[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009048868A - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP2009048868A
JP2009048868A JP2007213802A JP2007213802A JP2009048868A JP 2009048868 A JP2009048868 A JP 2009048868A JP 2007213802 A JP2007213802 A JP 2007213802A JP 2007213802 A JP2007213802 A JP 2007213802A JP 2009048868 A JP2009048868 A JP 2009048868A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer body
anode
electrode
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007213802A
Other languages
Japanese (ja)
Other versions
JP4396747B2 (en
Inventor
Tsuneo Okanuma
恒夫 岡沼
Mitsugi Nakajima
貢 中嶋
Yoshio Kagebayashi
由郎 影林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2007213802A priority Critical patent/JP4396747B2/en
Priority to TW097124552A priority patent/TWI405240B/en
Priority to KR1020080066396A priority patent/KR100928618B1/en
Priority to CN2008102110551A priority patent/CN101373696B/en
Publication of JP2009048868A publication Critical patent/JP2009048868A/en
Application granted granted Critical
Publication of JP4396747B2 publication Critical patent/JP4396747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/48Separate coatings of different luminous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection

Landscapes

  • Discharge Lamp (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge lamp with intensity at a welding part enhanced of an electrode formed by welding a base part and a lid part, and capable of filling gas without any trouble in a closed space of the electrode. <P>SOLUTION: In the discharge lamp in which one of the pair of electrodes arranged in opposition in an arc tube in a tube axis direction is so structured to have a heat transfer body made of metal with a lower melting point than that constituting a metal base part of a bottomed cylinder shape having an opening at a base end side sealed in a closed space formed by the metal base part and a metal lid part fitted into an inner space of the base body, the electrode is provided with a gas guide-in flow channel extended from the base end part of the lid part toward the closed space along a center axis of the electrode, and a heat transfer body capturing space communicated with the gas guide-in flow channel and extended along the center axis of the electrode. The heat transfer body capturing space has a larger width in a direction crossing the center axis of the electrode than the gas guide-in flow channel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、放電ランプに関する。特に、投影露光装置、光化学反応装置などの光源として用いられるショートアーク型放電ランプに関する。   The present invention relates to a discharge lamp. In particular, the present invention relates to a short arc type discharge lamp used as a light source for a projection exposure apparatus, a photochemical reaction apparatus or the like.

従来から放電ランプとしては様々のものが知られているが、発光管内に水銀が封入された高圧水銀ランプのうち、特にショートアーク型の高圧水銀ランプは、波長365nmのi線や、波長436nmのg線を放出する発光特性を有することから、例えば半導体ウェハ、液晶基板などを露光するための露光装置用の光源として使用されている。このようなショートアーク型放電ランプにおいては、露光処理を高い処理効率で実行することができるよう高出力化が強く要求されている。   Conventionally, various discharge lamps are known. Among high-pressure mercury lamps in which mercury is sealed in an arc tube, particularly a short arc type high-pressure mercury lamp has an i-line with a wavelength of 365 nm or a wavelength of 436 nm. Since it has a light emission characteristic of emitting g-line, it is used as a light source for an exposure apparatus for exposing, for example, a semiconductor wafer, a liquid crystal substrate, and the like. In such a short arc type discharge lamp, there is a strong demand for high output so that the exposure process can be executed with high processing efficiency.

高圧水銀ランプを高出力化するには、通常は、定格電力を大きくすることが行われるが、この場合には、通常は、定格電流が大きくなる。そのため、特に、直流点灯される高圧水銀ランプにおける陽極は、これに衝突する電子の量が多くなるために高温になって溶融してしまう、という問題が生じる。
また、一対の電極が垂直方向に対向する姿勢で点灯される高圧水銀ランプにおいては、発光管内の熱対流などの影響を受けることもあって、鉛直方向上方に位置する電極が、アークの熱によって高温になって溶融する場合もある。
In order to increase the output of the high-pressure mercury lamp, normally, the rated power is increased, but in this case, the rated current is usually increased. Therefore, in particular, the anode of a high-pressure mercury lamp that is lit by direct current has a problem that the amount of electrons that collide with the anode becomes high and melts.
In addition, in a high-pressure mercury lamp that is lit in a posture in which a pair of electrodes are opposed to each other in the vertical direction, the electrode located in the vertical direction may be affected by the heat of the arc due to the influence of thermal convection in the arc tube. It may melt at high temperatures.

そして、電極の先端部分が溶融した場合には、アークが不安定になるばかりでなく、蒸発した電極を構成する物質が発光管の内壁に付着することにより、高圧水銀ランプから放射される光量が低下する、という問題が生じる。   When the tip portion of the electrode is melted, not only the arc becomes unstable, but also the amount of light emitted from the high-pressure mercury lamp is reduced by adhering the evaporated material to the inner wall of the arc tube. The problem of being reduced arises.

以上のような問題を解決するために、内部に形成された密閉空間内に、当該電極を構成する金属よりも融点の低い金属からなる伝熱体を封入するとともに、所定のガス圧となるようバッファガスを封入した構成を有する電極を備える放電ランプが提案されている(特許文献1、2を参照)。以下に、図1、図2および図13を用いて説明する。   In order to solve the above problems, a heat transfer body made of a metal having a melting point lower than that of the metal constituting the electrode is sealed in a sealed space formed inside, and a predetermined gas pressure is obtained. There has been proposed a discharge lamp including an electrode having a configuration in which a buffer gas is sealed (see Patent Documents 1 and 2). This will be described below with reference to FIGS. 1, 2 and 13.

この放電ランプは、図1に示すように、略球状の発光管部11と、発光管部11の両端に連続して形成されたロッド状の封止部12とからなる発光管10を備えている。発光管部11内には、いずれもタングステンからなる陽極14と陰極16よりなる一対の電極が互いに対向して配置されている。   As shown in FIG. 1, this discharge lamp includes an arc tube 10 including a substantially spherical arc tube portion 11 and rod-shaped sealing portions 12 formed continuously at both ends of the arc tube portion 11. Yes. In the arc tube portion 11, a pair of electrodes each consisting of an anode 14 and a cathode 16 made of tungsten are arranged opposite to each other.

陽極14は、図13に示すように、有底円筒状の基体部20の内部空間内に、蓋部40における円柱状の嵌入部42が嵌入された状態で、基体部20の基端部に形成された基体部側フランジ部24および蓋部40の先端部に形成された蓋部側フランジ部44における、互いに当接された平坦面が周方向の全体にわたって溶接されることで、内部に密閉空間Cが形成された構成を有している。密閉空間C内には、陽極14を構成するタングステンより融点が低い金属からなる伝熱体Mが封入されている。
蓋部40は、図2に示すように、その基端側の端面に、周方向において2箇所に切欠きが設けられた円弧状の弧状突出部47を有すると共に周方向において孤立した状態の凸部47Cを有し、図13に示すように、陽極14の中心軸に沿って伸び、蓋部40を貫通して密閉空間Cに通じるように形成されたガス導入用流路51を有している。
As shown in FIG. 13, the anode 14 is formed at the base end portion of the base portion 20 in a state where the columnar insertion portion 42 of the lid portion 40 is inserted into the internal space of the bottomed cylindrical base portion 20. The flat surfaces in contact with each other in the formed base portion side flange portion 24 and the lid portion side flange portion 44 formed at the front end portion of the cover portion 40 are welded over the entire circumferential direction so as to be sealed inside. The space C is formed. In the sealed space C, a heat transfer body M made of a metal having a melting point lower than that of tungsten constituting the anode 14 is enclosed.
As shown in FIG. 2, the lid 40 has an arcuate projecting portion 47 having an arc-shaped projecting portion 47 provided with notches at two locations in the circumferential direction on the end surface on the proximal end side, and a convex in an isolated state in the circumferential direction. As shown in FIG. 13, it has a gas introduction flow path 51 that extends along the central axis of the anode 14 and that passes through the lid 40 and communicates with the sealed space C. Yes.

上記のような構成の陽極14を備える放電ランプによれば、当該放電ランプの点灯時において、溶融することで液体状になった伝熱体Mが密閉空間C内で対流することによって、陽極14の鉛直方向下方側に位置する先端部の近傍に蓄積された熱が、陽極14の基端部側に向けて高い効率で輸送されることにより、陽極14の先端部14Aが過熱状態になることが防止される。   According to the discharge lamp including the anode 14 having the above-described configuration, when the discharge lamp is turned on, the heat transfer body M that is in a liquid state by being melted convects in the sealed space C, so that the anode 14 The heat accumulated in the vicinity of the distal end located on the lower side in the vertical direction is transported toward the base end of the anode 14 with high efficiency, so that the distal end 14A of the anode 14 becomes overheated. Is prevented.

