JP2009048985A - Static eliminator using ion cloud which has self-running capability - Google Patents
Static eliminator using ion cloud which has self-running capability Download PDFInfo
- Publication number
- JP2009048985A JP2009048985A JP2007243030A JP2007243030A JP2009048985A JP 2009048985 A JP2009048985 A JP 2009048985A JP 2007243030 A JP2007243030 A JP 2007243030A JP 2007243030 A JP2007243030 A JP 2007243030A JP 2009048985 A JP2009048985 A JP 2009048985A
- Authority
- JP
- Japan
- Prior art keywords
- static
- ion
- self
- static electricity
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Elimination Of Static Electricity (AREA)
Abstract
Description
静電気除去に関する About static electricity removal
種々の技法が静電気対策として開発されているが、除電装置はその優れた特性により繊維・印刷・石油化学・粉体・バイオ・医療・ナノテク・セキュリティ・エレクトロニクス・等に用途が拡大され、いずれの業界でも重宝されている。その結果、対象となる静電気の種類と使用場所の多様性に対応して、種々の形式のものが市販されている。
しかしながら、基本原理は「発生させた除電用のイオンの再結合で静電気を中和消滅させる」であるから、除電装置の動作原理に関しては、人為的にイオンを発生させる、生じたイオンのうちの一部は静電気の一部を再結合で中和消滅させる、一部のイオンは静電気の一部と双極子的結合をおこない電界強度を低下させる、一部のイオンは荷電作用をおこない逆帯電を生じる、一部のイオンは大地に流出する、と定性的に説明するだけで、どの部分が再結合し、どの部分が双極子的結合を生じ、どの部分で逆帯電が生じるか定量的な説明はおこなわれていない。定量的説明をおこなうためには、学術的手法としてポアソンの式を解くことからはじめなければならないが、電荷分布を現場測定できる計器が得られていないので、いまのところ正解は得られない。やむを得ずダストフィギュアーやフィールドメーターで得られた測定値と障害発生状況とを勘案して除電装置の材質・形状・イオン発生原理等の改良と現場での使用条件の検討を進めている。
以上のようなことから、除電装置の改良とは、イオン発生様式としてのX線・紫外線・高電圧等の応用方法、電極材料と形状による寿命変化や除電効率の向上、気流やイオン輸送管による作用域の拡大または限定等が主となり、再結合によるイオンの消滅に関しては経験的な蓄積に依存してきた。実際問題として、これらの状況は各社のカタログ類から以下のように推察できる。
狭い場所から狙ったワークを確実に除電する小型設計、チューブ利用で除電エリアのレイアウト自由な回転自由のノズル方向、送風による誘導域の2倍化、攪拌したイオン空間のフィードバックによるイオンバランス、ノズル噴出による除塵と除電との一体化したエアーガン、性能抜群のX線除電等Various techniques have been developed as countermeasures against static electricity, but the static eliminator has expanded its application to textiles, printing, petrochemicals, powders, biotechnology, medical technology, nanotechnology, security, electronics, etc. It is also useful in the industry. As a result, various types are available on the market corresponding to the variety of static electricity types and locations of use.
However, since the basic principle is “neutralizing and extinguishing static electricity by recombination of generated static elimination ions”, regarding the operation principle of the static elimination device, artificial ions are generated out of the generated ions. Some neutralize and extinguish part of the static electricity by recombination, some ions dipolarly bond with part of the static electricity and lower the electric field strength, some ions charge and reverse charge A qualitative explanation that some of the ions that flow out to the earth are qualitative, and a quantitative explanation of which parts recombine, which part produces dipolar coupling, and which part causes reverse charging. Is not done. In order to give a quantitative explanation, we have to start by solving Poisson's equation as an academic method, but since we have not yet obtained an instrument that can measure the charge distribution in-situ, there is no right answer. Inevitably, the materials, shapes, ion generation principles, etc. of the static eliminator and the conditions of use in the field are being studied, taking into account the measured values obtained with dust figures and field meters and the occurrence of failures.
From the above, the improvement of the static eliminator means the application method such as X-ray, ultraviolet ray, high voltage, etc. as the ion generation mode, the life change by the electrode material and shape, the improvement of the static elimination efficiency, the air flow and the ion transport tube Mainly the expansion or limitation of the working range, and the disappearance of ions due to recombination has relied on empirical accumulation. As a matter of fact, these situations can be inferred from the catalogs of each company as follows.
Compact design that reliably removes static electricity from a narrow space, tube-free discharge area layout using tubes, rotation-free nozzle direction, doubling of the induction area by air blowing, ion balance by stirring ion space feedback, nozzle ejection Air gun with integrated dust removal and static elimination, excellent X-ray static elimination, etc.
(1)(財)日本電子部品信頼性センター発行 第16回信頼性・ESD対策技術展示会技術資料集 2006.11
(2)静電気ハンドブック 静電気学会編 2000.11.(1) Issued by Japan Electronic Components Reliability Center 16th Reliability / ESD Countermeasure Technology Exhibition Technical Documents 2006.11.
(2) Electrostatic Handbook, Japan Electrostatics Society, 2000.11.
除電装置の動作に関する学術的な正解の有無に関係なく、評価方法と適正な使用方法をメーカーは要求される。関係者が種々検討した結果、帯電プレートモニター法が除電装置の性能評価方法として現在公認されている。
帯電プレートモニター法とは15cm×15cmの平行平板電極で20PFのコンデンサーを形成し、直流電圧で充電したものを静電気と見倣し、除電装置で除電したときの電位の減衰を特性とするもので、以下のような潜在的な問題が残されている。
(1)導体の電位は接地等で0にすることができる。しかし、絶縁物では、それの全体を0電位にすることは特別の場合を除き不可能に近い。
(2)導体であれば、電位を0にすれば電荷量も0になる。絶縁物の場合には、正電荷の和と負電荷の和が0であれば帯電量は形式的に0であるが、静電気の作用は0にならない。
すなわち、導体と不導体とでは、電位・電荷量・電界・静電容量の意味が異なる。それゆえに、帯電プレートモニターで評価した除電装置の性能では、デバイスのような微細加工された複合材の除電に必要な性能を評価することができないので、除電とは「帯電体の電位を0またはそれに近い値に近づける」を廃し、「帯電体のいずれの場所でも電荷密度を0またはそれに近づける」に変更し、それに基づいて設計・施行及び評価をおこなうことが必要となる。Regardless of whether there is an academic correct answer regarding the operation of the static eliminator, manufacturers are required to have an evaluation method and proper usage. As a result of various studies by related parties, the charged plate monitoring method is now officially recognized as a method for evaluating the performance of static eliminators.
