[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008312071A - Optical communication device and optical communication system - Google Patents

Optical communication device and optical communication system Download PDF

Info

Publication number
JP2008312071A
JP2008312071A JP2007159599A JP2007159599A JP2008312071A JP 2008312071 A JP2008312071 A JP 2008312071A JP 2007159599 A JP2007159599 A JP 2007159599A JP 2007159599 A JP2007159599 A JP 2007159599A JP 2008312071 A JP2008312071 A JP 2008312071A
Authority
JP
Japan
Prior art keywords
optical
optical communication
dispersion
signal
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007159599A
Other languages
Japanese (ja)
Other versions
JP4833157B2 (en
Inventor
Hirotaka Nakamura
浩崇 中村
Tomoaki Yoshida
智暁 吉田
Shunji Kimura
俊二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007159599A priority Critical patent/JP4833157B2/en
Publication of JP2008312071A publication Critical patent/JP2008312071A/en
Application granted granted Critical
Publication of JP4833157B2 publication Critical patent/JP4833157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compensate dispersion in an optical fiber transmission path of upward and downward signals on an optical communication device side at one end according to the distance of the optical fiber between optical communication devices on both end sides. <P>SOLUTION: The optical communication device has: a light receiving unit 24 for converting an input light signal to a reception electric signal; a waveform monitor circuit 25 for monitoring the waveform of the reception electric signal; a first dispersion compensator 26 for reception equalizing the reception electric signal; a second dispersion compensator 21 for transmission operating the transmission electric signal; a light source 22 converting the transmission electric signal to the light signal for outputting to the optical fiber transmission path 60; and a controller 27 for controlling the first and second compensators 26, 21, based on an observation result by the waveform monitor circuit 25. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高速な光信号の分散による劣化を補償する光通信装置および光通信システムに関するものである。   The present invention relates to an optical communication apparatus and an optical communication system that compensate for deterioration due to high-speed optical signal dispersion.

現在、インターネットの普及にともない、アクセスネットワークにおいては、更なる高速化を経済的な手段を用いて実現することが求められている。そこで、光ファイバの広帯域性を活用し、光ファイバを複数ユーザで共有することで経済化を図るPON(Passive Optical Network)システムなどの光通信システムが導入されつつある。このような光通信システムにおいては、光信号を入出力する光送受信器の伝送速度を上げることにより、ユーザ当りの伝送速度を上げることができる。   Currently, with the spread of the Internet, access networks are required to achieve further speedup using economical means. In view of this, an optical communication system such as a PON (Passive Optical Network) system is being introduced that utilizes the broadband property of an optical fiber to share the optical fiber with a plurality of users, thereby achieving economy. In such an optical communication system, the transmission rate per user can be increased by increasing the transmission rate of an optical transceiver that inputs and outputs optical signals.

しかし、光信号の伝送速度が上昇すると、光ファイバを伝送した後の光信号は光ファイバの分散(波長分散や偏波モード分散)により劣化するという課題が、非特許文献1などにより一般的に知られている。   However, when the transmission speed of the optical signal increases, the problem that the optical signal after being transmitted through the optical fiber is deteriorated due to the dispersion of the optical fiber (wavelength dispersion or polarization mode dispersion) is generally reported by Non-Patent Document 1 or the like. Are known.

そこで、分散によって劣化した波形を元の波形に戻すために、これまで多くの手段が検討されてきた。従来、光ファイバ伝送路の分散特性に対して逆の特性を持つ分散補償ファイバや、光信号の波長で分散がゼロとなるようにゼロ分散波長をシフトした分散シフトファイバを用いることが一般的であった。   Therefore, many means have been studied so far in order to restore the waveform deteriorated by dispersion to the original waveform. Conventionally, it has been common to use a dispersion compensating fiber having a characteristic opposite to the dispersion characteristic of the optical fiber transmission line, or a dispersion shifted fiber having a zero dispersion wavelength shifted so that the dispersion becomes zero at the wavelength of the optical signal. there were.

しかし、これらの光部品を用いた手法はコスト高であり、ネットワークの設計も煩雑であった。そこで、異なる距離の光ファイバ伝送路に対して自動的に補償分散量を変化させ、経済的な手段を用いて分散補償を行なう手段として、電気回路を用いた分散補償器(Electronic Dispersion Compensator:EDC)がある。この分散補償器は、非特許文献2にあるように、トランスバーサルフィルタ型のフィードフォワードイコライザ(FFE)や、ディシジョンフィードバックイコライザ(DFE)を用いる方法が一般的である。   However, the method using these optical components is expensive and the network design is complicated. Therefore, a dispersion compensator (Electronic Dispersion Compensator: EDC) using an electric circuit as a means for performing dispersion compensation using an economical means by automatically changing the compensation dispersion amount for optical fiber transmission lines of different distances. ) As this dispersion compensator is, as disclosed in Non-Patent Document 2, a method using a transversal filter type feedforward equalizer (FFE) or a decision feedback equalizer (DFE) is generally used.

図6に本方法を用いた従来の光通信システムの構成例を示す。この光通信システムは、一方の光通信装置であるリモートノード10と、他方の光通信装置であるセンターノード0と、その間を接続する光ファイバ伝送路601,60からなる。 FIG. 6 shows a configuration example of a conventional optical communication system using this method. The optical communication system includes a remote node 10 which is one of the optical communication apparatus, the center node 0 is the other optical communication apparatus, an optical fiber transmission line 601,60 2 connected between them.

センターノード20は、光ファイバ伝送路60へ下り光信号を出力する光送信器29と、光ファイバ伝送路60から入力された上り光信号を上り電気信号に変換する受光器24と、上り電気信号をモニタリングする波形モニタ回路25と、上り電気信号を等化する分散補償器26と、分散補償器26を制御する制御器27を備える。リモートノード10は、光ファイバ伝送路60へ上り光信号を出力する光送信器13と、光ファイバ伝送路60から入力された下り光信号を下り電気信号に変換する受光器1と、下り電気信号をモニタリングする波形モニタ回路17と、下り電気信号を等化する分散補償器18と、分散補償器18を制御する制御器19とを備える。 Center node 20 includes an optical transmitter 29 for outputting a downlink optical signal to the optical fiber transmission line 60 2, and the light receiver 24 which converts the upstream optical signal input from the optical fiber transmission path 60 1 on the upstream electrical signal, upstream A waveform monitor circuit 25 that monitors the electrical signal, a dispersion compensator 26 that equalizes the upstream electrical signal, and a controller 27 that controls the dispersion compensator 26 are provided. Remote node 10 includes an optical transmitter 13 for outputting upstream optical signal to the optical fiber transmission line 60 1, and the light receiver 1 for converting the downstream optical signals inputted from the optical fiber transmission line 60 2 to downstream electric signals, downlink A waveform monitor circuit 17 that monitors the electrical signal, a dispersion compensator 18 that equalizes the downstream electrical signal, and a controller 19 that controls the dispersion compensator 18 are provided.

この構成において、本光通信システムは次のように動作する。センターノード20に入力された下り電気信号は、光送信器29にて下り光信号に変換され、光ファイバ伝送路602に出力される。光ファイバ伝送路60を伝送した下り光信号は、分散の影響を受け劣化し、リモートノード10に入力される。リモートノード10に入力された下り光信号は、受光器16にて下り電気信号に変換され、分散補償器18に入力される。この分散補償器18にて等化された下り電気信号は、波形モニタ回路17にてモニタリングされ、制御器19が分散補償器18に制御信号aを送信し、分散補償器18が下り電気信号を分散の影響を受けていない波形と同等の波形になるように等化する。 In this configuration, the present optical communication system operates as follows. The downstream electrical signal input to the center node 20 is converted into a downstream optical signal by the optical transmitter 29 and output to the optical fiber transmission line 602. Downstream optical signal transmitted through the optical fiber transmission line 60 2 is deteriorated under the influence of dispersion, it is input to the remote node 10. The downstream optical signal input to the remote node 10 is converted into a downstream electrical signal by the light receiver 16 and input to the dispersion compensator 18. The downstream electrical signal equalized by the dispersion compensator 18 is monitored by the waveform monitor circuit 17, the controller 19 transmits the control signal a to the dispersion compensator 18, and the dispersion compensator 18 converts the downstream electrical signal. Equalize so that the waveform is equivalent to the waveform not affected by dispersion.

同様にリモートノード10に入力された上り電気信号は、光送信器13にて上り光信号に変換され、光ファイバ伝送路60に出力される。光ファイバ伝送路60を伝送した上り光信号は、分散の影響を受け劣化し、センターノード20に入力される。センターノード20に入力された上り光信号は、受光器24にて上り電気信号に変換され、分散補償器26に入力される。分散補償器26にて等化された上り電気信号は、波形モニタ回路25にてモニタリングされ、制御器27が分散補償器26に制御信号bを送信し、分散補償器26が上り電気信号を分散の影響を受けていない波形と同等の波形になるように等化する。 Upstream electric signals inputted to the remote node 10 in the same manner is converted into the upstream optical signal by the optical transmitter 13 is output to the optical fiber transmission line 60 1. Upstream optical signal transmitted through the optical fiber transmission line 60 1 is deteriorated under the influence of dispersion, is input to the center node 20. The upstream optical signal input to the center node 20 is converted into an upstream electrical signal by the light receiver 24 and input to the dispersion compensator 26. The upstream electrical signal equalized by the dispersion compensator 26 is monitored by the waveform monitor circuit 25, the controller 27 transmits the control signal b to the dispersion compensator 26, and the dispersion compensator 26 disperses the upstream electrical signal. So that the waveform is equivalent to the waveform that is not affected by.