しかも、上記の放電ランプによれば、密閉空間C内に封入される伝熱体Mの量が多い場合においては、陽極14の密閉空間C内が、例えば1気圧以上のガス圧となるようバッファガスが封入されることで、伝熱体Mと密閉空間Cの内壁面との間に気泡が生じることが防止され、気泡が生じることにより上記の熱輸送の効率が低下するおそれがない。
その一方で、上記の放電ランプによれば、密閉空間C内に封入される伝熱体Mの封入量が少ない場合においては、陽極14の密閉空間C内が、例えば1気圧以下のガス圧となるようバッファガスが封入されることで、伝熱体Mの沸騰を促進させ、これにより沸騰伝達による熱輸送の効率を高いものとすることができる。
すなわち、上記の放電ランプによれば、伝熱体Mの封入量に応じて密閉空間C内のガス圧を最適に調整することにより、伝熱体Mによる熱輸送の効率を高いものとすることができる。
In addition, according to the above-described discharge lamp, when the amount of the heat transfer body M enclosed in the sealed space C is large, the buffer in the sealed space C of the anode 14 is, for example, a gas pressure of 1 atm or more. By enclosing the gas, it is possible to prevent bubbles from being generated between the heat transfer body M and the inner wall surface of the sealed space C, and there is no possibility that the efficiency of the heat transport is reduced due to the bubbles.
On the other hand, according to the above discharge lamp, when the amount of the heat transfer body M enclosed in the sealed space C is small, the inside of the sealed space C of the anode 14 has a gas pressure of, for example, 1 atm or less. By enclosing the buffer gas, the boiling of the heat transfer body M is promoted, and thereby the efficiency of heat transport by the boiling transmission can be increased.
That is, according to the above-described discharge lamp, the efficiency of heat transport by the heat transfer body M is increased by optimally adjusting the gas pressure in the sealed space C according to the amount of the heat transfer body M enclosed. Can do.

特開2004−6246号公報JP 2004-6246 A 特開2006−179461号公報JP 2006-179461 A

しかしながら、上記の放電ランプによれば、陽極14の製造時において、伝熱体Mが、ガス導入用流路を伝って蓋部40の外部へ漏れ出すとともに、基体部20と蓋部40との溶接部に混入することによって、陽極14における溶接部Wの溶接強度を低下させる、という不具合を生じることがあった。
また、上記の放電ランプによれば、伝熱体Mによってガス導入用流路が閉塞されることにより、溶接部Wを形成する工程の後に実行される、密閉空間C内にバッファガスを封入する工程において、バッファガスの導入に支障をきたす、という不具合を生じることがあった。
However, according to the above-described discharge lamp, when the anode 14 is manufactured, the heat transfer body M leaks to the outside of the lid portion 40 through the gas introduction flow path, and the base portion 20 and the lid portion 40 When mixed in the welded portion, there may be a problem that the welding strength of the welded portion W in the anode 14 is lowered.
Further, according to the above discharge lamp, the gas introduction flow path is blocked by the heat transfer body M, so that the buffer gas is sealed in the sealed space C that is executed after the step of forming the welded portion W. In the process, there was a problem that the introduction of the buffer gas was hindered.

このような不具合が生じる理由については、定かではないが、以下のように考えられる。基体部20と蓋部40とを溶接する工程は、有底筒状の基体部20の開口に伝熱体Mを充填するとともに蓋部40の円柱状の嵌入部42を基体部20の開口に嵌入した後に実行される。そして、基体部20の基体部側フランジ部24と蓋部側フランジ部44とを周方向にわたって溶接する際には、伝熱体Mが相当に高温になって溶融した状態になり、液体状の伝熱体Mの内部に含まれる気泡が上昇して表面で弾け飛ぶことによって、飛散した伝熱体飛沫がガス導入用流路51における先端側の開口51Aの付近に付着することがある。この場合には、ガス導入用流路51の開口51Aの付近に付着した伝熱体飛沫が、毛細管現象によってガス導入用流路を伝って蓋部40の外部へ流出するとともに上記の溶接部に混入するか、或いは、蓋部40の外部へ流出しないまでも、ガス導入用流路51の途上に位置したままの状態で溶接工程の終了後に固化することによって、ガス導入用流路51を閉塞してしまうものと予想される。   The reason why such a problem occurs is not clear, but is considered as follows. The process of welding the base 20 and the lid 40 includes filling the opening M of the bottomed cylindrical base 20 with the heat transfer body M and the cylindrical fitting portion 42 of the lid 40 at the opening of the base 20. It is executed after insertion. When the base portion side flange portion 24 and the lid portion side flange portion 44 of the base portion 20 are welded in the circumferential direction, the heat transfer body M becomes considerably hot and melts, and is in a liquid state. When the bubbles contained in the heat transfer body M rise and bounce off the surface, the scattered heat transfer body splash may adhere to the vicinity of the opening 51 </ b> A on the distal end side in the gas introduction channel 51. In this case, the heat transfer body splash adhering to the vicinity of the opening 51A of the gas introduction channel 51 flows out of the lid part 40 through the gas introduction channel by capillary action and flows into the welded portion. The gas introduction flow path 51 is blocked by solidifying after the end of the welding process in a state where the gas introduction flow path 51 is located in the middle of the gas introduction flow path 51 even if it is mixed or does not flow out of the lid portion 40. It is expected to end up.

本発明は、以上のような不具合の発生を解消するためになされたものであって、基体部と蓋部とを溶接することにより形成される電極の溶接部における強度を高いものとするとともに、電極の密閉空間内に支障なくガスを充填することができ、所望の熱輸送効率を持つ放電ランプを提供することを目的とする。   The present invention was made in order to eliminate the occurrence of the above-described problems, and has a high strength in the welded portion of the electrode formed by welding the base portion and the lid portion, An object of the present invention is to provide a discharge lamp capable of filling a gas in a sealed space of an electrode without any trouble and having a desired heat transport efficiency.

本発明の放電ランプは、発光管内に当該発光管の管軸方向において対向するよう配置された一対の電極の一方が、基端側に開口を有する有底筒状の金属製の基体部と、この基体部の内部空間内に嵌入される金属製の蓋部とにより形成される密閉空間内に、前記基体部を構成する金属よりも融点が低い金属からなる伝熱体が封入された構成を有するものにおいて、
前記電極は、当該電極の中心軸に沿って前記蓋部の基端部から前記密閉空間に向けて伸びるガス導入用流路と、当該ガス導入用流路に通じると共に当該電極の中心軸に沿って伸びる伝熱体捕捉空間とを有し、
当該伝熱体捕捉空間は、前記ガス導入用流路よりも、当該電極の中心軸に対し直交する方向の幅が大きいことを特徴とする。
The discharge lamp of the present invention is a bottomed cylindrical metal base portion in which one of a pair of electrodes arranged in the arc tube so as to face each other in the tube axis direction of the arc tube has an opening on the base end side; A structure in which a heat transfer body made of a metal having a melting point lower than that of the metal constituting the base portion is enclosed in a sealed space formed by a metal lid portion fitted into the internal space of the base portion. In having
The electrode extends along the central axis of the electrode from the base end portion of the lid portion toward the sealed space, and communicates with the gas introduction flow channel and along the central axis of the electrode. And a heat transfer body capture space that extends
The heat transfer body capturing space is characterized in that the width in the direction orthogonal to the central axis of the electrode is larger than that of the gas introduction channel.

本発明の放電ランプにおいては、前記蓋部には、前記電極の中心軸方向に向けて陥没する溝部が形成されており、当該溝部と前記基体部の内壁面とにより前記伝熱体捕捉空間が区画されることを特徴とする。   In the discharge lamp of the present invention, the lid portion is formed with a groove portion that is recessed toward the central axis direction of the electrode, and the heat transfer body capturing space is formed by the groove portion and the inner wall surface of the base portion. It is characterized by being partitioned.

本発明の放電ランプにおいては、前記基体部には、前記蓋部に対向する箇所に、前記基体部の径方向における外周面に向けて陥没する溝部が形成されており、当該溝部と前記蓋部の外周面とにより前記伝熱体捕捉空間が区画されることを特徴とする。   In the discharge lamp of the present invention, the base portion is formed with a groove portion that is recessed toward the outer peripheral surface in the radial direction of the base portion at a location facing the cover portion, and the groove portion and the lid portion The heat transfer body capturing space is partitioned by an outer peripheral surface of the heat transfer body.

