[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008516081A - Copper / zinc / silicon alloys, methods of use and methods of manufacture thereof - Google Patents

Copper / zinc / silicon alloys, methods of use and methods of manufacture thereof Download PDF

Info

Publication number
JP2008516081A
JP2008516081A JP2007535030A JP2007535030A JP2008516081A JP 2008516081 A JP2008516081 A JP 2008516081A JP 2007535030 A JP2007535030 A JP 2007535030A JP 2007535030 A JP2007535030 A JP 2007535030A JP 2008516081 A JP2008516081 A JP 2008516081A
Authority
JP
Japan
Prior art keywords
mass
weight
copper
zinc
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007535030A
Other languages
Japanese (ja)
Other versions
JP5148279B2 (en
Inventor
ハインツ、ストロブル
クラウス、シュバルム
ヘルマン、マイヤー
ノルベルト、ガーグ
ウルリッヒ、レクサー
クラウス、マルスタラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Metall Stiftung and Co KG
Original Assignee
Diehl Metall Stiftung and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Metall Stiftung and Co KG filed Critical Diehl Metall Stiftung and Co KG
Publication of JP2008516081A publication Critical patent/JP2008516081A/en
Application granted granted Critical
Publication of JP5148279B2 publication Critical patent/JP5148279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Silicon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明は、70〜80質量%の銅と、1〜5質量%のケイ素と、0.0001〜0.5質量%のホウ素と、0.2質量%以下のリンおよび/または0.2質量%以下のヒ素と、不純物が不可避的に加わった、残りの亜鉛と、を含んだ銅−亜鉛−ケイ素の合金に関する。更に、本発明は、この合金の使用方法および製造方法に関する。合金は、酸化に対する改善された抵抗および均質な機械的特性により特徴づけられる。  The present invention comprises 70-80 wt% copper, 1-5 wt% silicon, 0.0001-0.5 wt% boron, 0.2 wt% phosphorous and / or 0.2 wt%. The present invention relates to a copper-zinc-silicon alloy containing not more than 1% arsenic and the remaining zinc inevitably doped with impurities. Furthermore, the present invention relates to the use and production method of this alloy. The alloy is characterized by improved resistance to oxidation and homogeneous mechanical properties.

Description

本発明は、銅−亜鉛−ケイ素の合金およびこの種の銅−亜鉛−ケイ素の合金の使用方法および製造方法に関する。   The present invention relates to copper-zinc-silicon alloys and methods of using and producing such copper-zinc-silicon alloys.

銅−亜鉛−ケイ素の合金にとって重要度の高い要件は、脱亜鉛現象に対する抵抗、および機械加工が可能なことである。ここで、この種の真鍮の合金の良好な機械的特性は、例えばEP 1 045 041 A1に記載されるように、鉛を加えることにより得られる。しかしながら、近年では、例えばEP 1 038 981 A1やDE 103 08 778 B3に記載されるように、良好な機械的特性を有する、鉛のない真鍮の合金が開発されてきた。鉛のない銅−亜鉛−ケイ素合金および鉛を含む銅−亜鉛−ケイ素合金のどちらも、酸化されやすく、300〜800℃の範囲内の温度でスケールの層を形成する。このスケールの層は、更に金属への付着が弱くなり、金属から容易に分離するようになる。このため、製品の設備に分散し、この層は設備を酷く汚染してしまうことになってしまう。製品の設備は清浄するのに大きな費用がかかり、製造コストが高くなってしまう。公知の銅−亜鉛−ケイ素合金の更なる問題点は、材料が均質性を有さないために、加工中の長い製品に沿って材料の機械的特性が変化してしまうことにある。   A critical requirement for copper-zinc-silicon alloys is the resistance to dezincification and the ability to be machined. Here, the good mechanical properties of this kind of brass alloy are obtained by adding lead, for example as described in EP 1 045 041 A1. In recent years, however, lead-free brass alloys with good mechanical properties have been developed, as described for example in EP 1 038 981 A1 and DE 103 08 778 B3. Both lead-free copper-zinc-silicon alloys and lead-containing copper-zinc-silicon alloys are susceptible to oxidation and form scale layers at temperatures in the range of 300-800 ° C. This scale layer is further less adherent to the metal and can be easily separated from the metal. This disperses the product equipment and this layer severely contaminates the equipment. Product equipment is expensive to clean and increases manufacturing costs. A further problem with known copper-zinc-silicon alloys is that the mechanical properties of the material change along the long product being processed because the material is not homogeneous.

このような事実を鑑み、本発明は、均質性という観点において性能が向上し、更に、スケールが形成されにくくなるような銅−亜鉛−ケイ素の合金を提供する、ならびにこの種類の真鍮の合金の使用方法および製造方法を提供するという課題に基づいている。   In view of these facts, the present invention provides a copper-zinc-silicon alloy that has improved performance in terms of homogeneity and that is less prone to scale formation, as well as a brass alloy of this type. Based on the problem of providing a method of use and a method of manufacture.

合金に関する第1の目的は、70〜80質量%の銅と、1〜5質量%のケイ素と、0.0001〜0.5質量%のホウ素と、0〜0.2質量%のリンおよび/またはヒ素と、不純物が不可避的に加わった、残りの亜鉛と、を含んだ銅−亜鉛−ケイ素の合金に係る発明により達成される。   The primary purpose for the alloy is to make 70-80% copper, 1-5% silicon, 0.0001-0.5% boron, 0-0.2% phosphorus and / or Alternatively, the invention is achieved by an invention relating to a copper-zinc-silicon alloy containing arsenic and the remaining zinc to which impurities are inevitably added.

銅の含有率は、70〜80質量%の間にある。銅の含有率が70質量%よりも小さい、または80質量%よりも大きい場合には、合金の機械的特性に悪影響を与えるからである。同様のことが、ケイ素の濃度が上述のような1〜5質量%の範囲から外れた場合にも当てはまる。合金におけるホウ素の濃度は0.0001〜0.5質量%の範囲内にある。驚くべきことに、このように主張された濃度の範囲内においてホウ素を追加することにより、一方ではスケールの形成を抑止し、他方では残ったスケールの材料への付着力を大幅に増加させることができることがわかった。更に驚くべきことに、ホウ素を加えることにより微細構造の均質性を向上させ、このため機械的特性のばらつきを抑止することができることがわかった。リンやヒ素が各々0.2質量%以下の濃度で合金中に存在していてもよく、お互い代用することができる。リンやヒ素は、最初の鋳造の微細構造の形態および腐食性能に対してプラス効果を有し、更に溶融の流れ性能を向上させ、応力腐食割れの起こりやすさを減少させる。合金における残りの主要な構成要素は亜鉛である。   The copper content is between 70 and 80% by weight. This is because if the copper content is less than 70% by mass or greater than 80% by mass, the mechanical properties of the alloy are adversely affected. The same applies if the silicon concentration is outside the range of 1-5% by weight as described above. The concentration of boron in the alloy is in the range of 0.0001 to 0.5% by weight. Surprisingly, adding boron within the claimed concentration range, on the one hand, prevents the formation of scale and on the other hand greatly increases the adhesion of the remaining scale to the material. I knew it was possible. More surprisingly, it has been found that the addition of boron can improve the homogeneity of the microstructure and thus suppress variations in mechanical properties. Phosphorus and arsenic may each be present in the alloy at a concentration of 0.2% by mass or less, and can be substituted for each other. Phosphorus and arsenic have a positive effect on the microstructure and corrosion performance of the initial casting, further improve melt flow performance and reduce the likelihood of stress corrosion cracking. The remaining major component in the alloy is zinc.

製造コストを増加させる容易に分離しやすいスケールの層を抑止し、機械的特性を向上させるという上述のように挙げられた利点に加えて、更に、腐食に対する高抵抗力と組み合わせられた良好な機械的特性および成形性能が得られる。脱亜鉛現象および応力腐食割れに対する抵抗力は本発明においてとりわけ明確となる。ISO6509に基づいて行われる脱亜鉛現象テストにより、脱亜鉛現象によるたった26μm以下の深さが得られる。   In addition to the advantages mentioned above of suppressing easily separable scale layers that increase manufacturing costs and improving mechanical properties, a good machine combined with high resistance to corrosion Characteristics and molding performance are obtained. The resistance to dezincification and stress corrosion cracking is particularly evident in the present invention. A dezincification test carried out according to ISO 6509 gives a depth of only 26 μm or less due to the dezincification phenomenon.

この種の銅−亜鉛−ケイ素の合金の使用方法に関する第2の目的は、電気工学の構成要素、衛生陶器の構成要素、液体または気体の搬送または貯留を行う容器、ねじり負荷のある構成要素、再利用可能な構成要素、落とし鋳造による構成要素、半製品、ストリップ、シート、輪郭のある部分、プレートに用いられるような使用方法、もしくは、鍛錬された、圧延された、または成型された合金としての使用方法により達成される。   A second objective regarding the use of this type of copper-zinc-silicon alloy is to provide electrical engineering components, sanitary ware components, containers that carry or store liquids or gases, torsionally loaded components, Reusable components, drop cast components, semi-finished products, strips, sheets, contoured parts, usage as used on plates, or wrought, rolled or molded alloys This is achieved by the usage method.

銅−亜鉛−ケイ素の合金は、電気工学における接点、ピン、または固定部材として使用され、例えば、クランピングおよびプラグ接続またはプラグイン接点を含むような、固定された接点または取り付けられた接点として使用される。   Copper-zinc-silicon alloys are used as contacts, pins, or fixing members in electrical engineering, for example, as fixed or attached contacts, including clamping and plug connections or plug-in contacts Is done.

合金には、液体や気体の媒体に関して腐食に対する高抵抗力を有する。さらに、脱亜鉛現象および応力腐食割れに対する抵抗力はとりわけ大きい。その結果、合金は、特に液体または気体の搬送または貯留を行う容器への使用に適合し、とりわけ、冷凍庫に使用される容器やパイプ、水用器具、バルブの拡張器、パイプのコネクタおよび衛生陶器のバルブへの使用に適合する。   Alloys have a high resistance to corrosion with respect to liquid and gaseous media. Furthermore, the resistance to dezincification and stress corrosion cracking is particularly great. As a result, the alloy is particularly adapted for use in containers that carry or store liquids or gases, and in particular, containers and pipes used in freezers, water appliances, valve expanders, pipe connectors and sanitary ware Suitable for use with other valves.

腐食割合が低いことにより、金属の洗脱、すなわち液体または気体の媒体の動作により失われた合金の構成要素の特性が、本質的に確実に低くなる。この点において、材料は、環境を保護するために汚染物質排出を少なくすることを必要とする応用分野に適合する。このことにより、本発明による合金は、リサイクル可能な材料の分野に使用することができる。   The low corrosion rate inherently ensures that the properties of the alloy components lost due to metal scrubbing, i.e. the operation of the liquid or gaseous medium, are inherently low. In this respect, the material is suitable for application fields that require reduced pollutant emissions to protect the environment. This allows the alloys according to the invention to be used in the field of recyclable materials.

応力腐食割れが発生しにくいことは、高い弾性エネルギーが貯留されるという技術的な理由により、合金が、ねじまたはクランプで締められた接続部への使用に好ましいことを意味する。このため、合金は、とりわけ引っ張り荷重および/またはねじり荷重を受ける全ての構成要素、特にナットおよびボルトに適合する。冷間成形の後に、材料に大きな値の耐力が得られる。その結果、必ずしもプラスチックのように変形させられていないようなねじ接続において、より大きな締めトルクを用いることができる。銅−亜鉛−ケイ素合金の降伏強度の割合は、快削真鍮の場合よりも低くなる。工程中において一度だけしか締められないようなねじ接続は、意図的に拡張し過ぎるようになり、とりわけ高い保持力が得られる。   Less resistance to stress corrosion cracking means that alloys are preferred for use in screws or clamped connections for technical reasons that high elastic energy is stored. For this reason, the alloy is compatible with all components, in particular nuts and bolts, which are particularly subjected to tensile and / or torsional loads. After cold forming, the material has a large value of yield strength. As a result, a larger tightening torque can be used in screw connections that are not necessarily deformed like plastic. The yield strength ratio of the copper-zinc-silicon alloy is lower than that of free-cutting brass. Screw connections that are tightened only once in the process become intentionally overexpanded, and a particularly high holding force is obtained.

銅−亜鉛−ケイ素合金の可能な使用方法により、チューブおよび細長い一片の形態の両方の出発材料となる。また、合金は、装飾目的またはリードフレームの適用において、圧延されたまたは穿孔された細長い一片、シートおよびプレート、とりわけ鍵、版木に極めて適合する。   The possible use of the copper-zinc-silicon alloy results in starting materials both in the form of tubes and strips. The alloy is also very suitable for rolled or perforated strips, sheets and plates, especially keys, wood blocks, for decorative purposes or for leadframe applications.

この種の銅−亜鉛−ケイ素の合金の製造方法に関する第3の目的は、通常の連続的な鋳造および600〜760℃の範囲内の温度での熱圧延を行い、その後変形を行うような、とりわけ冷間圧延を行い、また、好ましくは焼きなましおよび変形工程を追加的に行うような、製造方法により達成される。   A third object of the method for producing a copper-zinc-silicon alloy of this kind is to perform normal continuous casting and hot rolling at a temperature in the range of 600 to 760 ° C., followed by deformation. In particular, it is achieved by a production method which performs cold rolling and preferably additionally performs annealing and deformation steps.

この種の銅−亜鉛−ケイ素の合金の製造方法に関する目的は、通常の連続的な鋳造および760℃以下の温度、好ましくは650〜680℃の範囲内の温度での射出を行い、その後空気中で冷却するような、製造方法でも達成される。   The purpose for the production of this kind of copper-zinc-silicon alloy is to carry out normal continuous casting and injection at temperatures below 760 ° C., preferably in the range 650-680 ° C. It is also achieved by a manufacturing method such as cooling in

銅−亜鉛−ケイ素の合金におけるより有利な改良は、銅は75〜77質量%であり、ケイ素は2.8〜4質量%であり、ホウ素は0.001〜0.1質量%であり、リンおよび/またはヒ素は0.03〜0.1質量%であり、残りは不純物が不可避的に加わった亜鉛であることである。   More advantageous improvements in the copper-zinc-silicon alloy are 75-77 wt% copper, 2.8-4 wt% silicon, 0.001-0.1 wt% boron, Phosphorus and / or arsenic is 0.03 to 0.1% by mass, and the rest is zinc inevitably added with impurities.

他の好ましい態様において、銅−亜鉛−ケイ素の合金は、0.01〜2.5質量%の鉛と、0.01〜2質量%の錫と、0.01〜0.3質量%の鉄と、0.01〜0.3質量%のコバルトと、0.01〜0.3質量%のニッケルと、0.01〜0.3質量%のマンガンと、からなる群から選択された少なくとも1つの要素を追加的に含んでいる。鉛を追加することは、機械的特性にプラス効果がある。   In another preferred embodiment, the copper-zinc-silicon alloy comprises 0.01-2.5 wt% lead, 0.01-2 wt% tin, and 0.01-0.3 wt% iron. And at least one selected from the group consisting of 0.01 to 0.3% by weight cobalt, 0.01 to 0.3% by weight nickel, and 0.01 to 0.3% by weight manganese. Contains one additional element. Adding lead has a positive effect on the mechanical properties.

この場合の合金は、前記群が、0.01〜0.1質量%の鉛と、0.01〜0.2質量%の錫と、0.01〜0.1質量%の鉄と、0.01〜0.1質量%のコバルトと、0.01〜0.1質量%のニッケルと、0.01〜0.1質量%のマンガンと、からなることがより有利となる。   In this case, the alloy contains 0.01 to 0.1% by weight of lead, 0.01 to 0.2% by weight of tin, 0.01 to 0.1% by weight of iron, 0% It is more advantageous to comprise 0.01 to 0.1% by weight of cobalt, 0.01 to 0.1% by weight of nickel, and 0.01 to 0.1% by weight of manganese.

好ましい改良において、銅−亜鉛−ケイ素の合金は、0.5質量%以下の銀と、0.5質量%以下のアルミニウムと、0.5質量%以下のマグネシウムと、0.5質量%以下のアンチモンと、0.5質量%以下のチタニウムと、0.5質量%以下のジルコニウムと、からなる群から選択された少なくとも1つの要素を追加的に含み、より好ましくは、0.01〜0.1質量%の銀と、0.01〜0.1質量%のアルミニウムと、0.01〜0.1質量%のマグネシウムと、0.01〜0.1質量%のアンチモンと、0.01〜0.1質量%のチタニウムと、0.01〜0.1質量%のジルコニウムと、からなる群から選択された少なくとも1つの要素を追加的に含んでいる。   In a preferred improvement, the copper-zinc-silicon alloy comprises 0.5 wt% or less silver, 0.5 wt% or less aluminum, 0.5 wt% or less magnesium, and 0.5 wt% or less. It further includes at least one element selected from the group consisting of antimony, 0.5% by mass or less of titanium, and 0.5% by mass or less of zirconium, and more preferably 0.01-0. 1% by weight silver, 0.01-0.1% by weight aluminum, 0.01-0.1% by weight magnesium, 0.01-0.1% by weight antimony, 0.01-0.1% by weight It additionally includes at least one element selected from the group consisting of 0.1% by weight titanium and 0.01-0.1% by weight zirconium.

他の好ましい態様において、銅−亜鉛−ケイ素の合金は、0.3質量%以下のカドミウムと、0.3質量%以下のクロムと、0.3質量%以下のセレンと、0.3質量%以下のテルルと、0.3質量%以下のビスマスと、からなる群から選択された少なくとも1つの要素を追加的に含み、より好ましくは、0.01〜0.3質量%のカドミウムと、0.01〜0.3質量%のクロムと、0.01〜0.3質量%のセレンと、0.01〜0.3質量%のテルルと、0.01〜0.3質量%のビスマスと、からなる群から選択された少なくとも1つの要素を追加的に含んでいる。   In another preferred embodiment, the copper-zinc-silicon alloy comprises 0.3 mass% or less cadmium, 0.3 mass% or less chromium, 0.3 mass% or less selenium, and 0.3 mass%. And further comprising at least one element selected from the group consisting of the following tellurium and 0.3% by weight or less bismuth, more preferably 0.01 to 0.3% by weight cadmium, and 0 0.01-0.3 wt% chromium, 0.01-0.3 wt% selenium, 0.01-0.3 wt% tellurium, 0.01-0.3 wt% bismuth, , At least one element selected from the group consisting of:

例示的な実施の形態について、図面および以下の記載によってより詳細に説明する。   Exemplary embodiments will be described in more detail with reference to the drawings and the following description.

