JP2009042497A - Surface plasmon element - Google Patents
Surface plasmon element Download PDFInfo
- Publication number
- JP2009042497A JP2009042497A JP2007207392A JP2007207392A JP2009042497A JP 2009042497 A JP2009042497 A JP 2009042497A JP 2007207392 A JP2007207392 A JP 2007207392A JP 2007207392 A JP2007207392 A JP 2007207392A JP 2009042497 A JP2009042497 A JP 2009042497A
- Authority
- JP
- Japan
- Prior art keywords
- surface plasmon
- refractive index
- light
- opening
- conductive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Filters (AREA)
- Optical Head (AREA)
Abstract
Description
この発明は表面プラズモン効果を有する素子に関し、特に鋭い表面プラズモン共鳴ピークを得られるようにした表面プラズモン素子に関する。 The present invention relates to an element having a surface plasmon effect, and more particularly to a surface plasmon element capable of obtaining a sharp surface plasmon resonance peak.
光の波長以下の径を有する開口列(開口アレイ)を設けた金属薄膜を使用することにより、開口列を透過する光の透過率を大幅に向上させる技術が特許文献1に記載されている。特許文献1によれば、開口を周期的な配列で配置することにより、金属薄膜に入射された光の、その金属薄膜に設けられた波長以下の直径を有する1つ以上の開口を透過する光の強度が、周期的な開口がない場合に比べて大幅に増強され、このような増強は金属薄膜に入射する光が金属薄膜に励起される表面プラズモンモードと共鳴的に相互作用するときに起こると記載されている。 Patent Document 1 discloses a technique for significantly improving the transmittance of light transmitted through an aperture row by using a metal thin film provided with an aperture row (aperture array) having a diameter equal to or smaller than the wavelength of light. According to Patent Document 1, by arranging the openings in a periodic arrangement, light that is incident on the metal thin film passes through one or more openings having a diameter equal to or less than a wavelength provided in the metal thin film. Is significantly enhanced compared to the absence of a periodic aperture, and such enhancement occurs when light incident on the metal film interacts resonantly with a surface plasmon mode excited by the metal film. It is described.
特許文献1には金属薄膜に円形の開口を周期的に配列させた構造以外に、スリットを平行に配列した平行スリット(スリットアレイ)構造等も提案されており、また、特許文献2には単一の波長以下の円形開口の周囲に周期的なリング状の溝を設けることにより、開口を透過する透過光を増幅させる方法が記載されている。さらに、特許文献3には得られる透過光の入射光に対する利用効率を高めるために、開口における光が入射する第1の表面側の開口径を第2の表面側の開口径より大きくすることが記載されている。 In addition to a structure in which circular openings are periodically arranged in a metal thin film, Patent Document 1 proposes a parallel slit (slit array) structure in which slits are arranged in parallel. There is described a method of amplifying transmitted light transmitted through an opening by providing a periodic ring-shaped groove around a circular opening of one wavelength or less. Furthermore, in Patent Document 3, in order to increase the utilization efficiency of the transmitted light obtained with respect to incident light, the opening diameter on the first surface side through which light enters the opening is made larger than the opening diameter on the second surface side. Are listed.