本発明の放電ランプにおいては、金属製の基体部と、この基体部の内部空間内に嵌入される金属製の蓋部とにより形成された密閉空間内に、基体部を構成する金属よりも融点の低い金属からなる伝熱体が封入されている。
しかも、本発明の放電ランプに係る電極は、蓋部の基端部から密閉空間に向けて伸びるガス導入用流路と、ガス導入用流路よりも幅広に形成された伝熱体捕捉空間を有する構成であるので、基体部と蓋部とを溶接することにより溶接部を形成する工程において、ガス導入用流路に向けて飛散するとともにガス導入用流路を伝って電極の基端方向に向けて流出しようとする伝熱体の飛沫が、伝熱体捕捉空間に滞留することにより伝熱体捕捉空間より基端方向に流出することが抑制されるので、蓋部の外方へ流出するおそれがなく、伝熱体捕捉空間より基端方向に位置するガス導入用流路を閉塞するおそれがない。従って、基体部と蓋部との溶接部の強度を高いものとすることができ、しかも、電極の密閉空間内にガスを充填することが阻害される虞がない。これによって、点灯時に溶融した伝熱体の対流が発生して、伝熱体の対流作用を利用して電極全体の温度を均一にすることができるため、電極の先端部が過剰に高温になることを防止することができる。
In the discharge lamp of the present invention, the melting point is higher than that of the metal constituting the base portion in the sealed space formed by the metal base portion and the metal lid portion inserted into the internal space of the base portion. A heat transfer body made of a low metal is enclosed.
In addition, the electrode according to the discharge lamp of the present invention includes a gas introduction channel extending from the base end portion of the lid portion toward the sealed space, and a heat transfer body capturing space formed wider than the gas introduction channel. Therefore, in the step of forming the welded portion by welding the base portion and the lid portion, it is scattered toward the gas introduction flow path and travels along the gas introduction flow path in the proximal direction of the electrode. Since the splash of the heat transfer body that is about to flow out of the heat transfer body stays in the heat transfer body capturing space and is prevented from flowing out in the proximal direction from the heat transfer body capturing space, it flows out of the lid portion. There is no fear, and there is no possibility of closing the gas introduction flow channel located in the proximal direction from the heat transfer body capturing space. Therefore, the strength of the welded portion between the base portion and the lid portion can be increased, and there is no possibility that filling the gas in the sealed space of the electrode is hindered. As a result, convection of the molten heat transfer body occurs during lighting, and the temperature of the entire electrode can be made uniform by utilizing the convection action of the heat transfer body, so that the tip of the electrode becomes excessively hot. This can be prevented.

さらに、本発明の放電ランプにおいては、前記蓋部に、前記電極の中心軸方向に向けて陥没する溝部が形成されているので、当該溝部と前記基体部の内壁面とにより、前記伝熱体捕捉空間を確実に区画することができる。   Furthermore, in the discharge lamp according to the present invention, since the groove portion recessed in the direction of the central axis of the electrode is formed in the lid portion, the heat transfer body is formed by the groove portion and the inner wall surface of the base portion. The capture space can be reliably partitioned.

また、本発明の放電ランプにおいては、前記基体部における前記蓋部に対向する箇所に、前記基体部の径方向における外周面に向けて陥没する溝部が形成されているので、当該溝部と前記蓋部の外周面とにより、前記伝熱体捕捉空間を確実に区画することができる。   Further, in the discharge lamp of the present invention, the groove portion that is depressed toward the outer peripheral surface in the radial direction of the base portion is formed at a location facing the lid portion in the base portion. With the outer peripheral surface of the part, the heat transfer body capturing space can be reliably partitioned.

図1は、本発明の放電ランプの構成の一例を示す断面図である。
発光管10は、石英ガラスからなり、略球状の発光管部11の両端にロッド状の封止部12が一体に連続して形成されている。この発光管部11内には、各々金属製の陽極14および陰極16よりなる一対の電極が互いに対向するよう配置されている。陽極14,陰極16の各々から伸びる電極芯棒17が、封止部12において保持されると共に、当該封止部12内において気密に設けられた金属箔(不図示)を介して外部リード棒または外部端子に接続され、これに外部電源が接続される。
発光管部11内には、所定量の水銀、キセノン、アルゴンなどの発光物質や始動用ガスが封入されている。
FIG. 1 is a cross-sectional view showing an example of the configuration of the discharge lamp of the present invention.
The arc tube 10 is made of quartz glass, and rod-shaped sealing portions 12 are integrally and continuously formed at both ends of a substantially spherical arc tube portion 11. A pair of electrodes each made of a metal anode 14 and cathode 16 are arranged in the arc tube portion 11 so as to face each other. An electrode core rod 17 extending from each of the anode 14 and the cathode 16 is held in the sealing portion 12 and is connected to an external lead rod or metal via a metal foil (not shown) provided in an airtight manner in the sealing portion 12. It is connected to an external terminal, and an external power source is connected to this.
A predetermined amount of a luminescent material such as mercury, xenon, or argon or a starting gas is sealed in the arc tube 11.

このような放電ランプは、外部電源より電力が供給されることにより、陽極14と陰極16との間でアーク放電が生じて発光するものである。図1の例に示す放電ランプにおいては、陽極14が鉛直方向上方側、陰極16が鉛直方向下方側となる姿勢で配置され、すなわち、発光管部11の管軸が、地面に対して垂直方向に支持されて点灯される、垂直点灯型のものである。   Such a discharge lamp emits light by arc discharge between the anode 14 and the cathode 16 when electric power is supplied from an external power source. In the discharge lamp shown in the example of FIG. 1, the anode 14 is arranged in a vertically upper side and the cathode 16 is arranged in a vertically lower side, that is, the tube axis of the arc tube unit 11 is perpendicular to the ground. It is a vertical lighting type that is supported and lit.

図2は、陽極14の外観を示す斜視図である。図3は、陽極14の拡大断面図である。図4は、図1の放電ランプの陽極の要部の断面を拡大して示すと共に、当該断面をA−A´方向から見た図を示す。
陽極14は、陰極16と対向する先端部14Aが鉛直方向下方に位置する状態で示されている。陽極14は、基体部20と蓋部40とが嵌合されて溶接されることにより形成された密閉空間Cの内部に伝熱体Mが封入されて構成されている。
FIG. 2 is a perspective view showing the appearance of the anode 14. FIG. 3 is an enlarged cross-sectional view of the anode 14. FIG. 4 shows an enlarged cross section of the main part of the anode of the discharge lamp of FIG. 1 and shows the cross section viewed from the AA ′ direction.
The anode 14 is shown in a state in which a tip portion 14A facing the cathode 16 is positioned downward in the vertical direction. The anode 14 is configured such that a heat transfer body M is enclosed in a sealed space C formed by fitting and welding the base portion 20 and the lid portion 40.

基体部20は、基端部(陽極14の先端部14Aと反対の端部)の端面に開口21を有する内部空間22が形成された有底円筒状であって、当該基端部に径方向外方に突出する基体部側フランジ部24が形成されている。この基体部側フランジ部24は、径方向に伸びる基体部側平坦面23と、この基体部側平坦面23の外周縁に連続し、先端方向に向かうに従って径方向内方に伸びる基体部側斜面26とを有している。
この基体部側フランジ部24は、基体部20の基端部に接近した位置に周方向に伸びる環状溝25が形成されており、当該環状溝25が当該基端部側斜面26によって形成されている。そして、基体部側フランジ部24の外径は、基体部20の外径より小さいものとされている。これにより、基体部20と蓋部40の溶接後においても、基体部20の外径より大径となる箇所が形成されることがなく、放電ランプの組み立て時において、基体部20の外径よりも内径の大きいガラス管を使用する必要がない。従って、設計変更の必要もなく、従来の封体を利用できるという利点がある。
The base portion 20 has a bottomed cylindrical shape in which an inner space 22 having an opening 21 is formed on an end face of a base end portion (an end portion opposite to the tip end portion 14A of the anode 14), and the base end portion has a radial direction at the base end portion. A base portion side flange portion 24 protruding outward is formed. The base portion side flange portion 24 is continuous with the base portion side flat surface 23 extending in the radial direction and the outer peripheral edge of the base portion side flat surface 23, and the base portion side inclined surface extending radially inward toward the distal end direction. 26.
The base portion side flange portion 24 is formed with an annular groove 25 extending in the circumferential direction at a position close to the base end portion of the base portion 20, and the annular groove 25 is formed by the base end portion side inclined surface 26. Yes. The outer diameter of the base portion side flange portion 24 is smaller than the outer diameter of the base portion 20. As a result, even after the base portion 20 and the lid portion 40 are welded, a portion having a diameter larger than the outer diameter of the base portion 20 is not formed, and the outer diameter of the base portion 20 is increased when the discharge lamp is assembled. However, it is not necessary to use a glass tube having a large inner diameter. Therefore, there is an advantage that a conventional envelope can be used without requiring a design change.

