JP2008311011A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2008311011A JP2008311011A JP2007156026A JP2007156026A JP2008311011A JP 2008311011 A JP2008311011 A JP 2008311011A JP 2007156026 A JP2007156026 A JP 2007156026A JP 2007156026 A JP2007156026 A JP 2007156026A JP 2008311011 A JP2008311011 A JP 2008311011A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- electrode
- secondary battery
- nonaqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
本発明は、比較的大型で高い入出力特性を有する非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery that is relatively large and has high input / output characteristics.
電圧が高くエネルギー密度が大きい非水電解液二次電池(主にリチウムイオン二次電池)は、移動体通信機器、携帯電子機器などのモバイル機器の主電源として利用されている。近年、環境問題を踏まえて車載電源、バックアップ電源および大型機器のDC化の動きが活発化しており、軽量化が可能なリチウムイオン二次電池を大型化・高出力化することが要望されている。 Nonaqueous electrolyte secondary batteries (mainly lithium ion secondary batteries) with high voltage and high energy density are used as main power sources for mobile devices such as mobile communication devices and portable electronic devices. In recent years, in-vehicle power supplies, backup power supplies, and large-scale devices are becoming DC-driven in light of environmental problems, and it is demanded to increase the size and output of lithium-ion secondary batteries that can be reduced in weight. .
リチウムイオン二次電池は、集電体の上に活物質を含む層を設けた正極および負極を、セパレータを介して対峙するようにして、略矩形状に積層するか、もしくは円筒状あるいは略矩形状に捲回して電極群を構成し、これを非水電解質とともに、電池ケースと蓋とからなる外装体に収納して作製される。ここで略矩形状に積層してなる電極群を構成する場合、電極群と略同一形状の正極および負極を用いることになる。また円筒状あるいは略矩形状に捲回してなる電極群を構成する場合、帯状の正極および負極を用いることになる。 A lithium ion secondary battery is formed by laminating a positive electrode and a negative electrode provided with a layer containing an active material on a current collector with a separator interposed therebetween, in a substantially rectangular shape, or in a cylindrical or substantially rectangular shape. The electrode group is formed by winding into a shape, and this is manufactured by housing it in a package body including a battery case and a lid together with a nonaqueous electrolyte. Here, when an electrode group formed by laminating in a substantially rectangular shape is configured, a positive electrode and a negative electrode having substantially the same shape as the electrode group are used. Further, when forming an electrode group wound in a cylindrical or substantially rectangular shape, a belt-like positive electrode and negative electrode are used.
上述した構造のリチウムイオン二次電池において、無作為に正極および負極における単位面積当りの活物質の量を多くする(活物質を含む層を厚くする)と、入出力特性が著しく低下する。入出力特性が良好なリチウムイオン二次電池を得るためには、モバイル機器の主電源に用いるリチウムイオン二次電池の場合と比べて、正極および負極における単位面積当りの活物質の量を少なくする(活物質を含む層を薄くする)必要がある。 In the lithium ion secondary battery having the above-described structure, when the amount of the active material per unit area in the positive electrode and the negative electrode is randomly increased (the layer containing the active material is thickened), the input / output characteristics are remarkably deteriorated. In order to obtain a lithium ion secondary battery with good input / output characteristics, the amount of active material per unit area in the positive electrode and the negative electrode is reduced compared to the case of a lithium ion secondary battery used as the main power source of a mobile device. (It is necessary to make the layer containing the active material thin).
加えてリチウムイオン二次電池の入出力特性を高めようとすると、正極および負極の電流経路を効率的にする必要がある。例えば帯状の正極および負極を捲回した電極群を採用する場合に、モバイル機器の主電源に用いるリチウムイオン二次電池のように、正極および負極の一端で集電体を露出させて集電部材(リードなど)を接合し、正極端子および負極端子と電気的な接続を取るようにすると、帯状の正極および負極の一端は集電部材から大きく離れる(電流経路が長くなる)ので、直流抵抗が大きくなって十分な入出力特性が得られなくなる。そこで正極または負極の集電体を長手方向に露出させかつ電極群の一端から突出するようにし、この露出した集電体を円筒軸心方向に沿って平面押圧して内側に折り曲げて平坦部を形成し、この平坦部に集電板を溶接する構造(特許文献1参照)や、正極または負極の集電体を長手方向に沿って数多くのリードを設けて電極群の一端から突出させ、このリードを集結する技術(特許文献2参照)が提案されている。
しかしながら車載電源、バックアップ電源などのように、容量が大きくかつ高い入出力特性を必要とする用途の場合、正極および負極の面積を過度に大きくする必要があるために、特許文献1および2の技術のみでは不十分であった。本発明は上記従来技術の課題に鑑みて創案されたものであり、正極および負極の面積が過度に大きくなっても適正な電流経路を確保し、直流抵抗を低減することによって車載電源あるいはバックアップ電源などの用途に適した非水電解質二次電池を提供することにある。 However, in the case of an application that requires a large capacity and high input / output characteristics, such as an in-vehicle power supply and a backup power supply, it is necessary to excessively increase the areas of the positive electrode and the negative electrode. It was not enough. The present invention was devised in view of the above-mentioned problems of the prior art, and even if the areas of the positive electrode and the negative electrode become excessively large, an appropriate current path is ensured and the DC resistance is reduced to reduce the on-board power supply or backup power supply. It is providing the nonaqueous electrolyte secondary battery suitable for uses, such as.