一方、このような表面プラズモン増強効果の利用に関して、いくつかの提案がなされている。特許文献1には波長選択フィルタやフォトリソグラフィ用のマスク等への応用が記載されており、特許文献2には光記憶媒体用の読み出し/書き込みヘッドへの応用が記載されている。また、特許文献4には小型な表面プラズモン共鳴センサへの応用が記載されている。
ところで、表面プラズモン増強効果を例えば波長選択フィルタに応用する場合には選択波長の鋭さ(半値幅の狭さ)が求められる。また、センサ応用の場合にも高感度化に対して表面プラズモン増強が起こる表面プラズモン共鳴ピークを鋭くすることが効果的である。これは極少量の物質がセンサに付着したときに、表面プラズモン共鳴ピーク波長のシフトがわずかでも、ピークが鋭ければその強度変化は非常に大きなものになり、極少量の物質のセンシングが可能となるからである。さらには、光記憶媒体用の読み出し/書き込みヘッドへの応用に関しても、複数の波長を用いる記録方式に対応させるためにも表面プラズモン増強が起こる表面プラズモン共鳴ピークは鋭いほど多重記録が容易となり、記録密度を高めるのに非常に重要な特性となる。 By the way, when applying the surface plasmon enhancement effect to, for example, a wavelength selection filter, the sharpness of the selected wavelength (the narrowness of the half width) is required. Also, in the case of sensor applications, it is effective to sharpen the surface plasmon resonance peak where surface plasmon enhancement occurs for higher sensitivity. This means that when a very small amount of material is attached to the sensor, even if the surface plasmon resonance peak wavelength shifts slightly, if the peak is sharp, the intensity change becomes very large, and sensing of a very small amount of material is possible. Because it becomes. Furthermore, with regard to the application to read / write heads for optical storage media, multiple recording becomes easier as the surface plasmon resonance peak at which surface plasmon enhancement occurs is sharper in order to support a recording method using a plurality of wavelengths. This is a very important characteristic for increasing the density.
しかしながら、従来の金属膜に波長以下の開口を周期的に設けた構造や波長以下の単一の開口の周囲に例えばリング状の溝を周期的に設けた構造においては、表面プラズモン共鳴ピークを顕著に鋭くするための最適な構造についての検討はほとんどなされていない状況にある。 However, the surface plasmon resonance peak is prominent in the conventional structure in which the openings below the wavelength are periodically provided in the metal film or the structure in which the ring-shaped grooves are periodically provided around the single opening below the wavelength. However, there has been little study on the optimum structure for sharpening.
この発明はこのような状況に鑑みてなされたものであって、大掛りな光学系を必要とせず、従来と比べて鋭い表面プラズモン共鳴ピークを得ることができる高性能な表面プラズモン素子を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a high-performance surface plasmon element that does not require a large-scale optical system and can obtain a sharp surface plasmon resonance peak as compared with the prior art. For the purpose.
請求項1の発明によれば、基板上に導電膜が形成され、その導電膜に開口が周期配列されて設けられ、その周期配列により開口を透過する光の強度を増強する表面プラズモン素子において、光が透過する開口内に光透過方向に屈折率分布の周期構造を設ける。 According to the invention of claim 1, in the surface plasmon element in which the conductive film is formed on the substrate, the openings are periodically arranged in the conductive film, and the intensity of light transmitted through the openings is enhanced by the periodic arrangement. A periodic structure having a refractive index distribution is provided in the light transmission direction in the opening through which light passes.
請求項2の発明によれば、基板上に導電膜が形成され、その導電膜に少なくとも1つの開口と、凹部もしくは貫通孔の周期配列とが設けられ、その周期配列により開口を透過する光の強度を増強する表面プラズモン素子において、光が透過する開口内に光透過方向に屈折率分布の周期構造を設ける。 According to the second aspect of the present invention, the conductive film is formed on the substrate, and the conductive film is provided with at least one opening and a periodic array of recesses or through-holes. In a surface plasmon element that enhances the intensity, a periodic structure having a refractive index distribution is provided in the light transmission direction in an opening through which light is transmitted.
請求項3の発明では請求項1又は2の発明において、屈折率分布の周期構造が開口内に充填された誘電体の屈折率の周期的変化によって構成される。 In the invention of claim 3, in the invention of claim 1 or 2, the periodic structure of the refractive index distribution is constituted by a periodic change of the refractive index of the dielectric filled in the opening.
請求項4の発明では請求項1又は2の発明において、屈折率分布の周期構造が開口の側壁の形状の周期的変化によって構成される。 In the invention of claim 4, in the invention of claim 1 or 2, the periodic structure of the refractive index profile is constituted by a periodic change in the shape of the side wall of the opening.
この発明によれば、鋭い表面プラズモン共鳴ピークを有し、波長選択性に優れた表面プラズモン素子を得ることができる。よって、表面プラズモン素子の高性能化を図ることができ、表面プラズモン素子を利用する各種センサや光通信用デバイス等の高性能化に寄与することができる。 According to this invention, a surface plasmon element having a sharp surface plasmon resonance peak and excellent wavelength selectivity can be obtained. Therefore, it is possible to improve the performance of the surface plasmon element, and it is possible to contribute to improving the performance of various sensors and optical communication devices that use the surface plasmon element.
この発明の実施形態を図面を参照して実施例により説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1はこの発明による表面プラズモン素子の第1の実施例の構成概要を示したものであり、この例では表面プラズモン素子は基板10と、基板10上に形成された導電膜20と、その導電膜20に周期配列されて設けられた開口21内に充填された誘電体30とによって構成されている。 FIG. 1 shows an outline of the configuration of a first embodiment of a surface plasmon element according to the present invention. In this example, the surface plasmon element includes a substrate 10, a conductive film 20 formed on the substrate 10, and its conductivity. A dielectric 30 filled in an opening 21 provided in a periodic arrangement on the film 20 is formed.
開口21はこの例では所定のピッチで平行に配列されたスリットとされ、導電膜20をその厚さ方向に貫通して設けられている。この開口21の周期配列により、開口21を透過する光の強度が表面プラズモン効果によって増強される。 In this example, the openings 21 are slits arranged in parallel at a predetermined pitch, and are provided through the conductive film 20 in the thickness direction. Due to the periodic arrangement of the openings 21, the intensity of light transmitted through the openings 21 is enhanced by the surface plasmon effect.
開口21に充填されている誘電体30は図1では詳細図示を省略しているが、高屈折率層と低屈折率層とが交互積層されてなる誘電体多層膜とされ、それら高屈折率層と低屈折率層とによる屈折率の周期的変化により、この例では開口21内に光透過方向に屈折率分布の周期構造が設けられた構成となっている。図1中、矢印Aは光の透過方向を示す。 Although the detailed illustration of the dielectric 30 filled in the opening 21 is omitted in FIG. 1, it is a dielectric multilayer film in which a high refractive index layer and a low refractive index layer are alternately laminated. In this example, a periodic structure of a refractive index distribution is provided in the opening 21 in the light transmission direction due to the periodic change of the refractive index due to the layer and the low refractive index layer. In FIG. 1, an arrow A indicates a light transmission direction.
図2はこの図1に示した表面プラズモン素子の作製工程を模式的に示したものであり、以下、図2を参照して各工程(1)〜(5)を説明すると共に、各部の具体的構成例について説明する。 FIG. 2 schematically shows a manufacturing process of the surface plasmon element shown in FIG. 1. Hereinafter, the steps (1) to (5) will be described with reference to FIG. A typical configuration example will be described.
(1)基板10として石英基板を用意し、この基板10上に高屈折率層としてSiを、低屈折率層としてSiO2をスパッタ法により形成して交互積層した。高屈折率層Hの厚さは66.8nm、低屈折率層Lの厚さは150nmとし、高屈折率層H及び低屈折率層Lを各3回/2回積層した後、キャビティとして低屈折率層を300nm形成し、その後、高屈折率層H及び低屈折率層Lを各3回/2回積層した。図中、2Lはキャビティを示す。 (1) A quartz substrate was prepared as the substrate 10, and Si was formed as a high refractive index layer and SiO 2 was formed as a low refractive index layer by sputtering on the substrate 10 and laminated alternately. The thickness of the high refractive index layer H is 66.8 nm, the thickness of the low refractive index layer L is 150 nm, the high refractive index layer H and the low refractive index layer L are laminated three times / two times, and then the cavity is low. A refractive index layer was formed to a thickness of 300 nm, and then a high refractive index layer H and a low refractive index layer L were laminated three times / two times. In the figure, 2L indicates a cavity.
(2)最上層の高屈折率層H上にレジストを塗布し、露光現像してレジストパターン41を形成した。レジストパターン41はラインアンドスペースパターンとし、ピッチを1μm、ライン幅を0.5μmとした。 (2) A resist was coated on the uppermost high refractive index layer H, and was exposed and developed to form a resist pattern 41. The resist pattern 41 was a line-and-space pattern with a pitch of 1 μm and a line width of 0.5 μm.
(3)レジストパターン41をマスクとして、イオンビームエッチングにより、高屈折率層H及び低屈折率層Lをエッチングした。 (3) The high refractive index layer H and the low refractive index layer L were etched by ion beam etching using the resist pattern 41 as a mask.
(4)レジストパターン41を除去し、導電膜20をスパッタ法により成膜した。導電膜20は金属膜とし、この例では金属膜にAgを用いた。 (4) The resist pattern 41 was removed, and the conductive film 20 was formed by sputtering. The conductive film 20 is a metal film, and Ag is used for the metal film in this example.
(5)表面を平坦化研磨することによって余分な導電膜20を除去し、表面プラズモン素子を作製した。 (5) The surface of the surface plasmon element was manufactured by removing the excess conductive film 20 by planarizing and polishing the surface.
図3Aは上記のようにして作製した表面プラズモン素子の光学特性として、透過光スペクトルの測定を行った結果を示したものであり、図3Bはそのピーク部分を拡大して示したものである。 FIG. 3A shows the result of measuring the transmitted light spectrum as the optical characteristics of the surface plasmon element manufactured as described above, and FIG. 3B shows the enlarged peak portion.
図3A,Bより非常に鋭い透過光ピークが得られていることがわかる。この表面プラズモン素子の透過光ピークの鋭さを測定した結果、導電膜20の開口21内に光透過方向に屈折率の周期的変化がない従来の表面プラズモン素子に比較して2桁程度の性能向上が達成された。 It can be seen from FIGS. 3A and 3B that a very sharp transmitted light peak is obtained. As a result of measuring the sharpness of the transmitted light peak of this surface plasmon element, the performance is improved by about two orders of magnitude compared to the conventional surface plasmon element in which there is no periodic change in refractive index in the light transmission direction in the opening 21 of the conductive film 20. Was achieved.
この例では導電膜20に周期配列した開口21内における光透過方向の屈折率分布の周期構造を、開口21の側壁の形状を周期的に変化させることによって実現した。以下、図4を参照して作製工程及び具体的構成を説明する。 In this example, the periodic structure of the refractive index distribution in the light transmission direction in the openings 21 periodically arranged in the conductive film 20 is realized by periodically changing the shape of the side walls of the openings 21. Hereinafter, a manufacturing process and a specific configuration will be described with reference to FIGS.
(1)基板10として石英基板を用意し、この基板10上に光学的透明層31としてSiをスパッタ法により形成した。光学的透明層31の厚さは1.5μmとした。そして、光学的透明層31上にレジストを塗布し、露光現像してレジストパターン42を形成した。 (1) A quartz substrate was prepared as the substrate 10, and Si was formed as the optically transparent layer 31 on the substrate 10 by sputtering. The thickness of the optical transparent layer 31 was 1.5 μm. Then, a resist was applied on the optical transparent layer 31 and exposed and developed to form a resist pattern 42.
(2)マスク材料としてSiO2をスパッタ法により形成し、リフトオフによってSiO2のマスク(マスクパターン)43を形成した。マスク43はラインアンドスペースパターンとし、ピッチを1μm、ライン幅を0.5μmとした。そして、いわゆるボッシュ法(例えば、特表平7−503815号公報に記載)と呼ばれるエッチングと堆積とを交互に行う加工法で光学的透明層31に対し、エッチングを行い、エッチングされた穴の側壁に凹凸の周期構造を形成した。凹凸の周期(ピッチ)P及び段差Dはおおよそ下記値となった。
P:250nm
D: 50nm
(2) SiO 2 was formed as a mask material by sputtering, and a SiO 2 mask (mask pattern) 43 was formed by lift-off. The mask 43 was a line and space pattern, with a pitch of 1 μm and a line width of 0.5 μm. Then, the optically transparent layer 31 is etched by a so-called Bosch method (for example, described in JP-A-7-503815), in which etching and deposition are alternately performed, and the side wall of the etched hole is etched. A periodic structure with irregularities was formed. The period (pitch) P and the step D of the unevenness were approximately the following values.
P: 250 nm
D: 50 nm
(3)マスク43を除去した後、導電膜20をスパッタ法により成膜した。導電膜20は金属膜とし、Agを用いた。 (3) After removing the mask 43, the conductive film 20 was formed by sputtering. The conductive film 20 was a metal film, and Ag was used.
(4)表面を平坦化研磨することによって余分な導電膜20を除去し、表面プラズモン素子を作製した。導電膜20に周期的に配列された開口21はその側壁に形状の周期的変化を有するものとなる。 (4) The surface of the surface plasmon element was fabricated by removing the excess conductive film 20 by planarizing and polishing the surface. The openings 21 periodically arranged in the conductive film 20 have a periodic change in shape on the side wall thereof.
図5は上記のようにして作製した表面プラズモン素子の光学特性として、透過光スペクトルの測定を行った結果を示したものであり、鋭い透過光ピークが得られていることがわかる。この表面プラズモン素子の透過光ピークの鋭さを測定した結果、導電膜20の開口21の側壁に光透過方向に形状の周期的変化がない従来の表面プラズモン素子に比較して約3倍程度の性能向上が達成された。 FIG. 5 shows the result of measurement of the transmitted light spectrum as the optical characteristics of the surface plasmon element produced as described above, and it can be seen that a sharp transmitted light peak is obtained. As a result of measuring the sharpness of the transmitted light peak of this surface plasmon element, the performance is about three times that of a conventional surface plasmon element in which the side wall of the opening 21 of the conductive film 20 has no periodic change in shape in the light transmission direction. Improvements have been achieved.
[比較例]
高屈折率層と低屈折率層とが交互積層されてなる周期構造が形成されていない点を除いて、実施例1と同様の方法を用いて表面プラズモン素子を作製した。つまり、導電膜20に周期配列された開口21内部は低屈折率層だけで構成される構造とした。
[Comparative example]
A surface plasmon element was produced using the same method as in Example 1 except that a periodic structure in which high refractive index layers and low refractive index layers were alternately laminated was not formed. That is, the inside of the openings 21 periodically arranged in the conductive film 20 is configured by only a low refractive index layer.
この表面プラズモン素子の光学特性として、透過光スペクトルの測定を行った。結果を図6に示す。図6より、この例では透過光ピークは非常にブロードになっていることがわかる。 As an optical characteristic of the surface plasmon element, a transmitted light spectrum was measured. The results are shown in FIG. FIG. 6 shows that the transmitted light peak is very broad in this example.
以上説明したように、この発明によれば表面プラズモン共鳴ピークを非常に鋭くすることができ、その点で高性能な表面プラズモン素子を得ることができる。 As described above, according to the present invention, the surface plasmon resonance peak can be made extremely sharp, and a high-performance surface plasmon element can be obtained in that respect.
このような効果は表面プラズモン素子において光の透過方向にも周期性を導入する3次元的な構造制御を行ったことによるもので、光が透過する開口内に光透過方向に屈折率分布の周期構造を導入すると波長選択性が非常に効果的に生じることをこの発明で初めて見出した。このメカニズムの詳細は明らかでないが、開口を透過する光の強度を増強する2次元的な周期配列構造と、光の透過方向に設けた屈折率分布の周期構造とのカップリングが生じているものと推察される。 Such an effect is due to the three-dimensional structure control that introduces periodicity in the light transmission direction in the surface plasmon element, and the period of the refractive index distribution in the light transmission direction in the light transmission opening. It has been found for the first time in the present invention that wavelength selectivity is very effectively produced when a structure is introduced. Details of this mechanism are not clear, but there is a coupling between a two-dimensional periodic array structure that enhances the intensity of light transmitted through the aperture and a periodic structure of a refractive index distribution provided in the light transmission direction. It is guessed.
上述した実施例では導電膜20の材料としてAgを用いているが、Agに限らず、例えばAu,Al,Crなど従来から表面プラズモン共鳴が起こることが分かっている材料を用いることができる。 In the above-described embodiments, Ag is used as the material of the conductive film 20, but not limited to Ag, for example, a material that has been known to cause surface plasmon resonance, such as Au, Al, Cr, can be used.
また、透過光の増強効果を生じさせる周期配列構造はスリットを平行配列した構造(ラインアンドスペース構造)だけでなく、例えば光が透過する円形の開口が2次元的に周期配列された構造や光が透過する開口の周囲に同心円状に溝を周期配列した構造など、従来から知られているいろいろな構造を採用することができる。 In addition, the periodic arrangement structure causing the enhancement effect of transmitted light is not limited to a structure in which slits are arranged in parallel (line and space structure), for example, a structure or light in which circular openings through which light is transmitted are two-dimensionally arranged periodically. Various structures conventionally known, such as a structure in which grooves are periodically arranged concentrically around the opening through which light is transmitted, can be employed.
図7及び8はこのような周期配列構造の例を示したものであり、図7は導電膜20に光の波長以下の径の円形の開口21’が正方格子状に周期配列されて設けられた例を示し、図8は単一の円形の開口21’の周囲に、円形の凹部22が正方格子状に周期配列されて設けられた例を示す。なお、図7及び8における開口21’内には実施例1と同様、屈折率の周期的変化を有する誘電体30が充填されている。 FIGS. 7 and 8 show examples of such a periodic arrangement structure. FIG. 7 shows that the conductive film 20 is provided with circular openings 21 ′ having a diameter equal to or smaller than the wavelength of light arranged in a square lattice pattern. FIG. 8 shows an example in which circular recesses 22 are periodically arranged in a square lattice pattern around a single circular opening 21 ′. 7 and 8, the opening 21 'is filled with a dielectric 30 having a periodic change in refractive index, as in the first embodiment.
Claims (4)
光が透過する前記開口内に光透過方向に屈折率分布の周期構造を設けたことを特徴とする表面プラズモン素子。 In a surface plasmon element in which a conductive film is formed on a substrate, and openings are periodically arranged in the conductive film, and the intensity of light transmitted through the openings is increased by the periodic arrangement,
A surface plasmon element comprising a periodic structure having a refractive index distribution in a light transmitting direction in the opening through which light is transmitted.
光が透過する前記開口内に光透過方向に屈折率分布の周期構造を設けたことを特徴とする表面プラズモン素子。 In a surface plasmon element in which a conductive film is formed on a substrate, and the conductive film is provided with at least one opening and a periodic array of recesses or through holes, and the intensity of light transmitted through the opening is enhanced by the periodic array,
A surface plasmon element comprising a periodic structure having a refractive index distribution in a light transmitting direction in the opening through which light is transmitted.
前記屈折率分布の周期構造が前記開口内に充填された誘電体の屈折率の周期的変化によって構成されていることを特徴とする表面プラズモン素子。 In the surface plasmon element according to claim 1 or 2,
The surface plasmon element, wherein the periodic structure of the refractive index distribution is constituted by a periodic change in the refractive index of a dielectric filled in the opening.
前記屈折率分布の周期構造が前記開口の側壁の形状の周期的変化によって構成されていることを特徴とする表面プラズモン素子。 In the surface plasmon element according to claim 1 or 2,
The surface plasmon element characterized in that the periodic structure of the refractive index distribution is constituted by a periodic change in the shape of the side wall of the opening.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007207392A JP4986763B2 (en) | 2007-08-09 | 2007-08-09 | Surface plasmon element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007207392A JP4986763B2 (en) | 2007-08-09 | 2007-08-09 | Surface plasmon element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009042497A true JP2009042497A (en) | 2009-02-26 |
JP4986763B2 JP4986763B2 (en) | 2012-07-25 |
Family
ID=40443289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007207392A Expired - Fee Related JP4986763B2 (en) | 2007-08-09 | 2007-08-09 | Surface plasmon element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4986763B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009150749A (en) * | 2007-12-20 | 2009-07-09 | Japan Aviation Electronics Industry Ltd | Surface plasmon sensor |
JP2009295223A (en) * | 2008-06-04 | 2009-12-17 | Hitachi Ltd | Information recording and reproducing method |
JP2011022529A (en) * | 2009-07-21 | 2011-02-03 | Mejiro Precision:Kk | Light source device and exposure device |
KR20160117885A (en) * | 2015-04-01 | 2016-10-11 | 한국과학기술원 | Label-free Sensor and Method for Manufacture thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000171763A (en) * | 1998-12-09 | 2000-06-23 | Nec Corp | Optical transmitter utilizing metallic film having opening part and periodically varying surface form |
JP2005026567A (en) * | 2003-07-04 | 2005-01-27 | Matsushita Electric Ind Co Ltd | Solid state imaging device and method for manufacturing the same |
WO2006104045A1 (en) * | 2005-03-25 | 2006-10-05 | Nalux Co., Ltd. | Wavelength filter |
-
2007
- 2007-08-09 JP JP2007207392A patent/JP4986763B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000171763A (en) * | 1998-12-09 | 2000-06-23 | Nec Corp | Optical transmitter utilizing metallic film having opening part and periodically varying surface form |
JP2005026567A (en) * | 2003-07-04 | 2005-01-27 | Matsushita Electric Ind Co Ltd | Solid state imaging device and method for manufacturing the same |
WO2006104045A1 (en) * | 2005-03-25 | 2006-10-05 | Nalux Co., Ltd. | Wavelength filter |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009150749A (en) * | 2007-12-20 | 2009-07-09 | Japan Aviation Electronics Industry Ltd | Surface plasmon sensor |
JP4659018B2 (en) * | 2007-12-20 | 2011-03-30 | 日本航空電子工業株式会社 | Surface plasmon sensor |
JP2009295223A (en) * | 2008-06-04 | 2009-12-17 | Hitachi Ltd | Information recording and reproducing method |
JP2011022529A (en) * | 2009-07-21 | 2011-02-03 | Mejiro Precision:Kk | Light source device and exposure device |
KR20160117885A (en) * | 2015-04-01 | 2016-10-11 | 한국과학기술원 | Label-free Sensor and Method for Manufacture thereof |
KR101718906B1 (en) * | 2015-04-01 | 2017-03-23 | 한국과학기술원 | Label-free Sensor and Method for Manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4986763B2 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102535740B1 (en) | Fabrication of diffraction gratings | |
KR100623026B1 (en) | Wire-grid Polarizer and Fabrication Method thereof | |
JP5280654B2 (en) | Transmission diffraction grating, and spectroscopic element and spectroscope using the same | |
JP5706169B2 (en) | Depolarizing element and optical apparatus using the element | |
JP2010169722A (en) | Method of manufacturing optical element, and optical element | |
US20020051275A1 (en) | Photonic crystal and its fabrication | |
Feng et al. | An optical fiber tip micrograting thermometer | |
FR2965067A1 (en) | SPECTRAL FILTER PASSE BAND WITH HIGH SELECTIVITY AND CONTROLLED POLARIZATION | |
JP4986763B2 (en) | Surface plasmon element | |
US7724997B2 (en) | Waveguide element, method for producing the waveguide element, and optical sensor | |
JP2010117634A (en) | Wire grid polarizer, and method of manufacturing the same | |
US20100091369A1 (en) | Double-layer grating | |
JPWO2012105555A1 (en) | Wavelength selective filter element, manufacturing method thereof, and image display device | |
JP6425875B2 (en) | Scale for photoelectric type measuring instrument, encoder and method of forming scale | |
CN105093380B (en) | Inorganic polarizing plate and production method thereof | |
US7463814B2 (en) | Method for fabricating three-dimensional photonic crystal | |
JP4999401B2 (en) | Manufacturing method of optical element having fine irregularities on surface | |
JP2007003969A (en) | Optical element | |
JP2001272557A (en) | Optical functional element and its manufacturing method | |
JP2010117646A (en) | Functional grid structure and method of manufacturing the same | |
JP3867848B2 (en) | Optical waveguide | |
CN109116687B (en) | Super-resolution photoetching light generating device | |
JP5907561B2 (en) | Photonic crystal optical resonator | |
JP4415756B2 (en) | Optical element and method for manufacturing the same | |
JP5217666B2 (en) | Wavelength selective filter and optical instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090804 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4986763 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |