JP2009043547A - Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery - Google Patents
Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery Download PDFInfo
- Publication number
- JP2009043547A JP2009043547A JP2007206887A JP2007206887A JP2009043547A JP 2009043547 A JP2009043547 A JP 2009043547A JP 2007206887 A JP2007206887 A JP 2007206887A JP 2007206887 A JP2007206887 A JP 2007206887A JP 2009043547 A JP2009043547 A JP 2009043547A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- manganese dioxide
- battery
- alkaline
- electrolytic manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y02E60/12—
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、電池用電解二酸化マンガン、正極合剤およびアルカリ電池に関し、たとえば、アルカリ一次電池に適用して有効である。 The present invention relates to electrolytic manganese dioxide for batteries, a positive electrode mixture, and an alkaline battery, and is effective when applied to, for example, an alkaline primary battery.
アルカリ一次電池等の正極活物質として用いられる二酸化マンガンには、電解精製された二酸化マンガンが使用されている。この電池用電解二酸化マンガン(EMD)は、硫酸酸性浴中で電解析出させた二酸化マンガンを中和および洗浄処理したものであって、pHが6〜8程度のほぼ中性に調整されている(たとえば、非特許文献1参照)。 As manganese dioxide used as a positive electrode active material for an alkaline primary battery or the like, electrolytically purified manganese dioxide is used. This electrolytic manganese dioxide (EMD) for batteries is obtained by neutralizing and washing manganese dioxide electrolytically deposited in a sulfuric acid acid bath, and the pH is adjusted to be almost neutral at about 6-8. (For example, refer nonpatent literature 1).
この電解二酸化マンガンを所定粒度に粉状化し、黒鉛等の導電剤を添加して所定形状に成形することにより電池用正極合剤が作製される。この場合、その正極合剤には、活物質として、二酸化マンガン以外にオキシ水酸化ニッケルを含有させることもある。 The electrolytic manganese dioxide is pulverized into a predetermined particle size, and a conductive agent such as graphite is added to form the electrolytic manganese dioxide into a predetermined shape, thereby producing a positive electrode mixture for a battery. In this case, the positive electrode mixture may contain nickel oxyhydroxide as an active material in addition to manganese dioxide.
LRタイプの筒状アルカリ電池は、中空円筒状に成形された正極合剤を用いて作製される。この正極合剤は有底円筒状の金属製正極缶内に圧入状態で装填され、その内側にセパレータ、アルカリ電解液、および負極物質が順次装填されて同軸状の発電要素が形成される。発電要素の装填後、正極缶の封口を経て密閉構造のアルカリ電池が作製される(たとえば、特許文献1参照)。
近年、デジタルカメラ等の大電流を必要とする電子機器が普及し、機器の電源となるアルカリ電池に対して放電性能の向上とくに電気容量の増大(電池持続の長寿命化)が求められている。とくに、基本的に一回だけで使い切りされるアルカリ一次電池では、環境負荷の観点からも放電性能の向上が重要な課題となる。電池の放電性能を向上させる手段としては、大きく分けて二つの方法がある。 In recent years, electronic devices such as digital cameras that require a large current have become widespread, and there has been a demand for improved discharge performance, in particular, increased electric capacity (longer battery life) for alkaline batteries serving as power sources for the devices. . In particular, in an alkaline primary battery that is basically used up only once, improving discharge performance is an important issue from the viewpoint of environmental load. There are roughly two methods for improving the discharge performance of a battery.
その一つは、電池内部に充填する活物質(正極の二酸化マンガンや負極の亜鉛)を増量することである。しかし、この方法では活物質の増量により電池内の空気室が減少するため、耐漏液性能が低下するという問題が生じる。 One of them is to increase the amount of active material (manganese dioxide for the positive electrode or zinc for the negative electrode) filled in the battery. However, in this method, the air chamber in the battery is reduced due to the increase in the amount of the active material, which causes a problem that the leakage resistance performance is lowered.
今一つは、放電時における正極および負極活物質の利用率を向上させることである。とくに、正極活物質である二酸化マンガンの利用率を向上させることができれば、充填量の増加による耐漏液性能の低下を招くことなく、放電性能を向上させることができる。 The other is to improve the utilization rate of the positive and negative electrode active materials during discharge. In particular, if the utilization rate of manganese dioxide, which is a positive electrode active material, can be improved, the discharge performance can be improved without causing a decrease in leakage resistance due to an increase in filling amount.