前記従来の課題を解決するために、本発明の非水電解質二次電池は、略矩形状の集電体の上に活物質を含む層を設けた正極および負極がセパレータを介して対峙するように積層もしくは捲回させた電極群と、非水電解質とを、正極端子および負極端子を有する外装体に収納させたものであって、正極および負極の平行する2辺に沿って集電体が露出してなる露出部を設け、電極群の外側を通じて、正極における露出部の双方を正極集電部材と電気的に接続させ、負極における露出部の双方を負極集電部材と電気的に接続させたことを特徴とする。 In order to solve the above-described conventional problems, the nonaqueous electrolyte secondary battery of the present invention is such that a positive electrode and a negative electrode provided with a layer containing an active material on a substantially rectangular current collector face each other through a separator. A group of electrodes laminated or wound together and a non-aqueous electrolyte are housed in an exterior body having a positive electrode terminal and a negative electrode terminal, and a current collector is formed along two parallel sides of the positive electrode and the negative electrode. An exposed exposed portion is provided, and both of the exposed portions of the positive electrode are electrically connected to the positive current collector through the outside of the electrode group, and both of the exposed portions of the negative electrode are electrically connected to the negative current collector. It is characterized by that.
正極および負極の平行する2辺に沿って集電体の露出部を設け、その各々に集電部材を接合することによって、正極および負極の面積が過度に大きくなっても適切な電流経路を確保して直流抵抗が低減できるので、容量が大きくかつ入出力特性が高い非水電解質二次電池が得られるようになる。 Providing current collectors along two parallel sides of the positive and negative electrodes, and joining current collectors to each of them ensures an appropriate current path even when the area of the positive and negative electrodes becomes excessively large Since the direct current resistance can be reduced, a non-aqueous electrolyte secondary battery having a large capacity and high input / output characteristics can be obtained.
本発明によれば、容量が大きくかつ入出力特性が高い非水電解質二次電池を得ることが可能になる。 According to the present invention, it is possible to obtain a nonaqueous electrolyte secondary battery having a large capacity and high input / output characteristics.
以下、本発明を実施するための最良の形態について、図を用いて説明する。 The best mode for carrying out the present invention will be described below with reference to the drawings.
第1の発明は、略矩形状の集電体の上に活物質を含む層を設けた正極および負極がセパレータを介して対峙するように積層もしくは捲回させた電極群と、非水電解質とを、正極端子および負極端子を有する外装体に収納させたものであって、正極および負極の平行する2辺に沿って集電体が露出してなる露出部を設け、電極群の外側を通じて、正極における露出部の双方を正極集電部材と電気的に接続させ、負極における露出部の双方を負極集電部材と電気的に接続させたことを特徴とする非水電解質二次電池に関する。 According to a first aspect of the present invention, there is provided an electrode group in which a positive electrode and a negative electrode provided with a layer containing an active material on a substantially rectangular current collector are stacked or wound so as to face each other through a separator, a non-aqueous electrolyte, Is provided in an exterior body having a positive electrode terminal and a negative electrode terminal, provided with an exposed portion where the current collector is exposed along two parallel sides of the positive electrode and the negative electrode, and through the outside of the electrode group, The present invention relates to a non-aqueous electrolyte secondary battery in which both exposed portions of a positive electrode are electrically connected to a positive electrode current collector and both exposed portions of a negative electrode are electrically connected to a negative electrode current collector.
(実施の形態1)
図1は、本発明の非水電解質二次電池のうち、捲回型の電極群を構成する際に用いる正極および負極の平面図である。正極11および負極12はそれぞれ、帯状の集電体の上に活物質を含む層を設けてなる。これらの長さや幅については、所望する電池の容量などに応じて任意に設定できる。また正極11および負極12の長手方向の2辺に沿って、複数の短冊状の露出部13および14が設けられている。なお図1には複数の露出部13および14が正極11および負極12から突出した形態を示したが、上述した露出部が突出しない代わりに金属製のリードを接合して突出させた形態、あるいは突出している露出部(あるいはリード)が1つである形態もまた、本発明の範疇であるのはいうまでもない。
(Embodiment 1)
FIG. 1 is a plan view of a positive electrode and a negative electrode used in forming a wound electrode group in the nonaqueous electrolyte secondary battery of the present invention. Each of the