蓋部40は、全体が円錐台状の蓋部本体41と、この蓋部本体41の底面の中央から突出するよう一体に形成された円柱状の嵌入部42とよりなる。この蓋部本体41は、基体部側フランジ部24と同一の外径を有する蓋部側フランジ部44を有している。この蓋部側フランジ部44は、径方向外方に伸びる蓋部側平坦面43と、この蓋部側平坦面43の外周縁に連続し、基端方向に向かうに従って径方向内方に伸びる円環状の蓋部側斜面46とを有する円錐台形状とされている。そして、嵌入部42は、蓋部側平坦面43から先端方向に突出する状態で形成され、基体部20の内部空間22の内径に適合する外径を有している。   The lid portion 40 includes a lid body 41 having a truncated cone shape as a whole, and a cylindrical fitting portion 42 that is integrally formed so as to protrude from the center of the bottom surface of the lid body 41. The lid main body 41 has a lid portion side flange portion 44 having the same outer diameter as the base portion side flange portion 24. The lid-side flange portion 44 is continuous with the lid-side flat surface 43 extending radially outward and the outer peripheral edge of the lid-side flat surface 43, and is a circle extending radially inward toward the proximal direction. It has a truncated cone shape having an annular lid-side slope 46. The fitting portion 42 is formed so as to protrude from the lid portion-side flat surface 43 in the distal direction, and has an outer diameter that matches the inner diameter of the inner space 22 of the base portion 20.

蓋部40は、その基端部に、基端側端面の中央部分が刳り貫かれることによって形成された弧状突出部47と、弧状突出部47の基端面から陽極14の先端方向に向けて陥没する凹所48とを有すると共に、この弧状突出部47の一端側および他端側に連続して、陽極14の先端方向に向けて陥没する2つの凹所47A、47Bと、この凹所47A、47Bを挟んで円周方向において弧状突出部47と対向する凸部47Cとを有し、この凹所48の底面48Aの中央に電極芯棒17が圧入される連結用孔49が形成されている。   The lid portion 40 has an arcuate protrusion 47 formed by punching a central portion of the base end side end surface at the base end portion thereof, and is depressed from the base end surface of the arc-like protrusion portion 47 toward the tip end of the anode 14. Two recesses 47A and 47B that are recessed toward the distal end direction of the anode 14 in succession to one end side and the other end side of the arc-shaped projecting portion 47, and the recess 47A, A connecting hole 49 is formed in the center of the bottom surface 48A of the recess 48 to which the electrode core rod 17 is press-fitted. .

さらに、蓋部40は、嵌入部42の基端部42Bの外周面に形成された、当該嵌入部42の周方向の全体にわたって伸びる環状の溝部50と、蓋部40の凸部47Cに形成された、陽極14の中心軸(以下、単に「中心軸」ともいう)に沿って先端方向に向けて伸びて溝部50に通じるガス導入用流路51とを有している。嵌入部42の先端面には、ガス導入用流路51が蓋部40を中心軸方向に貫通することにより、密閉空間Cに通じる開口51Aが形成されている。そして、溝部50は、ガス導入用流路51よりも、陽極14の中心軸に直交する方向の幅(以下、単に「幅」ともいう)が大きく形成されている。   Further, the lid portion 40 is formed in an annular groove portion 50 formed on the outer peripheral surface of the base end portion 42B of the insertion portion 42 and extending over the entire circumferential direction of the insertion portion 42, and a convex portion 47C of the lid portion 40. In addition, it has a gas introduction flow channel 51 that extends in the distal direction along the central axis of the anode 14 (hereinafter, also simply referred to as “central axis”) and communicates with the groove 50. An opening 51 </ b> A that leads to the sealed space C is formed in the distal end surface of the fitting portion 42 when the gas introduction flow channel 51 penetrates the lid portion 40 in the central axis direction. The groove 50 is formed to have a larger width in the direction orthogonal to the central axis of the anode 14 (hereinafter also simply referred to as “width”) than the gas introduction flow path 51.

そして、基体部20の内部空間22内に蓋部40の嵌入部42が嵌入され、基体部側フランジ部24の基体部側平坦面23に蓋部側フランジ部44の蓋部側平坦面43が当接されて密接され、その状態で重なりあった基体部側フランジ部24の外周縁部と蓋部側フランジ部44の外周縁部とが溶接されて環状の溶接部Wが形成されている。   Then, the fitting portion 42 of the lid portion 40 is fitted into the internal space 22 of the base portion 20, and the lid portion side flat surface 43 of the lid portion side flange portion 44 is formed on the base portion side flat surface 23 of the base portion side flange portion 24. The outer peripheral edge portion of the base portion side flange portion 24 and the outer peripheral edge portion of the lid portion side flange portion 44 which are brought into contact with each other and overlapped in this state are welded to form an annular welded portion W.

このような陽極14においては、基体部20の内部空間22に蓋部40の嵌入部42が嵌入されることにより、基体部20の開口21の内周面21Aと嵌入部42の溝部50とにより区画される伝熱体捕捉空間Sを有している。この伝熱体捕捉空間Sは、ガス導入用流路51よりも広い幅を有している。ここに、伝熱体捕捉空間Sの幅とは、図4に示すように、陽極14を中心軸およびガス導入用流路51を含む平面で切断した断面において、開口21の内周面21Aと、内周面21Aに対向する溝部50の壁面50Xとの間の最短距離Xを意味する。ガス導入用流路51の幅とは、図4に示すように、陽極14の中心軸に直交する方向の幅Yを意味する。
具体的に、伝熱体捕捉空間Sは、幅Xが0.6〜3mm、中心軸方向の全長が1〜5mmであり、ガス導入用流路51は、幅が0.3〜1mm、中心軸方向の全長が20〜25mmである。伝熱体捕捉空間Sの幅Xは、ガス導入用流路51の幅Yに対して、X>2Yの範囲とされていることが好ましい。
In such an anode 14, the fitting portion 42 of the lid portion 40 is fitted into the internal space 22 of the base portion 20, whereby the inner peripheral surface 21 </ b> A of the opening 21 of the base portion 20 and the groove portion 50 of the fitting portion 42. A heat transfer body capturing space S is defined. The heat transfer body capturing space S has a width wider than the gas introduction channel 51. Here, as shown in FIG. 4, the width of the heat transfer body capturing space S is the same as that of the inner peripheral surface 21A of the opening 21 in a cross section obtained by cutting the anode 14 along a plane including the central axis and the gas introduction flow path 51. The shortest distance X between the wall surface 50X of the groove part 50 facing the inner peripheral surface 21A is meant. The width of the gas introduction channel 51 means a width Y in a direction perpendicular to the central axis of the anode 14 as shown in FIG.
Specifically, the heat transfer body capturing space S has a width X of 0.6 to 3 mm and a total length in the central axis direction of 1 to 5 mm, and the gas introduction channel 51 has a width of 0.3 to 1 mm and a center. The total length in the axial direction is 20 to 25 mm. The width X of the heat transfer body capturing space S is preferably in the range of X> 2Y with respect to the width Y of the gas introduction channel 51.

陽極14および陰極16は、何れも高融点を有する金属からなり、具体的には、タングステン、レニウム、タンタルなど、融点が約3000℃以上の金属からなるものである。これらの中でも特にタングステンが好ましい。
一方、伝熱体Mは、電極を構成する金属に比較して、点灯時における融点が低い金属からなり、具体的に電極がタングステンにより構成されている場合には、銀、銅、金、インジウム、錫、亜鉛、鉛などが用いられる。
Each of the anode 14 and the cathode 16 is made of a metal having a high melting point, and specifically, is made of a metal having a melting point of about 3000 ° C. or higher, such as tungsten, rhenium, or tantalum. Among these, tungsten is particularly preferable.
On the other hand, the heat transfer body M is made of a metal having a low melting point at the time of lighting as compared with the metal constituting the electrode. Specifically, when the electrode is made of tungsten, silver, copper, gold, indium , Tin, zinc, lead and the like are used.

このような金属を伝熱体Mとして使用した陽極14においては、放電ランプの点灯時に、伝熱体Mが溶融して陽極14の密閉空間Cの内部において対流が発生することにより、陽極先端部14Aの熱が陽極14の基端方向に輸送されるので、陽極14の先端部14Aの近傍に蓄積された熱が効率的に熱輸送されることにより、陽極14の先端部14Aが溶融する問題を回避することができる。そして、放電ランプに大電流を流すことが可能となり、放電ランプを大出力化することができる。   In the anode 14 using such a metal as the heat transfer body M, when the discharge lamp is turned on, the heat transfer body M melts and convection is generated inside the sealed space C of the anode 14, so that the tip of the anode 14 Since the heat of 14A is transported in the proximal direction of the anode 14, the heat accumulated in the vicinity of the distal end portion 14A of the anode 14 is efficiently transported, so that the distal end portion 14A of the anode 14 is melted. Can be avoided. In addition, a large current can be passed through the discharge lamp, and the output of the discharge lamp can be increased.

密閉空間C内には、希ガスが所定の圧力となるよう封入されている。具体的には、密閉空間Cの内容積に対して伝熱体Mが50%以上封入されている場合には、希ガスが1気圧以上封入され、これにより、伝熱体Mと密閉空間Cの内表面との界面において気泡の発生が防止される。一方、密閉空間Cの内容積に対して伝熱体Mの封入量が少ない場合には、密閉空間C内を大気圧よりも低い圧力状態とすることにより、伝熱体Mの沸騰を促進させ、沸騰伝達による熱輸送効果を期待することができる。   A rare gas is sealed in the sealed space C so as to have a predetermined pressure. Specifically, when 50% or more of the heat transfer body M is sealed with respect to the internal volume of the sealed space C, the rare gas is sealed at 1 atm or more, whereby the heat transfer body M and the sealed space C are sealed. Bubbles are prevented from being generated at the interface with the inner surface. On the other hand, when the amount of the heat transfer body M enclosed with respect to the internal volume of the sealed space C is small, the boiling of the heat transfer body M is promoted by setting the inside of the sealed space C to a pressure state lower than the atmospheric pressure. The heat transport effect due to boiling transfer can be expected.

上記の陽極14は、以下のようにして作製される。
第1に、タングステンからなる円柱状の部材に対して切削加工を施すことにより、上記の構成を有する基体部20および蓋部40を作製する。
第2に、基体部20の内部空間22内に伝熱体Mを充填し、蓋部40の嵌入部42を基体部20の開口21を介して内部空間22に嵌入させて、基体部側平坦面23上に蓋部側平坦面43を当接させた状態とし、互いに隣接する基体部側フランジ部24および蓋部側フランジ部44の外周縁部分をその全周にわたって溶接することで溶接部Wを形成する。
第3に、蓋部40に形成されたガス導入用流路51、伝熱体捕捉空間Sを介して、密閉空間C内に希ガスを封入した後に、蓋部40に形成された凸部47Cを溶融することによってガス導入用流路51を封止する。
The anode 14 is produced as follows.
First, the base portion 20 and the lid portion 40 having the above-described configuration are manufactured by cutting a cylindrical member made of tungsten.
Second, the inner space 22 of the base portion 20 is filled with the heat transfer body M, and the fitting portion 42 of the lid portion 40 is fitted into the inner space 22 through the opening 21 of the base portion 20 so that the base portion side is flat. The welded portion W is formed by welding the outer peripheral edge portions of the base portion side flange portion 24 and the lid portion side flange portion 44 adjacent to each other on the surface 23 with the lid portion side flat surface 43 being in contact with each other. Form.
Third, after the rare gas is sealed in the sealed space C via the gas introduction flow path 51 and the heat transfer body capturing space S formed in the lid portion 40, the convex portion 47C formed in the lid portion 40 is formed. The gas introduction flow path 51 is sealed by melting the gas.

以上のような本発明の放電ランプによれば、基体部20と、この基体部20の内部空間22内に嵌入される柱状の嵌入部42を有する金属製の蓋部40とが嵌合されることにより形成された密閉空間C内に、基体部20を構成する金属よりも融点の低い金属からなる伝熱体Mが封入されているので、基本的には、点灯時に溶融した伝熱体Mの対流が発生して、伝熱体Mの対流作用を利用して陽極14全体の温度を均一にすることができるため、陽極14の先端部14Aが過剰に高温になることを防止することができる。   According to the discharge lamp of the present invention as described above, the base portion 20 and the metal lid portion 40 having the columnar insertion portion 42 to be inserted into the internal space 22 of the base portion 20 are fitted. Since the heat transfer body M made of a metal having a melting point lower than that of the metal constituting the base portion 20 is enclosed in the sealed space C formed by the above, basically the heat transfer body M melted at the time of lighting. Is generated, and the temperature of the anode 14 as a whole can be made uniform by utilizing the convection action of the heat transfer body M. Therefore, it is possible to prevent the tip 14A of the anode 14 from becoming excessively hot. it can.

しかも、陽極14が、ガス導入用流路51と、ガス導入用流路51よりも幅広に形成された伝熱体捕捉空間Sを有する構成であるので、基体部20と蓋部40とを溶接することにより溶接部Wを形成する工程において、ガス導入用流路51の開口51Aに向けて飛散するとともにガス導入用流路51を伝って陽極14の基端方向に向けて流出しようとする伝熱体Mの飛沫が、伝熱体捕捉空間Sに滞留することにより伝熱体捕捉空間Sより基端方向に流出することが防止される。これにより、伝熱体Mの飛沫が、ガス導入用流路51を伝って蓋部40の外方へ流出するおそれがなく、また、伝熱体捕捉空間Sより基端方向に位置するガス導入用流路51を閉塞するおそれがないので、基体部20と蓋部40との溶接部Wの強度を高いものとすることができ、しかも、陽極14の密閉空間C内へのガスの充填が阻害される虞がない。   Moreover, since the anode 14 has a gas introduction channel 51 and a heat transfer body capturing space S formed wider than the gas introduction channel 51, the base portion 20 and the lid portion 40 are welded together. Thus, in the process of forming the welded portion W, the light is scattered toward the opening 51A of the gas introduction flow channel 51 and is transmitted through the gas introduction flow channel 51 toward the proximal end of the anode 14. The droplets of the heat body M are prevented from flowing out in the proximal direction from the heat transfer body capturing space S by staying in the heat transfer body capturing space S. Thereby, there is no possibility that the droplets of the heat transfer body M flow out of the lid 40 through the gas introduction flow path 51, and the gas introduction located in the proximal direction from the heat transfer body capturing space S is performed. Since there is no possibility of closing the flow path 51, the strength of the welded portion W between the base portion 20 and the lid portion 40 can be increased, and the gas can be filled into the sealed space C of the anode 14. There is no risk of obstruction.

さらに、陽極14の基体部20は、その開口21の内径が、嵌入部42の外径と完全に一致しているのではなく、嵌入部42の外径よりも0.5〜1.5%程度大きく形成されている。そのため、基体部20と蓋部40を溶接する際に、伝熱体Mの飛沫が伝熱体捕捉空間Sよりも先端方向に位置するガス導入用流路51Bに滞留して、溶接工程の終了後に自然冷却されて固化した伝熱体の飛沫により当該ガス導入用流路51Bが閉塞されたとしても、基体部20の開口21の内周面21Aと嵌入部42の外周面42Aとの間に存在する円環状の間隙Tを介して、密閉空間C内にガスを充填することができる。   Furthermore, the base portion 20 of the anode 14 has an inner diameter of the opening 21 that does not completely match the outer diameter of the fitting portion 42, but is 0.5 to 1.5% of the outer diameter of the fitting portion 42. It is formed to a large extent. Therefore, when welding the base | substrate part 20 and the cover part 40, the droplet of the heat transfer body M stays in the flow path 51B for gas introduction located in the front end direction rather than the heat transfer body capture | acquisition space S, and complete | finishes a welding process. Even if the gas introduction flow path 51B is closed by the splash of the heat transfer body that is naturally cooled and solidified later, the gap between the inner peripheral surface 21A of the opening 21 of the base portion 20 and the outer peripheral surface 42A of the fitting portion 42 is between. Gas can be filled into the sealed space C through the existing annular gap T.

以上、本発明の具体的な一例について説明したが、本発明においては、種々の変更を加えることができる。図5〜図12は、本発明の陽極の他の実施形態を示す断面図である。図5〜図12に示す陽極における図2ないし図4に示す陽極と共通する部分には、同一符号を付すことにより説明は省略する。   While a specific example of the present invention has been described above, various modifications can be made in the present invention. 5 to 12 are sectional views showing other embodiments of the anode of the present invention. Parts common to the anodes shown in FIGS. 2 to 4 in the anode shown in FIGS.

図5に示す陽極14は、嵌入部42の基端部42Bよりも先端方向寄りに、当該嵌入部42の周方向の全長にわたって環状の溝部50が形成され、具体的には、溝部50の基端面50Aが、基体部20の基体部側平坦面23よりも先端方向寄りに形成されている。同図に示す構成によれば、基体部20と蓋部40とを溶接する際に高温となる基体部側フランジ部24および蓋部側フランジ部44の周縁部から、伝熱体捕捉空間Sが遠く離れるので、溶接時に伝熱体捕捉空間Sに貯まった伝熱体Mの飛沫が蒸発しにくくなるため、伝熱体Mの飛沫がガス導入用流路51を伝って蓋部40の外部へ流出する虞がなく、また、伝熱体Mの量を所期の封入量に維持することができる。同図に示す構成は、特に、密閉空間Cの内容積に対して、例えば50〜95%に相当する多量の伝熱体Mが封入された場合に有効である。   In the anode 14 shown in FIG. 5, an annular groove portion 50 is formed over the entire length in the circumferential direction of the insertion portion 42 closer to the distal direction than the base end portion 42 </ b> B of the insertion portion 42. The end surface 50 </ b> A is formed closer to the tip direction than the base portion side flat surface 23 of the base portion 20. According to the configuration shown in the figure, the heat transfer body capturing space S is formed from the peripheral portions of the base part side flange part 24 and the cover part side flange part 44 that are heated when the base part 20 and the cover part 40 are welded. Since it is far away, the droplets of the heat transfer body M accumulated in the heat transfer body capturing space S during welding are less likely to evaporate, so that the splashes of the heat transfer body M travels along the gas introduction channel 51 to the outside of the lid 40. There is no fear of flowing out, and the amount of the heat transfer body M can be maintained at the desired amount. The configuration shown in the figure is particularly effective when a large amount of heat transfer body M corresponding to, for example, 50 to 95% is enclosed with respect to the internal volume of the sealed space C.

図6に示す陽極14は、嵌入部42の中心軸方向に離間した2箇所に環状の溝部50が形成されており、各々の溝部50がガス導入用流路51に通じている。同図に示す構成によれば、先端側に位置する第1の伝熱体捕捉空間S1を超えて基端方向に流出しようとする伝熱体Mの飛沫を、基端側に位置する第2の伝熱体捕捉空間S2によって捕捉することができる。同図に示す陽極14は、図5に示す陽極14と同じく、特に、密閉空間Cの内容積に対して、例えば50〜95%に相当する多量の伝熱体Mが封入された場合に有効である。尚、嵌入部42の全長が長い場合には、2箇所より多くの溝部50を形成することができる。   In the anode 14 shown in FIG. 6, annular grooves 50 are formed at two locations spaced in the center axis direction of the fitting portion 42, and each groove 50 communicates with the gas introduction flow channel 51. According to the configuration shown in the figure, the droplets of the heat transfer body M that is about to flow out in the proximal direction beyond the first heat transfer body capturing space S1 located on the distal end side are located on the proximal end side. It can be captured by the heat transfer body capturing space S2. Like the anode 14 shown in FIG. 5, the anode 14 shown in FIG. 5 is particularly effective when a large amount of heat transfer body M corresponding to, for example, 50 to 95% of the inner volume of the sealed space C is enclosed. It is. In addition, when the full length of the insertion part 42 is long, more groove parts 50 can be formed in two places.

図7に示す陽極14は、嵌入部42の外周面42Aの大部分にわたり周方向の全体に円環状の溝部50が形成されている。具体的に、溝部50は、中心軸方向において、嵌入部42の全長に対して50〜80%程度の全長を有している。同図に示す構成によれば、伝熱体捕捉空間Sは、その体積が図3ないし図6に示す陽極14よりも相対的に大きいことにより、多量の伝熱体飛沫を貯めることができる。そのため、図5および図6に示す陽極14と同じく、密閉空間Cの内容積に対して、例えば50〜95%に相当する多量の伝熱体Mが封入された場合に特に有効である。
以上の図5ないし図7に示される陽極14においては、伝熱体捕捉空間Sの幅およびガス導入用流路51の幅とは、それぞれ、図3および4に示される陽極14と同様の意味を有する。
In the anode 14 shown in FIG. 7, an annular groove 50 is formed in the entire circumferential direction over most of the outer peripheral surface 42 </ b> A of the fitting portion 42. Specifically, the groove part 50 has a total length of about 50 to 80% with respect to the total length of the fitting part 42 in the central axis direction. According to the configuration shown in the figure, the heat transfer body capturing space S is relatively larger in volume than the anode 14 shown in FIGS. 3 to 6, so that a large amount of heat transfer body droplets can be stored. Therefore, like the anode 14 shown in FIGS. 5 and 6, it is particularly effective when a large amount of heat transfer body M corresponding to, for example, 50 to 95% is enclosed with respect to the internal volume of the sealed space C.
In the anode 14 shown in FIGS. 5 to 7, the width of the heat transfer body capturing space S and the width of the gas introduction channel 51 have the same meanings as those of the anode 14 shown in FIGS. 3 and 4, respectively. Have

図8に示す陽極14は、図3ないし図7に示す陽極14とは異なり、嵌入部42の外周面42Aにおいて周方向の一部に円弧状の溝部50が形成されている。同図に示す陽極14によれば、図3および図4に示す陽極14と実質的に同一の効果を期待することができる。
図8に示す陽極14によれば、伝熱体捕捉空間Sの幅とは、陽極14を中心軸およびガス導入用流路51を含む平面で切断した断面において、開口21の内周面21Aと、内周面21Aに対向する溝部50の壁面50Xとの間の最短距離Xを意味し、ガス導入用流路51の幅とは、当該断面において、陽極14の中心軸に対し直交する方向の幅Yを意味する。
The anode 14 shown in FIG. 8 is different from the anode 14 shown in FIGS. 3 to 7 in that an arcuate groove 50 is formed on a part of the outer peripheral surface 42A of the fitting portion 42 in the circumferential direction. According to the anode 14 shown in the figure, substantially the same effect as that of the anode 14 shown in FIGS. 3 and 4 can be expected.
According to the anode 14 shown in FIG. 8, the width of the heat transfer body capturing space S is the same as that of the inner peripheral surface 21 </ b> A of the opening 21 in the cross section obtained by cutting the anode 14 along a plane including the central axis and the gas introduction channel 51. , Means the shortest distance X between the wall surface 50X of the groove portion 50 facing the inner peripheral surface 21A, and the width of the gas introduction flow path 51 is a direction perpendicular to the central axis of the anode 14 in the cross section. The width Y is meant.

図9に示す陽極14は、図3ないし図8に示す陽極14とは異なり、蓋部40に形成されたガス導入用流路51が、蓋部40を中心軸方向に貫通することなく、嵌入部42の外周面42Aの周方向の全体にわたって形成された円環状の溝部50の基端面50Aにのみ通じている。同図に示す陽極14においては、ガス導入用流路51、伝熱体捕捉空間S、並びに、基体部20の開口21の内周面21Aと嵌入部42の外周面42Aとの間に存在する円環状の間隙Tを介して、密閉空間C内にガスを充填することができる。
以上の図3ないし図9に示す陽極14は、基体部20の開口21の内周面21Aと嵌入部42の溝部50とにより、伝熱体捕捉空間Sが区画される。
The anode 14 shown in FIG. 9 is different from the anode 14 shown in FIGS. 3 to 8 in that the gas introduction flow path 51 formed in the lid portion 40 is inserted without penetrating the lid portion 40 in the central axis direction. It only communicates with the base end surface 50A of the annular groove 50 formed over the entire circumferential direction of the outer peripheral surface 42A of the portion 42. In the anode 14 shown in the figure, the gas introduction flow path 51, the heat transfer body capturing space S, and the inner peripheral surface 21A of the opening 21 of the base portion 20 and the outer peripheral surface 42A of the fitting portion 42 exist. The gas can be filled into the sealed space C through the annular gap T.
In the anode 14 shown in FIGS. 3 to 9, the heat transfer body capturing space S is partitioned by the inner peripheral surface 21 </ b> A of the opening 21 of the base portion 20 and the groove portion 50 of the fitting portion 42.