また、分散補償器を、送信側に配置するプリディストーションと呼ばれる手段がある。非特許文献3に見られるように、光ファイバを伝送後の波形が、分散を受けずに伝送された波形と同じになるように、送信側で波形を意図的に予め劣化させる方法である。   There is also a means called predistortion in which a dispersion compensator is arranged on the transmission side. As seen in Non-Patent Document 3, this is a method in which the waveform is intentionally deteriorated in advance on the transmission side so that the waveform after transmission through the optical fiber is the same as the waveform transmitted without being subjected to dispersion.

図7に、本方法を用いた従来の光通信システムの構成例を示す。センターノード20は、入力された下り電気信号をプリディストーションする分散補償器21と、プリディストーションされた下り電気信号を下り光信号に変換する光源22と、光ファイバ伝送路60から入力された上り光信号を受信する光受信器30を備える。リモートノード10は、入力された上り電気信号をプリディストーションする分散補償器14と、プリディストーションされた上り電気信号を上り光信号に変換する光源15と、光ファイバ伝送路60から入力された下り光信号を受信する光受信器12とを備える。 FIG. 7 shows a configuration example of a conventional optical communication system using this method. The center node 20, a dispersion compensator 21 to predistortion a downstream electric signal inputted, the inputted light source 22 to convert the downstream electric signal predistortion downstream optical signal from the optical fiber transmission line 60 1 up An optical receiver 30 for receiving an optical signal is provided. Remote node 10, a dispersion compensator 14 to predistortion an upstream electric signal which is input, is input to the light source 15 to convert the upstream electric signal predistortion upstream optical signal from the optical fiber transmission path 60 2 downlink And an optical receiver 12 for receiving an optical signal.

この構成において、本光通信システムは次のように動作する。センターノード20に入力された下り電気信号は、分散補償器21にて波形劣化を受け、光源22にて下り光信号に変換されて、光ファイバ伝送路60に出力される。光ファイバ伝送路60を伝送した下り光信号は、分散の影響を受け、リモートノード10に入力される。リモートノード10に入力された下り光信号は、分散補償器21により受けた波形劣化と分散の影響による波形劣化が打ち消しあい、分散の影響を受けていない波形と同等の波形の状態に戻り、光受信器12にて受信される。 In this configuration, the present optical communication system operates as follows. Downstream electric signal inputted to the center node 20 receives the waveform deterioration at the dispersion compensator 21 at the light source 22 is converted into downstream optical signals, and output to the optical fiber transmission line 60 2. Downstream optical signal transmitted through the optical fiber transmission line 60 2 is influenced by the dispersion is input to the remote node 10. The downstream optical signal input to the remote node 10 cancels the waveform degradation caused by the dispersion compensator 21 and the waveform degradation due to the influence of dispersion, and returns to a waveform state equivalent to the waveform not affected by the dispersion. Received by the receiver 12.

リモートノード10に入力された上り電気信号は、分散補償器14にて波形劣化を受け、光源15にて上り光信号に変換されて、光ファイバ伝送路60に出力される。光ファイバ伝送路60を伝送した上り光信号は、分散の影響を受け、センターノード20に入力される。センターノード20に入力された上り光信号は、分散補償器14により受けた波形劣化と分散の影響による波形劣化が打ち消しあい、分散の影響を受けていない波形と同等の波形の状態に戻り、光受信器30にて受信される。 Upstream electric signal inputted to the remote node 10 receives the waveform deterioration at the dispersion compensator 14, is converted into the upstream optical signal by the light source 15 is output to the optical fiber transmission line 60 1. Upstream optical signal transmitted through the optical fiber transmission line 60 1 is influenced by dispersion is input to the center node 20. The upstream optical signal input to the center node 20 cancels the waveform deterioration received by the dispersion compensator 14 and the waveform deterioration due to the influence of dispersion, and returns to a waveform state equivalent to the waveform not affected by the dispersion. Received by the receiver 30.

この方法において、補償分散量を自動的に設定するためには、受信側の光受信器12,30側での波形をモニタして、送信側の分散補償器21,14の制御器にフィードバックする手段が必要となる。   In this method, in order to automatically set the compensation dispersion amount, the waveform on the receiving side optical receivers 12 and 30 is monitored and fed back to the controllers of the dispersion compensators 21 and 14 on the transmitting side. Means are needed.

Govind P.Agrawal 著 "Fiber-Optic Commnication Systems",Jobn Wiley & Sons,INC.Govind P. Agrawal "Fiber-Optic Commnication Systems", Jobn Wiley & Sons, INC. Ali Ghiasi et al., "Experimental Results of EDC Based Receivers for 2400 ps/nm at lO.7Gb/s for Emerging Te1ecom Standards",OFC2006,0TuE3,2006.Ali Ghiasi et al., "Experimental Results of EDC Based Receivers for 2400 ps / nm at lO.7Gb / s for Emerging Te1ecom Standards", OFC2006, 0TuE3,2006. R.I.Li11ey et al.,"Electronic dispersion compensation by signal predistortion",OFC2006,OWB3,2006.R.I.Li11ey et al., "Electronic dispersion compensation by signal predistortion", OFC2006, OWB3, 2006.

以上のように、電気回路による分散補償は、分散補償ファイバや分散シフトファイバ等の光ファイバを用いた分散補償に比べて経済的であり、補償分散量の設定が簡易になる。しかし、分散補償器を受信器側もしくは送信側に配置する方法は、両端のノードに制御器が必要となり、コスト高となるという課題があった。さらに、図7の分散補償器を送信側に配置する方法は、受信側での波形の状態を送信側にフィードバックする手段が必要であるという課題があった。   As described above, dispersion compensation by an electric circuit is more economical than dispersion compensation using an optical fiber such as a dispersion compensation fiber or dispersion shift fiber, and the setting of the compensation dispersion amount is simplified. However, the method of disposing the dispersion compensator on the receiver side or the transmission side has a problem that a controller is required at both end nodes, resulting in high costs. Further, the method of arranging the dispersion compensator in FIG. 7 on the transmission side has a problem that means for feeding back the waveform state on the reception side to the transmission side is required.

本発明の目的は、以上の点を鑑みて、経済的な手段を用いて、上り信号および下り信号の光ファイバ伝送路の分散を、片端の光通信装置側で、両端側の光通信装置の間の光ファイバの距離に応じて補償できるようにした光通信装置および光通信システムを提供することにある。   In view of the above points, the object of the present invention is to use an economical means to distribute the upstream and downstream optical fiber transmission paths on one end of the optical communication apparatus side and on the both ends of the optical communication apparatus. An object of the present invention is to provide an optical communication apparatus and an optical communication system that can compensate according to the distance between optical fibers.

上記目的を達成するために、請求項1にかかる発明は、光ファイバ伝送路の片端に接続される光通信装置であって、該光ファイバ伝送路から受信した受信光信号を受信電気信号に変換して取り出すとともに、送信電気信号を送信光信号に変換して前記光ファイバ伝送路に送出することにより、前記光ファイバ伝送路の他端側の装置と通信を行なう光通信装置において、前記受信光信号を前記受信電気信号に変換する受光器と、該受信電気信号の波形をモニタリングする波形モニタ回路と、前記受信電気信号を等化する受信用の第1の分散補償器と、前記送信電気信号を操作する送信用の第2の分散補償器と、前記送信電気信号を前記送信光信号に変換して前記光ファイバ伝送路に送出する光源と、前記第1の分散補償器と前記第1の分散補償器を前記波形モニタ回路の観測結果に基づき制御する制御器とを備えることを特徴とする。
請求項2にかかる発明は、請求項1に記載の光通信装置において、前記制御器は、前記波形モニタ回路により観測された前記受信電気信号の波形から、前記光ファイバ伝送路の分散量を推定して前記第1の分散補償器を制御し、分散により劣化した受信電気信号を等化することを特徴とする。
請求項3にかかる発明は、請求項2に記載の光通信装置において、前記制御器は、前記推定した分散量をもとに、前記第2の分散補償器を制御し、前記他端側の装置にて正常に受信できる前記送信電気信号を生成することを特徴とする。
請求項4にかかる発明は、請求項3に記載の光通信装置において、前記制御器は、前記分散量と送信用および受信用それぞれの分散補償器の設定値を対応させる情報を持つことを特徴とする。
請求項5にかかる発明は、第1の光通信装置と第2の光通信装置が光ファイバ伝送路を介して1対1に接続され、所定の波長をもつ光信号を用いて通信を行なう光通信システムにおいて、前記第1および第2の光通信装置の一方が、請求項1〜4のいずれか1つに記載の光通信装置からなることを特徴とする。
請求項6にかかる発明は、第1の光通信装置と複数の第2の光通信装置が、光合分波器および光ファイバ伝送路を介してスター型に接続され、それぞれの前記第2の通信装置はそれぞれに割り当てられた波長を用いて前記第1の光通信装置と通信を行なう光通信システムにおいて、それぞれの前記第2の光通信装置が、請求項1〜4のいずれか1つに記載の光通信装置からなることを特徴とする。
請求項7にかかる発明は、第1の光通信装置と複数の第2の光通信装置が、光合分波器および光ファイバ伝送路を介してスター型に接続され、それぞれの前記第2の通信装置はそれぞれに割り当てられた波長を用いて前記第1の光通信装置と通信を行なう光通信システムにおいて、前記第1の光通信装置は、前記第2の光通信装置と同数の請求項1〜4のいずれか1つに記載の光通信装置を備えることを特徴とする。
In order to achieve the above object, an invention according to claim 1 is an optical communication device connected to one end of an optical fiber transmission line, and converts a received optical signal received from the optical fiber transmission line into a received electrical signal. In the optical communication device that communicates with the device on the other end of the optical fiber transmission line by converting the transmission electrical signal into a transmission optical signal and sending it to the optical fiber transmission line, the received light A photoreceiver that converts a signal into the received electrical signal, a waveform monitor circuit that monitors a waveform of the received electrical signal, a first dispersion compensator for reception that equalizes the received electrical signal, and the transmitted electrical signal A second dispersion compensator for transmission that operates, a light source that converts the transmission electrical signal into the transmission optical signal and sends it to the optical fiber transmission line, the first dispersion compensator, and the first dispersion compensator Dispersion compensation The characterized in that it comprises a controller for controlling, based on the observation results of the waveform monitoring circuit.
According to a second aspect of the present invention, in the optical communication apparatus according to the first aspect, the controller estimates the dispersion amount of the optical fiber transmission line from the waveform of the received electrical signal observed by the waveform monitor circuit. Then, the first dispersion compensator is controlled to equalize the received electrical signal deteriorated due to dispersion.
The invention according to claim 3 is the optical communication device according to claim 2, wherein the controller controls the second dispersion compensator based on the estimated dispersion amount, and The transmission electric signal that can be normally received by the apparatus is generated.
According to a fourth aspect of the present invention, in the optical communication apparatus according to the third aspect, the controller has information for associating the dispersion amount with the set values of the dispersion compensators for transmission and reception. And
In the invention according to claim 5, the first optical communication device and the second optical communication device are connected one-to-one via an optical fiber transmission line, and communicate using an optical signal having a predetermined wavelength. In the communication system, one of the first and second optical communication devices includes the optical communication device according to any one of claims 1 to 4.
According to a sixth aspect of the present invention, a first optical communication device and a plurality of second optical communication devices are connected in a star shape via an optical multiplexer / demultiplexer and an optical fiber transmission line, and each of the second communication devices 5. In an optical communication system in which an apparatus communicates with the first optical communication apparatus using a wavelength assigned to each apparatus, each of the second optical communication apparatuses is according to claim 1. It is characterized by comprising an optical communication device.
According to a seventh aspect of the present invention, a first optical communication device and a plurality of second optical communication devices are connected in a star shape via an optical multiplexer / demultiplexer and an optical fiber transmission line, and each of the second communication In the optical communication system in which the apparatuses communicate with the first optical communication apparatus using wavelengths assigned to the respective apparatuses, the number of the first optical communication apparatuses is the same as the number of the second optical communication apparatuses. 4. The optical communication device according to any one of 4 is provided.

本発明によれば、経済的な手段を用いて、上り信号および下り信号の光ファイバ伝送路の分散を、片端の光通信装置側で、両端側の光通信装置の間の光ファイバの距離に応じて補償することが可能になる、という効果が得られる。従来の方法では、両端の光通信装置に制御器が必要であったが、本発明により、片端の光通信装置のみに分散補償器と制御器を配置することで、上り信号と下り信号の両方に対して分散補償が実現できる。また、従来のプリデイストーションの方法で必要であった、受信側から送信側へのフィードバック手段も不要とすることができる。   According to the present invention, by using economical means, the dispersion of the optical fiber transmission path of the upstream signal and the downstream signal is set to the distance of the optical fiber between the optical communication devices at both ends on the one end optical communication device side. Accordingly, it is possible to compensate for this. In the conventional method, a controller is required for the optical communication device at both ends. However, according to the present invention, by arranging the dispersion compensator and the controller only in the optical communication device at one end, both the upstream signal and the downstream signal can be obtained. Dispersion compensation can be realized. Further, the feedback means from the reception side to the transmission side, which is necessary in the conventional predistortion method, can be eliminated.

<第1の実施例>
図1に本発明の第1の実施例の光通信システムを示す。本実施例の光通信システムは、一方の光通信装置である1つのリモートノード10と、他方の光通信装置である1つのセンターノード20と、リモートノード10とセンターノード20とを1芯で接続する光ファイバ伝送路60とを備える。ここで、センターノード20からリモートノード10へ伝送される信号を「下り信号」、リモートノード10からセンターノード20へ伝送される信号を「上り信号」とする。
<First embodiment>
FIG. 1 shows an optical communication system according to a first embodiment of the present invention. In the optical communication system of the present embodiment, one remote node 10 which is one optical communication device, one center node 20 which is the other optical communication device, and the remote node 10 and the center node 20 are connected by one core. And an optical fiber transmission line 60. Here, a signal transmitted from the center node 20 to the remote node 10 is referred to as a “downstream signal”, and a signal transmitted from the remote node 10 to the center node 20 is referred to as an “upstream signal”.

センターノード20は、入力された下り電気信号をプリディストーションする下り信号用の分散補償器21と、プリディストーションされた下り電気信号を下り光信号に変換する1つの光源22と、下り光信号と上り光信号を合分波する1つの波長フィルタ23と、分散により劣化した上り光信号を上り電気信号に変換する1つの受光器24と、上り電気信号の波形をモニタリングする1つの波形モニタ回路25と、上り電気信号の波形を等化する1つの上り信号用の分散補償器26と、波形モニタ回路25から補償分散量を計算し、上り信号用の分散補償器21および下り信号用の分散補償器26を最適な補償分散量に制御する1つの制御器27と、を備える。   The center node 20 includes a dispersion compensator 21 for a downstream signal that predistorts an input downstream electrical signal, a single light source 22 that converts the predistorted downstream electrical signal into a downstream optical signal, a downstream optical signal, and an upstream optical signal. One wavelength filter 23 that multiplexes and demultiplexes the optical signal, one light receiver 24 that converts the upstream optical signal degraded by dispersion into an upstream electrical signal, and one waveform monitor circuit 25 that monitors the waveform of the upstream electrical signal, , One upstream signal dispersion compensator 26 for equalizing the waveform of the upstream electrical signal, the compensation dispersion amount is calculated from the waveform monitor circuit 25, and the upstream signal dispersion compensator 21 and the downstream signal dispersion compensator And a single controller 27 for controlling 26 to the optimum compensation dispersion amount.

ここで、「プリディストーション」とは下り光信号が光ファイバ伝送路60の分散の影響を受けても、リモートノード10において、分散の影響を受けていない波形と同等の波形として受信できるように、信号波形を予め劣化させておくことを指す。   Here, “predistortion” means that even if the downstream optical signal is affected by the dispersion of the optical fiber transmission line 60, the remote node 10 can receive it as a waveform equivalent to the waveform not affected by the dispersion. It means that the signal waveform is deteriorated in advance.

リモートノード10は、下り光信号と上り光信号を合分波するフィルタ11と、上り信号用の光送信器13と、下り信号用の光受信器12をそれぞれ1つずつ備える。リモートノード10およびセンターノード20で用いられる上り光信号用および下り光信号用の光源は、外部変調器と半導体レーザを用いてもよいが、コストを下げるために、半導体レーザに注入する電流量を変化させることによって送信光信号を生成する直接変調型半導体レーザを用いることが多い。   The remote node 10 includes a filter 11 that multiplexes and demultiplexes a downstream optical signal and an upstream optical signal, an upstream optical signal transmitter 13, and a downstream optical receiver 12. The light source for the upstream optical signal and downstream optical signal used in the remote node 10 and the center node 20 may use an external modulator and a semiconductor laser. However, in order to reduce costs, the amount of current injected into the semiconductor laser is reduced. In many cases, a direct modulation type semiconductor laser that generates a transmission optical signal by using a change is used.

分散補償器21,26は、光ファイバ伝送路60の分散により劣化した波形を、分散を受けていない波形と同等の波形に戻すことが可能な電気回路から構成される。分散補償器21,26としては、例えば、Maximum Likelihood Sequence Estimation(MLSE)法(文献A:M.Rubsamen et al.,"MLSE Receivers for Narrow-band Optical Filtering",OFC2006,OWB6,2006.)や、トランスバーサルフィルタからなるフィードフォワードイコライザ(FFE)や、ディシジョンフィードバックイコライザ(DFE)(非特許文献2)等がよく知られている。FFEやDFEは、そのタップ係数を変化させることにより、補償分散量を変化させることができ、一般的に用いられることが多い。また、ここで補償する分散とは、波長分散、偏波モード分散(PMD)のいずれかもしくは両方を指す。   The dispersion compensators 21 and 26 are configured by an electric circuit capable of returning a waveform deteriorated due to dispersion in the optical fiber transmission line 60 to a waveform equivalent to a waveform not subjected to dispersion. As the dispersion compensators 21 and 26, for example, the Maximum Likelihood Sequence Estimation (MLSE) method (Document A: M. Rubsamen et al., “MLSE Receivers for Narrow-band Optical Filtering”, OFC 2006, OWB 6, 2006.) A feedforward equalizer (FFE) including a transversal filter, a decision feedback equalizer (DFE) (Non-Patent Document 2), and the like are well known. FFE and DFE can change the compensation dispersion amount by changing their tap coefficients, and are often used in general. The dispersion to be compensated here refers to either or both of chromatic dispersion and polarization mode dispersion (PMD).

このような構成において、本光通信システムは次のように動作する。リモートノード10から出力された上り光信号は、光ファイバ伝送路60を伝送し、分散により波形劣化を受けた後、センターノード10の受光器24にて上り電気信号に変換される。上り電気信号は分岐され、一方は波形モニタ回路25に入力される。分岐された上り電気信号のもう一方は上り信号用の分散補償器26に入力される。   In such a configuration, the optical communication system operates as follows. The upstream optical signal output from the remote node 10 is transmitted through the optical fiber transmission line 60, undergoes waveform deterioration due to dispersion, and then converted into an upstream electrical signal by the light receiver 24 of the center node 10. The upstream electrical signal is branched, and one is input to the waveform monitor circuit 25. The other of the branched upstream electrical signals is input to the dispersion compensator 26 for upstream signals.