図2は、図1の正極および負極を用いて構成した非水電解質電池における捲回型の電極群の概略図である。帯状の正極11と負極12とを、セパレータ(図示せず)を介して捲回し、正極11の露出部13の双方を束ねて、接続部材15で電気的に接続した上で、舌状の突起を設けた正極集電部材17と電気的に接続する。一方、負極12の露出部14の双方を束ねて、接続部材15で電気的に接続した上で、舌状の突起を設けた負極集電部材18と電気的に接続する。この電極群を電池ケース(図示せず)に挿入し、負極集電部材18の舌状の突起を電池ケースの底と電気的に接続する。続いて正極集電部材17の舌状の突起を蓋(図示せず)と電気的に接続する。ここで接続部材15と16は、互いに接することがないように配置される。さらに電池ケースに非水電解質を注入し、電池ケースの開口部分に蓋を設置して密閉化することにより、本発明の非水電解質二次電池が構成される。
FIG. 2 is a schematic view of a wound electrode group in a nonaqueous electrolyte battery configured using the positive electrode and the negative electrode of FIG. A belt-like
(実施の形態2)
図3は、本発明の非水電解質二次電池のうち、捲回型の電極群を構成する際に用いる正極および負極の平面図である。正極21および負極22はそれぞれ、帯状の集電体の上に活物質を含む層を設けてなる。これらの長さや幅については、所望する電池の容量などに応じて任意に設定できる。また正極21および負極22の長手方向の2辺に沿って、露出部23および24が設けられている。ここで正極21および負極22の露出部23および24の一方は複数の短冊状となっており、他方は連続した帯状となっている。なお図3には複数の短冊状の露出部23および24が正極21および負極22から突出した形態を示したが、上述した露出部が突出しない代わりに金属製のリードを接合して突出させた形態、あるいは突出している露出部(あるいはリード)が1つである形態もまた、本発明の範疇であるのはいうまでもない。
(Embodiment 2)
FIG. 3 is a plan view of a positive electrode and a negative electrode used in forming a wound electrode group in the nonaqueous electrolyte secondary battery of the present invention. Each of the
図4は、図3の正極および負極を用いて構成した非水電解質電池における捲回型の電極群の概略図である。帯状の正極21と負極22とを、セパレータ(図示せず)を介して捲回する。ここで正極21の露出部23のうち複数の短冊状の方と、負極22の露出部24のうち複数の短冊状の方とは、電極群の上下面のいずれか一面ずつに配置されるようにする。さらに正極21の露出部23のうち複数の短冊状の方を、負極集電部材28に設けた貫通孔28aを通して束ね、もう一方の露出部23と接続部材25で電気的に接続した上で、舌状の突起を設けた正極集電部材27と電気的に接続する。一方、負極22の露出部24のうち複数の短冊状の方を、正極集電部材27に設けた貫通孔27aを通して束ね、もう一方の露出部24と接続部材26で電気的に接続した上で、舌状の突起を設けた負極集電部材28と電気的に接続する。この電極群を電池ケース(図示せず)に挿入し、負極集電部材28の舌状の突起を電池ケースの底と電気的に接続する。続いて正極集電部材27の舌状の突起を蓋(図示せず)と電気的に接続する。ここで接続部材25と26は、互いに接することがないように配置される。さらに電池ケースに非水電解質を注入し、電池ケースの開口部分に蓋を設置して密閉化することにより、本発明の非水電解質二次電池が構成される。
FIG. 4 is a schematic view of a wound electrode group in a nonaqueous electrolyte battery configured using the positive electrode and the negative electrode of FIG. The belt-like
負極集電部材28に設けた貫通孔28aを通して正極21の露出部23を束ねる際、所定箇所に絶縁材料を配して、短絡を防ぐ必要があることはいうまでもない。
Needless to say, when the exposed
正極集電部材27に設けた貫通孔27aを通して負極22の露出部24を束ねる際、所定箇所に絶縁材料を配して、短絡を防ぐ必要があることはいうまでもない。
Needless to say, when the exposed
実施の形態2を採ることにより、実施の形態1を採った場合と比べて、正極21および負極22の加工が容易な上、集電箇所を多くして抵抗を低減できるという利点がある。
By adopting the second embodiment, there is an advantage that the
(実施の形態3)
図5は、本発明の非水電解質二次電池のうち、捲回型の電極群を構成する際に用いる正極および負極の平面図である。正極31および負極32はそれぞれ、帯状の集電体の上に活物質を含む層を設けてなる。これらの長さや幅については、所望する電池の容量などに応じて任意に設定できる。また正極31および負極32の長手方向の2辺に沿って、複数の短冊状の露出部33および34が設けられている。この露出部13および14は、電極群を構成した際の捲回芯から外側へと向かって、徐々にその幅が広くなっている。なお図1には複数の露出部13および14が正極11および負極12から突出した形態を示したが、上述した露出部が突出しない代わりに金属製のリードを接合して突出させた形態、あるいは突出している露出部(あるいはリード)が1つである形態もまた、本発明の範疇であるのはいうまでもない。
(Embodiment 3)
FIG. 5 is a plan view of a positive electrode and a negative electrode used in forming a wound electrode group in the nonaqueous electrolyte secondary battery of the present invention. Each of the
図6〜9は、図5の正極および負極を用いて構成した非水電解質電池における捲回型の電極群の概略図である。帯状の正極31と負極32とを、セパレータ(図示せず)を介し
て捲回し、正極31の露出部33と負極32の露出部34は、電極群の上下面において、左右に対峙する形で略半円状に突出している。
6 to 9 are schematic views of a wound electrode group in a nonaqueous electrolyte battery configured using the positive electrode and the negative electrode of FIG. The belt-like
双方の正極31の露出部33を略半円状の正極集電部材37と電気的に接続した上でさらに接続部材35によって電気的に接続し、さらに双方の負極32の露出部34を略半円状の負極集電部材38と電気的に接続した上でさらに接続部材36によって電気的に接続するのだが、電池ケース(図示せず)と蓋(図示せず)とからなる外装体における正極端子および負極端子を設ける位置によって、これら端子と接続する舌状の突起を設ける場所は異なる。例えば外装体の上面(あるいは下面)に正極端子と負極端子の双方を設ける場合、舌状の突起の態様は図7のようになる。また外装体の上面と下面とに正極端子と負極端子をそれぞれ設ける場合、舌状の突起の態様は図8のようになる。さらに外装体の側面に正極端子と負極端子の双方を設ける場合、舌状の突起の態様は図9のようになる。
The exposed
次いでこの電極群を電池ケースに挿入し、舌状の突起を介して正極集電部材37と正極端子とを電気的に接続し、同じく舌状の突起を介して負極集電部材38と負極端子とを電気的に接続する。さらに電池ケースに非水電解質を注入し、電池ケースの開口部分に蓋を設置して密閉化することにより、本発明の非水電解質二次電池が構成される。このように舌状の突起を設ける位置を変えるだけで様々な態様の外装体に適合できるのが、実施の形態3の利点である。
Next, this electrode group is inserted into the battery case, and the positive electrode current collecting
第2の発明は、第1の発明において、正極および負極における露出部が、それぞれ電極群における異なる辺に配置されるように積層したことを特徴とする。 According to a second invention, in the first invention, the exposed portions of the positive electrode and the negative electrode are laminated so as to be arranged on different sides of the electrode group, respectively.