図10に示す陽極14は、図3ないし図9に示す陽極14とは異なり、基体部20には、その開口21の内周面であって、径方向において蓋部40の嵌入部42の外周面42Aに対向する領域に、周方向の全体にわたって円環状の溝部50が形成されている。蓋部側フランジ部44には、蓋部側平坦面43と嵌入部42の外周面42Aとの境界部に開口51Aが形成されるよう、蓋部側フランジ部44を貫通して中心軸に沿って伸びるガス導入用流路51が形成されている。そして、基体部20の開口21は、開口51Aから導入されるガスの流れを阻害することのない大きさの幅を有し、具体的には、嵌入部42の幅とガス導入用流路51の幅とを合算した合計より少なくとも大きい幅を有している。
同図に示す陽極14は、基体部20に形成された溝部50と嵌入部42の外周面42Aとにより、伝熱体捕捉空間Sが区画される。ここに、同図に示す陽極14によれば、伝熱体捕捉空間Sの幅とは、陽極14を中心軸およびガス導入用流路51を含む平面で切断した断面において、嵌入部42の外周面42Aと、外周面42Aに対向する溝部50の壁面50Xとの間の最短距離Xを意味し、ガス導入用流路51の幅とは、当該断面において陽極14の中心軸に対し直交する方向の幅Yを意味する。
The anode 14 shown in FIG. 10 is different from the anode 14 shown in FIGS. 3 to 9 in the base portion 20, which is the inner peripheral surface of the opening 21, and the outer periphery of the fitting portion 42 of the lid portion 40 in the radial direction. An annular groove 50 is formed over the entire circumferential direction in a region facing the surface 42A. The lid portion side flange portion 44 penetrates the lid portion side flange portion 44 along the central axis so that an opening 51A is formed at the boundary portion between the lid portion side flat surface 43 and the outer peripheral surface 42A of the fitting portion 42. A gas introduction channel 51 extending in this manner is formed. The opening 21 of the base portion 20 has a width that does not hinder the flow of gas introduced from the opening 51A. Specifically, the width of the fitting portion 42 and the gas introduction flow path 51 are provided. And a width that is at least larger than the sum of the widths.
In the anode 14 shown in the figure, the heat transfer body capturing space S is partitioned by the groove portion 50 formed in the base portion 20 and the outer peripheral surface 42A of the fitting portion 42. Here, according to the anode 14 shown in the figure, the width of the heat transfer body capturing space S is the outer circumference of the fitting portion 42 in a cross section obtained by cutting the anode 14 along a plane including the central axis and the gas introduction channel 51. This means the shortest distance X between the surface 42A and the wall surface 50X of the groove 50 facing the outer peripheral surface 42A, and the width of the gas introduction channel 51 is a direction orthogonal to the central axis of the anode 14 in the cross section. Width Y.

図11、12に示す陽極14は、基体部20、蓋部40の何れにも溝部が形成されることなく伝熱体捕捉空間Sが形成されている。
図11に示す陽極14によれば、蓋部40は、円錐台状の蓋部本体部41と、当該蓋部本体部41の底面の中央から突出するように一体に形成された柱状の嵌入部42とよりなる。この嵌入部42は、蓋部本体部41に連続する円柱状の基端側柱状部421と、基端側柱状部421の先端側に連続して形成された、当該基端側柱状部421よりも外径の小さい円柱状の先端側柱状部422とより構成されている。そして、蓋部40は、当該基端側柱状部421に開口51Aが形成されるよう、蓋部本体部41と基端側柱状部421とを貫通して基体部20の内部空間22に通じるガス導入用流路51を有している。
同図に示す陽極14においては、基体部20の開口21の内周面21Aと先端側柱状部422の外周面422Aと間に介在する円環状の伝熱体捕捉空間Sが形成されている。ここに、同図に示す陽極14によれば、伝熱体捕捉空間Sの幅とは、陽極14を中心軸およびガス導入用流路51を含む平面で切断した断面において、先端側柱状部422Aの外周面422Aと開口21の内周面21Aとの間の最短距離Xを意味し、ガス導入用流路51の幅とは、当該断面において、陽極14の中心軸に対し直交する方向の幅Yを意味する。
In the anode 14 shown in FIGS. 11 and 12, the heat transfer body capturing space S is formed without forming a groove portion in any of the base portion 20 and the lid portion 40.
According to the anode 14 shown in FIG. 11, the lid 40 includes a truncated cone-shaped lid main body 41 and a columnar fitting portion integrally formed so as to protrude from the center of the bottom surface of the lid main body 41. 42. The fitting portion 42 includes a columnar base end side columnar portion 421 that is continuous with the lid portion main body portion 41, and a base end side columnar portion 421 that is continuously formed on the distal end side of the base end side columnar portion 421. Is also configured by a columnar tip side columnar portion 422 having a small outer diameter. The lid portion 40 passes through the lid body portion 41 and the base end side columnar portion 421 so as to form an opening 51A in the base end side columnar portion 421 and communicates with the internal space 22 of the base portion 20. An introduction channel 51 is provided.
In the anode 14 shown in the figure, an annular heat transfer body capturing space S is formed between the inner peripheral surface 21A of the opening 21 of the base portion 20 and the outer peripheral surface 422A of the tip side columnar portion 422. Here, according to the anode 14 shown in the figure, the width of the heat transfer body capturing space S is the tip side columnar portion 422A in a cross section obtained by cutting the anode 14 along a plane including the central axis and the gas introduction channel 51. Means the shortest distance X between the outer peripheral surface 422A and the inner peripheral surface 21A of the opening 21, and the width of the gas introduction flow path 51 is the width in the direction perpendicular to the central axis of the anode 14 in the cross section. Y is meant.

図12に示す陽極14によれば、蓋部40は、中心軸に沿って伸び蓋部40を中心軸方向に貫通するガス導入用流路51を有し、このガス導入用流路51の先端側の一部に、他の部分よりも幅の広い幅広部510が形成され、密閉空間Cに通じる開口510Aが嵌入部42の先端面に形成されている。同図に示す陽極14においては、幅広部510により伝熱体捕捉空間Sが形成されている。
ここに、同図に示す陽極14によれば、伝熱体捕捉空間Sの幅とは、陽極14を中心軸およびガス導入用流路51を含む平面で切断した断面において、陽極14の中心軸に対し直交する方向の幅広部510の幅Xを意味し、ガス導入用流路51の幅とは、当該断面において、陽極14の中心軸に対し直交する方向の幅Yを意味する。
According to the anode 14 shown in FIG. 12, the lid 40 has a gas introduction channel 51 that extends along the central axis and penetrates the lid 40 in the direction of the central axis, and the tip of the gas introduction channel 51. A wide portion 510 wider than the other portions is formed in a part of the side, and an opening 510A leading to the sealed space C is formed in the distal end surface of the fitting portion 42. In the anode 14 shown in the figure, a heat transfer body capturing space S is formed by the wide portion 510.
Here, according to the anode 14 shown in the figure, the width of the heat transfer body capturing space S is the center axis of the anode 14 in a cross section obtained by cutting the anode 14 along a plane including the center axis and the gas introduction channel 51. The width X of the wide portion 510 in a direction orthogonal to the width of the gas introduction channel 51 means the width Y of the gas introduction channel 51 in the direction orthogonal to the central axis of the anode 14 in the cross section.

本発明の放電ランプの構成の概略を示す。The outline of the structure of the discharge lamp of this invention is shown. 図1の放電ランプの陽極の構成を拡大して示す斜視図である。It is a perspective view which expands and shows the structure of the anode of the discharge lamp of FIG. 図1の放電ランプの陽極の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the anode of the discharge lamp of FIG. 図1の放電ランプの陽極の要部の断面を拡大して示すと共に、当該断面をA−A´方向から見た図を示す。FIG. 2 shows an enlarged cross section of the main part of the anode of the discharge lamp of FIG. 1 and a view of the cross section viewed from the AA ′ direction. 陽極の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of an anode. 陽極の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of an anode. 陽極の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of an anode. 陽極の他の実施形態の要部の断面を拡大して示すと共に、当該断面をA−A´方向から見た図を示す。While expanding and showing the cross section of the principal part of other embodiment of an anode, the figure which looked at the said cross section from the AA 'direction is shown. 陽極の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of an anode. 陽極の他の実施形態の要部の断面を拡大して示すと共に、当該断面をA−A´方向から見た図を示す。While expanding and showing the cross section of the principal part of other embodiment of an anode, the figure which looked at the said cross section from the AA 'direction is shown. 陽極の他の実施形態の要部の断面を拡大して示すと共に、当該断面をA−A´方向から見た図を示す。While expanding and showing the cross section of the principal part of other embodiment of an anode, the figure which looked at the said cross section from the AA 'direction is shown. 陽極の他の実施形態の要部の断面を拡大して示すと共に、当該断面をA−A´方向から見た図を示す。While expanding and showing the cross section of the principal part of other embodiment of an anode, the figure which looked at the said cross section from the AA 'direction is shown. 従来の放電ランプの陽極の構成を拡大して示す断面図である。It is sectional drawing which expands and shows the structure of the anode of the conventional discharge lamp.

符号の説明Explanation of symbols

10 発光管
11 発光管部
12 封止部
14 陽極
16 陰極
17 電極芯棒
20 基体部
21 開口
22 内部空間
23 基体部側平坦面
24 基体部側フランジ部
25 環状溝
26 基体部側斜面
40 蓋部
41 蓋部本体
42 嵌入部
43 蓋部側平坦面
44 蓋部側フランジ部
46 蓋部側斜面
47 弧状突出部
47C 凸部
48 凹所
49 連結用孔
50 溝部
51 ガス導入用流路
S 伝熱体捕捉空間
C 密閉空間
M 伝熱体
DESCRIPTION OF SYMBOLS 10 Arc tube 11 Arc tube part 12 Sealing part 14 Anode 16 Cathode 17 Electrode core rod 20 Base part 21 Opening 22 Internal space 23 Base part side flat surface 24 Base part side flange part 25 Annular groove 26 Base part side slope 40 Lid part 41 Lid Main Body 42 Insertion Portion 43 Lid Side Flat Surface 44 Lid Side Flange 46 Lid Side Slope 47 Arc-shaped Protrusion 47C Protrusion 48 Recess 49 Connection Hole 50 Groove 51 Gas Introduction Channel S Heat Transfer Body Capture space C Sealed space M Heat transfer body

Claims (3)

発光管内に当該発光管の管軸方向において対向するよう配置された一対の電極の一方が、基端側に開口を有する有底筒状の金属製の基体部と、この基体部の内部空間内に嵌入される金属製の蓋部とにより形成される密閉空間内に、前記基体部を構成する金属よりも融点が低い金属からなる伝熱体が封入された構成を有する放電ランプにおいて、
前記電極は、当該電極の中心軸に沿って前記蓋部の基端部から前記密閉空間に向けて伸びるガス導入用流路と、当該ガス導入用流路に通じると共に当該電極の中心軸に沿って伸びる伝熱体捕捉空間とを有し、
当該伝熱体捕捉空間は、前記ガス導入用流路よりも、当該電極の中心軸に対し直交する方向の幅が大きいことを特徴とする放電ランプ。
One of a pair of electrodes arranged in the arc tube so as to face each other in the tube axis direction of the arc tube has a bottomed cylindrical metal base portion having an opening on the base end side, and an internal space of the base portion. In a discharge lamp having a configuration in which a heat transfer body made of a metal having a melting point lower than that of the metal constituting the base portion is enclosed in a sealed space formed by a metal lid portion inserted into
The electrode extends along the central axis of the electrode from the base end portion of the lid portion toward the sealed space, and communicates with the gas introduction flow channel and along the central axis of the electrode. And a heat transfer body capture space that extends
The discharge lamp characterized in that the heat transfer body capturing space has a width in a direction perpendicular to the central axis of the electrode, as compared with the gas introduction flow path.
前記蓋部には、前記電極の中心軸方向に向けて陥没する溝部が形成されており、当該溝部と前記基体部の内壁面とにより前記伝熱体捕捉空間が区画されることを特徴とする請求項1に記載の放電ランプ。   The lid portion is formed with a groove portion that is recessed toward the center axis direction of the electrode, and the heat transfer body capturing space is partitioned by the groove portion and an inner wall surface of the base portion. The discharge lamp according to claim 1. 前記基体部には、前記蓋部に対向する箇所に、前記基体部の径方向における外周面に向けて陥没する溝部が形成されており、当該溝部と前記蓋部の外周面とにより前記伝熱体捕捉空間が区画されることを特徴とする請求項1に記載の放電ランプ。   In the base portion, a groove portion that is depressed toward the outer peripheral surface in the radial direction of the base portion is formed at a location facing the lid portion, and the heat transfer is performed by the groove portion and the outer peripheral surface of the lid portion. The discharge lamp according to claim 1, wherein the body capturing space is partitioned.
JP2007213802A 2007-08-20 2007-08-20 Discharge lamp Active JP4396747B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007213802A JP4396747B2 (en) 2007-08-20 2007-08-20 Discharge lamp
TW097124552A TWI405240B (en) 2007-08-20 2008-06-30 Discharge lamp
KR1020080066396A KR100928618B1 (en) 2007-08-20 2008-07-09 Discharge lamp
CN2008102110551A CN101373696B (en) 2007-08-20 2008-08-20 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007213802A JP4396747B2 (en) 2007-08-20 2007-08-20 Discharge lamp

Publications (2)

Publication Number Publication Date
JP2009048868A true JP2009048868A (en) 2009-03-05
JP4396747B2 JP4396747B2 (en) 2010-01-13

Family

ID=40447785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007213802A Active JP4396747B2 (en) 2007-08-20 2007-08-20 Discharge lamp

Country Status (4)

Country Link
JP (1) JP4396747B2 (en)
KR (1) KR100928618B1 (en)
CN (1) CN101373696B (en)
TW (1) TWI405240B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028168A (en) * 2010-07-23 2012-02-09 Ushio Inc Short arc type discharge lamp
US20210292247A1 (en) * 2018-08-30 2021-09-23 Kyocera Corporation Ceramic structural body
US12145891B2 (en) * 2018-08-30 2024-11-19 Kyocera Corporation Ceramic structural body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974064B2 (en) * 2009-07-14 2012-07-11 ウシオ電機株式会社 Short arc type discharge lamp
CN104641445B (en) * 2012-09-21 2017-05-10 株式会社Orc制作所 Method for manufacturing discharge lamp electrode and discharge lamp with the discharge lamp electrode manufactured through the manufacturing method
JP6180716B2 (en) * 2012-09-25 2017-08-16 株式会社オーク製作所 Discharge lamp
TWI601183B (en) * 2013-04-24 2017-10-01 Orc Manufacturing Co Ltd Discharge lamp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042588B2 (en) * 2003-02-27 2008-02-06 ウシオ電機株式会社 Discharge lamp
JP4026513B2 (en) 2003-02-28 2007-12-26 ウシオ電機株式会社 Discharge lamp
ATE370517T1 (en) * 2003-03-18 2007-09-15 Koninkl Philips Electronics Nv GAS DISCHARGE LAMP
JP4548290B2 (en) 2004-11-25 2010-09-22 ウシオ電機株式会社 Discharge lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028168A (en) * 2010-07-23 2012-02-09 Ushio Inc Short arc type discharge lamp
US20210292247A1 (en) * 2018-08-30 2021-09-23 Kyocera Corporation Ceramic structural body
US12145891B2 (en) * 2018-08-30 2024-11-19 Kyocera Corporation Ceramic structural body

Also Published As

Publication number Publication date
KR20090019684A (en) 2009-02-25
KR100928618B1 (en) 2009-11-26
TWI405240B (en) 2013-08-11
CN101373696B (en) 2011-11-23
CN101373696A (en) 2009-02-25
TW200910410A (en) 2009-03-01
JP4396747B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4396747B2 (en) Discharge lamp
JP4993115B2 (en) High pressure discharge lamp
JP4548290B2 (en) Discharge lamp
JP4042588B2 (en) Discharge lamp
CN104051223A (en) Mercury vapor discharge lamp and method for its manufacture
JP4161815B2 (en) Discharge lamp
JP5211712B2 (en) Discharge lamp
JP4811310B2 (en) Discharge lamp
JP2006012672A (en) Short arc type discharge lamp
JP2009152046A (en) Discharge lamp
JP2007265624A (en) Short-arc ultra-high pressure discharge lamp
JP6180716B2 (en) Discharge lamp
JP2007172959A (en) Metal halide lamp
JP2009252468A (en) Discharge lamp
KR20090060168A (en) Discharge lamp
JP4222258B2 (en) Short arc type discharge lamp
JP2004265663A (en) Discharge lamp
US20090039785A1 (en) Discharge lamp
JP6120182B2 (en) Both ends sealed short arc flash lamp
JP2005346983A (en) Electrodeless discharge lamp and its manufacturing method
JP5720756B2 (en) Double-ended short arc flash lamp
CN207852614U (en) Discharge lamp
JP2007242469A (en) Discharge lamp
JP6562298B2 (en) Discharge lamp
JP6295776B2 (en) Discharge lamp and discharge lamp manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250