二酸化マンガンの利用率を高める方法としては、たとえば、正極合剤の内部空隙率を大きくして電解液の含浸量を増やすことが有効であるが、これは活物質の充填量を実質的に減量させることになるため、放電性能の向上にはならない。 As a method of increasing the utilization rate of manganese dioxide, for example, it is effective to increase the amount of impregnation of the electrolyte by increasing the internal porosity of the positive electrode mixture, but this substantially reduces the filling amount of the active material. Therefore, the discharge performance is not improved.
本発明は以上のような問題を鑑みたものであって、その目的は、アルカリ電池の耐漏液性能を確保しながら放電性能を向上させるのにとくに適した電池用電解二酸化マンガンと、これを用いた正極合剤およびアルカリ電池を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to use electrolytic manganese dioxide for batteries particularly suitable for improving discharge performance while ensuring the leakage resistance performance of alkaline batteries, and to use this. It is to provide a positive electrode mixture and an alkaline battery.
本発明の上記以外の目的および構成については、本明細書の記述および添付図面にてあきらかにする。 Other objects and configurations of the present invention will be clarified in the description of the present specification and the accompanying drawings.
本発明が提供する解決手段は以下のとおりである。
(1)pHが2〜5.5の範囲であることを特徴とするアルカリ電池用電解二酸化マンガン。
(2)上記手段(1)において、pHが7の状態と比較して、比表面積が大きいことを特徴とするアルカリ電池用電解二酸化マンガン。
(3)上記手段(1)または(2)において、平均粒径が20〜60μmの範囲であることを特徴とするアルカリ電池用電解二酸化マンガン。
(4)上記手段(1)〜(3)のいずれかにおいて、電極電位が240〜280mV(対HgO/Hg電極、10モルKOH水溶液中)の範囲であることを特徴とするアルカリ電池用電解二酸化マンガン。
(5)活物質として上記手段(1)〜(4)の電解二酸化マンガンを含有することを特徴とするアルカリ電池用正極合剤。
(6)上記手段(5)において、活物質としてオキシ水酸化ニッケルを含有することを特徴とするアルカリ電池用正極合剤。
(7)上記手段(5)または(6)において、導電剤として黒鉛を3〜10重量%の範囲で含有することを特徴とするアルカリ電池用正極合剤。
(8)上記手段(5)〜(7)の正極合剤を用いたことを特徴とするアルカリ電池。
The solution provided by the present invention is as follows.
(1) An electrolytic manganese dioxide for alkaline batteries, characterized in that the pH is in the range of 2 to 5.5.
(2) The electrolytic manganese dioxide for alkaline batteries characterized in that, in the above means (1), the specific surface area is larger than that in a state where the pH is 7.
(3) The electrolytic manganese dioxide for alkaline batteries according to the above means (1) or (2), wherein the average particle size is in the range of 20 to 60 μm.
(4) In any one of the above means (1) to (3), the electrode potential is in the range of 240 to 280 mV (vs. HgO / Hg electrode, in 10 mol KOH aqueous solution). manganese.
(5) A positive electrode mixture for alkaline batteries, comprising the electrolytic manganese dioxide of the above means (1) to (4) as an active material.
(6) A positive electrode mixture for an alkaline battery, characterized in that in the above means (5), nickel oxyhydroxide is contained as an active material.
(7) In the above means (5) or (6), a positive electrode mixture for alkaline batteries, containing graphite as a conductive agent in a range of 3 to 10% by weight.
(8) An alkaline battery using the positive electrode mixture of the above means (5) to (7).
アルカリ電池の耐漏液性能を確保しながら放電性能を向上させることが可能となる。
上記以外の作用/効果については、本明細書の記述および添付図面にてあきらかにする。
It is possible to improve the discharge performance while ensuring the leakage resistance performance of the alkaline battery.
The operations / effects other than the above will be clarified in the description of the present specification and the accompanying drawings.