(実施の形態4)
図10〜15は、本発明の非水電解質二次電池のうち、積層型の電極群を構成する際に用いる正極の断面図および平面図である。なお負極が同様の形態となるのはいうまでもない。
(Embodiment 4)
10 to 15 are a cross-sectional view and a plan view of a positive electrode used in forming a stacked electrode group in the nonaqueous electrolyte secondary battery of the present invention. Needless to say, the negative electrode takes the same form.
略矩形状の集電体の上に活物質を含む層を設けることにより正極41は構成されるのだが、正極41の平行する2辺に沿って、集電体の露出部42が設けられている。なお露出部42は、図11のように正極41の平行する2辺に沿って連続的に設けられてもよく、図12のように正極41の平行する2辺上に単数設けられてもよく、図13のように正極41の平行する2辺上に複数設けられてもよい。さらには上述した露出部42が突出しない代わりに金属製のリード42aを単数あるいは複数接合して突出させた、図14および6の形態もまた、本発明の範疇であるのはいうまでもない。
The
上述した正極41の露出部42と、同様の構成の負極43の露出部44とが、図16に示すように互いに略直角の方向となるように、セパレータ45を介して複数枚積層する。この後、図16のa−a線に沿った断面図である図17に示すように正極41の露出部42を双方とも正極集電部材46と電気的に接続した上でさらに接続部材47によって電気的に接続し、図16のb−b線に沿った断面図である図18に示すように負極43の露出部44を双方とも負極集電部材48と電気的に接続した上でさらに接続部材49によって電気的に接続する。この電極群を電池ケース(図示せず)に挿入し、正極集電部材46を正極端子と、負極集電部材48を負極端子と、それぞれ電気的に接続する。続いて電池ケースに非水電解質を注入し、電池ケースの開口部分に蓋(図示せず)を設置して密閉化することにより、本発明の非水電解質二次電池が構成される。
A plurality of the exposed
本発明の非水電解質二次電池について、さらに詳述する。 The nonaqueous electrolyte secondary battery of the present invention will be further described in detail.
上述した露出部、リード、正極集電部材、負極集電部材、接続部材、舌状の突起、正極
端子および負極端子の相互の接続には、超音波接合、抵抗溶接、レ−ザ溶接等の方法を採ることができる。これらの集電に係る部材は、短絡を防ぐため、必要に応じて適正な箇所を絶縁材料で覆うことができる。
For the connection between the exposed portion, the lead, the positive current collecting member, the negative current collecting member, the connecting member, the tongue-like protrusion, the positive terminal and the negative terminal, ultrasonic bonding, resistance welding, laser welding, etc. The method can be taken. These members related to current collection can cover an appropriate portion with an insulating material as necessary in order to prevent a short circuit.
正極の露出部と接続するリードには、例えばステンレス鋼、アルミニウム、チタン等の導電性金属からなる短冊状金属片等を用いることができる。また負極の露出部と接続するリードには、例えばステンレス鋼、ニッケル、銅等の導電性金属からなる短冊状金属片等を用いることができる。これらリードの厚さは特に限定されないが、0.01〜0.30mmが好ましい。リードの厚さを上記範囲とすることにより、充放電時の発熱を抑制しつつ軽量化することができる。またリードは必要に応じて複数本重ねて用いてもよいし、複数枚を継ぎ足してもかまわない。 For the lead connected to the exposed portion of the positive electrode, for example, a strip-shaped metal piece made of a conductive metal such as stainless steel, aluminum, or titanium can be used. For the lead connected to the exposed portion of the negative electrode, for example, a strip-shaped metal piece made of a conductive metal such as stainless steel, nickel, or copper can be used. The thickness of these leads is not particularly limited, but is preferably 0.01 to 0.30 mm. By setting the thickness of the lead within the above range, the weight can be reduced while suppressing heat generation during charging and discharging. Further, a plurality of leads may be used as needed, or a plurality of leads may be added.