The charged plate monitoring method is characterized by forming a 20 PF capacitor with 15 cm x 15 cm parallel plate electrodes, charging a DC voltage as a static charge, and reducing the potential when the charge is removed by a static eliminator. The following potential problems remain:
(1) The potential of the conductor can be reduced to 0 by grounding or the like. However, in the case of an insulator, it is almost impossible to make it zero potential except in special cases.
(2) In the case of a conductor, if the potential is set to 0, the charge amount is also reduced to 0. In the case of an insulator, if the sum of positive charges and the sum of negative charges is 0, the charge amount is formally 0, but the effect of static electricity is not 0.
That is, the meanings of potential, charge amount, electric field, and capacitance differ between conductors and nonconductors. Therefore, the performance of the static eliminator evaluated by the charged plate monitor cannot evaluate the performance required for static elimination of a finely processed composite material such as a device. It is necessary to abolish “approach to a value close to that” and change it to “adjust the charge density to 0 or close to any place on the charged body” and perform design, implementation and evaluation based on it.
静電気がつくる電気力線に沿って除電用イオンは移動し、正イオンは負の静電気に、負イオンは正の静電気に吸引付着して静電気を中和消滅させる除電装置であれば、除電に関する経験的知識がなくても良質の除電が可能となる。 If you have a static eliminator that neutralizes and eliminates static electricity by moving the static elimination ions along the electric lines of force, positive ions are attracted to negative static electricity, negative ions are attracted to positive static electricity, High quality static elimination is possible without knowledge.
帯電体のいずれの場所でも電荷密度が0またはそれに近い状態になるように除電用イオンが進行するためには、必要量の除電用イオンが必要な場所に移動する自走力を保持させることが必要である。除電用イオンはクーロン力等によって吸引方向または反撥方向に自走力を得る。したがって、吸引力と反発力を適宜組み合わせると自走力の方向と大きさは決まる。また、自走力を得たイオンは慣性の法則で障害がない限り自走力を維持する。したがって、除電用イオンの必要量を設定し、自走力を調整すればいずれの場所も電荷密度が0またはそれに近い除電が可能となる。
なお、自走力をイオンに付与する方法としては、イオン雲に衝撃圧力を付与すると空気力学でイオン雲が噴出自走する、正または負の電荷を供電した電極とイオンとの間の吸引力または反発力を利用して自走力を付与する、生じたイオン相互の反撥または吸引力で自走力を発生する、光圧力でイオンに自走力を保持させる、圧電トランス等の超音波でイオン発生と自走力を発生させる等種々の方法がある。In order for the charge-removing ions to proceed so that the charge density is 0 or close to it at any place on the charged body, it is necessary to maintain the free-running force that moves the required amount of charge-removing ions to the required place. is necessary. The ion for static elimination obtains a self-running force in the suction direction or the repulsion direction by Coulomb force or the like. Therefore, the direction and magnitude of the self-propelled force are determined by appropriately combining the attractive force and the repulsive force. Moreover, the ion which acquired self-propelled power maintains self-propelled power unless there is an obstacle by the law of inertia. Therefore, if the necessary amount of ion for static elimination is set and the self-running force is adjusted, the charge density can be zero or close to that at any place.
In addition, as a method of imparting self-propelled force to ions, when an impact pressure is applied to the ion cloud, the ion cloud is ejected by aerodynamics and self-propelled, and the attractive force between the positively or negatively charged electrode and the ion Or use self-propelling force by using repulsive force, generate self-propelling force by repulsion or suction force of the generated ions, keep the ion self-propelling force by light pressure, ultrasonic waves such as piezoelectric transformer There are various methods such as generating ions and free-running force.
以上の発明の実施は、図1、図2および図3の基本要素とこれを現場使用するための付属的部分とで構築されることになる。図1は除電用イオンを搬送するための気流を使用しない、除電装置自体も気流を生じない、除電装置からの漏洩電界はない、しかし、遠方に除電用イオンは自力で移動できるという本発明の動作の説明図で、実用機としての付属的なものは図面では省略している。
図中の1は高電圧を印可した針状電極である。ただし、使用目的によって、線状、円板状、円筒状等に変形する必要がある。また、イオン発生源は図1ではコロナ放電であるが、X線・α線等の放射線や衝撃波等を使用する場合がある。2は高電圧電源で電極1にコロナ放電を発生させる電力を供給する。3は電極1との間にコロナを発生させるための接地電極で、図1では針電極1と同心円的に配置される。4は除電装置の外形構造をかねて電極1と3及び衝撃圧力を発生させる装置5を保持し、かつ、密閉状態のイオン空間6を形成する容器である。7は針端のコロナ発生部で、イオンは電極1と接地電極3との間の空間8を充満させる。
この状態で、衝撃圧力が圧力発生装置5によりイオン空間6と8に印加されると、空気力学でよく知られているように、図2のようなリング状のイオン塊が8から回転しながら外部に放出され、リングは自走を開始する。
図2は放出されたイオンの状態を示す図で、9はイオン塊、10はイオン塊の回転方向、11はイオン塊の自走方向である。
実際には、用途によって、電極3の形状は長方形、スリット状、三角形等にする場合があり、それに応じて電極1や衝撃圧力発生装置5や容器形状等は適宜設計変更する必要がある。
つぎに、図3は除電用イオンの電気力で除電用イオンが被除電物に到達するように除電イオンを動作させる本発明の説明図で、走行するフィルムの場合を例として説明する。
図3(1)で、12は帯電したフィルム、13・14は本発明の自走力を有する除電用イオン発生装置で、13が正イオンであれば14は負イオンを発生させるように極性は13と14とでは反対になるように電源を接続する。ただし、直流でも交流でもよい。15・17・19はイオン発生機13から発生したイオン塊、16・18・20はイオン発生機14から発生したイオン塊である。図3(2)では、12は帯電したフィルム、21と22は従来の除電装置で21と22は極性が正反対である。ただし、電源は直流でも交流でもよい。また、21・22は超音波による衝撃電離を利用した除電装置でもよい。
図3の除電装置の動作は以下のようにおこなわれる。
図3(1)でイオン発生装置13・14で生じたイオン塊は自走力でフィルムの進行方向(矢印)に追走し、その間、正負のイオン間のクーロン力でフィルム表面に進行し、フィルムを除電する。図3(2)の場合も除電用イオンのクーロン力でフィルムに到達し、ほぼ完全に除電する。ただし、除電装置のイオン供給力が弱いときには並列で使用することになる。
なお、このような正負イオンの対称的供給では、正負イオンの方向が180°異なるので、外乱に対しては相殺的となる。また、図3(1)で14を省略すると、イオン塊15・17・19は自身のイオン間の反撥力で半径方向に拡散し、フィルムに自力で到達する。
つぎに、図4は図3の本発明を製品化した場合の一例で、正と負のイオンのクーロン力で被除電物へ除電用イオンを到達させるかわりに、除電用イオンの映像力で除電用イオンを被除電物へ到達させる場合で、帯電したフィルムを例として説明する。
図4で12は帯電したフィルム、14は除電装置、16、18、20は除電装置から放出された除電用イオン塊、23は接地された導体で、この場合は平面状で、イオン塊に映像を生じさせ、イオンと映像との間の力でフィルム方向への自走力をイオンに発生させる。なお、23のかわりにいくつかの電極を設け、これに適切な荷電をおこなうことによってイオン流の大きさと自走方向を制御し高度の除電をおこなうことが本発明の目的である。The implementation of the above invention will be constructed with the basic elements of FIGS. 1, 2 and 3 and the additional parts for field use thereof. FIG. 1 does not use an air flow for transporting ions for discharging, the discharging device itself does not generate an air flow, there is no leakage electric field from the discharging device, but the discharging ions can move by themselves by a distance. In the explanatory diagram of the operation, the accessory as a practical machine is omitted in the drawing.
In this state, when an impact pressure is applied to the
FIG. 2 is a diagram showing the state of the released ions, where 9 is the ion mass, 10 is the direction of rotation of the ion mass, and 11 is the free-running direction of the ion mass.
Actually, the shape of the
Next, FIG. 3 is an explanatory view of the present invention in which the static elimination ions are operated so that the static elimination ions reach the static elimination object by the electric force of the static elimination ions, and the case of a traveling film will be described as an example.
In FIG. 3 (1), 12 is a charged film, 13 and 14 are neutralization ion generators having self-propelled power of the present invention, and if 13 is a positive ion, the polarity is such that 14 generates a negative ion. The power supply is connected so that 13 and 14 are opposite. However, direct current or alternating current may be used.
The operation of the static eliminator of FIG. 3 is performed as follows.
In FIG. 3 (1), the ion masses generated by the
In addition, in such a symmetrical supply of positive and negative ions, since the directions of the positive and negative ions differ by 180 °, it becomes counterbalance to disturbance. If 14 is omitted in FIG. 3 (1), the
Next, FIG. 4 is an example of the case where the present invention of FIG. 3 is commercialized, and instead of using the Coulomb force of positive and negative ions to reach the object to be neutralized, the static electricity is removed by using the image power of the static ion. A case where a charged film is made to reach the object to be discharged will be described as an example.
In FIG. 4, 12 is a charged film, 14 is a static eliminator, 16, 18 and 20 are ion masses for neutralization discharged from the static eliminator, and 23 is a grounded conductor. And a self-propelled force in the film direction is generated in the ions by the force between the ions and the image. It is an object of the present invention to provide a high degree of static elimination by controlling the magnitude and free-running direction of the ion flow by providing several electrodes instead of 23 and appropriately charging them.
図5はICトレー・CD/DVDの表面の除電・LCDモジュール圧接部等の除電に汎用されているクリーンエアー噴出高周波型薄型除電装置とほぼ同じ用途に本発明を使用した場合で、図はICトレーの除電の説明図で実務的な諸部分は省略してある。
図5で、24は作業台、25はICトレー・26は本発明の除電装置で、27はクリーンエアー供給用パイプ、28はイオン塊進行方向である。なお、27のクリーンエアー供給管は原理としては不必要であるが、IC関係では無塵状態が重要であるから、イオン塊が無塵状態であるように図1の6・8のイオン発生空間及び除電用イオン塊を無塵状態に維持するために実用時に付加するものである。FIG. 5 shows the case where the present invention is used for almost the same application as a clean air jet high-frequency thin type static eliminator widely used for static elimination on the surface of an IC tray, CD / DVD, LCD module pressure contact part, etc. Practical parts are omitted in the illustration of the tray static elimination.