図1は本発明の技術が適用されたアルカリ電池の一実施形態を示す要部断面図である。同図に示す電池はLR6型アルカリ一次電池であって、有底円筒状の正極缶11内に、筒状正極合剤21、筒状セパレータ22、ゲル状負極合剤23からなる発電要素が装填されているとともに、その正極缶11が負極端子板31とガスケット35により閉塞および密閉封止されている。
FIG. 1 is a cross-sectional view of an essential part showing an embodiment of an alkaline battery to which the technology of the present invention is applied. The battery shown in the figure is an LR6 type alkaline primary battery, and a power generation element composed of a cylindrical positive electrode mixture 21, a
正極合剤21は正極活物質に導電剤を添加して中空円筒状に成型したものであって、正極活物質としては二酸化マンガンを使用し、導電剤としては黒鉛を使用している。また、負極合剤23にはゲル状亜鉛を使用している。
The positive electrode mixture 21 is obtained by adding a conductive agent to a positive electrode active material and molding it into a hollow cylinder. Manganese dioxide is used as the positive electrode active material, and graphite is used as the conductive agent. Further, gelled zinc is used for the
正極合剤21は正極缶11内に圧入状態で挿入・装填される。正極缶11はニッケルメッキ鋼板の深絞りプレス加工によって作製される。この正極缶11は電池ケースを兼ねるとともに、その内側面に正極合剤21が圧接することにより正極集電体を兼ねる。その外底部には凸状の正極端子部12がプレス加工により形成されている。 The positive electrode mixture 21 is inserted and loaded into the positive electrode can 11 in a press-fitted state. The positive electrode can 11 is produced by deep drawing press processing of a nickel plated steel plate. The positive electrode can 11 also serves as a battery case, and also serves as a positive electrode current collector when the positive electrode mixture 21 is in pressure contact with the inner surface thereof. A convex positive terminal portion 12 is formed on the outer bottom portion by pressing.
負極端子板31はその内側面(電池内部側)に棒状の負極集電子25が溶接接続されるとともに、その外側中央面が負極端子部を形成している。正極缶11の端子部12を除いた側胴部は外装材15で被覆されている。
The negative electrode terminal plate 31 has a rod-shaped negative electrode
ここで、正極活物質に用いている二酸化マンガンは、電解精製された電池用電解二酸化マンガン(EMD)であるとともに、そのpHが2〜5.5の範囲に調整されている。 Here, the manganese dioxide used for the positive electrode active material is electrolytically purified electrolytic manganese dioxide (EMD) for batteries, and its pH is adjusted in the range of 2 to 5.5.
このように酸性側にpH調整されたEMDは、pHが7の中性状態に調整されたものよりも比表面積(BET比表面積:m2/g)が大きくなっている。また、上記EMDは、平均粒径が20〜60μmの範囲、電極電位が240〜280mV(対HgO/Hg電極、10モルKOH水溶液中)の範囲となるように調整されている。 Thus, the EMD adjusted to the acidic side has a specific surface area (BET specific surface area: m2 / g) larger than that adjusted to the neutral state of pH 7. The EMD is adjusted so that the average particle size is in the range of 20 to 60 μm and the electrode potential is in the range of 240 to 280 mV (vs. HgO / Hg electrode, in 10 mol KOH aqueous solution).
正極活物質しては、上記EMDを単独で用いてもよいが、オキシ水酸化ニッケルを含有してもよい。導電剤としては黒鉛を3〜10重量%の範囲で含有することが望ましい。 As the positive electrode active material, the EMD may be used alone, but may contain nickel oxyhydroxide. As a conductive agent, it is desirable to contain graphite in the range of 3 to 10% by weight.
上述したアルカリ電池の起電力は、正極における二酸化マンガンの還元反応および負極における亜鉛の酸化反応とよる放電反応によって得られるが、その正極における放電反応は、一般に、次の反応式(1)のように表される。
MnO2 + H2O + e− → MnOOH + OH− ・・・(1)
この反応式(1)は化学量論的に次の反応式(2)と同等である。
MnO2 + H+ + e− → MnOOH ・・・(2)
反応式(1)および(2)が表すところによれば、正極の放電反応には、活物質である二酸化マンガン(MnO2)と水(H2O)またはプロトン(H+)が関与している。
The electromotive force of the alkaline battery described above is obtained by a discharge reaction due to a reduction reaction of manganese dioxide at the positive electrode and an oxidation reaction of zinc at the negative electrode. Generally, the discharge reaction at the positive electrode is represented by the following reaction formula (1). It is expressed in
MnO 2 + H 2 O + e − → MnOOH + OH − (1)
This reaction formula (1) is stoichiometrically equivalent to the following reaction formula (2).
MnO 2 + H + + e − → MnOOH (2)
According to the reaction formulas (1) and (2), the positive electrode discharge reaction involves manganese dioxide (MnO 2 ) and water (H 2 O) or protons (H + ) as active materials. Yes.
このことから、二酸化マンガンの近傍により多くのプロトンが存在すれば放電反応がスムーズに進行し、結果として電池の放電性能を向上させることができると考えられる。本発明者らはこのことに着目し、pHを2〜5.5に調整した電解二酸化マンガン(EMD)を正極活物質として用いることにより、活物質の利用率を高めてアルカリ電池の放電性能を向上させることに成功した。 From this, it is considered that if there are more protons in the vicinity of manganese dioxide, the discharge reaction proceeds smoothly, and as a result, the discharge performance of the battery can be improved. The present inventors pay attention to this, and by using electrolytic manganese dioxide (EMD) whose pH is adjusted to 2 to 5.5 as a positive electrode active material, the utilization rate of the active material is increased and the discharge performance of the alkaline battery is improved. Succeeded to improve.
活物質の利用率向上により、活物質の増量による耐漏液性能の低下を招くことなく、放電性能を向上させることができる。さらに、その放電性能の向上効果については、活物質の利用率向上分を大きく上回って得ることができる。 By improving the utilization factor of the active material, the discharge performance can be improved without causing a decrease in leakage resistance due to an increase in the amount of the active material. Furthermore, the improvement effect of the discharge performance can be obtained far exceeding the improvement in the utilization factor of the active material.
たとえば、デジタルカメラなどの重負荷機器にアルカリ電池を使用した場合、活物質の利用率は一般的に20〜30%程度である。したがって、活物質の利用率を2〜3%高めるだけでも、重負荷機器にアルカリ電池を使用した場合の電池持続時間(寿命)を1割程度向上させることができる。このことは、とくに、基本的に一回だけの使い切りである一次電池において、環境負荷の低減という観点から非常に有用である。 For example, when an alkaline battery is used for heavy load equipment such as a digital camera, the utilization factor of the active material is generally about 20 to 30%. Therefore, even if the utilization rate of the active material is increased by 2 to 3%, the battery duration (life) when an alkaline battery is used for a heavy load device can be improved by about 10%. This is very useful from the viewpoint of reducing environmental load, particularly in a primary battery that is basically used up only once.
電池用の二酸化マンガン(EMD)は硫酸酸性浴中で電解析出され、その後の中和および洗浄処理によって製品のpH(酸性度=プロトンの含有量)が調製される。このとき、その中和・洗浄条件を適当に制御することで、EMDのpHを適度な酸性(プロトンを多く含有する)領域に調製することができる。このようにして、pHが2〜5.5に調整されたEMDを用いることにより、耐漏液性を確保しながら放電性能を向上させることが可能となる。 Manganese dioxide (EMD) for batteries is electrodeposited in a sulfuric acid acid bath, and the pH of the product (acidity = proton content) is adjusted by subsequent neutralization and washing treatment. At this time, the pH of the EMD can be adjusted to a moderately acidic (containing a lot of protons) region by appropriately controlling the neutralization / washing conditions. Thus, by using the EMD whose pH is adjusted to 2 to 5.5, it is possible to improve the discharge performance while ensuring the leakage resistance.
以下、本発明の実施例を示す。
(1)pH、平均粒径、電極電位がそれぞれ異なる複数種類の電解二酸化マンガン(EMD)を作製した。pH(水法)は中和・洗浄工程において調整し、平均粒径(マイクロトラック法)は粉砕・分級工程において調整した。電極電位(対HgO/Hg電極、10モルKOH水溶液中)は電解工程において任意に調製した。その他の製造条件は、各EMD間で同一とした。
Examples of the present invention will be described below.
(1) A plurality of types of electrolytic manganese dioxide (EMD) having different pH, average particle diameter, and electrode potential were prepared. The pH (water method) was adjusted in the neutralization / washing step, and the average particle size (microtrack method) was adjusted in the pulverization / classification step. The electrode potential (vs. HgO / Hg electrode, in 10 mol KOH aqueous solution) was arbitrarily prepared in the electrolysis process. Other manufacturing conditions were the same for each EMD.
(2)上記EMDの種類ごとに単三形アルカリ電池(LR6)用の正極合剤を作製した。正極合剤は、EMD、黒鉛、バインダー(ポリアクリル酸)および電解液(40重量%KOH水溶液)を混合し、さらに、混練、圧延、造粒、分級などの工程を経て作製した。黒鉛の含有率は任意とし、その他の作製条件は同一とした。また、活物質としてEMDとオキシ水酸化ニッケルの混合物を用いた品種も作製したが、この場合も、両者の重量比率は任意とした。 (2) A positive electrode mixture for AA alkaline batteries (LR6) was prepared for each type of EMD. The positive electrode mixture was prepared by mixing EMD, graphite, a binder (polyacrylic acid) and an electrolytic solution (40 wt% KOH aqueous solution), and further through steps such as kneading, rolling, granulation, and classification. The graphite content was arbitrary, and the other production conditions were the same. Moreover, although the kind using the mixture of EMD and nickel oxyhydroxide as an active material was also produced, the weight ratio of both was also arbitrary in this case.
(3)上記正極合剤の種類ごとに単三形アルカリ電池(LR6)を作製した。作製したアルカリ電池は、EMDおよび正極合剤の種類以外の諸条件(たとえば、正極合剤重量および成形密度、セパレータ、電解液量、負極ゲル量など)をすべて同一とした。 (3) AA alkaline batteries (LR6) were prepared for each type of positive electrode mixture. The produced alkaline battery had the same conditions other than the types of EMD and positive electrode mixture (for example, positive electrode mixture weight and molding density, separator, electrolyte amount, negative electrode gel amount, etc.).
(試験1)
上記(1)〜(3)によりEMD(平均粒径 40μm、電極電位 260mV)のpHが異なる5種類(比較例1,2と実施例1〜3)のアルカリ電池を作製し、それぞれについて放電性能と耐漏液性能を調べる試験を行った。
(Test 1)
According to the above (1) to (3), five types of alkaline batteries (Comparative Examples 1 and 2 and Examples 1 to 3) having different pH of EMD (average particle size 40 μm, electrode potential 260 mV) were prepared, and the discharge performance for each. A test was conducted to check the leakage resistance performance.
放電性能の試験は、(1500mW・2秒/650mW・28秒)×10サイクル/1時間の放電条件(終止電圧1.05V、試験温度20℃)で行ない、サンプル種類(比較例1,2と実施例1〜3)ごとに10本の平均値を求めた。そして、比較例1(従来例)の放電性能を100とした場合の相対値で評価した。 The discharge performance test was performed under the discharge conditions of (1500 mW · 2 seconds / 650 mW · 28 seconds) × 10 cycles / 1 hour (end voltage 1.05 V, test temperature 20 ° C.). Ten average values were determined for each of Examples 1 to 3. And it evaluated by the relative value when the discharge performance of the comparative example 1 (conventional example) is set to 100.
耐漏液性能については、90℃保存(n=50)において初漏液が発生するまでの日数を、正極合剤割れについては成形合剤の良品率を、それぞれ比較例1(従来例)を100とした場合の相対値で評価した。 Regarding the leakage resistance performance, the number of days until the first leakage occurs at 90 ° C. storage (n = 50), the yield rate of the molding mixture for the positive electrode mixture cracking, and 100 for Comparative Example 1 (conventional example), respectively. Evaluation was made using relative values.
表1は、サンプル種類(比較例1,2と実施例1〜3)ごとの試験結果をEMDの比表面積(BET法)とともに示す。
表1に示すように、比表面積はpHを低く調製した場合に大きくなる傾向を示した。放電性能はpH5.5以下の領域で10%以上向上したが、pH2未満では耐漏液性能が低下した。これは、pHが低い(酸性度が高い)領域ではEMDの表面積が大きく、放電反応に必要なプロトンは十分に供給されるが、pHが低すぎることによって正極缶(ニッケルメッキ鋼鈑)などの部材に対する腐食が進行するためであると考えられる。以上の結果から、EMDのpHは2〜5.5の範囲がとくに好ましい。 As shown in Table 1, the specific surface area tended to increase when the pH was adjusted low. The discharge performance was improved by 10% or more in the region of pH 5.5 or lower, but the leakage resistance performance was lowered at a pH lower than 2. This is because the surface area of the EMD is large in the region where the pH is low (high acidity), and the protons necessary for the discharge reaction are sufficiently supplied. However, when the pH is too low, the positive electrode can (nickel-plated steel plate), etc. This is considered to be due to the progress of corrosion on the member. From the above results, the pH of EMD is particularly preferably in the range of 2 to 5.5.
(試験2)
上記(1)〜(3)によりEMD(pH4、電極電位 260mV)の平均粒径が異なる5種類(比較例3,4と実施例4,2,5)のアルカリ電池を作製し、それぞれについて放電性能と正極合剤割れの発生状況を調べる試験を行った。
(Test 2)
Five types of alkaline batteries (Comparative Examples 3, 4 and Examples 4, 2, and 5) having different average particle diameters of EMD (pH 4, electrode potential 260 mV) were produced by the above (1) to (3), and each was discharged. A test was conducted to examine the performance and occurrence of cracking of the positive electrode mixture.
放電性能の試験は上記試験1と同条件で行い、上記比較例1を100とした場合の相対値で評価した。正極合剤割れについての試験は、正極合剤の成形性を比較するためであって、上記比較例1を100とした場合の相対値で評価した。
The discharge performance test was performed under the same conditions as in
この試験結果を表2に示す。
表2に示すように、放電性能は平均粒径(マイクロトラック法)60μm以下の領域で10%以上向上したが、20μm未満になると正極合剤の良品率が低下した。これは、平均粒径が小さい領域ではEMDの表面積が大きく、放電反応がスムーズに進行するが、平均粒径が小さすぎると、正極合剤の充填性(圧縮性)が低下するためであると考えられる。正極合剤の充填性(圧縮性)が低下すると、比較例3のように、正極合剤割れが生じやすくなる。以上の結果から、EMDの平均粒径は20〜60μmの範囲がとくに好ましい。 As shown in Table 2, the discharge performance was improved by 10% or more in the region where the average particle size (Microtrack method) was 60 μm or less. This is because, in the region where the average particle size is small, the surface area of the EMD is large and the discharge reaction proceeds smoothly. However, if the average particle size is too small, the filling property (compressibility) of the positive electrode mixture is lowered. Conceivable. When the filling property (compressibility) of the positive electrode mixture decreases, as in Comparative Example 3, the positive electrode mixture cracks easily occur. From the above results, the average particle diameter of EMD is particularly preferably in the range of 20 to 60 μm.
(試験3)
上記(1)〜(3)によりEMD(pH4、平均粒径40μm)の電極電位が異なる5種類(比較例5,6と実施例6,2,7)のアルカリ電池を作製し、それぞれについて放電性能と保存性能を調べる試験を行った。
(Test 3)
Five types of alkaline batteries (Comparative Examples 5, 6 and Examples 6, 2, 7) with different electrode potentials of EMD (pH 4, average particle size 40 μm) were produced by the above (1) to (3), and each was discharged Tests were conducted to investigate performance and storage performance.
放電性能の試験は上記試験1と同条件で行い、上記比較例1を100とした場合の相対値で評価した。保存性能は60℃20日保存後の放電性能の低下度を、上記比較例1を100とした場合の相対値で評価した。
The discharge performance test was performed under the same conditions as in
この試験結果を表3に示す。
表3に示すように、放電性能は電極電位240mV以上の領域で10%以上向上したが、280mVを超えると保存性能が低下した。これは、電位が高い領域では放電時の電圧も高くなるが、電位が高すぎると保存中の自己放電が大きくなるためであると考えられる。以上の結果から、EMDの電極電位は240〜280mVの範囲がとくに好ましい。 As shown in Table 3, the discharge performance was improved by 10% or more in the region where the electrode potential was 240 mV or more, but when it exceeded 280 mV, the storage performance was lowered. This is presumably because the voltage at the time of discharge increases in a region where the potential is high, but if the potential is too high, self-discharge during storage increases. From the above results, the EMD electrode potential is particularly preferably in the range of 240 to 280 mV.
(試験4)
pH4、平均粒径40μm、電極電位260mVのEMDを用いて、黒鉛含有率が異なる5種類(比較例7,8と実施例8,2,9)のアルカリ電池を作製し、それぞれについて放電性能を調べる試験を行った。
放電性能の試験は上記試験1と同条件で行い、上記比較例1を100とした場合の相対値で評価した。
(Test 4)
Five types of alkaline batteries with different graphite contents (Comparative Examples 7, 8 and Examples 8, 2, and 9) were prepared using EMD having a pH of 4, an average particle diameter of 40 μm, and an electrode potential of 260 mV. An examination was conducted.
The discharge performance test was performed under the same conditions as in
この試験結果を表4に示す。
表4に示すように、放電性能は黒鉛含有率3〜10重量%の領域で10%以上向上したが、3重量%未満または10重量%を超えると充分な効果が得られなかった。これは、黒鉛含有量が低すぎると正極合剤の導電性が不十分であること、逆に黒鉛含有量が高すぎると活物質であるEMDの絶対量が不足するためであると考えられる。以上の結果から、正極合剤の黒鉛含有率は3〜10重量%の範囲がとくに好ましい。 As shown in Table 4, the discharge performance improved by 10% or more in the range of 3 to 10% by weight of the graphite content. This is probably because the conductivity of the positive electrode mixture is insufficient when the graphite content is too low, and conversely, when the graphite content is too high, the absolute amount of EMD as the active material is insufficient. From the above results, the graphite content of the positive electrode mixture is particularly preferably in the range of 3 to 10% by weight.