正極は、活物質と任意成分からなる正極合剤を液状成分と混合して正極合剤スラリーを調製し、得られたスラリーを集電体に塗布し、乾燥させ、次いで必要に応じて所定の厚みに圧延した後に所定の寸法に切断して作製する。 The positive electrode is prepared by mixing a positive electrode mixture composed of an active material and an optional component with a liquid component to prepare a positive electrode mixture slurry, applying the obtained slurry to a current collector, drying, and then, if necessary, predetermined After being rolled to a thickness, it is cut into a predetermined dimension.
負極は、活物質と任意成分からなる負極合剤を液状成分と混合して負極合剤スラリーを調製し、得られたスラリーを集電体に塗布し、乾燥させ、次いで必要に応じて所定の厚さに圧延した後に所定の寸法に切断して作製する。 The negative electrode is prepared by mixing a negative electrode mixture composed of an active material and an optional component with a liquid component to prepare a negative electrode mixture slurry, applying the obtained slurry to a current collector, drying, and then, if necessary, predetermined After being rolled to a thickness, it is cut into a predetermined dimension.
正極および負極の集電体には、長尺の多孔性構造の導電性基板か、あるいは無孔の導電性基板が使用される。導電性基板に用いられる材料として、正極の場合はステンレス鋼、アルミニウム、チタンなどが用いられ、負極の場合はステンレス鋼、ニッケル、銅などが用いられる。これら集電体の厚さは特に限定されないが、1〜500μmが好ましく、5〜20μmがより望ましい。集電体の厚さを上記範囲とすることにより、正極および負極の強度を保持しつつ軽量化することができる。 As the positive and negative electrode current collectors, a long porous conductive substrate or a nonporous conductive substrate is used. As a material used for the conductive substrate, stainless steel, aluminum, titanium, or the like is used in the case of the positive electrode, and stainless steel, nickel, copper, or the like is used in the case of the negative electrode. Although the thickness of these electrical power collectors is not specifically limited, 1-500 micrometers is preferable and 5-20 micrometers is more desirable. By setting the thickness of the current collector within the above range, it is possible to reduce the weight while maintaining the strength of the positive electrode and the negative electrode.
本発明の正極の活物質には、リチウム複合金属酸化物を用いることができる。例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-yO2、LixCoyM1-yOz、LixNi1-yMyOz、LixMn2O4、LixMn2-yMyO4、LiMePO4、Li2MePO4F(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種)が挙げられる。ここで、x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。 A lithium composite metal oxide can be used for the active material of the positive electrode of the present invention. For example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1-y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMePO4, Li 2 MePO 4 F (M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, And at least one of Cr, Pb, Sb, and B). Here, x = 0 to 1.2, y = 0 to 0.9, and z = 2.0 to 2.3.
本発明の負極の活物質には、例えば、金属、金属繊維、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、各種合金材料等を用いることができる。炭素材料としては、例えば各種天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛、非晶質炭素などの炭素材料が用いられる。また、珪素(Si)や錫(Sn)などの単体、または合金、化合物、固溶体などの珪素化合物や錫化合物が容量密度の大きい点から好ましい。 Examples of the active material for the negative electrode of the present invention include metals, metal fibers, carbon materials, oxides, nitrides, tin compounds, silicon compounds, and various alloy materials. Examples of the carbon material include carbon materials such as various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon. In addition, a simple substance such as silicon (Si) or tin (Sn), or a silicon compound or tin compound such as an alloy, a compound, or a solid solution is preferable from the viewpoint of a large capacity density.
本発明の正極または負極の結着剤には、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、アラミド樹脂等より選択された少なくとも1種を用いることができる。 For the positive or negative electrode binder of the present invention, for example, at least one selected from polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, aramid resin, and the like can be used.
正極あるいは負極に添加する導電剤には、例えば、天然黒鉛や人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維や金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、フェニレン誘導体などの有機導電性材料などを用いることができる。 Examples of the conductive agent added to the positive electrode or the negative electrode include natural graphite and artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon blacks, carbon fibers and metals. Conductive fibers such as fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and organic conductive materials such as phenylene derivatives Etc. can be used.
正極合剤スラリーに占める固形分の割合は、活物質80〜97重量%、導電剤1〜20重量%、結着剤1〜10重量%であることが望ましい。また負極合剤スラリーに占める固形分の割合は、活物質93〜99重量%、結着剤1〜10重量%であることが望ましい。 The proportion of the solid content in the positive electrode mixture slurry is desirably 80 to 97% by weight of the active material, 1 to 20% by weight of the conductive agent, and 1 to 10% by weight of the binder. Moreover, it is desirable that the ratio of the solid content in the negative electrode mixture slurry is 93 to 99% by weight of the active material and 1 to 10% by weight of the binder.
露出部は、集電体の一部に正極合剤スラリー(あるいは負極合剤スラリー)が塗布あるいは充填されないようにする方法や、塗布あるいは充填した後に所定箇所の正極合剤(あるいは負極合剤)を剥離して除去する方法などが挙げられる。なお後者の方法の場合、圧延の前に正極合剤(あるいは負極合剤)を剥離して除去するのが好ましい。 The exposed part is a method of preventing the positive electrode mixture slurry (or negative electrode mixture slurry) from being applied or filled in a part of the current collector, or the positive electrode mixture (or negative electrode mixture) at a predetermined position after application or filling. The method of peeling and removing is mentioned. In the case of the latter method, it is preferable to peel off and remove the positive electrode mixture (or negative electrode mixture) before rolling.
セパレータには、大きなイオン透過度、所定の機械的強度、および絶縁性を兼ね備えた微多孔薄膜、織布、不織布などを用いることができる。なおセパレータの材質には、ポリプロピレン、ポリエチレンなどのポリオレフィンを選択するのが好ましい。ポリオレフィンは耐久性に優れ、かつシャットダウン機能を有しているため、非水電解質二次電池の安全性を高めることができる。セパレータの厚さは、一般的に10〜300μmであるが、40μm以下とすることが望ましく、15〜30μmの範囲とするのがより好ましく、10〜25μmの範囲とするのがさらに好ましい。このセパレータは1種の材料からなる単層膜であってもよく、1種以上の材料からなる複合膜あるいは多層膜であってもよい。セパレータの空孔率は30〜70%の範囲であることが好ましい。ここで空孔率とは、セパレータ体積に占める孔部の体積比を示す。セパレータの空孔率のより好ましい範囲は、35〜60%である。 As the separator, a microporous thin film, a woven fabric, a non-woven fabric, or the like having high ion permeability, predetermined mechanical strength, and insulation can be used. The separator material is preferably selected from polyolefins such as polypropylene and polyethylene. Since polyolefin is excellent in durability and has a shutdown function, the safety of the nonaqueous electrolyte secondary battery can be improved. The thickness of the separator is generally 10 to 300 μm, preferably 40 μm or less, more preferably 15 to 30 μm, even more preferably 10 to 25 μm. This separator may be a single layer film made of one material, or a composite film or a multilayer film made of one or more materials. The separator preferably has a porosity of 30 to 70%. Here, the porosity indicates the volume ratio of the pores to the separator volume. A more preferable range of the porosity of the separator is 35 to 60%.
非水電解質としては、液状、ゲル状または固体(高分子固体電解質)状の物質を使用することができる。 As the non-aqueous electrolyte, a liquid, gel, or solid (polymer solid electrolyte) substance can be used.
電極群を収納する外装体の材質には、アルミニウム、鉄、ステンレス、マグネシウム等を主体とする金属や、金属箔の表面に樹脂を被服したラミネートを用いることができる。 As a material of the exterior body that houses the electrode group, a metal mainly composed of aluminum, iron, stainless steel, magnesium, or the like, or a laminate in which a resin is coated on the surface of a metal foil can be used.
(実施例)
Li2CO3とCo3O4とを混合し、900℃で10時間焼成した活物質Li0.95CoO2の粉末90重量部と、導電剤であるアセチレンブラック2.5重量部と、結着剤であるPTFE分散液に懸濁させて正極合剤スラリーを得た。このスラリーを集電体である厚さ0.015mmのアルミニウム箔の両面に塗布した。なおここで、集電体の両端10mmずつには、スラリーを塗布しないようにした。このスラリーを乾燥した後で圧延して厚さ0.1mmとした。次いで520mm(うち両端10mmずつは集電体の露出部)、もう一辺が500mmである略矩形状の正極を作製した。
(Example)
90 parts by weight of powder of active material Li 0.95 CoO 2 mixed with Li 2 CO 3 and Co 3 O 4 and calcined at 900 ° C. for 10 hours, 2.5 parts by weight of acetylene black as a conductive agent, and binder A positive electrode mixture slurry was obtained by suspending in a PTFE dispersion. This slurry was applied to both surfaces of a 0.015 mm thick aluminum foil as a current collector. Here, the slurry was not applied to both ends of the current collector 10 mm each. The slurry was dried and then rolled to a thickness of 0.1 mm. Subsequently, a substantially rectangular positive electrode having 520 mm (of which 10 mm at both ends are exposed portions of the current collector) and the other side of 500 mm was produced.
メソフェーズ小球体を2800℃の高温で黒鉛化した活物質(以下メソフェーズ黒鉛と称す)に固形分として1重量%のスチレン−ブタジエンゴムエマルジョンを添加し、固形分比が1重量%のヒドロキシメチルセルロース水溶液に懸濁させて負極合剤スラリーを得た。このスラリーを集電体である厚さ0.008mmの銅箔の両面に塗布した。なおここで、集電体の両端10mmずつには、スラリーを塗布しないようにした。このスラリーを乾燥した後で圧延して厚さ0.1mmとして切断し、一辺が522mm(うち両端10mmずつは集電体の露出部)、もう一辺が502mmである略矩形状の負極を作製した。 A 1% by weight styrene-butadiene rubber emulsion is added as a solid content to an active material (hereinafter referred to as mesophase graphite) obtained by graphitizing mesophase spherules at a high temperature of 2800 ° C. It was made to suspend and the negative mix slurry was obtained. This slurry was applied to both sides of a copper foil having a thickness of 0.008 mm as a current collector. Here, the slurry was not applied to both ends of the current collector 10 mm each. The slurry was dried and then rolled and cut to a thickness of 0.1 mm to produce a substantially rectangular negative electrode having one side of 522 mm (of which 10 mm at both ends are exposed portions of the current collector) and the other side of 502 mm. .
これらの正極8枚と負極9枚とを、実施の形態4(図16〜18)に示すようにポリエチレン製セパレータを介して露出部が互いに略直角の方向に突出するように積層した。次いで、正極の双方の露出部を束ね、レーザ溶接にて厚さ0.3mm、幅5mm、長さ10mmのアルミニウム製のリードとそれぞれ電気的に接続した。一方、負極の双方の露出部
を束ね、抵抗溶接にて厚さ0.2mm、幅5mm、長さ10mmの銅製のリードとそれぞれ電気的に接続した。
These eight positive electrodes and nine negative electrodes were laminated so that the exposed portions protruded in directions substantially perpendicular to each other through a polyethylene separator as shown in Embodiment 4 (FIGS. 16 to 18). Next, both exposed portions of the positive electrode were bundled and electrically connected to aluminum leads each having a thickness of 0.3 mm, a width of 5 mm, and a length of 10 mm by laser welding. On the other hand, both exposed portions of the negative electrode were bundled and electrically connected to copper leads having a thickness of 0.2 mm, a width of 5 mm, and a length of 10 mm, respectively, by resistance welding.
次いで、正極の両端部に配置された2枚のリードを、厚さ0.3mm、幅2mmのアルミニウム製の接続部材を用いて電気的に接続した。一方、負極の両端部に配置された2枚のリードを、厚さ0.2mm、幅2mmの銅製の接続部材を用いて電気的に接続した。 Next, the two leads arranged at both ends of the positive electrode were electrically connected using an aluminum connecting member having a thickness of 0.3 mm and a width of 2 mm. On the other hand, the two leads arranged at both ends of the negative electrode were electrically connected using a copper connecting member having a thickness of 0.2 mm and a width of 2 mm.
正極の接続部材をアルミニウム製の正極端子に接続し、負極の接続部材を銅製の負極端子に接続した後に、ラミネートケース(アルミニウム箔の表面をポリプロピレンで被服したもの)に挿入し、さらに電解液(非水電解質)としてECとEMCとDMCとを10:10:80の体積比で混合した溶媒にLiPF6を溶解したもの(1.40mol/dm3)を注入し、開口部を加熱して実施例の電池を作製した。 After connecting the positive electrode connecting member to the aluminum positive electrode terminal and connecting the negative electrode connecting member to the copper negative electrode terminal, the positive electrode connecting member was inserted into a laminate case (a surface of the aluminum foil coated with polypropylene), and an electrolyte solution ( As nonaqueous electrolyte), a solution prepared by dissolving LiPF 6 (1.40 mol / dm 3 ) in a solvent in which EC, EMC, and DMC were mixed at a volume ratio of 10:10:80 was injected, and the opening was heated. An example battery was made.
(比較例)
正極および負極の一辺のみに露出部を形成したこと以外は実施例と同様にして比較例の電池を作製した。
(Comparative example)
A comparative battery was fabricated in the same manner as in the example except that the exposed portion was formed only on one side of the positive electrode and the negative electrode.
以上のようにして得られた実施例の電池と比較例の電池を用い、1KHzでのインピーダンスを測定したところ、実施例は2mΩ、比較例は4mΩであった。 When the impedance at 1 KHz was measured using the battery of the example and the battery of the comparative example obtained as described above, the example was 2 mΩ and the comparative example was 4 mΩ.
これらの電池を7.5Aの定電流で4.2Vに至るまで充電を行い、引続き4.2V定電圧で750mAに電流が減衰するまで充電を行った。さらに7.5Aの定電流で2.0Vに至るまで放電を行った(1サイクル目)。続いて1サイクル目と同様の充電を行った後、150Aの定電流で2.0Vに至るまで放電を行った(2サイクル目)。1サイクル目の放電容量に対する2サイクル目の放電容量の比率を出力特性の指標として評価した結果、実施例は80%、比較例は70%であった。 These batteries were charged at a constant current of 7.5 A until reaching 4.2 V, and then charged at a constant voltage of 4.2 V until the current was attenuated to 750 mA. Further, discharging was performed at a constant current of 7.5 A up to 2.0 V (first cycle). Subsequently, the same charging as in the first cycle was performed, and then discharging was performed at a constant current of 150 A to 2.0 V (second cycle). As a result of evaluating the ratio of the discharge capacity of the second cycle to the discharge capacity of the first cycle as an index of output characteristics, the example was 80% and the comparative example was 70%.
本発明の実施例の電池は、正極および負極の両端から集電を行っているため、インピーダンスが低減して、比較例の電池に比べて優れた出力特性を示した。 Since the battery of the example of the present invention collects current from both ends of the positive electrode and the negative electrode, the impedance is reduced and the output characteristics are superior to the battery of the comparative example.
本発明によって非水電解質二次電池の入出力特性が向上するので、産業上の利用可能性が高まる上に、利用価値は大きい。 Since the input / output characteristics of the nonaqueous electrolyte secondary battery are improved by the present invention, the industrial applicability is increased and the utility value is great.
11、21、31、41 正極
12、22、32、43 負極
13、14、23、24、33、34、42、44 露出部
15、16、25、26、35、36、47、49 接続部材
17、18、27、28、37、38、46、48 集電部材
27a、28a 貫通孔
42a リード
45 セパレータ
11, 21, 31, 41
Claims (2)
前記正極および前記負極の平行する2辺に沿って、前記集電体が露出してなる露出部を設け、
前記電極群の外側を通じて、前記正極における前記露出部の双方を正極集電部材と電気的に接続させ、前記負極における前記露出部の双方を負極集電部材と電気的に接続させたことを特徴とする非水電解質二次電池。 An electrode group in which a positive electrode and a negative electrode provided with a layer containing an active material on a substantially rectangular current collector are stacked or wound so that the negative electrode and the negative electrode face each other with a separator interposed therebetween, and a nonaqueous electrolyte, a positive electrode terminal and a negative electrode A non-aqueous electrolyte secondary battery housed in an exterior body having terminals,
An exposed portion formed by exposing the current collector is provided along two parallel sides of the positive electrode and the negative electrode,
Through the outside of the electrode group, both of the exposed portions of the positive electrode are electrically connected to a positive current collector, and both of the exposed portions of the negative electrode are electrically connected to a negative current collector. A non-aqueous electrolyte secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007156026A JP2008311011A (en) | 2007-06-13 | 2007-06-13 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007156026A JP2008311011A (en) | 2007-06-13 | 2007-06-13 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008311011A true JP2008311011A (en) | 2008-12-25 |
Family
ID=40238457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007156026A Pending JP2008311011A (en) | 2007-06-13 | 2007-06-13 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008311011A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038677A1 (en) * | 2011-09-14 | 2013-03-21 | パナソニック株式会社 | Nonaqueous electrolyte secondary cell |
JP2017069207A (en) * | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Lithium ion secondary battery and manufacturing method for the same |
WO2021153230A1 (en) * | 2020-01-31 | 2021-08-05 | 株式会社村田製作所 | Secondary battery, electronic device, and electric tool |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935721A (en) * | 1995-07-24 | 1997-02-07 | Ricoh Co Ltd | Secondary battery |
JPH09306471A (en) * | 1996-05-16 | 1997-11-28 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery and manufacture thereof |
JPH1064509A (en) * | 1996-08-20 | 1998-03-06 | Shin Kobe Electric Mach Co Ltd | Battery |
US20070092792A1 (en) * | 2005-10-26 | 2007-04-26 | Panasonic Ev Energy Co., Ltd. | Electrode unit for prismatic battery, prismatic battery, and method of manufacturing electrode unit for prismatic battery |
-
2007
- 2007-06-13 JP JP2007156026A patent/JP2008311011A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0935721A (en) * | 1995-07-24 | 1997-02-07 | Ricoh Co Ltd | Secondary battery |
JPH09306471A (en) * | 1996-05-16 | 1997-11-28 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery and manufacture thereof |
JPH1064509A (en) * | 1996-08-20 | 1998-03-06 | Shin Kobe Electric Mach Co Ltd | Battery |
US20070092792A1 (en) * | 2005-10-26 | 2007-04-26 | Panasonic Ev Energy Co., Ltd. | Electrode unit for prismatic battery, prismatic battery, and method of manufacturing electrode unit for prismatic battery |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038677A1 (en) * | 2011-09-14 | 2013-03-21 | パナソニック株式会社 | Nonaqueous electrolyte secondary cell |
JP2017069207A (en) * | 2015-09-30 | 2017-04-06 | 積水化学工業株式会社 | Lithium ion secondary battery and manufacturing method for the same |
WO2021153230A1 (en) * | 2020-01-31 | 2021-08-05 | 株式会社村田製作所 | Secondary battery, electronic device, and electric tool |
JPWO2021153230A1 (en) * | 2020-01-31 | 2021-08-05 | ||
JP7416094B2 (en) | 2020-01-31 | 2024-01-17 | 株式会社村田製作所 | Secondary batteries, electronic equipment and power tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5629789B2 (en) | Battery and battery manufacturing method | |
JP4519796B2 (en) | Square lithium secondary battery | |
JP4927064B2 (en) | Secondary battery | |
KR101758002B1 (en) | Non-aqueous electrolyte secondary battery | |
US20130177787A1 (en) | Current collector and nonaqueous secondary battery | |
JP2016509338A (en) | Electrode assembly and electrochemical device including the same | |
JP7069612B2 (en) | Manufacturing method of laminated electrode body, power storage element and laminated electrode body | |
KR101799173B1 (en) | Non-aqueous electrolyte secondary battery | |
JP2014127242A (en) | Lithium secondary battery | |
JPWO2017047353A1 (en) | Nonaqueous electrolyte secondary battery | |
US9048490B2 (en) | Lithium ion secondary battery | |
KR20140009037A (en) | Electrode assembly and electrochemical cell containing the same | |
JP6587157B2 (en) | Electrode assembly and electrochemical device including the same | |
JP2011222128A (en) | Secondary battery | |
KR101799172B1 (en) | Non-aqueous electrolyte secondary battery | |
JP2019016494A (en) | Method for manufacturing multilayer electrode body and method for manufacturing power storage element | |
JP2008311011A (en) | Nonaqueous electrolyte secondary battery | |
JP4300172B2 (en) | Nonaqueous electrolyte secondary battery | |
JP7430665B2 (en) | Secondary battery current collector and its manufacturing method, and secondary battery | |
KR102329071B1 (en) | Lithium ion secondary battery | |
JP4811983B2 (en) | Winding electrode, manufacturing method thereof, and battery using the same | |
JP2019016493A (en) | Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element | |
JP2018174098A (en) | Power storage element | |
JP2018098154A (en) | Power storage element, power storage device and method of manufacturing power storage element | |
JP5639903B2 (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100525 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121023 |