In FIG. 5, 24 is a work table, 25 is an IC tray, 26 is a static eliminator of the present invention, 27 is a pipe for supplying clean air, and 28 is a direction of ion mass travel. The clean
IC関係では無塵状態ですべての作業がおこなわれるが、クリーンエアーは高価であるがため、エアーの節約が至上命令である。本発明はエアーをジェットで噴出することなく回転リングとして放出するので、従来は5l/minが最小と称されている噴出エアーを0.5l/min以下に節約することができた。また、本発明では噴出気流によるイオン密度の不均一が生じないので均一除電が可能となった。 Although all work is performed in a dust-free state in relation to ICs, clean air is expensive, so air saving is the utmost command. According to the present invention, air is discharged as a rotating ring without being jetted out by a jet, so that it was possible to save the blown air, which is conventionally referred to as 5 l / min minimum, to 0.5 l / min or less. Further, in the present invention, since the non-uniform ion density due to the jet airflow does not occur, uniform static elimination is possible.
図6は作業空間全体を一様除電しなければならない作業場、たとえば偏光板製造工場・自動車塗装工場・複写機組立工場・プラスチック工場等では清掃時等に舞い上がる帯電した微粒子が仕掛品に再付着することから生じる不良率が高い。この様なところでは広範囲に無風で除電用イオンを広範囲に撒布しなければならない。図6は本発明の実施例で、除電装置を直列的・並列的に作業に支障のないように配置する。図6で、29は除電装置をとりつける支柱、30、31、32、・・・は除電装置である。図では支柱は大地に直立状であるが用途によって適宜に配置を選択することは当然である。 FIG. 6 shows a work place where the entire work space must be uniformly charged, for example, a polarizing plate manufacturing factory, an automobile painting factory, a copying machine assembly factory, a plastic factory, and the like. The defect rate resulting from this is high. In such a place, it is necessary to distribute ions for static elimination in a wide range without wind. FIG. 6 shows an embodiment of the present invention, in which static eliminators are arranged in series and in parallel so as not to hinder the work. In FIG. 6,
仕掛品の除塵・除電をガスコンロメーカーの塗装工程に使用したところ、従来品に比べ不良率が1/10に減少した。さらに、正イオン用除電装置と負イオン用除電装置を対称的に配置したところ、正負イオンの再結合で重量増加した浮游粒子は沈降速度が大となり、不良率は1/100に減少した。 When the work-in-process dust removal and charge removal were used in the gas stove maker's painting process, the defect rate decreased to 1/10 compared to the conventional product. Further, when the positive ion neutralization device and the negative ion neutralization device were arranged symmetrically, the floating particles whose weight increased due to recombination of positive and negative ions had a large sedimentation rate, and the defect rate decreased to 1/100.
図7は凹凸面の除電に本発明を利用した場合の説明図で、従来の方法では充分な除電ができなかった凹凸面の凹部の除電を可能にするものである。図7で33は凹凸面を有する帯電体、34は除電装置が発生した回転リング状の除電用イオン、35はイオンの自走方向、36と37は表面の凸部、38は表面の凹部である。なお、図中のlはリングの厚み、Lは凹部の幅、rはリング半径である。
従来の除電装置が供給するイオンは帯電体の上面を覆う形となるので、イオンは36や37の凸部に集中し、38の凹部には到達しなかった。本発明の除電イオンはリング状で、リング厚みlが凹部の幅Lより小さいと、電気力線は凹部の底面38に到達するので除電が可能となる。なお、リング厚みは衝撃圧力幅に比例するので、圧力発生は急激なパルス圧発生器による。また、リングは矢印方向に進行中にリング半径rを拡大し、速度を低下させながら矢印方向に進行する。それゆえに、幅Lとそれの深さによってリングの初速度と半径を調節するようにイオン発生装置のイオン量、圧力、等を設計することは当然である。以上のように、凹部の除電とは凹部に除電イオンを輸送することであるから、図3のような除電装置の配置が効力を増進させる。FIG. 7 is an explanatory diagram in the case where the present invention is used for static elimination of an uneven surface, and enables neutralization of a concave portion of an uneven surface that could not be sufficiently eliminated by a conventional method. In FIG. 7, 33 is a charged body having an uneven surface, 34 is a rotating ring-shaped ion for neutralization generated by a static eliminator, 35 is a direction of ion self-running, 36 and 37 are surface protrusions, and 38 is a surface recess. is there. In the figure, l is the thickness of the ring, L is the width of the recess, and r is the ring radius.
The ions supplied by the conventional static eliminator cover the upper surface of the charged body. Therefore, the ions are concentrated on the
従来困難であった凹凸面の除電や組立後の立体的な細部の除電が可能となった。基盤上LEDの放電破壊防止に使用したところ、破壊が0となった。また、リレー生産でも不良率が0となった。 It has become possible to remove static electricity on uneven surfaces, which has been difficult in the past, and three-dimensional details after assembly. When used to prevent discharge breakdown of LEDs on the substrate, the breakdown was zero. In relay production, the defect rate was zero.
図8は成型品やフィルム等の剥離時の静電気除去に本発明を利用した場合の説明図で、図8はフィルムの剥離時を示すものである。図8で、39は型台、40は剥離するフィルム、41は除電装置、42は自走する除電用イオンリングである。43は剥離中の部所である。なお、図のような固定型からの剥離であれば剥離場所は41の除電装置の側から剥離に向かって遠ざかるので、リング走行方向42は動作に応じて角度変更が必要な場合がある。ただし、ロール引きされるような場合の剥離では剥離位置は定位置となる。 FIG. 8 is an explanatory diagram in the case where the present invention is used for removing static electricity when peeling a molded product or a film, and FIG. 8 shows the time when the film is peeled off. In FIG. 8, 39 is a mold base, 40 is a film to be peeled, 41 is a static eliminating device, and 42 is a self-running ion ring for static elimination. 43 is a part during peeling. In the case of peeling from a fixed mold as shown in the figure, the peeling location moves away from the static elimination device side of 41 toward the peeling, and therefore the
剥離直後の箇所にイオンリングのみが供給されるので、従来の除電装置に比べると残留電荷がほとんど生じない。ダストフィギュアー法で残留電荷をしらべたところ、残留電荷のない良質の除電であった。 Since only the ion ring is supplied to the location immediately after peeling, there is almost no residual charge compared to the conventional static eliminator. When the residual charge was investigated by the dust figure method, it was a high-quality charge removal with no residual charge.
フィルム製造工程で延伸したフィルムの静電気除去に図3のように本発明の除電装置を配置して除電用イオンのクーロン力で除電するよう装置を配置した。 The static eliminator of the present invention was arranged as shown in FIG. 3 to remove static electricity from the film stretched in the film manufacturing process, and the apparatus was arranged so as to eliminate static electricity by the Coulomb force of the ion for static elimination.
除電後のフィルムのダストフィギュアーを作成したところ、ダストの付着がなかった。従来のものとは格段に質のよい除電となった。 When the dust figure of the film after static elimination was created, there was no dust adhesion. The static charge was much better than the conventional one.
図9は粉体装置・液体攪拌反応装置等の静電気の除電に本発明を利用した場合の説明図で、図は攪拌反応槽に使用した場合である。図9で、44は攪拌翼、45は攪拌される液体・46は反応槽・47は本発明の除電装置である。一般に粉体をバッグフィルターで捕集するとき、反応槽で絶縁性の液体を攪拌するとき等には強い静電気が発生し、種々の障災害を生じる。すなわち、反応槽では、容器や攪拌翼が腐食されないようにガラスライニング等のコーティングを施しているが、コーティング面が静電気で破損する。また、可燃物であれば静電気放電で着火する等の障災害となる。本発明のようにイオン塊を自走力で液面に到達させると静電気は中和消滅し、槽の破壊や着火爆発が防止できる。 FIG. 9 is an explanatory diagram of the case where the present invention is used for static electricity neutralization of a powder device, a liquid stirring reaction device, etc., and the drawing is a case where the present invention is used in a stirring reaction tank. In FIG. 9, 44 is a stirring blade, 45 is a liquid to be stirred, 46 is a reaction tank, and 47 is a static eliminator of the present invention. In general, when collecting powder with a bag filter or when stirring an insulating liquid in a reaction tank, strong static electricity is generated, which causes various obstacles. That is, in the reaction tank, a coating such as glass lining is applied so that the container and the stirring blade are not corroded, but the coating surface is damaged by static electricity. Moreover, if it is a combustible material, it will become a disaster, such as being ignited by electrostatic discharge. When the ion mass reaches the liquid surface by self-propelling force as in the present invention, the static electricity is neutralized and extinguished, and the destruction of the tank and the ignition explosion can be prevented.
反応槽に利用したところ、コーティング面の静電損傷がなくなった。また、可燃物の場合、静電気放電が生じないので着火が生じなくなった。粉体攪拌の場合には静電凝集がなくなった。 When used in a reaction vessel, electrostatic damage to the coating surface disappeared. In the case of combustible materials, there was no ignition because no electrostatic discharge occurred. In the case of powder agitation, electrostatic aggregation disappeared.
図10は粉体やペレット等のパイプ輸送等に本発明を利用した場合の説明図で、48はパイプ壁、49と50は本発明の除電装置で、輸送用パイプ径が大になる程除電装置の数は増加する。51はパイプ輸送中の粉体雲、52は除電用イオン、53はパイプに流入する粉体流、54は流出する粉体流である。粉体はパイプ壁と衝突まさつ帯電しながら矢印方向に移動し、サイロやバグフィルターまたは容器に流入するので、帯電していると静電気障災害を生じる。
静電気を0にすればよいので、本発明の除電装置でパイプ輸送中の粉体雲に除電用イオンを混合した。FIG. 10 is an explanatory view when the present invention is used for transporting pipes of powder, pellets, etc., 48 is a pipe wall, 49 and 50 are neutralization devices of the present invention, and the neutralization is carried out as the transportation pipe diameter increases. The number of devices increases. 51 is a powder cloud during pipe transportation, 52 is a static elimination ion, 53 is a powder flow flowing into the pipe, and 54 is a powder flow flowing out. The powder moves in the direction of the arrow while being charged against the pipe wall, and flows into the silo, bag filter or container.
Since it is sufficient to reduce the static electricity to 0, ions for static elimination were mixed with the powder cloud during pipe transportation by the static eliminator of the present invention.
従来の針状電極からコロナを発生させる除電装置では、コロナ発生部に粉体等が蓄積されるので、メンテナンスが難しかった。また、イオン雲の粉体への除電作用は均一でなかったことから種々の問題が生じた。
本発明の除電装置では、図1のイオン空間6と8への粉体の流入を防止するために、6と8は高圧力化されているのでメンテナンスフリーとなった。また、イオンリングが回転状態でペレットや粉体流に投入されるので均一除電が可能となり、従来のような輸送障害が生じなくなった。In the conventional static eliminator that generates the corona from the needle-like electrode, powder and the like are accumulated in the corona generating portion, so that maintenance is difficult. In addition, various problems have arisen because the charge removal effect of the ion cloud on the powder is not uniform.
In the static eliminator of the present invention, in order to prevent the powder from flowing into the
図11は内容積に対して口細の容器内の静電気除去に本発明を利用したときの動作の説明図で、中心軸で容器及び除電装置を断面図化したものである。図中の55は除電装置、56は容器壁、57・58・59・60・61は除電用イオンの進行位置、62・63・64・65・66・67はイオンの自走力の大きさと方向を制御するための電極で、図には記載していないが別に設けた制御用電源からそれぞれに必要な電荷量が供給される。
55から発進した除電用イオン塊は自走力で容器内に進入し、57の位置では62の制御電極との間の吸引力で一部の電荷が壁面電荷を中和し、残部は前方に進行する。イオンは58・59・60・61と進行しながら電極63・64・65・66・67に吸引または反撥されながら壁面電荷を中和させる。ただし、制御電極へ供給する制御用電荷の大きさと時間は除電装置が発射する除電用イオン及び容器静電気の大きさとの関係で決まるので、据付後の調整実験で調整する。FIG. 11 is an explanatory view of an operation when the present invention is used for removing static electricity in a container having a narrow diameter with respect to the internal volume, and is a cross-sectional view of the container and the static eliminator along the central axis. In the figure, 55 is a static eliminator, 56 is a vessel wall, 57, 58, 59, 60, and 61 are ion advancing positions, and 62, 63, 64, 65, 66, and 67 are the self-propelled forces of ions. The electrodes for controlling the direction are supplied with a necessary charge amount from a separate control power source (not shown).
The ionizing ion mass started from 55 enters the container by a self-propelled force, and at 57, some charges neutralize the wall charges by the attraction between the
粉状医薬品や試薬等で問題視されていた容器内静電気の除去が可能となり、静電付着で容器内に残留する薬品の損失がほとんどなくなった。 Static electricity in the container, which has been regarded as a problem with powdered drugs and reagents, can be removed, and there is almost no loss of chemicals remaining in the container due to electrostatic adhesion.
図12、図13、図14は、帯電体のいずれの部所でも電荷密度が0またはそれに近いように除電するために、図1、図2、図3の自走力のある除電用イオンの自走方向と自走力を調整する使用例の一つで、一般に重畳法とよばれるものの説明図である。
図3(1)のイオン塊15と16との間、または図3(2)の21と22から放出されたイオン塊の間には図12の71の線図のように中心線上で最も強い自走力が生じ、中心線を離れると急激に自走力は低下する。ただし、図12の68は正イオン塊69と負イオン塊70との対称平面で、イオン塊69と70を結ぶ線が自走力分布図の中心線である。
ところで、図12のような自走力分布図は、イオン塊70を電荷を供電した導体に置換しても得られる。そこで、図13のように自走力調整用の電極72、73、74、75を対称面68の近傍に配置し、図には記載していないが別に設けた電源からそれぞれに制御用電荷を供給すると、イオン塊の自走力分布は図14のように、イオン塊69と電極72との間の分布76、イオン塊69と電極73との間の分布77、イオン塊69と電極74との間の分布78、イオン塊69と電極75との間の分布79の総和がイオン塊69の自走力分布となり、いずれの場所でもほぼ一様の80となる。
上記した一様密度で除電可能にしたものA・B・Cの3台を一軸延伸フィルム装置の進行方向に配置し、Aで一様に弱く逆帯電させ、その後Bで微弱な再除電をおこない、最後にCで電荷密度0の分布状態となるように極微弱除電をおこなったところ、残留電荷がほぼ0の除電効果が得られた。12, 13, and 14 show the self-propelled ion for neutralization in FIG. 1, FIG. 2, and FIG. 3 in order to eliminate the charge so that the charge density is 0 or close to any part of the charged body. It is one of the usage examples which adjust self-running direction and self-running force, and is an explanatory view of what is generally called a superposition method.
Between the
By the way, the free-running force distribution diagram as shown in FIG. 12 can be obtained by replacing the
Three units A, B, and C that can be neutralized at the above-mentioned uniform density are arranged in the direction of travel of the uniaxially stretched film device, and are uniformly weakly and reversely charged with A, and then weakly neutralize again with B. Finally, a very weak charge removal was performed so that a charge density of 0 was distributed in C, and a charge removal effect with a residual charge of almost 0 was obtained.
帯電体の電位を降下させる従来の除電装置では、帯電体のいずれの場所でも電荷密度が0、またはそれに近い状態の除電をすることが難しかった。本発明の除電用イオンをほぼ等しい電荷密度でいずれの場所にも供給できる除電装置で段階的に帯電体の電荷密度を低減させることによって無帯電に近い状態にまで除電することができ、従来にない高品質の除電が可能になった。 In a conventional static elimination device that lowers the potential of a charged body, it is difficult to eliminate static electricity at a charge density of 0 or close to any location on the charged body. The neutralization device according to the present invention can supply static electricity to any place with almost the same charge density, so that the charge density of the charged body can be reduced step by step to neutralize the charge. High quality static neutralization is now possible.
自走力を有するイオン雲を利用する除電装置には、自走中のイオン雲が同極性電荷間の反発力で雲径が拡散拡大する性質がある。拡大速度はイオン密度が大きい程大であるから、正イオンと負イオンを交番的に配置して電気粘性を大にし雲径拡大を小さくすることはできる。ただし、正負イオンの交番発生でもイオン発生部のイオン発生密度以上のイオン雲にはならない。
図15はイオン雲を高密度に収斂するための電極の配置図で、81・82・83・84は球状または楕円球状またはそれに近い形状の電極で、85は交番電源、86は動作を説明するためのイオン、87は86の移動方向の転換点、88はイオン雲の収斂点、89と90はイオン86の移動方向転換点で、電極81と83、電極82と84は同極性になるように、81と82は異極性となるように電源85に接続され、動作は以下のように進行する。
イオン86と電極84が正極性、電極83が負極性とすると、86は84から反撥力、83から吸引力をうけて87の方向に移動する。ここで、電源の極性が反転すると86は89の方向に移動する。電源の極性が再度反転すると、イオンは89から90の方向に反転する。以後同様にして86は収斂点88に収斂する。なお、電極81、82,83,84で囲まれた域内でのイオンはすべて86と同様の移動をするので、88を中心とした高密度イオン雲が得られる。
以上の動作原理で、図15には記載していないが、図面の上方に位置した除電装置から電極空間に流入したイオン雲は電極の収斂作用で88を中心に収斂し、高密度イオン雲を形成しながら図15の裏面の方向に自走し、高密度微小半径の除電用イオン雲となる。
本発明をイオンエアー搬送用のチューブやパイプに装着したところ、搬送距離10mでもイオン濃度はほとんど減すいしなかった。A static eliminator that uses an ion cloud having a self-propelling force has a property that the ion cloud that is self-propelled diffuses and expands due to a repulsive force between charges of the same polarity. Since the enlargement speed increases as the ion density increases, positive ions and negative ions can be alternately arranged to increase the electroviscosity and reduce the cloud diameter expansion. However, even if alternating positive and negative ions are generated, the ion cloud does not become higher than the ion generation density of the ion generation portion.
FIG. 15 is an electrode layout for converging the ion cloud at a high density. 81, 82, 83, and 84 are spherical, elliptical, or similar electrodes, 85 is an alternating power source, and 86 is an explanation of the operation. , 87 is a turning point of the moving direction of 86, 88 is a convergence point of the ion cloud, 89 and 90 are turning points of the moving direction of the
If the
Although not described in FIG. 15 based on the above operation principle, the ion cloud that has flowed into the electrode space from the static eliminator located above the drawing is converged around 88 by the electrode converging action, and a high-density ion cloud is formed. While forming, it is self-propelled in the direction of the back surface of FIG.
When the present invention was mounted on a tube or pipe for ion air conveyance, the ion concentration was hardly reduced even at a conveyance distance of 10 m.
従来は微小面積の除電はできないとされていた。本発明の収斂径0.3mmの除電装置をGMRヘッド生産工程中に生じる微小部分帯電の除電に使用したところ、不良品の発生率が1/50に減少した。 Conventionally, it has been said that neutralization of a small area cannot be performed. When the static eliminator having a converged diameter of 0.3 mm according to the present invention was used for static elimination of minute partial charges generated during the GMR head production process, the incidence of defective products was reduced to 1/50.
集積度向上のために層状化されたIC等で、工程中に生じた静電気が除去不十分なままに加工されると静電気が内部に閉じこめられ、表面の帯電とは異なった障害を発生させる。
図16は内部に閉じこめられた静電気を外部に自走させる除電装置の動作の説明図で、外部に漏出した静電気は従来の除電装置で除電されるので、図16では表面電荷の除電は記載していない。
図16で、91は帯電体の表面、92は内部電荷の位置、93と94は内部電荷92に自走力を付与する電極、95は電極を励起する電源、96は内部電荷の自走方向である。
動作は図15と同じであるが、固体絶縁物中の内部イオンの自走力は電源周波への依存性が高い。絶縁物の種類によって変える必要がある。When an IC or the like layered for improving the degree of integration is processed without sufficient removal of static electricity generated during the process, the static electricity is confined inside and causes a failure different from charging of the surface.
FIG. 16 is an explanatory diagram of the operation of a static eliminator that self-runs static electricity confined to the outside. Since static electricity leaked to the outside is eliminated by a conventional static eliminator, FIG. 16 does not describe the neutralization of surface charges. Not.
In FIG. 16, 91 is the surface of the charged body, 92 is the position of the internal charge, 93 and 94 are electrodes that give the internal charge 92 a free-running force, 95 is a power source for exciting the electrode, and 96 is the free-running direction of the internal charge. It is.
The operation is the same as in FIG. 15, but the free-running force of internal ions in the solid insulator is highly dependent on the power supply frequency. It is necessary to change depending on the type of insulator.
熱刺激微電流がほとんど生じない素材製作のために本発明を利用したところ、熱刺激微電流がほとんど生じないものを生産することができた。 When the present invention was used for producing a material that hardly caused a heat-stimulated microcurrent, a material that hardly caused a heat-stimulated microcurrent could be produced.
図17は板状絶縁物に0.5mmφの微細孔を穿ったときの細孔表面の静電気を除去する場合の説明図で、97は板状絶縁物、98は細孔、99は衝撃イオン発生機、100はイオン発生部で、半径は細孔の約1/2で、加工によっては0.01m・mφまで可能である。
細孔の中心線と衝撃イオン発生機の中心線とが一致するように配置し、衝撃イオン発生機を励起させると除電用イオンはイオン発生部100から細孔に向かって自走し、壁面電荷を中和しながら前進する。ところで、ここでいう衝撃イオン発生機とは圧電トランスなどの出力側に生じるイオン発生をそのまま除電装置に利用するもので、イオン発生は圧電子の衝撃力による界面の衝撃波によるものである。なお、衝撃波により空気の電離する現象は相当古くから知られている現象であるが、除電装置に利用された例はない。FIG. 17 is an explanatory diagram for removing static electricity on the surface of a fine pore when a fine hole of 0.5 mmφ is made in the plate-like insulator. 97 is a plate-like insulator, 98 is a pore, 99 is impact ion generation The
When the center line of the pore and the center line of the impact ion generator are arranged to coincide with each other and the impact ion generator is excited, the ion for static elimination self-runs from the
固体絶縁物を穿孔したときに生じる壁面静電気の除電方法は得られていなかった。本発明で細孔の除電が可能となったので、基盤加工工程に利用したところ、塵埃付着による不良発生がなくなった。 A method of eliminating static electricity on the wall surface generated when a solid insulator is drilled has not been obtained. Since the present invention makes it possible to neutralize the pores, when used in the substrate processing process, defects due to dust adhesion are eliminated.
1:針状電極
2:電源
3:接地電極
4:除電装置容器
5:衝撃圧力発生装置
6:イオン発生空間
7:コロナ発生部
8:接地電極と針電極との間のイオン空間
9:イオン環
10:イオン環の回転方向
11:イオン環の自走方向
12帯電したフィルム
13・14:除電装置
15・16・・・19・20:除電用イオン塊
21・22:除電装置
23:接地された導体
24:作業台
25:ICトレー
26:除電装置
27:クリーンエアー供給パイプ
28:除電用イオン進行方向
29:除電装置をとりつける支柱
30・31・32:除電装置
33:凹凸面のある帯電体
34:回転リング状の除電用イオン環
35:イオンの自走方向
36・37:帯電体の凸部
38:帯電体の凹部
l:除電用イオンリングの厚み
L:凹部の幅
r:イオンリングの半径
39:型台
40:剥離フィルム
41:除電装置
42:除電用イオン雲
43:剥離中の部所
44:攪拌翼
45:液体
46:反応槽
47:除電装置
48:輸送用パイプ壁
49・50:除電装置
51:パイプ輸送中の粉体
52:除電用イオン流
53:パイプに流入する粉体流
54:パイプから流出する粉体流
55:除電装置
56:容器壁
57・58・59・60・61:除電用イオン
62・63・64・65・66・67:制御用電極
68:正イオン塊と負イオン塊との対称面
69:正イオン塊
70:負イオン塊
71:正負イオン間の自走力分布図
72・73・74・75:自走力調整用電極
76・77・78・79:各電極とイオン塊との間の自走力分布
80:各電極とイオン塊との自走力の重畳値
81・82・83・84:イオン収斂用電極
85:交番電源
86:イオン
87・89・90:イオンの運動方向転換点
88:イオン雲の収斂点
91:帯電体表面
92:内部に閉じこめられた電荷
93・94:自走力付与電極
95:電源
96:内部電荷自走方向
97:板状絶縁物
98:細孔
99:衝撃圧力発生機
100:イオン発生部1: Needle-shaped electrode 2: Power supply 3: Ground electrode 4: Static elimination device container 5: Impact pressure generator 6: Ion generation space 7: Corona generation part 8: Ion space between ground electrode and needle electrode 9: Ion ring 10: Direction of rotation of the ion ring 11: Direction of self-running of the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007243030A JP2009048985A (en) | 2007-08-22 | 2007-08-22 | Static eliminator using ion cloud which has self-running capability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007243030A JP2009048985A (en) | 2007-08-22 | 2007-08-22 | Static eliminator using ion cloud which has self-running capability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009048985A true JP2009048985A (en) | 2009-03-05 |
Family
ID=40500998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007243030A Pending JP2009048985A (en) | 2007-08-22 | 2007-08-22 | Static eliminator using ion cloud which has self-running capability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009048985A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102933014A (en) * | 2012-10-29 | 2013-02-13 | 孔令发 | Anti-static device of stone paper film blowing machine |
JP2014007007A (en) * | 2012-06-22 | 2014-01-16 | Sharp Corp | Ion generator and electrical equipment including ion generator |
CN104661420A (en) * | 2015-03-05 | 2015-05-27 | 京东方科技集团股份有限公司 | Static electricity eliminating device |
CN104983144A (en) * | 2015-07-22 | 2015-10-21 | 郑州航空工业管理学院 | Dedusting necklace |
CN107278006A (en) * | 2016-04-08 | 2017-10-20 | 殷斌 | A kind of automatic sensing and actively eliminate the method for electrostatic, Destaticizing device, destatic product |
WO2024079745A1 (en) * | 2022-10-12 | 2024-04-18 | C N Indu | An arrangement for static charge reduction in air jet milling |
-
2007
- 2007-08-22 JP JP2007243030A patent/JP2009048985A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014007007A (en) * | 2012-06-22 | 2014-01-16 | Sharp Corp | Ion generator and electrical equipment including ion generator |
CN102933014A (en) * | 2012-10-29 | 2013-02-13 | 孔令发 | Anti-static device of stone paper film blowing machine |
CN104661420A (en) * | 2015-03-05 | 2015-05-27 | 京东方科技集团股份有限公司 | Static electricity eliminating device |
US9706628B2 (en) | 2015-03-05 | 2017-07-11 | Boe Technology Group Co., Ltd. | Device for forming air flow containing charged ions |
CN104983144A (en) * | 2015-07-22 | 2015-10-21 | 郑州航空工业管理学院 | Dedusting necklace |
CN104983144B (en) * | 2015-07-22 | 2016-08-24 | 郑州航空工业管理学院 | Dedusting necklace |
CN107278006A (en) * | 2016-04-08 | 2017-10-20 | 殷斌 | A kind of automatic sensing and actively eliminate the method for electrostatic, Destaticizing device, destatic product |
WO2024079745A1 (en) * | 2022-10-12 | 2024-04-18 | C N Indu | An arrangement for static charge reduction in air jet milling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009048985A (en) | Static eliminator using ion cloud which has self-running capability | |
US3198170A (en) | Ultrasonic-wave painting machine | |
KR100912981B1 (en) | Ionized Air Flow Discharge Type Non-Dusting Ionizer | |
JP6008269B2 (en) | Ionizer | |
JP5973219B2 (en) | Charged water particle sprayer | |
WO2005117506A1 (en) | Neutralization apparatus | |
CN104220638B (en) | Apparatus and process for depositing a thin layer of resist on a substrate | |
ID29957A (en) | METHODS AND EQUIPMENT TO CLEAN THE LOADING GAS PARTICLE | |
JP2005294178A (en) | Corona discharge type ionizer | |
CN101992158B (en) | Fluidized ejector for electrostatic spraying | |
JP2000311797A (en) | Static eliminator and its method | |
KR100821629B1 (en) | Air nozzle type ionizer | |
KR960007018A (en) | Electrostatic powder coating method and apparatus | |
US20140053868A1 (en) | Method And Apparatus For Surface Cleaning | |
KR101119048B1 (en) | Powder coating method utilizing ultrasonic vibrator | |
JP4315123B2 (en) | Static elimination method | |
JPH0547488A (en) | Static eliminator for clean room | |
JP2016153121A (en) | Charged water particle spray method | |
US6630027B2 (en) | Device for delivering charged powder for deposition | |
JPH0785783B2 (en) | Method and apparatus for applying solid ultrafine particles | |
KR101700283B1 (en) | static electricity eliminating apparatus using the electrode of the wire type | |
JP2001176691A (en) | Chamber type ion-carrying ionizing device and ionizing method | |
KR102080979B1 (en) | Cylinder type wet electrostatic precipitator | |
JPS59230653A (en) | Powder coating apparatus of paper discharge part of printer | |
JP4838876B2 (en) | Chamber type ion transport ionizer |