例示的な実施の形態におけるCuZn21Si3P合金(銅−亜鉛21−ケイ素3−リン合金)は、成分の濃度についてバリエーションがある。銅の量は75.8〜76.1質量%の範囲内にあり、ケイ素の量は3.2〜3.4質量%の範囲内にあり、リンの量は0.07〜0.1質量%の範囲内にあり、残りは不純物が不可避的に加わった亜鉛となっている。合金の様々なサンプルは、0質量%、0.004質量%および0.009質量%という異なる量のホウ素を含んでいる。合金は、連続的な鋳造を行い、その後760℃よりも低い温度、好ましくは650〜680℃の範囲内の温度で射出を行い、その後急速な冷却を行うことにより製造される。   The CuZn21Si3P alloy (copper-zinc 21-silicon 3-phosphorous alloy) in the exemplary embodiment has variations in the component concentrations. The amount of copper is in the range of 75.8 to 76.1% by mass, the amount of silicon is in the range of 3.2 to 3.4% by mass, and the amount of phosphorus is 0.07 to 0.1% by mass. %, And the remainder is zinc inevitably added with impurities. Various samples of the alloy contain different amounts of boron, 0 wt%, 0.004 wt% and 0.009 wt%. The alloy is produced by continuous casting, followed by injection at a temperature below 760 ° C., preferably in the range of 650-680 ° C., followed by rapid cooling.

全ての合金は、脱亜鉛現象に対して優れた抵抗力を有している。ISO6509に基づいて行われる脱亜鉛現象テストにより、たった26μmより小さな脱亜鉛現象の深さが明らかになる。   All alloys have excellent resistance to the dezincing phenomenon. A dezincification test carried out according to ISO 6509 reveals a dezincification depth less than just 26 μm.

もしCuZn21Si3P合金が例えば熱間加工において300〜800℃の範囲内の温度で露呈された場合には、スケール(scale、薄い酸化膜)が形成される。このスケールは容易に分離され、製品の設備を汚染することになる。ホウ素を含まないCuZn21Si3P合金の広範囲にわたるスケール形成による表面を図1aに示す。被検査物の表面は図1aにおいて大部分を占める灰色として表される。この灰色は、CuZn21Si3P合金におけるスケールが形成された表面を示す。規則的な分布ではないようなわずかな個々の輝いた点が、合金の表面で観察される。これに対して、図1bに示されるような0.0004質量%のホウ素を含むCuZn21Si3P合金は、ホウ素を含まない合金よりも、はるかに多くの白い点を表面に有している。これらの白い点は、合金における輝く金属の領域を示している。これらの輝く金属の領域、すなわちスケールのない領域は、合金の表面で不均一に分布している。スケールが形成される表面の割合は大幅に減少し、残ったスケールは、ホウ素がない合金の場合と比較してよりしっかりと金属に付着する。図1cは、0.009質量%のホウ素を含むCuZn21Si3P合金を示す。この図は、輝く金属の表面の数、すなわち白い点の数が、更に増加していることをはっきりと示している。いくつかの領域では、輝く金属材料の比較的大きな連続的な領域があり、またこの図は合金の表面における非常に規則的な分布が表れている。スケールが形成される表面の割合は更に減少し、残ったスケールはしっかりと金属に付着する。このため、0.0001〜0.5質量%の範囲内の低濃度のホウ素が、銅−亜鉛−ケイ素合金のスケールの形成を制限し、同時に、金属へのスケールの付着力が大幅に増加し、その結果製品の設備に対する望ましくない汚染を防止することが、驚くほどに明らかになった。   If the CuZn21Si3P alloy is exposed at a temperature in the range of 300 to 800 ° C., for example, in hot working, a scale (a thin oxide film) is formed. This scale is easily separated and can contaminate the product equipment. The extensive scaled surface of a boron free CuZn21Si3P alloy is shown in FIG. 1a. The surface of the object to be inspected is represented as gray, which accounts for the majority in FIG. 1a. This gray color indicates the surface on which the scale is formed in the CuZn21Si3P alloy. A few individual bright spots that are not regularly distributed are observed on the surface of the alloy. In contrast, a CuZn21Si3P alloy containing 0.0004 wt% boron as shown in FIG. 1b has much more white spots on the surface than an alloy containing no boron. These white dots indicate areas of shiny metal in the alloy. These bright metal areas, i.e. unscaled areas, are unevenly distributed on the surface of the alloy. The proportion of the surface on which the scale is formed is greatly reduced and the remaining scale adheres more firmly to the metal than in the case of an alloy without boron. FIG. 1c shows a CuZn21Si3P alloy containing 0.009 wt% boron. This figure clearly shows that the number of shining metal surfaces, ie the number of white dots, is further increased. In some areas there is a relatively large continuous area of shiny metallic material, and this figure shows a very regular distribution on the surface of the alloy. The proportion of the surface on which the scale is formed further decreases and the remaining scale adheres firmly to the metal. For this reason, low concentrations of boron in the range of 0.0001-0.5% by weight limit the scale formation of the copper-zinc-silicon alloy, while at the same time the adhesion of the scale to the metal is greatly increased. As a result, it has surprisingly been found to prevent unwanted contamination of the product equipment.

同様の結果は、例えば0.01質量%、0.05質量%、0.1質量%または2.5質量%のような異なる鉛の含有率である銅−亜鉛−ケイ素−リン合金でも見られた。   Similar results are seen with copper-zinc-silicon-phosphorous alloys with different lead content, for example 0.01%, 0.05%, 0.1% or 2.5% by weight. It was.

銅−亜鉛−ケイ素合金のスケール形成のしやすさを減少させることに加えて、ホウ素は機械的特定にとってプラス効果がある。ホウ素は合金の微細構造をより均質なものにするからである。このような合金の微細構造の変化は、ホウ素の濃度の作用として図2に示される。ホウ素を含まないCuZn21Si3P合金が粗く不均質な微細構造を有する(図2a)のに対し、0.0004質量%のホウ素を含むCuZn21Si3P合金は、既に非常に均一な粒度となっている非常に均質な微細構造を有する(図2b)。ホウ素が0.009質量%まで更に増えた場合には、更に均質な、より均一のCuZn21Si3P合金となる。この場合、微細構造の粒子はもはや裸眼では見ることができない(図2c)。   In addition to reducing the ease of scale formation of copper-zinc-silicon alloys, boron has a positive effect on mechanical identification. This is because boron makes the microstructure of the alloy more homogeneous. Such a change in the microstructure of the alloy is shown in FIG. 2 as a function of the concentration of boron. The CuZn21Si3P alloy without boron has a coarse and inhomogeneous microstructure (FIG. 2a), whereas the CuZn21Si3P alloy with 0.0004% by weight boron already has a very uniform grain size. It has a fine structure (FIG. 2b). When boron is further increased to 0.009 mass%, a more homogeneous and more uniform CuZn21Si3P alloy is obtained. In this case, the finely structured particles can no longer be seen with the naked eye (FIG. 2c).

微細構造の視覚的な変化に加えて、ホウ素の増加は機械的特性にとってプラス効果がある。このことは、銅−亜鉛−ケイ素合金から押し出されるロッドにおいてとりわけ明らかである。機械的特性を測定するにあたり、このようなロッドの先端および終端でサンプルが取られた。ホウ素を含まないCuZn21Si3P合金から形成されるロッドの引っ張り強さについて、ロッドの終端と比較してロッドの先端において60N/mmを超える差があった。これに対して、0.0004質量%のホウ素を含むような類似の合金において、ロッドの先端と終端との間における引っ張り強さの差は40N/mmよりも小さかった。もし0.009質量%のホウ素がCuZn21Si3P合金に加えられたときには、ロッドの先端と終端との間における引っ張り強さの差は5N/mmよりも小さかった。 In addition to visual changes in the microstructure, the increase in boron has a positive effect on the mechanical properties. This is particularly evident in rods extruded from copper-zinc-silicon alloys. In measuring the mechanical properties, samples were taken at the tips and ends of such rods. Regarding the tensile strength of the rod formed from the CuZn21Si3P alloy containing no boron, there was a difference exceeding 60 N / mm 2 at the end of the rod compared to the end of the rod. In contrast, in a similar alloy containing 0.0004 wt% boron, the difference in tensile strength between the tip and end of the rod was less than 40 N / mm 2 . If the 0.009 wt% boron when added to CuZn21Si3P alloy, the strength difference tension between the tip and the end of the rod was less than 5N / mm 2.

このように、材料は先端から終端まで同一の機械的特性を有する。このため、押出された全長で均一な強さが得られる。この理由は、ホウ素の細粒化作用による。   Thus, the material has the same mechanical properties from the tip to the end. For this reason, uniform strength can be obtained over the entire length of the extrusion. The reason is due to the effect of boron atomization.

表は、銅−亜鉛−ケイ素合金のホウ素の含有率と、合金の微細構造の均質性の増加すなわち押出された加工中の製品における強度の差の減少と関係を示す。   The table shows the relationship between the boron content of the copper-zinc-silicon alloy and the increase in the microstructure homogeneity of the alloy, ie the decrease in the difference in strength in the extruded processed product.

Figure 2008516081
Figure 2008516081

(a)ホウ素を加えなかったときのCuZn21Si3P合金、(b)0.0004質量%のホウ素を含むCuZn21Si3P合金、および(c)0.009質量%のホウ素を含むCuZn21Si3P合金について、それぞれ600℃で2時間焼きなましを行った後のスケールの層の形態を示す。(A) CuZn21Si3P alloy without boron, (b) CuZn21Si3P alloy containing 0.0004 mass% boron, and (c) CuZn21Si3P alloy containing 0.009 mass% boron at 600 ° C. Fig. 3 shows the morphology of the scale layer after time annealing. (a)ホウ素を加えなかったときのCuZn21Si3P合金、(b)0.0004質量%のホウ素を含むCuZn21Si3P合金、および(c)0.009質量%のホウ素を含むCuZn21Si3P合金について、それぞれ鋳造が行われた微細構造の形態を示す。(A) CuZn21Si3P alloy without boron added, (b) CuZn21Si3P alloy containing 0.0004 mass% boron, and (c) CuZn21Si3P alloy containing 0.009 mass% boron, respectively. Shows the form of the microstructure.

Claims (9)

70〜80質量%の銅と、
1〜5質量%のケイ素と、
0.0001〜0.5質量%のホウ素と、
0〜0.2質量%のリンおよび/またはヒ素と、
不純物が不可避的に加わった、残りの亜鉛と、
を含んだ銅−亜鉛−ケイ素の合金。
70-80 mass% copper,
1 to 5 mass% silicon,
0.0001-0.5 mass% boron,
0-0.2% by weight of phosphorus and / or arsenic;
With the remaining zinc unavoidably added,
Copper-zinc-silicon alloy containing
銅は75〜77質量%であり、
ケイ素は2.8〜4質量%であり、
ホウ素は0.0001〜0.01質量%であり、
リンおよび/またはヒ素は0.03〜0.1質量%であることを特徴とする請求項1記載の銅−亜鉛−ケイ素の合金。
Copper is 75-77 mass%,
Silicon is 2.8-4% by weight,
Boron is 0.0001-0.01 mass%,
2. The copper-zinc-silicon alloy according to claim 1, wherein phosphorus and / or arsenic is 0.03 to 0.1% by mass.
0.01〜2.5質量%の鉛と、
0.01〜2質量%の錫と、
0.01〜0.3質量%の鉄と、
0.01〜0.3質量%のコバルトと、
0.01〜0.3質量%のニッケルと、
0.01〜0.3質量%のマンガンと、
からなる群から選択された少なくとも1つの要素を追加的に含むことを特徴とする請求項1または2記載の銅−亜鉛−ケイ素の合金。
0.01 to 2.5 mass% lead,
0.01-2 mass% tin,
0.01-0.3 mass% iron,
0.01-0.3 mass% cobalt,
0.01 to 0.3 mass% nickel,
0.01-0.3 mass% manganese,
The copper-zinc-silicon alloy according to claim 1 or 2, further comprising at least one element selected from the group consisting of:
前記群は、
0.01〜0.1質量%の鉛と、
0.01〜0.2質量%の錫と、
0.01〜0.1質量%の鉄と、
0.01〜0.1質量%のコバルトと、
0.01〜0.1質量%のニッケルと、
0.01〜0.1質量%のマンガンと、
からなることを特徴とする請求項3記載の銅−亜鉛−ケイ素の合金。
The group is
0.01 to 0.1% by weight of lead;
0.01-0.2 mass% tin,
0.01-0.1% by mass of iron;
0.01-0.1% by weight of cobalt,
0.01-0.1% by weight of nickel;
0.01-0.1% by weight of manganese,
4. The copper-zinc-silicon alloy according to claim 3, wherein
0.5質量%以下の銀と、
0.5質量%以下のアルミニウムと、
0.5質量%以下のマグネシウムと、
0.5質量%以下のアンチモンと、
0.5質量%以下のチタニウムと、
0.5質量%以下のジルコニウムと、
からなる群から選択された少なくとも1つの要素を追加的に含み、より好ましくは、
0.01〜0.1質量%の銀と、
0.01〜0.1質量%のアルミニウムと、
0.01〜0.1質量%のマグネシウムと、
0.01〜0.1質量%のアンチモンと、
0.01〜0.1質量%のチタニウムと、
0.01〜0.1質量%のジルコニウムと、
からなる群から選択された少なくとも1つの要素を追加的に含むことを特徴とする請求項1乃至4のいずれか一項に記載の銅−亜鉛−ケイ素の合金。
0.5% by mass or less of silver,
0.5 mass% or less of aluminum,
0.5% by weight or less of magnesium,
0.5% by mass or less of antimony,
Less than or equal to 0.5 wt% titanium,
0.5 mass% or less of zirconium,
Additionally comprising at least one element selected from the group consisting of:
0.01 to 0.1% by weight of silver,
0.01 to 0.1% by weight of aluminum;
0.01-0.1% by weight of magnesium,
0.01-0.1% by weight of antimony;
0.01-0.1% by mass of titanium,
0.01-0.1% by weight of zirconium,
The copper-zinc-silicon alloy according to claim 1, further comprising at least one element selected from the group consisting of:
0.3質量%以下のカドミウムと、
0.3質量%以下のクロムと、
0.3質量%以下のセレンと、
0.3質量%以下のテルルと、
0.3質量%以下のビスマスと、
からなる群から選択された少なくとも1つの要素を追加的に含み、より好ましくは、
0.01〜0.3質量%のカドミウムと、
0.01〜0.3質量%のクロムと、
0.01〜0.3質量%のセレンと、
0.01〜0.3質量%のテルルと、
0.01〜0.3質量%のビスマスと、
からなる群から選択された少なくとも1つの要素を追加的に含むことを特徴とする請求項1乃至5のいずれか一項に記載の銅−亜鉛−ケイ素の合金。
Less than 0.3% by weight of cadmium;
0.3% by mass or less of chromium,
0.3% by mass or less of selenium,
Less than 0.3% by weight tellurium;
Less than 0.3% by weight of bismuth,
Additionally comprising at least one element selected from the group consisting of:
0.01-0.3 mass% cadmium;
0.01-0.3 mass% chromium,
0.01 to 0.3% by weight of selenium;
0.01-0.3% by weight tellurium;
0.01-0.3 mass% bismuth,
The copper-zinc-silicon alloy according to claim 1, further comprising at least one element selected from the group consisting of:
請求項1乃至6のいずれか一項に記載の銅−亜鉛−ケイ素の合金の使用方法であって、
電気工学の構成要素、衛生陶器の構成要素、液体または気体の搬送または貯留を行う容器、ねじり負荷のある構成要素、再利用可能な構成要素、落とし鋳造による構成要素、半製品、ストリップ、シート、輪郭のある部分、プレートに用いられる使用方法、もしくは、鍛錬された、圧延された、または成型された合金としての使用方法。
A method of using a copper-zinc-silicon alloy according to any one of claims 1 to 6,
Electrical engineering components, sanitary ware components, containers that carry or store liquids or gases, torsionally loaded components, reusable components, drop cast components, semi-finished products, strips, sheets, Usage for contoured parts, plates, or as a wrought, rolled or molded alloy.
請求項1乃至6のいずれか一項に記載の銅−亜鉛−ケイ素の合金の製造方法であって、
通常の連続的な鋳造および600〜760℃の範囲内の温度での熱圧延を行い、その後変形を行うような、とりわけ冷間圧延を行い、また、好ましくは焼きなましおよび変形工程を追加的に行うような、製造方法。
A method for producing a copper-zinc-silicon alloy according to any one of claims 1 to 6,
Normal continuous casting and hot rolling at temperatures in the range of 600-760 ° C. followed by deformation, in particular cold rolling, preferably additionally with annealing and deformation steps. Such a manufacturing method.
請求項1乃至6のいずれか一項に記載の銅−亜鉛−ケイ素の合金の製造方法であって、
通常の連続的な鋳造および760℃以下の温度、好ましくは650〜680℃の範囲内の温度での射出を行い、その後空気中で冷却するような、製造方法。
A method for producing a copper-zinc-silicon alloy according to any one of claims 1 to 6,
A manufacturing method in which normal continuous casting and injection at a temperature of 760 ° C. or lower, preferably at a temperature in the range of 650 to 680 ° C., followed by cooling in air.
JP2007535030A 2004-10-11 2005-05-13 Copper / zinc / silicon alloys, methods of use and methods of manufacture thereof Expired - Lifetime JP5148279B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004049468 2004-10-11
DE102004049468.1 2004-10-11
PCT/EP2005/005238 WO2006039951A1 (en) 2004-10-11 2005-05-13 Copper/zinc/silicon alloy, use and production thereof

Publications (2)

Publication Number Publication Date
JP2008516081A true JP2008516081A (en) 2008-05-15
JP5148279B2 JP5148279B2 (en) 2013-02-20

Family

ID=34969314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007535030A Expired - Lifetime JP5148279B2 (en) 2004-10-11 2005-05-13 Copper / zinc / silicon alloys, methods of use and methods of manufacture thereof

Country Status (15)

Country Link
US (2) US20060078458A1 (en)
EP (1) EP1812612B1 (en)
JP (1) JP5148279B2 (en)
KR (1) KR101010906B1 (en)
CN (1) CN100510132C (en)
AT (1) ATE466965T1 (en)
BR (1) BRPI0516067B1 (en)
CA (1) CA2582972C (en)
DE (1) DE502005009545D1 (en)
ES (1) ES2343532T3 (en)
MY (1) MY145376A (en)
PL (1) PL1812612T3 (en)
PT (1) PT1812612E (en)
TW (1) TWI369405B (en)
WO (1) WO2006039951A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034281A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842131B2 (en) * 2006-01-30 2010-11-30 Kronos International Inc High opacity TiO2 pigment and production method
RU2009140792A (en) * 2007-04-09 2011-05-20 Юсв Лимитед (In) NEW STABLE PHARMACEUTICAL COMPOSITIONS BISULPHATE CLOPIDOGEL AND METHOD FOR PRODUCING THEM
CN101440444B (en) * 2008-12-02 2010-05-12 路达(厦门)工业有限公司 Leadless free-cutting high-zinc silicon brass alloy and manufacturing method thereof
US20100226815A1 (en) * 2009-03-09 2010-09-09 Lazarus Norman M Lead-Free Brass Alloy
US20100303667A1 (en) * 2009-03-09 2010-12-02 Lazarus Norman M Novel lead-free brass alloy
WO2010140915A1 (en) 2009-06-04 2010-12-09 Kostln Sergei Alekseevich Method for producing a precipitation-hardened lean copper-based alloy, and method for producing a metal product therefrom
TWI387656B (en) * 2009-07-06 2013-03-01 Modern Islands Co Ltd Preparation of Low Lead Brass Alloy and Its
US20110081272A1 (en) * 2009-10-07 2011-04-07 Modern Islands Co., Ltd. Low-lead copper alloy
US20110081271A1 (en) * 2009-10-07 2011-04-07 Modern Islands Co., Ltd. Low-lead copper alloy
US20120058005A1 (en) * 2009-11-30 2012-03-08 Inho Song Copper Corrosion Resistant, Machinable Brass Alloy
US20110142715A1 (en) * 2009-12-11 2011-06-16 Globe Union Industrial Corporation Brass alloy
TWI398532B (en) 2010-01-22 2013-06-11 Modern Islands Co Ltd Lead-free brass alloy
WO2012032155A2 (en) 2010-09-10 2012-03-15 Raufoss Water & Gas As Improved brass alloy and a method of manufacturing thereof
CN102816946B (en) * 2011-06-09 2016-06-22 浙江万得凯铜业有限公司 A kind of processing technology of copper rod
CN102230107A (en) * 2011-06-28 2011-11-02 安徽精诚铜业股份有限公司 Diamagnetic clothing brass band and manufacturing process thereof
KR101340487B1 (en) * 2011-09-30 2013-12-12 주식회사 풍산 Leadless Free Cutting Copper Alloy and Process of Production Same
KR101483542B1 (en) 2012-09-14 2015-01-16 노인국 Silicon brass alloy and thereof manufacturing method
KR101420619B1 (en) 2012-09-14 2014-08-13 노인국 Lead-free brass alloy and thereof manufacturing method
CN103114220B (en) * 2013-02-01 2015-01-21 路达(厦门)工业有限公司 Excellent-thermoformability lead-free free-cutting corrosion-resistant brass alloy
DE102013012288A1 (en) 2013-07-24 2015-01-29 Wieland-Werke Ag Grain-refined copper casting alloy
CN103484717A (en) * 2013-09-29 2014-01-01 苏州市凯业金属制品有限公司 Brass alloy metal pipe
CN103773993B (en) * 2014-01-10 2016-01-20 滁州学院 A kind of zinc electroplating bath cupronickel alloy material and preparation method thereof
CN104878243A (en) * 2015-06-25 2015-09-02 潘应生 Copper aluminum alloy and preparation method thereof
CN104878242A (en) * 2015-06-25 2015-09-02 潘应生 Copper aluminum alloy and preparation method thereof
US9868129B2 (en) 2015-08-24 2018-01-16 John B. Hayden Air cleaning fountain
US10329180B2 (en) 2015-08-24 2019-06-25 John B. Hayden Air cleaning fountain
US10143956B2 (en) * 2015-08-24 2018-12-04 John B. Hayden Air cleaning fountain
CN105331846A (en) * 2015-12-02 2016-02-17 芜湖楚江合金铜材有限公司 Efficient and high-yield short flow special-shape copper alloy wire and processing process thereof
CN110241327B (en) * 2019-06-25 2020-10-20 宁波金田铜业(集团)股份有限公司 A kind of Ti-containing tin bronze rod and its preparation processing and heat treatment process method
US11427891B2 (en) * 2019-07-24 2022-08-30 Nibco Inc. Low silicon copper alloy piping components and articles
KR20240085468A (en) 2022-12-08 2024-06-17 주식회사 대창 Silicon-based lead-free brass alloy with excellent hot machinability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696041A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material
JPH02166245A (en) * 1988-12-20 1990-06-26 Kobe Steel Ltd High conductivity heat-resistant copper alloy capable of atmospheric melting
JP2000119775A (en) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd Lead-free free cutting copper alloy
JP2004263301A (en) * 2003-02-28 2004-09-24 Wieland Werke Ag Lead-free copper alloy and method for using the same
WO2006016442A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper-base alloy casting with refined crystal grains

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826736A (en) * 1985-06-14 1989-05-02 Sumitomo Special Metals Co., Ltd. Clad sheets
KR900006105B1 (en) * 1987-06-13 1990-08-22 풍산금속 공업주식회사 High strength, high elasticity, high heat resistance, manufacturing method of copper alloy and copper alloy plate
JPH04224645A (en) * 1990-12-26 1992-08-13 Nikko Kyodo Co Ltd Copper alloy for electronic parts
CN1058531C (en) * 1997-05-08 2000-11-15 华南理工大学 Beta brass shape-memory alloy and preparation method
JPH111736A (en) 1997-06-09 1999-01-06 Chuetsu Gokin Chuko Kk Brass alloy material for heating device
SE511680C2 (en) * 1998-03-06 1999-11-08 Tour & Andersson Hydronics Ab Brass alloy with zinc leaching resistance, suitable for hot pressing
JPH11293366A (en) * 1998-04-09 1999-10-26 Furukawa Electric Co Ltd:The Material for piezoelectric vibrator case and piezoelectric vibrator case using the material
JP3917304B2 (en) * 1998-10-09 2007-05-23 三宝伸銅工業株式会社 Free-cutting copper alloy
US8506730B2 (en) * 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
US6413330B1 (en) * 1998-10-12 2002-07-02 Sambo Copper Alloy Co., Ltd. Lead-free free-cutting copper alloys
JP3898619B2 (en) * 2002-10-15 2007-03-28 大同メタル工業株式会社 Copper-based alloy for sliding
JP4296344B2 (en) * 2003-03-24 2009-07-15 Dowaメタルテック株式会社 Copper alloy material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696041A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material
JPH02166245A (en) * 1988-12-20 1990-06-26 Kobe Steel Ltd High conductivity heat-resistant copper alloy capable of atmospheric melting
JP2000119775A (en) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd Lead-free free cutting copper alloy
JP2004263301A (en) * 2003-02-28 2004-09-24 Wieland Werke Ag Lead-free copper alloy and method for using the same
WO2006016442A1 (en) * 2004-08-10 2006-02-16 Sanbo Shindo Kogyo Kabushiki Kaisha Copper-base alloy casting with refined crystal grains

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538828B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
WO2018034282A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
WO2018034284A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy, and method for producing free-cutting copper alloy
WO2018034280A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2018034283A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
JPWO2018034284A1 (en) * 2016-08-15 2018-08-16 三菱伸銅株式会社 Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material
JPWO2018034282A1 (en) * 2016-08-15 2018-08-16 三菱伸銅株式会社 Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
JPWO2018034283A1 (en) * 2016-08-15 2018-08-16 三菱伸銅株式会社 Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
JPWO2018034281A1 (en) * 2016-08-15 2018-08-23 三菱伸銅株式会社 Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material
JPWO2018034280A1 (en) * 2016-08-15 2018-08-16 三菱伸銅株式会社 Free-cutting copper alloy processed material and method for producing free-cutting copper alloy processed material
US10557185B2 (en) 2016-08-15 2020-02-11 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy, and method for producing free-cutting copper alloy
US10538827B2 (en) 2016-08-15 2020-01-21 Mitsubishi Shindoh Co., Ltd. Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
WO2018034281A1 (en) * 2016-08-15 2018-02-22 三菱伸銅株式会社 Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11131009B2 (en) 2016-08-15 2021-09-28 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
US11136648B2 (en) 2016-08-15 2021-10-05 Mitsubishi Materials Corporation Free-cutting copper alloy, and method for producing free-cutting copper alloy
US11434548B2 (en) 2016-08-15 2022-09-06 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11313013B2 (en) 2016-08-15 2022-04-26 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11421301B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
US11421302B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy

Also Published As

Publication number Publication date
BRPI0516067A (en) 2008-08-19
PL1812612T3 (en) 2010-10-29
ES2343532T3 (en) 2010-08-03
BRPI0516067B1 (en) 2014-10-14
KR101010906B1 (en) 2011-01-25
CA2582972A1 (en) 2006-04-20
US20060078458A1 (en) 2006-04-13
ATE466965T1 (en) 2010-05-15
DE502005009545D1 (en) 2010-06-17
MY145376A (en) 2012-01-31
CN101023191A (en) 2007-08-22
TW200611985A (en) 2006-04-16
KR20070060100A (en) 2007-06-12
EP1812612A1 (en) 2007-08-01
CN100510132C (en) 2009-07-08
JP5148279B2 (en) 2013-02-20
EP1812612B1 (en) 2010-05-05
WO2006039951A1 (en) 2006-04-20
US20090280026A1 (en) 2009-11-12
CA2582972C (en) 2014-02-04
TWI369405B (en) 2012-08-01
PT1812612E (en) 2010-06-28

Similar Documents

Publication Publication Date Title
JP5148279B2 (en) Copper / zinc / silicon alloys, methods of use and methods of manufacture thereof
CN100430498C (en) Lead-free copper alloy and its application
AU2004319350B2 (en) Free-cutting, lead-containing Cu-Ni-Sn alloy and production method thereof
CN101646791B (en) Cu-ni-si-co-based copper alloy for electronic material, and method for production thereof
CN101503770B (en) Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
TR201808044T4 (en) Lead-free cut-easy corrosion-resistant brass alloy with good thermal-forming performance.
WO2001090430A1 (en) Corrosion resistant aluminium alloy
FI84626C (en) KOPPAR-BERYLLIUMLEGERING.
EP2143810A1 (en) Copper alloy for electrical/electronic device and method for producing the same
KR20200103709A (en) Copper-zinc alloy
EP2614167B1 (en) Brass alloy comprising silicon and arsenic and a method of manufacturing thereof
US4033767A (en) Ductile corrosion resistant alloy
JP2019510132A (en) Sliding member made of copper-zinc alloy
EP2360285B1 (en) Lead-free brass alloy
JP2629332B2 (en) Cu alloy for plastic molds
RU2772516C2 (en) Copper-zinc alloy
DE102005024037A1 (en) Copper-based alloy used e.g. in the production of electro-technical components contains copper, silicon, boron and phosphorus and/or arsenic and a balance of zinc
DE202004020395U1 (en) Copper-based alloy used e.g. in the production of electro-technical components contains copper, silicon, boron and phosphorus and/or arsenic and a balance of zinc
CN108866383A (en) A kind of unleaded silicon brass alloy and its manufacturing method
JP2004183098A (en) Aluminum alloy sheet for caulking work, its manufacturing method and terminal made of aluminum alloy
JPH04120228A (en) Brass mixed with in and p and excellent in corrosion resistance
CN1775984A (en) High-temperature alloy with high-temperature oxidation resistance and high-temperature corrosion resistance
JPH04120230A (en) Brass mixed with in and sb and excellent in corrosion resistance
JPH04120229A (en) Brass mixed with in and excellent in corrosion resistance
JPH04128335A (en) Te-, sb-, and p-added brass excellent in corrosion resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250