(試験5)
上記の実施例では正極活物質としてEMDのみを用いたが、EMDとオキシ水酸化ニッケルを任意の割合(例えば重量比で1:1)で混合した場合についても、試験1〜4と同様の試験を行ったところ、相対値としてほぼ同様の試験結果が得られた。このことから、本発明は、正極活物質がEMDおよびオキシ水酸化ニッケルを含有する場合でも有効であることが判明した。
(Test 5)
In the above examples, only EMD was used as the positive electrode active material, but the same test as in
以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、本発明はアルカリ一次電池だけではなく、アルカリ二次電池にも適用可能である。 As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above. For example, the present invention is applicable not only to alkaline primary batteries but also to alkaline secondary batteries.
アルカリ電池の耐漏液性能を確保しながら放電性能を向上させることが可能となる。 It is possible to improve the discharge performance while ensuring the leakage resistance performance of the alkaline battery.
11 電池缶 12 正極端子部 15 外装材
21 正極合剤 22 セパレータ 23 負極合剤
25 負極集電子 31 負極端子板 35 ガスケット
DESCRIPTION OF SYMBOLS 11 Battery can 12 Positive electrode terminal part 15 Exterior material 21
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007206887A JP2009043547A (en) | 2007-08-08 | 2007-08-08 | Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007206887A JP2009043547A (en) | 2007-08-08 | 2007-08-08 | Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009043547A true JP2009043547A (en) | 2009-02-26 |
Family
ID=40444083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007206887A Pending JP2009043547A (en) | 2007-08-08 | 2007-08-08 | Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009043547A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097511A1 (en) * | 2012-12-20 | 2014-06-26 | パナソニック株式会社 | Alkaline cell |
JP6856293B1 (en) * | 2019-11-15 | 2021-04-07 | 株式会社堤水素研究所 | Reversible fuel cell |
JP2021168300A (en) * | 2015-11-16 | 2021-10-21 | ヒーリー,エルエルシー | Surface functional and acidification metal oxide material synthesized for use of energy storage, catalyst, photovoltaic cell, and sensor |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62295354A (en) * | 1986-06-13 | 1987-12-22 | Mitsui Mining & Smelting Co Ltd | Manufacture of manganese dioxide for alkaline manganic cell |
JPH0257693A (en) * | 1988-08-22 | 1990-02-27 | Mitsui Mining & Smelting Co Ltd | Production of electrolytic manganese dioxide |
JPH10302793A (en) * | 1997-04-24 | 1998-11-13 | Fuji Elelctrochem Co Ltd | Cathode mix for alkaline battery |
JP2002289186A (en) * | 2001-03-23 | 2002-10-04 | Tosoh Corp | Electrolytic manganese dioxide powder, and manufacturing method thereof |
JP2002289185A (en) * | 2001-03-23 | 2002-10-04 | Tosoh Corp | Electrolytic manganese dioxide powder, and manufacturing method thereof |
JP2002348693A (en) * | 2000-09-01 | 2002-12-04 | Tosoh Corp | Electrolytic manganese dioxide powder and manufacturing method therefor |
JP2004047445A (en) * | 2002-05-15 | 2004-02-12 | Mitsui Mining & Smelting Co Ltd | Positive electrode active material for battery, manufacturing method for electrolytic manganese dioxide, and battery |
JP2004119167A (en) * | 2002-09-26 | 2004-04-15 | Mitsui Mining & Smelting Co Ltd | Positive electrode active material for battery and manufacturing method of electrolyte manganese dioxide as well as battery |
JP2004186127A (en) * | 2002-10-11 | 2004-07-02 | Mitsui Mining & Smelting Co Ltd | Positive plate active material for cell, manufacturing method of electrolytic manganese dioxide, and cell |
JP2006012670A (en) * | 2004-06-28 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Alkaline battery |
JP2006108083A (en) * | 2004-09-09 | 2006-04-20 | Mitsui Mining & Smelting Co Ltd | Manganese oxide for anode active substance |
JP2007048737A (en) * | 2005-07-12 | 2007-02-22 | Matsushita Electric Ind Co Ltd | Alkaline battery |
JP2009289185A (en) * | 2008-05-30 | 2009-12-10 | Sanyo Electric Co Ltd | Image processing apparatus |
-
2007
- 2007-08-08 JP JP2007206887A patent/JP2009043547A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62295354A (en) * | 1986-06-13 | 1987-12-22 | Mitsui Mining & Smelting Co Ltd | Manufacture of manganese dioxide for alkaline manganic cell |
JPH0257693A (en) * | 1988-08-22 | 1990-02-27 | Mitsui Mining & Smelting Co Ltd | Production of electrolytic manganese dioxide |
JPH10302793A (en) * | 1997-04-24 | 1998-11-13 | Fuji Elelctrochem Co Ltd | Cathode mix for alkaline battery |
JP2002348693A (en) * | 2000-09-01 | 2002-12-04 | Tosoh Corp | Electrolytic manganese dioxide powder and manufacturing method therefor |
JP2002289186A (en) * | 2001-03-23 | 2002-10-04 | Tosoh Corp | Electrolytic manganese dioxide powder, and manufacturing method thereof |
JP2002289185A (en) * | 2001-03-23 | 2002-10-04 | Tosoh Corp | Electrolytic manganese dioxide powder, and manufacturing method thereof |
JP2004047445A (en) * | 2002-05-15 | 2004-02-12 | Mitsui Mining & Smelting Co Ltd | Positive electrode active material for battery, manufacturing method for electrolytic manganese dioxide, and battery |
JP2004119167A (en) * | 2002-09-26 | 2004-04-15 | Mitsui Mining & Smelting Co Ltd | Positive electrode active material for battery and manufacturing method of electrolyte manganese dioxide as well as battery |
JP2004186127A (en) * | 2002-10-11 | 2004-07-02 | Mitsui Mining & Smelting Co Ltd | Positive plate active material for cell, manufacturing method of electrolytic manganese dioxide, and cell |
JP2006012670A (en) * | 2004-06-28 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Alkaline battery |
JP2006108083A (en) * | 2004-09-09 | 2006-04-20 | Mitsui Mining & Smelting Co Ltd | Manganese oxide for anode active substance |
JP2007048737A (en) * | 2005-07-12 | 2007-02-22 | Matsushita Electric Ind Co Ltd | Alkaline battery |
JP2009289185A (en) * | 2008-05-30 | 2009-12-10 | Sanyo Electric Co Ltd | Image processing apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097511A1 (en) * | 2012-12-20 | 2014-06-26 | パナソニック株式会社 | Alkaline cell |
JP5568185B1 (en) * | 2012-12-20 | 2014-08-06 | パナソニック株式会社 | Alkaline battery |
US9337485B2 (en) | 2012-12-20 | 2016-05-10 | Panasonic Intellectual Property Management Co., Ltd. | Alkaline battery |
JP2021168300A (en) * | 2015-11-16 | 2021-10-21 | ヒーリー,エルエルシー | Surface functional and acidification metal oxide material synthesized for use of energy storage, catalyst, photovoltaic cell, and sensor |
JP7267345B2 (en) | 2015-11-16 | 2023-05-01 | ヒーリー,エルエルシー | Synthetic surface-functionalized and acidified metal oxide materials for energy storage, catalysis, photovoltaic and sensor applications |
JP6856293B1 (en) * | 2019-11-15 | 2021-04-07 | 株式会社堤水素研究所 | Reversible fuel cell |
WO2021095243A1 (en) * | 2019-11-15 | 2021-05-20 | 株式会社堤水素研究所 | Reversible fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1473788B1 (en) | Alkaline battery | |
JP5626957B2 (en) | Alkaline electrochemical cell | |
KR20120027273A (en) | Nickel hydroxide electrode for rechargeable batteries | |
DE60007138T2 (en) | ALKALINE CELL WITH IMPROVED ANODE | |
JP5172181B2 (en) | Zinc alkaline battery | |
CN101894952A (en) | Alkaline zinc-manganese battery and preparation method thereof | |
JP3712259B2 (en) | Cathode active material for alkaline manganese battery and battery | |
JP2008098099A (en) | Anode material for battery, and battery | |
JP2009043547A (en) | Electrolytic manganese dioxide for battery, positive electrode mix, and alkaline battery | |
JP2003017077A (en) | Sealed alkaline zinc primary battery | |
US11133499B2 (en) | Substituted ramsdellite manganese dioxides in an alkaline electrochemical cell | |
JP2008034370A (en) | Electrochemical element | |
JP5081387B2 (en) | Positive electrode mixture and alkaline battery | |
EP1817809B1 (en) | Electrochemical cell | |
JP2011129463A (en) | Cadmium anode for alkaline secondary battery | |
JP2007220373A (en) | Sealed alkaline zinc primary cell | |
JP2004139909A (en) | Sealed nickel-zinc primary battery | |
JP2002117859A (en) | Alkaline battery | |
JP2008135400A (en) | Alkaline dry cell | |
JP2006313678A (en) | Alkaline primary cell and its manufacturing method | |
JPWO2006040907A1 (en) | Alkaline battery | |
JP2006164862A (en) | Alkaline battery | |
JP2008258098A (en) | Flat alkaline cell | |
JP2009163896A (en) | Aa alkaline dry battery | |
JP2009224077A (en) | Cathode mixture for alkaline battery and alkaline battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121009 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130305 |