制御器27は、波形モニタ回路25に入力された上り電気信号をモニタリングし、それをもとに補償すべき分散量を求め、それに対応する下り信号用と上り信号用の分散補償器21,26の設定値を算出できる。なぜなら、センターノード20とリモートノード11は1芯の光ファイバ伝送路60で通信を行い、上り光信号と下り光信号は同じ距離を伝送するため、上り電気信号の波形をモニタリングすることで、下り信号の補償分散量を求めることが可能となるからである。   The controller 27 monitors the upstream electrical signal input to the waveform monitor circuit 25, obtains a dispersion amount to be compensated based on the upstream electrical signal, and corresponds to the dispersion compensators 21 and 26 for downstream signals and upstream signals corresponding thereto. Can be calculated. This is because the center node 20 and the remote node 11 communicate with each other through a single optical fiber transmission line 60, and the upstream optical signal and the downstream optical signal are transmitted through the same distance. This is because the compensation dispersion amount of the signal can be obtained.

制御器27は波形モニタ回路25のモニタ結果から、上り信号用および下り信号用の分散補償器21,26に対して補償すべき分散量に対応した分散設定値を制御信号A,Bとして送信する。分散設定値を決定する方法として、制御器27は補償分散量と分散設定値の対応表をもち、それをもとに分散設定値を求める。すなわち、波形モニタ回路25では分散を受けてアイ開口が小さくなったことを示す波形劣化量βが測定できるので、ここで測定した波形劣化量βと、実測等によって事前に作成した波形劣化量と伝達距離との対応から、伝送距離を推定し、その推定した距離から分散補償量を算出し、この分散補償量に基づき分散設定値を決める。   Based on the monitoring result of the waveform monitor circuit 25, the controller 27 transmits dispersion setting values corresponding to the dispersion amounts to be compensated to the dispersion compensators 21 and 26 for the upstream signal and downstream signal as control signals A and B. . As a method for determining the dispersion setting value, the controller 27 has a correspondence table between the compensation dispersion amount and the dispersion setting value, and obtains the dispersion setting value based on the correspondence table. That is, since the waveform monitor circuit 25 can measure the waveform degradation amount β indicating that the eye opening is reduced due to dispersion, the waveform degradation amount β measured here and the waveform degradation amount created in advance by actual measurement or the like The transmission distance is estimated from the correspondence with the transmission distance, the dispersion compensation amount is calculated from the estimated distance, and the dispersion setting value is determined based on the dispersion compensation amount.

上り信号用の分散補償器26は、制御器27からの制御信号Aをもとに分散設定値を設定し、分散により劣化した上り電気信号を等化して出力する。下り信号用の分散補償器21は制御器27からの制御信号Bをもとに分散設定値を設定し、光ファイバ伝送路60を伝送して分散により劣化する量を補正するように伝送前にプリディストーションを施して、出力する。   The dispersion compensator 26 for the upstream signal sets a dispersion setting value based on the control signal A from the controller 27, equalizes and outputs the upstream electrical signal degraded by the dispersion. The dispersion compensator 21 for downstream signals sets a dispersion set value based on the control signal B from the controller 27, and transmits the optical fiber transmission line 60 to correct the amount deteriorated by dispersion before transmission. Predistort and output.

プリデイストーションされた下り電気信号は、光源22により下り光信号に変換され、光ファイバ伝送路60に出力され、リモートノード10内の光受信器12にて受信される。光受信器12にて受信された下り光信号は、プリディストーションと光ファイバ伝送路60の分散が打ち消しあい、分散の影響を受けない波形と同等の波形となって受信される。従って、両端のノードに分散補償のための手段が必要なく、センターノード20のみで上り信号、下り信号両方の分散補償が、光ファイバ伝送路60の距離に応じて自動的に可能となる。ここで、光ファイバ伝送路60は1芯の光ファイバとしたが、伝送する距離が同じであれば、上り光信号用および下り光信号用光ファイバは2芯の光ファイバを用いてもよい。   The predistorted downstream electrical signal is converted into a downstream optical signal by the light source 22, output to the optical fiber transmission line 60, and received by the optical receiver 12 in the remote node 10. The downstream optical signal received by the optical receiver 12 is received as a waveform equivalent to a waveform that is not affected by the dispersion because the predistortion and the dispersion of the optical fiber transmission line 60 cancel each other. Accordingly, there is no need for means for dispersion compensation at the nodes at both ends, and dispersion compensation for both upstream and downstream signals can be automatically performed only by the center node 20 according to the distance of the optical fiber transmission line 60. Here, although the optical fiber transmission line 60 is a single-core optical fiber, as long as the transmission distance is the same, the optical fiber for upstream optical signal and the optical fiber for downstream optical signal may use a two-core optical fiber.

以上のような構成にすることで、経済的な手段を用いて、上り信号および下り信号の光ファイバ伝送路60の分散を、片端のノード20側で、センターノード20と各リモートノード10間の光ファイバ伝送路60の距離に応じて補償することが可能になる。   With the above configuration, using an economical means, the dispersion of the optical fiber transmission line 60 for the upstream signal and the downstream signal is distributed between the center node 20 and each remote node 10 on the node 20 side. It becomes possible to compensate according to the distance of the optical fiber transmission line 60.

<第2の実施例>
図2に本発明の第2の実施例を示す。本実施例の光通信システムは、一方の光通信装置である1つのセンターノード20と、1つの波長スプリッタ40と、他方の光通信装置である複数のリモートノード10〜10と、センターノード20と波長スプリッタ40を1芯で接続する1本の光ファイバ伝送路60と、波長スプリッタ40と複数のリモートノード10〜10を1芯で接続する複数本の光ファイバ伝送路50〜50とを備える。ここで、センターノード20からリモートード10〜10へ伝送される信号を「下り信号」、リモートノード10〜10からセンターノード20へ伝送される信号を「上り信号」とする。
<Second embodiment>
FIG. 2 shows a second embodiment of the present invention. The optical communication system of the present embodiment includes one center node 20 that is one optical communication device, one wavelength splitter 40, a plurality of remote nodes 10 1 to 10 n that are the other optical communication devices, and a center node. 20 and a single optical fiber transmission line 60 to a wavelength splitter 40 connects with one core, a plurality of optical fiber transmission lines 50 1 - connecting the wavelength splitter 40 and a plurality of remote nodes 10 1 to 10 n by one core 50 n . Here, "down signal" a signal transmitted from the center node 20 to Rimotodo 10 1 to 10 n, the signal transmitted from the remote node 10 1 to 10 n to the center node 20 and "upstream signal".

センターノード20は、入力された下り電気信号をプリディストーションする下り信号用の分散補償器21〜21と、プリディストーションされた下り電気信号を下り光信号に変換する複数の光源22〜22と、下り光信号と上り光信号を合分波する1つの波長フィルタ23と、分散により劣化した上り光信号を上り電気信号に変換する複数の受光器24〜24と、上り電気信号の波形をモニタリングする複数の波形モニタ回路25〜25と、上り電気信号の波形を等化する複数の上り信号用の分散補償器26〜26と、波形モニタ回路25〜25のモニタ結果により補償分散量を計算し、上り信号用の分散補償器21〜21および下り信号用の分散補償器26〜26を最適な補償分散量に制御する複数の制御器27〜27と、異なる波長で出力された下り光信号を波長多重するWDMフィルタ28と、波長多重された上り光信号を分波するWDMフィルタ28とを備える。 The center node 20 includes dispersion compensators 21 1 to 21 n for downstream signals that predistort the input downstream electrical signals, and a plurality of light sources 22 1 to 22 that convert the predistorted downstream electrical signals into downstream optical signals. n , one wavelength filter 23 that multiplexes and demultiplexes the downstream optical signal and the upstream optical signal, a plurality of light receivers 24 1 to 24 n that convert the upstream optical signal deteriorated due to dispersion into an upstream electrical signal, and the upstream electrical signal A plurality of waveform monitor circuits 25 1 to 25 n for monitoring the waveforms of the signals, a plurality of upstream signal dispersion compensators 26 1 to 26 n for equalizing the waveforms of the upstream electrical signals, and waveform monitor circuits 25 1 to 25 n. the monitoring result by the calculated compensation amount of dispersion, the optimal compensation amount of dispersion dispersion compensator 26 1 ~ 26 n for the dispersion compensator 21 1 through 21 n and the downlink signal for the uplink signal And a plurality of controllers 27 1 ~ 27 n for controlling, differs from the WDM filter 28 1 wavelength multiplexing output downstream optical signal at a wavelength, and a WDM filter 28 2 for demultiplexing upstream optical signal wavelength-multiplexed .

ここで、「プリディストーション」とは、下り光信号が光ファイバ伝送路60および50〜50の分散の影響を受けても、リモートノード10〜10において、分散の影響を受けていない波形と同等の波形として受信できるように信号波形を劣化させておくことを指す。 Here, “predistortion” means that even if the downstream optical signal is affected by the dispersion of the optical fiber transmission lines 60 and 50 1 to 50 n , the remote nodes 10 1 to 10 n are not affected by the dispersion. It means deteriorating the signal waveform so that it can be received as a waveform equivalent to the waveform.

各リモートノード10〜10は、それぞれ上り光信号と下り光信号を合分波する波長フィルタ11〜11と、下り光信号用の光受信器12〜12と、上り光信号用の光送信器13〜13とを備える。上り光信号用の光送信器13〜13はそれぞれ異なる波長の光信号を出力する。他は、第1の実施例と同じである。 Each of the remote nodes 10 1 to 10 n includes wavelength filters 11 1 to 11 n that multiplex and demultiplex an upstream optical signal and a downstream optical signal, optical receivers 12 1 to 12 n for downstream optical signals, and an upstream optical signal, respectively. Optical transmitters 13 1 to 13 n . The optical transmitters 13 1 to 13 n for upstream optical signals output optical signals having different wavelengths. Others are the same as the first embodiment.

このような構成において、本光通信システムは次のように動作する。リモートノード10〜10の光送信器13〜13から出力された異なる波長をもつ上り光信号は、光ファイバ伝送路50〜50を伝送し、波長スプリッタ40によりリモートノード10〜10の他のものの上り光信号と波長多重され、さらに光ファイバ伝送路60を伝送し、分散により波形劣化を受けた後、センターノード20に入力される。 In such a configuration, the optical communication system operates as follows. The upstream optical signals having different wavelengths output from the optical transmitters 13 1 to 13 n of the remote nodes 10 1 to 10 n are transmitted through the optical fiber transmission lines 50 1 to 50 n, and the remote node 10 1 is transmitted by the wavelength splitter 40. ˜10 n wavelength-multiplexed with other upstream optical signals, further transmitted through the optical fiber transmission line 60, and subjected to waveform degradation due to dispersion before being input to the center node 20.

センターノード20に入力された上り光信号は、波長フィルタ23により分波され、各リモートノード10〜10に対応した受光器24〜24にて上り電気信号に変換される。上り電気信号は分岐され、一方は波形モニタ回路25〜25に入力される。分岐された上り電気信号のもう一方は上り信号用の分散補償器26〜26に入力される。制御器25〜25は波形モニタ回路25〜25に入力された上り電気信号をモニタリングし、そのモニタ結果をもとに補償すべき分散量を求め、それに対応する下り信号用および上り信号用の分散補償器21〜21、26〜26の設定値を算出できる。なぜなら、センターノード20とリモートノード10〜10は1芯の光ファイバ伝送路で通信を行い、上り光信号と下り光信号は同じ距離を伝送するため、上り電気信号の波形をモニタリングすることで、下り信号の補償分散量を求めることが可能となるからである。 The upstream optical signal input to the center node 20 is demultiplexed by the wavelength filter 23 and converted into upstream electrical signals by the light receivers 24 1 to 24 n corresponding to the remote nodes 10 1 to 10 n . The upstream electrical signal is branched, and one is input to the waveform monitor circuits 25 1 to 25 n . The other of the branched upstream electrical signals is input to dispersion compensators 26 1 to 26 n for upstream signals. The controllers 25 1 to 25 n monitor the upstream electrical signals input to the waveform monitor circuits 25 1 to 25 n , obtain dispersion amounts to be compensated based on the monitoring results, and correspond to the downstream signals and upstream signals corresponding thereto. The set values of the signal dispersion compensators 21 1 to 21 n and 26 1 to 26 n can be calculated. This is because the center node 20 and the remote nodes 10 1 to 10 n communicate with each other through a single optical fiber transmission line, and the upstream optical signal and the downstream optical signal are transmitted through the same distance. This is because the compensation dispersion amount of the downlink signal can be obtained.

制御器27〜27は、波形モニタ回路25〜25のモニタ結果から、上り信号用および下り信号用の分散補償器26〜26、21〜21に対して、補償すべき分散量に対応した分散設定値を制御信号A〜A、B〜Bとして送信する。分散設定値を決定する方法として、制御器27〜27は補償分散量と分散設定値の対応表をもち、それをもとに分散設定値を求める。すなわち、波形モニタ回路25〜25では分散を受けてアイ開口が小さくなったことを示す波形劣化量βが測定できるので、ここで測定した波形劣化量βと、実測等によって事前に作成した波形劣化量と伝達距離との対応から、伝送距離L〜Lを推定し、その推定した距離から分散補償量d〜dを算出し、この分散補償量に基づき分散設定値を決める。図8に制御器27〜27に保存されている情報を示した。 The controllers 27 1 to 27 n compensate the dispersion compensators 26 1 to 26 n and 21 1 to 21 n for the upstream signal and the downstream signal from the monitoring results of the waveform monitor circuits 25 1 to 25 n . The dispersion setting values corresponding to the power dispersion amount are transmitted as control signals A 1 to An and B 1 to B n . As a method for determining the dispersion setting value, the controllers 27 1 to 27 n have a correspondence table between the compensation dispersion amount and the dispersion setting value, and obtain the dispersion setting value based on the correspondence table. That is, since the amount of waveform deterioration β 1 ~ β 2 indicating that the eye opening is reduced by receiving dispersion the waveform monitor circuit 25 1 to 25 n can be measured, the amount of waveform deterioration β 1 ~ β 2 as measured here from the correspondence between the transmission distance in advance the amount of waveform deterioration created by actual measurement or the like, it estimates the transmission distance L 1 ~L n, calculates a dispersion compensation amount d 1 to d n from the estimated distance, the dispersion compensation The dispersion setting value is determined based on the amount. FIG. 8 shows information stored in the controllers 27 1 to 27 n .

上り信号用の分散補償器26〜26は制御器27〜27からの制御信号A〜Aをもとに分散設定値を設定し、分散により劣化した上り電気信号を等化して出力する。下り信号用の分散補償器21〜21は制御器27〜27からの制御信号B〜Bをもとに分散設定値を設定し、光ファイバ伝送路60および50〜50を伝送して分散により劣化する量を補正するように伝送前にプリディストーションを施して出力する。 Set the variance set point control signals A 1 to A n based on the dispersion compensator 26 1 ~ 26 n for uplink signals from the controller 27 1 ~ 27 n, equalizes the upstream electric signals deteriorated by dispersion Output. The dispersion compensators 21 1 to 21 n for downstream signals set dispersion set values based on the control signals B 1 to B n from the controllers 27 1 to 27 n , and the optical fiber transmission lines 60 and 50 1 to 50 n are set. n is transmitted and predistorted before transmission so as to correct the amount of deterioration caused by dispersion.

プリディストーションされた下り電気信号は、光源22〜22により下り光信号に変換される。各リモートノード10〜10に対応する異なる波長の下り光信号は、WDMフィルタ28にて波長多重され、光ファイバ伝送路60に出力される。光ファイバ伝送路60を伝送した波長多重された下り光信号は、波長スプリッタ40にて分波され、リモートノード10〜10に対応した波長を持つ下り光信号のみがリモートノード10〜10内の光受信器12〜12に入力される。光受信器12〜12に入力された下り光信号は、プリディストーションと光ファイバ伝送路60,50〜50の分散が打ち消しあい、分散の影響を受けない波形と同等の波形となって受信される。 The predistorted downstream electric signal is converted into a downstream optical signal by the light sources 22 1 to 22 n . Downstream optical signals having different wavelengths corresponding to the remote nodes 10 1 to 10 n are wavelength-multiplexed by the WDM filter 28 1 and output to the optical fiber transmission line 60. The wavelength-multiplexed downstream optical signal transmitted through the optical fiber transmission line 60 is demultiplexed by the wavelength splitter 40, and only downstream optical signals having wavelengths corresponding to the remote nodes 10 1 to 10 n are remote nodes 10 1 to 10. optical receiver in n 12 is input to the 1 to 12 n. The downstream optical signal input to the optical receivers 12 1 to 12 n has a waveform equivalent to a waveform that is not affected by the dispersion because the predistortion and the dispersion of the optical fiber transmission lines 60 and 50 1 to 50 n cancel each other. Received.

従って、両端のノードに分散補償のための手段が必要なく、片端のノード20で上り信号、下り信号両方の分散補償が自動的に可能となる。ここで、光ファイバ伝送路60,50〜50は1芯の光ファイバとしたが、伝送する距離が同じであれば、上り光信号用および下り光信号用光ファイバは2心の光ファイバを用いてもよい。 Accordingly, there is no need for means for dispersion compensation at the nodes at both ends, and dispersion compensation for both upstream and downstream signals is automatically possible at the node 20 at one end. Here, although the optical fiber transmission lines 60 and 50 1 to 50 n are single-core optical fibers, if the transmission distance is the same, the optical fibers for the upstream optical signal and the downstream optical signal are two optical fibers. May be used.

以上のような構成にすることで、経済的な手段を用いて、上り信号および下り信号の光ファイバ伝送路50〜50、60の分散を、片端のノード20側で、センターノード20と各リモートノード10〜10間の光ファイバ伝送路60、50〜50の距離に応じて補償することが可能になる。 With the configuration as described above, the distribution of the optical fiber transmission lines 50 1 to 50 n and 60 for the upstream signal and the downstream signal is distributed between the center node 20 and the node 20 on one end using economical means. it is possible to compensate in accordance with the distance of the optical fiber transmission line 60, 50 1 to 50 n between the remote nodes 10 1 to 10 n.

<第3の実施例>
図3に本発明の第3の実施例を示す。本実施例の光通信システムは、第2の実施例における波長スプリッタ40に代えて、光パワースプリッタ(光分配器)40Aを使用したものである。
<Third embodiment>
FIG. 3 shows a third embodiment of the present invention. The optical communication system of the present embodiment uses an optical power splitter (optical distributor) 40A instead of the wavelength splitter 40 in the second embodiment.

<第4の実施例>
図4に本発明の第4の実施例を示す。本実施例の光通信システムは、一方の光通信装置である1つのセンターノード20と、1つの波長スプリッタ40と、他方の光通信装置である複数のリモートノード10〜10と、センターノード20と波長スプリッタ40を1芯で接続する一本の光ファイバ伝送路60と、波長スプリッタ40と複数のリモートノード10〜10を1芯で接続する複数本の光ファイバ伝送路50〜50とを備える。ここで、センターノード20からリモートノード10〜10へ伝送される信号を「下り信号」、リモートノード10〜10からセンターノード20へ伝送される信号を「上り信号」とする。
<Fourth embodiment>
FIG. 4 shows a fourth embodiment of the present invention. The optical communication system of this embodiment includes one center node 20 that is one optical communication device, one wavelength splitter 40, a plurality of remote nodes 10 1 to 10 n that are the other optical communication devices, and a center node. 20 and the wavelength splitter 40 with one optical fiber transmission line 60, and the wavelength splitter 40 and the plurality of remote nodes 10 1 to 10 n with one optical fiber transmission line 50 1 to 50. 50 n . Here, a signal transmitted from the center node 20 to the remote nodes 10 1 to 10 n is referred to as a “downstream signal”, and a signal transmitted from the remote nodes 10 1 to 10 n to the center node 20 is referred to as an “upstream signal”.

リモートノード10〜10は、入力された上り電気信号をプリディストーションする上り信号用の分散補償器14〜14と、プリディストーションされた上り電気信号を上り光信号に変換する光源15〜15と、上り光信号と下り光信号を合分波する波長フィルタ11〜11と、波長分散により劣化した下り光信号を下り電気信号に変換する受光器16〜16と、下り電気信号の波形をモニタする波形モニタ回路17〜17と、下り電気信号の波形を等化する下り信号用の分散補償器18〜18と、波形モニタ回路17〜17から補償分散量を計算し、下り信号用の分散補償器18〜18および上り信号用の分散補償器14〜14を最適な補償分散量に制御する制御器19〜19とを備える。ここで、「プリディストーション」とは上り光信号が光ファイバ伝送路60および50〜50の波長分散の影響を受けても、正常に受信できるように信号波形を劣化させておくことを指す。 The remote nodes 10 1 to 10 n include upstream signal dispersion compensators 14 1 to 14 n that predistort the input upstream electrical signal, and a light source 15 1 that converts the predistorted upstream electrical signal into an upstream optical signal. ˜15 n , wavelength filters 11 1 to 11 n for multiplexing and demultiplexing upstream optical signals and downstream optical signals, and light receivers 16 1 to 16 n for converting downstream optical signals degraded by wavelength dispersion into downstream electrical signals, From waveform monitor circuits 17 1 to 17 n that monitor the waveform of the downstream electrical signal, dispersion compensators 18 1 to 18 n for downstream signals that equalize the waveform of the downstream electrical signal, and waveform monitor circuits 17 1 to 17 n A controller 19 1 that calculates the compensation dispersion amount and controls the dispersion compensators 18 1 to 18 n for the downlink signal and the dispersion compensators 14 1 to 14 n for the uplink signal to the optimum compensation dispersion amount. To 19 n . Here, “predistortion” means that the signal waveform is deteriorated so that the upstream optical signal can be normally received even if it is affected by the chromatic dispersion of the optical fiber transmission lines 60 and 50 1 to 50 n. .

センターノード20は、下り光信号と上り光信号を合分波する波長フィルタ23と、異なる波長を出力する複数の下り信号用の光送信器29〜29と、異なる波長で出力された下り光信号を波長多重するWDMフィルタ28と、波長多重された上り光信号を分波するWDMフィルタ28と、分波された上り光信号を受信する複数の光受信器30〜30とを備える。また、上り光信号用および下り光信号用の光源は、外部変調器と半導体レーザを用いてもよいが、コストを下げるために、半導体レーザに注入する電流量を変化させることによって送信光信号を生成する直接変調型半導体レーザを用いることが多い。他は、第1の実施例と同じである。 The center node 20 includes a wavelength filter 23 that multiplexes and demultiplexes downstream optical signals and upstream optical signals, a plurality of downstream optical transmitters 29 1 to 29 n that output different wavelengths, and downstream outputs that are output at different wavelengths. a WDM filter 28 1 to the wavelength multiplexing optical signal, a WDM filter 28 2 for demultiplexing upstream optical signal wavelength-multiplexed, demultiplexed and a plurality of optical receivers 30 1 to 30 n for receiving an upstream optical signal Is provided. In addition, the light source for the upstream optical signal and the downstream optical signal may use an external modulator and a semiconductor laser, but in order to reduce the cost, the transmission optical signal is changed by changing the amount of current injected into the semiconductor laser. Often, a direct modulation semiconductor laser is used. Others are the same as the first embodiment.

このような構成において、本光通信システムは次のように動作する。センターノード20の光送信器29〜29から出力された異なる波長の下り光信号は、WDMフィルタ28により波長多重され、光ファイバ伝送路60に出力される。光ファイバ伝送路60を伝送した波長多重された下り光信号は、波長スプリッタ40にて分波され、各リモートノード10〜10に対応した波長の下り光信号が光ファイバ伝送路50〜50に出力される。波長分散により波形劣化を受けた下り光信号は、リモートノード10〜10の受光器16〜16にて下り電気信号に変換される。下り電気信号は分岐され、一方は波形モニタ回路17〜17に入力される。分岐された下り電気信号のもう一方は下り信号用の分散補償器18〜18に入力される。 In such a configuration, the optical communication system operates as follows. The downstream optical signals having different wavelengths output from the optical transmitters 29 1 to 29 n of the center node 20 are wavelength-multiplexed by the WDM filter 28 1 and output to the optical fiber transmission line 60. The wavelength-multiplexed downstream optical signal transmitted through the optical fiber transmission line 60 is demultiplexed by the wavelength splitter 40, and the downstream optical signals having wavelengths corresponding to the remote nodes 10 1 to 10 n are transmitted to the optical fiber transmission lines 50 1 to 50 1 . 50 n is output. Downstream optical signals that have undergone waveform degradation due to wavelength dispersion are converted into downstream electrical signals by the light receivers 16 1 to 16 n of the remote nodes 10 1 to 10 n . The downstream electric signal is branched, and one is input to the waveform monitor circuits 17 1 to 17 n . The other of the branched downstream electrical signals is input to dispersion compensators 18 1 to 18 n for downstream signals.

制御器19〜19は、波形モニタ回路17〜17に入力された下り電気信号をモニタリングし、それをもとに補償すべき分散量を求め、それに対応する下り信号用および上り信号用の分散補償器18〜18、14〜14の分散設定値を算出できる。なぜなら、センターノード20とリモートノード10〜10は1芯の光ファイバ伝送路で通信を行い、上り光信号と下り光信号は同じ距離を伝送するため、下り電気信号の波形をモニタリングすることで、上り信号の補償分散量を求めることが可能となるからである。 The controllers 19 1 to 19 n monitor the downstream electrical signals input to the waveform monitor circuits 17 1 to 17 n , obtain the dispersion amount to be compensated based on the downstream electrical signals, and correspond to the downstream signals and upstream signals. Dispersion set values of the dispersion compensators 18 1 to 18 n and 14 1 to 14 n for use can be calculated. This is because the center node 20 and the remote nodes 10 1 to 10 n communicate with each other through a single-core optical fiber transmission line, and the upstream optical signal and the downstream optical signal are transmitted through the same distance, and therefore the waveform of the downstream electrical signal is monitored. This is because the compensation dispersion amount of the uplink signal can be obtained.

制御器19〜19は波形モニタ回路17〜17のモニタ結果から、上り信号用および下り信号用の分散補償器14〜14、18〜18に対して補償すべき分散量に対応した分散設定値を制御信号C〜C、D〜Dnとして送信する。分散設定値を決定する方法として、制御器19〜19は補償分散量と分散設定値の対応表をもち、それをもとに分散設定値を求める。すなわち、波形モニタ回路17〜17では分散を受けてアイ開口が小さくなったことを示す波形劣化量βが測定できるので、ここで測定した波形劣化量βと、実測等によって事前に作成した波形劣化量と伝達距離との対応から、伝送距離L〜Lを推定し、その推定した距離から分散補償量d〜dを算出し、この分散補償量に基づき分散設定値を決める。図9に制御器19〜19に保存されている情報を示した。 Based on the monitoring results of the waveform monitor circuits 17 1 to 17 n , the controllers 19 1 to 19 n are dispersions to be compensated for the dispersion compensators 14 1 to 14 n and 18 1 to 18 n for the upstream signal and the downstream signal. The dispersion set values corresponding to the amounts are transmitted as control signals C 1 to C n and D 1 to Dn. As a method for determining the dispersion setting value, the controllers 19 1 to 19 n have a correspondence table between the compensation dispersion amount and the dispersion setting value, and obtain the dispersion setting value based on the correspondence table. That is, since the amount of waveform deterioration β 1 ~ β 2 indicating that the eye opening is reduced by receiving dispersion the waveform monitor circuit 17 1 to 17 n can be measured, the amount of waveform deterioration β 1 ~ β 2 as measured here from the correspondence between the transmission distance in advance the amount of waveform deterioration created by actual measurement or the like, it estimates the transmission distance L 1 ~L n, calculates a dispersion compensation amount d 1 to d n from the estimated distance, the dispersion compensation The dispersion setting value is determined based on the amount. FIG. 9 shows information stored in the controllers 19 1 to 19 n .

下り信号用の分散補償器18〜18は、制御器19〜19からの制御信号C〜C1をもとに分散設定値を設定し、分散により劣化した下り電気信号を等化して出力する。上り信号用の分散補償器14〜14は、制御器19〜19からの制御信号D〜Dnをもとに分散設定値を設定し、光ファイバ伝送路50〜50および60を伝送して分散により劣化する量を補正するように伝送前にプリディストーションを施して、出力する。 The dispersion compensators 18 1 to 18 n for downlink signals set dispersion setting values based on the control signals C 1 to C n 1 from the controllers 19 1 to 19 n , and the downlink electrical signals deteriorated due to dispersion are set. Equalize and output. The dispersion compensators 14 1 to 14 n for upstream signals set dispersion set values based on the control signals D 1 to Dn from the controllers 19 1 to 19 n , and the optical fiber transmission lines 50 1 to 50 n and 60 is transmitted and predistorted before transmission so as to correct the amount of deterioration due to dispersion and output.

プリディストーションされた上り電気信号は、光源15〜15により上り光信号に変換され、光ファイバ伝送路50〜50に出力される。光ファイバ伝送路50〜50を伝送した上り光信号は、波長スプリッタ40にて合波され、光ファイバ伝送路60へ出力される。光ファイバ伝送路60からセンタノード20へ入力された上り光信号は、波長フィルタ23を通過後、WDMフィルタ28にて分波され、各リモートノード10〜10に対応した波長を持つ上り光信号が光受信器30〜30に入力される。光受信器30〜30に入力された上り光信号は、プリデイストーションと光ファイバ伝送路の分散が打ち消しあい、分散の影響を受けない波形と同等の波形となって受信される。 Predistorted the upstream electric signal is converted into the upstream optical signal by the light source 15 1 to 15 n, is output to the optical fiber transmission line 50 1 to 50 n. The upstream optical signals transmitted through the optical fiber transmission lines 50 1 to 50 n are combined by the wavelength splitter 40 and output to the optical fiber transmission line 60. Upstream optical signal input from the optical fiber transmission path 60 to the center node 20, after passing through the wavelength filter 23 is demultiplexed by the WDM filter 28 2, up having a wavelength corresponding to each remote node 10 1 to 10 n Optical signals are input to the optical receivers 30 1 to 30 n . The upstream optical signals input to the optical receivers 30 1 to 30 n are received in a waveform equivalent to a waveform that is not affected by the dispersion because the predistortion and the dispersion of the optical fiber transmission line cancel each other.

従って、両端のノードに分散補償のための手段が必要なく、片端のノード10〜10で上り信号、下り信号両方の分散補償が自動的に可能となる。ここで、光ファイバ伝送路60,50〜50は1芯の光ファイバとしたが、伝送する距離が同じであれば、上り光信号用および下り光信号用光ファイバは2心の光ファイバを用いてもよい。 Therefore, no means for dispersion compensation is required at the nodes at both ends, and dispersion compensation for both the upstream signal and the downstream signal is automatically possible at the nodes 10 1 to 10 n at one end. Here, although the optical fiber transmission lines 60 and 50 1 to 50 n are single-core optical fibers, if the transmission distance is the same, the optical fibers for the upstream optical signal and the downstream optical signal are two optical fibers. May be used.

以上のような構成にすることで、経済的な手段を用いて、上り信号および下り信号の光ファイバ伝送路50〜50、60の分散を、片端のノード10〜10側で、センターノード20と各リモートノード10〜10間の光ファイバ伝送路60、50〜50の距離に応じて補償することが可能になる。 With the configuration as described above, the dispersion of the optical fiber transmission lines 50 1 to 50 n and 60 of the upstream signal and the downstream signal can be distributed on the node 10 1 to 10 n side at one end by using economical means. Compensation can be made according to the distances of the optical fiber transmission lines 60 and 50 1 to 50 n between the center node 20 and the remote nodes 10 1 to 10 n .

<第5の実施例>
図5に本発明の第5の実施例を示す。本実施例の光通信システムは、第4の実施例における波長スプリッタ40に代えて、光パワースプリッタ40Aを使用したものである。
<Fifth embodiment>
FIG. 5 shows a fifth embodiment of the present invention. The optical communication system of this embodiment uses an optical power splitter 40A instead of the wavelength splitter 40 in the fourth embodiment.

<他の実施例>
以上に述べた第1〜第5の実施例は、本発明をpoint-to-point型およびスター型のネットワークに適用した例であるが、上り光信号と下り光信号が伝送する光ファイバ伝送路の距離が同じであれば、バス型ネットワーク、リング型ネットワークに適用することも可能である。
<Other embodiments>
The first to fifth embodiments described above are examples in which the present invention is applied to point-to-point type and star type networks, but an optical fiber transmission line for transmitting upstream optical signals and downstream optical signals. Can be applied to a bus-type network and a ring-type network.

本発明の第1の実施例の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system of 1st Example of this invention. 本発明の第2の実施例の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system of the 2nd Example of this invention. 本発明の第3の実施例の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system of the 3rd Example of this invention. 本発明の第4の実施例の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system of the 4th Example of this invention. 本発明の第5の実施例の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical communication system of the 5th Example of this invention. 従来の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional optical communication system. 従来の別の光通信システムの構成を示すブロック図である。It is a block diagram which shows the structure of another conventional optical communication system. 本発明の第2の実施例の光通信システムの制御器に保存されている情報の説明図である。It is explanatory drawing of the information preserve | saved at the controller of the optical communication system of 2nd Example of this invention. 本発明の第4の実施例の光通信システムの制御器に保存されている情報の説明図である。It is explanatory drawing of the information preserve | saved at the controller of the optical communication system of the 4th Example of this invention.

符号の説明Explanation of symbols

10,10〜10:リモートノード
11,11〜11:波長フィルタ
12,12〜12:光受信器
13,13〜13:光送信器
14〜14:分散補償器
15〜15:光源
16〜16:受光器
17〜17:波形モニタ回路
18〜18:分散補償器
20:センターノード
21,21〜21:分散補償器
22,22〜22:光源
23:波長フィルタ
24,24〜42:受光器
25,25〜25:波形モニタ回路
26,26〜26:分散補償器
27,27〜27:制御器
28,28:WDMフィルタ
29,29〜29:光送信器
30,30〜30:光受信器
40:波長スプリッタ
40A:光パワースプリッタ
50〜50:光ファイバ伝送路
60,60、60:光ファイバ伝送路
10, 10 1 to 10 n : Remote node 11, 11 1 to 11 n : Wavelength filter 12, 12 1 to 12 n : Optical receiver 13, 13 1 to 13 n : Optical transmitter 14 1 to 14 n : Dispersion compensation vessel 15 1 to 15 n: the light source 16 1 ~ 16 n: photoreceiver 17 1 to 17 n: waveform monitor circuit 18 1 ~ 18 n: dispersion compensator 20: center node 21, 21 1 through 21 n: dispersion compensator 22 , 22 1 to 22 n : light source 23: wavelength filter 24, 24 1 to 42 n : light receiver 25, 25 1 to 25 n : waveform monitor circuit 26, 26 1 to 26 n : dispersion compensator 27, 27 1 to 27 n: The controller 28 1, 28 2: WDM filter 29, 29 1 ~ 29 n: an optical transmitter 30, 30 1 to 30 n: an optical receiver 40: wavelength splitter 40A: light Pawasupu Jitter 50 1 to 50 n: an optical fiber transmission line 60, 60 1, 60 2: optical fiber transmission lines

Claims (7)

光ファイバ伝送路の片端に接続される光通信装置であって、該光ファイバ伝送路から受信した受信光信号を受信電気信号に変換して取り出すとともに、送信電気信号を送信光信号に変換して前記光ファイバ伝送路に送出することにより、前記光ファイバ伝送路の他端側の装置と通信を行なう光通信装置において、
前記受信光信号を前記受信電気信号に変換する受光器と、該受信電気信号の波形をモニタリングする波形モニタ回路と、前記受信電気信号を等化する受信用の第1の分散補償器と、前記送信電気信号を操作する送信用の第2の分散補償器と、前記送信電気信号を前記送信光信号に変換して前記光ファイバ伝送路に送出する光源と、前記第1の分散補償器と前記第1の分散補償器を前記波形モニタ回路の観測結果に基づき制御する制御器とを備えることを特徴とする光通信装置。
An optical communication device connected to one end of an optical fiber transmission line, which converts a received optical signal received from the optical fiber transmission line into a received electrical signal and extracts it, and converts a transmitted electrical signal into a transmitted optical signal. In an optical communication device that communicates with a device on the other end of the optical fiber transmission line by sending it to the optical fiber transmission line,
A photoreceiver that converts the received optical signal into the received electrical signal; a waveform monitor circuit that monitors a waveform of the received electrical signal; a first dispersion compensator for reception that equalizes the received electrical signal; A second dispersion compensator for transmission that manipulates a transmission electric signal; a light source that converts the transmission electric signal into the transmission optical signal and sends it to the optical fiber transmission line; the first dispersion compensator; An optical communication apparatus comprising: a controller that controls the first dispersion compensator based on an observation result of the waveform monitor circuit.
請求項1に記載の光通信装置において、
前記制御器は、前記波形モニタ回路により観測された前記受信電気信号の波形から、前記光ファイバ伝送路の分散量を推定して前記第1の分散補償器を制御し、分散により劣化した受信電気信号を等化することを特徴とする光通信装置。
The optical communication device according to claim 1,
The controller estimates the amount of dispersion of the optical fiber transmission line from the waveform of the received electrical signal observed by the waveform monitor circuit, controls the first dispersion compensator, and receives the received electrical power deteriorated by dispersion. An optical communication apparatus characterized by equalizing a signal.
請求項2に記載の光通信装置において、
前記制御器は、前記推定した分散量をもとに、前記第2の分散補償器を制御し、前記他端側の装置にて正常に受信できる前記送信電気信号を生成することを特徴とする光通信装置。
The optical communication device according to claim 2,
The controller controls the second dispersion compensator based on the estimated dispersion amount, and generates the transmission electrical signal that can be normally received by the device on the other end side. Optical communication device.
請求項3に記載の光通信装置において、
前記制御器は、前記分散量と送信用および受信用それぞれの分散補償器の設定値を対応させる情報を持つことを特徴とする光通信装置。
The optical communication apparatus according to claim 3.
The optical controller is characterized in that the controller has information for associating the dispersion amount with the set values of the dispersion compensators for transmission and reception.
第1の光通信装置と第2の光通信装置が光ファイバ伝送路を介して1対1に接続され、所定の波長をもつ光信号を用いて通信を行なう光通信システムにおいて、
前記第1および第2の光通信装置の一方が、請求項1〜4のいずれか1つに記載の光通信装置からなることを特徴とする光通信システム。
In an optical communication system in which a first optical communication device and a second optical communication device are connected one-to-one via an optical fiber transmission line and communicate using an optical signal having a predetermined wavelength.
One of said 1st and 2nd optical communication apparatuses consists of an optical communication apparatus as described in any one of Claims 1-4, The optical communication system characterized by the above-mentioned.
第1の光通信装置と複数の第2の光通信装置が、光合分波器および光ファイバ伝送路を介してスター型に接続され、それぞれの前記第2の通信装置はそれぞれに割り当てられた波長を用いて前記第1の光通信装置と通信を行なう光通信システムにおいて、
それぞれの前記第2の光通信装置が、請求項1〜4のいずれか1つに記載の光通信装置からなることを特徴とする光通信システム。
A first optical communication device and a plurality of second optical communication devices are connected in a star shape via an optical multiplexer / demultiplexer and an optical fiber transmission line, and each of the second communication devices has a wavelength assigned to each of them. In an optical communication system that communicates with the first optical communication device using
Each said 2nd optical communication apparatus consists of an optical communication apparatus as described in any one of Claims 1-4, The optical communication system characterized by the above-mentioned.
第1の光通信装置と複数の第2の光通信装置が、光合分波器および光ファイバ伝送路を介してスター型に接続され、それぞれの前記第2の通信装置はそれぞれに割り当てられた波長を用いて前記第1の光通信装置と通信を行なう光通信システムにおいて、
前記第1の光通信装置は、前記第2の光通信装置と同数の請求項1〜4のいずれか1つに記載の光通信装置を備えることを特徴とする光通信システム。
A first optical communication device and a plurality of second optical communication devices are connected in a star shape via an optical multiplexer / demultiplexer and an optical fiber transmission line, and each of the second communication devices has a wavelength assigned to each of them. In an optical communication system that communicates with the first optical communication device using
The first optical communication apparatus includes the same number of optical communication apparatuses as claimed in any one of claims 1 to 4 as the second optical communication apparatus.
JP2007159599A 2007-06-16 2007-06-16 Optical communication apparatus and optical communication system Expired - Fee Related JP4833157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159599A JP4833157B2 (en) 2007-06-16 2007-06-16 Optical communication apparatus and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159599A JP4833157B2 (en) 2007-06-16 2007-06-16 Optical communication apparatus and optical communication system

Publications (2)

Publication Number Publication Date
JP2008312071A true JP2008312071A (en) 2008-12-25
JP4833157B2 JP4833157B2 (en) 2011-12-07

Family

ID=40239237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159599A Expired - Fee Related JP4833157B2 (en) 2007-06-16 2007-06-16 Optical communication apparatus and optical communication system

Country Status (1)

Country Link
JP (1) JP4833157B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038769A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Optical transceiver and its adjusting method
JP2009171328A (en) * 2008-01-17 2009-07-30 Sumitomo Electric Ind Ltd Optical transmission system and control method thereof
JP2009188788A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Transmission/reception system
JP2013258559A (en) * 2012-06-12 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> Optical communication system and newly connected terminal detecting method
JP5416844B2 (en) * 2010-09-06 2014-02-12 株式会社日立製作所 PON system and OLT
JP2016051989A (en) * 2014-08-29 2016-04-11 Kddi株式会社 Optical communication device, pon system, onu, and program
JP2016152554A (en) * 2015-02-18 2016-08-22 日本電信電話株式会社 System and method for optical communication
JP2019525565A (en) * 2016-07-08 2019-09-05 アルカテル・ルーセント Method and apparatus for optical communication
US10523323B2 (en) 2018-04-17 2019-12-31 Electronics And Telecommunications Research Institute Apparatus and method for equalization and compensation of chromatic dispersion in optical transmission
WO2020004215A1 (en) * 2018-06-29 2020-01-02 日本電信電話株式会社 Dispersion compensation system and dispersion compensation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779197A (en) * 1993-03-26 1995-03-20 Telefon Ab L M Ericsson Method and system for dispersion compensation in optical fiber high speed system
JP2002261692A (en) * 2001-03-02 2002-09-13 Fujitsu Ltd Apparatus for receiving signals, method for compensating waveform degradation of received signals, apparatus for detecting waveform degradation, apparatus for measuring waveform and method for the same
JP2006304170A (en) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp Pon system and dispersion compensating method therefor
JP2006345131A (en) * 2005-06-08 2006-12-21 Hitachi Communication Technologies Ltd Optical access network system
JP2006345284A (en) * 2005-06-09 2006-12-21 Sumitomo Electric Ind Ltd Transmission system and station apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779197A (en) * 1993-03-26 1995-03-20 Telefon Ab L M Ericsson Method and system for dispersion compensation in optical fiber high speed system
JP2002261692A (en) * 2001-03-02 2002-09-13 Fujitsu Ltd Apparatus for receiving signals, method for compensating waveform degradation of received signals, apparatus for detecting waveform degradation, apparatus for measuring waveform and method for the same
JP2006304170A (en) * 2005-04-25 2006-11-02 Mitsubishi Electric Corp Pon system and dispersion compensating method therefor
JP2006345131A (en) * 2005-06-08 2006-12-21 Hitachi Communication Technologies Ltd Optical access network system
JP2006345284A (en) * 2005-06-09 2006-12-21 Sumitomo Electric Ind Ltd Transmission system and station apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038769A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Optical transceiver and its adjusting method
JP2009171328A (en) * 2008-01-17 2009-07-30 Sumitomo Electric Ind Ltd Optical transmission system and control method thereof
JP2009188788A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Transmission/reception system
JP5416844B2 (en) * 2010-09-06 2014-02-12 株式会社日立製作所 PON system and OLT
JP2013258559A (en) * 2012-06-12 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> Optical communication system and newly connected terminal detecting method
JP2016051989A (en) * 2014-08-29 2016-04-11 Kddi株式会社 Optical communication device, pon system, onu, and program
JP2016152554A (en) * 2015-02-18 2016-08-22 日本電信電話株式会社 System and method for optical communication
JP2019525565A (en) * 2016-07-08 2019-09-05 アルカテル・ルーセント Method and apparatus for optical communication
US11349570B2 (en) 2016-07-08 2022-05-31 Alcatel Lucent Optical communication method and apparatus
US10523323B2 (en) 2018-04-17 2019-12-31 Electronics And Telecommunications Research Institute Apparatus and method for equalization and compensation of chromatic dispersion in optical transmission
WO2020004215A1 (en) * 2018-06-29 2020-01-02 日本電信電話株式会社 Dispersion compensation system and dispersion compensation method
JP2020005165A (en) * 2018-06-29 2020-01-09 日本電信電話株式会社 Dispersion compensation system, and dispersion compensation method
US11251868B2 (en) 2018-06-29 2022-02-15 Nippon Telegraph And Telephone Corporation Dispersion compensation system and dispersion compensation method
JP7099088B2 (en) 2018-06-29 2022-07-12 日本電信電話株式会社 Dispersion compensation system and dispersion compensation method

Also Published As

Publication number Publication date
JP4833157B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4833157B2 (en) Optical communication apparatus and optical communication system
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
US8270843B2 (en) Optical transmission system
US8131155B2 (en) Optical signal transmission apparatus
US20180234185A1 (en) Mode division multiplexed passive optical network
WO2020024543A1 (en) Remote optical fiber dispersion compensation device and method, remote access device, electronic device and non-transient computer-readable storage medium
US10193619B2 (en) Mode division multiplexed passive optical network
US9037002B2 (en) Pre-emphasis control method and optical transmission system
JP2004289707A (en) Quality monitoring method and apparatus for wavelength multiplexed optical signal, and optical transmission system using the same
US20120141121A1 (en) Optical transmission equipment
WO2015045311A1 (en) Transport apparatus, transport system, transport method, and storage medium on which program has been stored
JP4762793B2 (en) Chromatic dispersion control method and chromatic dispersion control system
CN101630978A (en) Method, device and system for realizing polarization mode dispersion compensation
EP1442540A2 (en) Integrated adaptive chromatic dispersion/polarization mode dispersion compensation system
US20050095006A1 (en) Cable station for an undersea optical transmission system
JP4916387B2 (en) Center side optical communication device and optical communication system
JP2011250037A (en) Polarization multiplexing optical transmission system
Barthomeuf et al. Equalization and interoperability challenges in next generation passive optical networks
JP2008311875A (en) Optical transmission apparatus and optical transmission apparatus control method
US20160072588A1 (en) Method And Apparatus For Processing A Communication Signal In An Optical Communication Network
JP2006304170A (en) Pon system and dispersion compensating method therefor
CN101529758B (en) Polarization mode dispersion monitoring and fault correlation
JP5383455B2 (en) Optical fiber communication system
JP2009267950A (en) Optical communication system and optical communication apparatus
JP4429969B2 (en) Chromatic dispersion monitor stabilization method and chromatic dispersion monitor apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees