP5594556B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128211A1 (en) * 2009-05-07 2010-11-11 Just Jaakon Uunisuunnittelutoimisto Oy Vehicle tyre and method of its manufacture
JP2011079912A (en) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd Composite, rubber composition and pneumatic tire
JP2011084651A (en) * 2009-10-15 2011-04-28 Sumitomo Rubber Ind Ltd Composite, rubber composition and pneumatic tire
JP2012106912A (en) * 2010-10-19 2012-06-07 Sumitomo Rubber Ind Ltd Method for manufacturing silica, and rubber composition for tire
JP2012153763A (en) * 2011-01-24 2012-08-16 Sumitomo Rubber Ind Ltd Composite and method of manufacturing the same, rubber composition, and pneumatic tire
JP2012251086A (en) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd Silica-containing rubber master batch and rubber composition
JP2013166862A (en) * 2012-02-15 2013-08-29 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013185102A (en) * 2012-03-08 2013-09-19 Sumitomo Rubber Ind Ltd Complex, rubber composition, and pneumatic tire
JP2013545854A (en) * 2010-12-01 2013-12-26 株式会社ブリヂストン Method for producing a rubber mixture containing a reinforcing filler having a large specific surface area
WO2014038650A1 (en) 2012-09-07 2014-03-13 住友ゴム工業株式会社 Silica/styrene butadiene rubber composite body, method for producing same, rubber composition and pneumatic tire
EP2754689A1 (en) 2013-01-10 2014-07-16 Sumitomo Rubber Industries Limited Composite and method for producing the same, rubber composition, and pneumatic tire
JP2015193845A (en) * 2010-05-11 2015-11-05 住友ゴム工業株式会社 Composite body, and method for producing the same
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
US9926413B2 (en) 2015-07-15 2018-03-27 Cabot Corporation Methods of making an elastomer composite reinforced with silica and products containing same
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
CN110218375A (en) * 2018-03-02 2019-09-10 中国石油化工股份有限公司 Butadiene-styrene rubber/Nano carbon white composite material, vulcanizate and its preparation method and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482657A (en) * 1982-09-01 1984-11-13 Polysar Limited Silica-polymer mixtures
JPH11286577A (en) * 1998-03-31 1999-10-19 Nippon Zeon Co Ltd Production of rubber composition and rubber composition
JP2001213971A (en) * 2000-02-02 2001-08-07 Tokuyama Corp Method for manufacturing rubber comprising precipitated silicic acid
JP2002241507A (en) * 2000-12-12 2002-08-28 Jsr Corp Diene-based rubber/inorganic compound composite and method for producing the same and rubber composition containing the same
JP2003138025A (en) * 2001-11-06 2003-05-14 Tokuyama Corp Process for producing silica-filled rubber
JP2007002177A (en) * 2005-06-27 2007-01-11 Sumitomo Rubber Ind Ltd Rubber composition
JP2007002178A (en) * 2005-06-27 2007-01-11 Sumitomo Rubber Ind Ltd Hybrid filler, and rubber composition and resin composition each using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482657A (en) * 1982-09-01 1984-11-13 Polysar Limited Silica-polymer mixtures
JPH11286577A (en) * 1998-03-31 1999-10-19 Nippon Zeon Co Ltd Production of rubber composition and rubber composition
JP2001213971A (en) * 2000-02-02 2001-08-07 Tokuyama Corp Method for manufacturing rubber comprising precipitated silicic acid
JP2002241507A (en) * 2000-12-12 2002-08-28 Jsr Corp Diene-based rubber/inorganic compound composite and method for producing the same and rubber composition containing the same
JP2003138025A (en) * 2001-11-06 2003-05-14 Tokuyama Corp Process for producing silica-filled rubber
JP2007002177A (en) * 2005-06-27 2007-01-11 Sumitomo Rubber Ind Ltd Rubber composition
JP2007002178A (en) * 2005-06-27 2007-01-11 Sumitomo Rubber Ind Ltd Hybrid filler, and rubber composition and resin composition each using the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128211A1 (en) * 2009-05-07 2010-11-11 Just Jaakon Uunisuunnittelutoimisto Oy Vehicle tyre and method of its manufacture
JP2011079912A (en) * 2009-10-05 2011-04-21 Sumitomo Rubber Ind Ltd Composite, rubber composition and pneumatic tire
JP2011084651A (en) * 2009-10-15 2011-04-28 Sumitomo Rubber Ind Ltd Composite, rubber composition and pneumatic tire
JP2015193845A (en) * 2010-05-11 2015-11-05 住友ゴム工業株式会社 Composite body, and method for producing the same
JP2017066420A (en) * 2010-05-11 2017-04-06 住友ゴム工業株式会社 Composite and manufacturing method therefor
US9181355B2 (en) 2010-06-10 2015-11-10 Sumitomo Rubber Industries, Ltd. Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
JP2012106912A (en) * 2010-10-19 2012-06-07 Sumitomo Rubber Ind Ltd Method for manufacturing silica, and rubber composition for tire
JP2013545854A (en) * 2010-12-01 2013-12-26 株式会社ブリヂストン Method for producing a rubber mixture containing a reinforcing filler having a large specific surface area
JP2012153763A (en) * 2011-01-24 2012-08-16 Sumitomo Rubber Ind Ltd Composite and method of manufacturing the same, rubber composition, and pneumatic tire
JP2012251086A (en) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd Silica-containing rubber master batch and rubber composition
US9410033B2 (en) 2011-11-11 2016-08-09 Sumitomo Rubber Industries, Ltd. Rubber composition for undertread, and pneumatic tire
US9217075B2 (en) 2012-01-24 2015-12-22 Sumitomo Rubber Industries, Ltd. Rubber composition for tire, and pneumatic tire
JP2013166862A (en) * 2012-02-15 2013-08-29 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2013185102A (en) * 2012-03-08 2013-09-19 Sumitomo Rubber Ind Ltd Complex, rubber composition, and pneumatic tire
WO2014038650A1 (en) 2012-09-07 2014-03-13 住友ゴム工業株式会社 Silica/styrene butadiene rubber composite body, method for producing same, rubber composition and pneumatic tire
US9068060B2 (en) 2013-01-10 2015-06-30 Sumitomo Rubber Industries, Ltd. Composite and method for producing the same, rubber composition, and pneumatic tire
EP2754689A1 (en) 2013-01-10 2014-07-16 Sumitomo Rubber Industries Limited Composite and method for producing the same, rubber composition, and pneumatic tire
US10336890B2 (en) 2014-03-17 2019-07-02 Sumitomo Rubber Industries, Ltd. Rubber composition for studless winter tires, and studless winter tire
US9926413B2 (en) 2015-07-15 2018-03-27 Cabot Corporation Methods of making an elastomer composite reinforced with silica and products containing same
US10301439B2 (en) 2015-07-15 2019-05-28 Cabot Corporation Methods of making an elastomer composite reinforced with silica and products containing same
US10882964B2 (en) 2015-07-15 2021-01-05 Cabot Corporation Methods of making an elastomer composite reinforced with silica and products containing same
CN110218375A (en) * 2018-03-02 2019-09-10 中国石油化工股份有限公司 Butadiene-styrene rubber/Nano carbon white composite material, vulcanizate and its preparation method and application

Also Published As

Publication number Publication date
JP5594556B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5594556B2 (en) Method for producing masterbatch and rubber composition
JP3826301B2 (en) Modified calcium carbonate, polymer composition containing the same, and production method thereof
JP5216028B2 (en) Rubber composition for inner liner and pneumatic tire
JP6526072B2 (en) Composite and method for producing the same
JP5570152B2 (en) tire
JP4746989B2 (en) Silica-containing conjugated diene rubber composition and molded article
JP5394993B2 (en) COMPOSITE MANUFACTURING METHOD, RUBBER COMPOSITION, AND PNEUMATIC TIRE
JP2006342262A (en) Wet masterbatch rubber composition and tire
JP6863527B2 (en) Rubber composition for studless tires and studless tires using it
JP5851763B2 (en) COMPOSITE MANUFACTURING METHOD, RUBBER COMPOSITION, AND PNEUMATIC TIRE
JP5670768B2 (en) Composite, production method thereof, rubber composition and pneumatic tire
JP2009029961A (en) Masterbatch for rubber composition and its manufacturing method
JP5391022B2 (en) Composite, rubber composition and pneumatic tire
JP2017095569A (en) Manufacturing method of wet master batch and manufacturing method of tire
WO2020121788A1 (en) Rubber composition, rubber composition for tread, and pneumatic tire
JP5700063B2 (en) Rubber composition for tire
JP2004051774A (en) Rubber composition for tire tread and pneumatic tire using it
JP4782486B2 (en) Rubber composition and method for producing the same
JP4842569B2 (en) Rubber composition
JP5480585B2 (en) Composite, rubber composition and pneumatic tire
JP2006265400A (en) Method of manufacturing rubber composition and pneumatic tire using the same
JP4782487B2 (en) Hybrid filler, rubber composition and resin composition using the same
JP2006169321A (en) Method for producing scaly silica masterbatch and rubber composition containing the same
JP2014145033A (en) Rubber composition for inner liner and pneumatic tire
WO2024085032A1 (en) Master batch, method for producing master batch, rubber composition for tires, method for producing rubber composition for tires, rubber material for tires, and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5594556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250