JP2008309681A - Insulation deterioration monitoring device and its method - Google Patents
Insulation deterioration monitoring device and its method Download PDFInfo
- Publication number
- JP2008309681A JP2008309681A JP2007158531A JP2007158531A JP2008309681A JP 2008309681 A JP2008309681 A JP 2008309681A JP 2007158531 A JP2007158531 A JP 2007158531A JP 2007158531 A JP2007158531 A JP 2007158531A JP 2008309681 A JP2008309681 A JP 2008309681A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- leakage current
- current
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Locating Faults (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
本発明は、絶縁劣化監視装置とその方法に係り、特に負荷設備を含む配電系統の電路の漏れ電流を算出して絶縁劣化を監視する技術に関する。 The present invention relates to an insulation deterioration monitoring apparatus and method, and more particularly to a technique for monitoring insulation deterioration by calculating a leakage current of an electric circuit of a distribution system including a load facility.
配電系統では漏電火災防止や感電事故防止のために絶縁状態を定期的に測定しているが、従来は、停電させて電路の配電線(ケーブル、電線)や負荷設備のメガリング(絶縁抵抗測定)を行っていた。近年では、漏れ電流を常時活線で測定する方法が採用されるようになってきた。
上記特許文献1では、配電方式が三相回路においては漏れ電流の有効成分計算がデルタ回路に限定されており、スター回路に適用できないという問題があった。また、上記特許文献2では、非接地回路に設けられた零相変流器(以下ZCTと称す)と接地形計器用変圧器(以下GPTと称す)を用い、該GPTで得られる電圧位相と上記ZCTの出力電流の位相が所定範囲内かどうかを判断材料としているので、正確な数値が得られないという問題があった。また、上記特許文献3では、電圧信号重畳方式のため漏れ電流が3相の合計として計測しており、電路が3線同時劣化として判断され平均化された絶縁劣化状態となるため、最大の絶縁劣化相が劣化してないように検出され、最小の絶縁劣化相が劣化しているように検出されるので、早期の発見ができなくなるとともに誤判断の基になるという問題があった。例えばR相の漏れ電流が20mA、S相の漏れ電流が0.1mA、T相も漏れ電流が2mAであった場合、電圧重畳方式では平均化されるので7.36mAとなり、20mA劣化している相が3分の1の結果(−63.2%)となり、大きな誤差となって現れる。また、0.1mAであっても73.6倍もの大きな値となり絶縁劣化の判断が全くできない結果となる。
In the above-mentioned
また、図7のように対地相電圧を基準にする場合、4線配電路では変圧器20の中性点の接地線信号23を取り込みこの基準電圧との同相成分を算出する方法があるが、配線数が多いという問題がある。さらに図8のように3線配電路では変圧器20から離れたところでは、中性点の接地線信号を取り込むことが出来ない場合もあり計測ができない問題があった。
In addition, when the ground phase voltage is used as a reference as shown in FIG. 7, there is a method of taking the
本発明の目的は、これらの問題点を解決し、三相スター回路などにおける漏れ電流の有効成分を算出することができる絶縁劣化監視装置とその方法を提供することにある。 An object of the present invention is to solve these problems and to provide an insulation deterioration monitoring apparatus and method for calculating an effective component of leakage current in a three-phase star circuit or the like.
本発明は、中性点接地のスター結線又は非接地の三相電路における絶縁劣化を監視する絶縁劣化監視装置であって、非測定電路の1つの線間電圧信号と、該線間電圧位相信号のゼロクロス点を検出して演算周期の開始信号を出力する矩形波出力手段と、2組の実効値1の電圧波形をテーブル化して記憶する記憶部と、非測定電路の漏れ電流を検出する零相変流器からの電流信号と上記記憶部に記憶された電圧波形とから漏れ電流を算出する演算部と、上記開始信号を基にテーブル化された第1の電圧波形及び第2の電圧波形と上記零相変流器の出力電流とから漏れ電流の2つの位相成分を算出し、比較して大きい値の位相成分を基に絶縁劣化相の最大相の漏れ電流値を算出する絶縁劣化監視装置である。
The present invention relates to an insulation deterioration monitoring device for monitoring insulation deterioration in a star connection of neutral point grounding or an ungrounded three-phase circuit, and includes one line voltage signal of the non-measurement circuit and the line voltage phase signal. The rectangular wave output means for detecting the zero cross point of the output and outputting the start signal of the calculation cycle, the storage unit for storing the two voltage waveforms of the
また、本発明は、中性点接地のスター結線又は非接地の三相電路における絶縁劣化を監視する絶縁劣化監視装置であって、非測定電路の1つの線間電圧信号と、該線間電圧位相信号のゼロクロス点を検出して演算周期の開始信号を出力する矩形波出力手段と、2組の実効値1の電圧波形と前記2組について180度位相をずらした2組の実効値1の電圧波形とをテーブル化して記憶する記憶部と、非測定電路の漏れ電流を検出する零相変流器からの電流信号と上記記憶部に記憶された電圧波形とから漏れ電流を算出する演算部と、上記開始信号を基にテーブル化された第1の電圧波形、第2の電圧波形、第3の電圧波形及び第4の電圧波形と上記零相変流器の出力電流とから漏れ電流の4つの位相成分を算出し、比較して一番大きい値の位相成分を基に絶縁劣化相の最大相の漏れ電流値を算出する絶縁劣化監視装置である。
Further, the present invention is an insulation deterioration monitoring device for monitoring insulation deterioration in a star connection of neutral point grounding or a non-grounded three-phase circuit, wherein one line voltage signal of the non-measurement circuit and the line voltage A rectangular wave output means for detecting the zero-cross point of the phase signal and outputting a start signal of the calculation cycle, two sets of
そして、本発明は、中性点接地のスター結線又は非接地の三相電路において、非測定電路の漏れ電流を零相変流器で検出した電流信号と、非測定電路の1つの線間電圧信号と、該線間電圧信号のゼロクロス点を演算周期の開始信号とし、2組の実効値1の電圧波形をテーブル化して記憶部に記憶するステップと、上記零相変流器の電流信号と上記記憶部に記憶された電圧波形とから漏れ電流を算出するステップと、上記開始信号を基にテーブル化された第1の電圧波形及び第2の電圧波形と上記零相変流器の出力電流とから漏れ電流の2つの位相成分を算出し、比較して大きい値の位相成分を基に絶縁劣化相の最大相の漏れ電流値を算出するステップとを有する絶縁劣化監視方法である。
The present invention also provides a current signal obtained by detecting a leakage current of a non-measurement circuit with a zero-phase current transformer in a star connection of neutral point grounding or a non-grounded three-phase circuit, and one line voltage of the non-measurement circuit. A signal and a zero crossing point of the line voltage signal as a start signal of an operation cycle, and two sets of voltage waveforms of
更に、本発明は、中性点接地のスター結線又は非接地の三相電路において、非測定電路の漏れ電流を零相変流器で検出した電流信号と、非測定電路の1つの線間電圧信号と、該線間電圧信号のゼロクロス点を演算周期の開始信号とし、2組の実効値1の電圧波形と前記2組について180度位相をずらした2組の実効値1の電圧波形とをテーブル化して記憶するステップと、上記零相変流器の電流信号と上記記憶部に記憶された電圧波形から漏れ電流を算出するステップと、上記開始信号を基にテーブル化された第1の電圧波形、第2の電圧波形、第3の電圧波形及び第4の電圧波形と上記零相変流器の出力電流とから漏れ電流の4つの位相成分を算出し、比較して一番大きい値の位相成分を基に絶縁劣化相の最大相の漏れ電流値を算出するステップとを有する絶縁劣化監視方法である。
Furthermore, the present invention relates to a current signal obtained by detecting a leakage current of a non-measurement circuit with a zero-phase current transformer in a star connection of neutral point grounding or a non-grounded three-phase circuit, and one line voltage of the non-measurement circuit. The signal and the zero crossing point of the line voltage signal are used as the start signal of the calculation cycle, and two sets of
本発明によれば、中性点接地のスター結線または、非接地の三相電路においても1つの電圧信号の入力とZCTで絶縁劣化相の最大相の漏れ電流の有効成分が算出でき、従って電圧重畳方式における誤判断がなくなり、また接続線が少なくてすみ配線工数が減り、また、ZCTの設置方向を問わないので設置時の注意を減らすことができる絶縁劣化監視装置とその方法を提供することができる。 According to the present invention, the effective component of the leakage current of the maximum phase of the insulation deterioration phase can be calculated by the input of one voltage signal and ZCT even in a star connection of neutral point grounding or a non-grounded three-phase circuit. To provide an insulation deterioration monitoring apparatus and method capable of eliminating erroneous determination in the superposition method, reducing the number of connection lines, reducing the man-hours for wiring, and reducing the attention at the time of installation because the installation direction of ZCT is not limited. Can do.
本発明を実施するための最良の形態を説明する。
以下、本発明の絶縁劣化監視装置とその方法の実施例について、図1〜図7により説明する。
The best mode for carrying out the present invention will be described.
Embodiments of the insulation deterioration monitoring apparatus and method according to the present invention will be described below with reference to FIGS.
実施例1を説明する。本実施例の絶縁劣化監視装置について、図3により説明する。図3は、絶縁劣化を監視しようとする非測定電路と、絶縁劣化監視装置の構成を示し、1は二次側の中性点2が設置された三相のスター結線の変圧器、3は電路で、R相、S相、T相の電路である。4aはZCTで、測定したい電路に設置されたもので、必要に応じて4nのように複数台設置してもよい。5は本実施例の絶縁劣化監視装置、6,7は電路3のR相とS相の線間から電圧位相を取り込む電圧信号線、8は上記電圧信号線6,7の電圧レベルを降圧するとともに絶縁を行なうための降圧絶縁手段、9は上記電圧信号のゼロクロス点を検出して演算の開始信号を出力する矩形波発生手段、10aは、上記ZCT4a、・・・、4nのZCTで検出された漏れ電流を増幅し、アナログ信号をディジタル信号に変換する増幅・A/D変換手段で、上記ZCT4a、・・・、4nに対応して設けたものである。11は上記矩形波発生手段9からの演算開始信号を受けて、増幅・A/D変換手段10a、・・・、10nからのディジタル信号と、後述する実効値1の電圧波形とから漏れ電流の有効成分の算出を主体とした演算制御手段、12は記憶手段13に記憶された複数の実効値1の電圧波形データを演算制御手段に順次選択して伝える選択手段、13は記憶手段で、実効値1の電圧波形データを記憶するもので、線間電圧より30度遅れた実効値1の電圧波形データ13bと、線間電圧より150度遅れた実効値1の電圧波形データ13c及び線間電圧と同相即ち電圧0度の実効値1の電圧波形データ13aをテーブル化して記憶したものである。電圧0度の実効値1の電圧波形データ13aは、単相方式の電路に適用するためのもので、利用範囲を拡大するためのものである。14は、漏れ電流の値Ioや漏れ電流の有効成分の算出結果を表示するための表示手段で、15は上記算出結果を上位装置に伝達するための通信手段、16は絶縁劣化監視装置5の各部に適正な電圧を供給するための電源部である。
Example 1 will be described. The insulation deterioration monitoring apparatus of the present embodiment will be described with reference to FIG. FIG. 3 shows a configuration of a non-measurement electric circuit for monitoring insulation deterioration and an insulation deterioration monitoring device. 1 is a three-phase star-connected transformer in which a neutral point 2 on the secondary side is installed. The electric circuit is an R-phase, S-phase, or T-phase electric circuit. 4a is a ZCT, which is installed in an electric circuit to be measured, and a plurality of units may be installed as in 4n as required. 5 is an insulation deterioration monitoring device of this embodiment, 6 and 7 are voltage signal lines for taking in a voltage phase from between the R-phase and S-phase lines of the
このように構成された絶縁劣化監視装置5の動作は、電路3から取り込まれた線間電圧信号のゼロクロス点を検出して矩形波発生手段9から出力される演算開始信号により、ZCT4aから増幅・A/D変換手段を介して取り込んだ漏れ電流波形Ioと記憶部13に記憶した電圧30度遅れた実効値1の電圧波形データ13bとで後述する計算(1)を行なうものである。
The operation of the insulation deterioration monitoring device 5 configured as described above is performed by detecting the zero cross point of the line voltage signal taken in from the
次に記憶部13cに記憶した電圧150度遅れた実効値1の電圧波形13cと漏れ電流Ioとで後述する計算(2)を行なう。次に値(1)と値(2)の大小比較を行い、大きいほうの結果について後述する計算(3)を行なうものである。このようにして絶縁劣化の最大相の漏れ電流の有効成分が算出されるものである。
ここで、算出される漏れ電流の有効分成分の正確さについて前記電圧重畳方式で説明した値を用いて計算すると、R相20mA、S相0.1mA、T相2mAであるので、ZCTで検出される合成漏れ電流Ioは19.01mAであり、この値から上記方法により算出される絶縁劣化の最大相の漏れ電流は、19.9mAとなる。R相即ち20mAに対し19.9mAなので、−0.05%の結果が得られる。即ち、電圧重畳方式より遥かに高精度の結果を得ることができる。
Next, a later-described calculation (2) is performed using the
Here, if the accuracy of the effective component of the calculated leakage current is calculated using the values described in the voltage superposition method, the R phase is 20 mA, the S phase is 0.1 mA, and the T phase is 2 mA. The combined leakage current Io is 19.01 mA, and the leakage current of the maximum phase of insulation deterioration calculated from this value by the above method is 19.9 mA. Since it is 19.9 mA for the R phase, ie 20 mA, a result of -0.05% is obtained. That is, it is possible to obtain a result with much higher accuracy than the voltage superposition method.
ところで、本実施例の絶縁劣化監視装置では、電圧位相を取り込む電圧信号線6,7は、電路3のR相とS相から取り込んだが、T相とR相から取り込んでも良い。また、S相とT相から取り込んでも良い。即ちどの相から計算を行なってもよく、次の電圧相との関係を120度保っておけばよい。また、1つ離れた次の電圧相であれば、240度保っておけばよいが、記憶部13に記憶する実効値1の電圧波形データも同様の関係を保って配置しておけばよい。しかしながら、どこでも良いという表現だとかえって混乱をまねく可能性もあり、実態配線上R相―T相が電路の両端になるので一義的に決めるのもよい。
By the way, in the insulation deterioration monitoring apparatus of the present embodiment, the voltage signal lines 6 and 7 for taking in the voltage phase are taken in from the R phase and the S phase of the
また、上記説明は、中性点接地のスター回路について説明し、非接地回路のスター回路及びデルタ回路については省略したが、電圧位相は同じ関係であり、同じ方法で行えることは明白である。即ち、非接地回路では、漏れ電流を計測するためにGPTあるいは接地補償用コンデンサが用いられ、これらの中性点が接地され中性点接地方式のスター回路と同じになるためである。 In the above description, the neutral point grounded star circuit is described, and the star circuit and the delta circuit of the non-grounded circuit are omitted. However, it is obvious that the voltage phases have the same relationship and can be performed in the same manner. That is, in the non-grounded circuit, GPT or a ground compensation capacitor is used to measure the leakage current, and these neutral points are grounded to be the same as a neutral point grounded star circuit.
次に、実施例1における絶縁劣化監視方法について、図1、図5及び図6により説明する。図1は、本実施例を示す絶縁劣化監視方法のベクトル図である。図5は中性点接地の三相3線または4線、また、非接地回路の三相3線スター回路とデルタ回路での位相関係を示すもので、各相電圧は120度の位相差であり、対地基準電圧となる各相電圧は、各線間電圧より30度遅れとなる。図6は線間電圧VS−VRを基準にとりこの関係を時系列で表現した例である。即ち、R相電圧VRは30度遅れ、S相は150度遅れ、T相は270度の遅れとなる。尚、中性点(N点)接地方式は点線で示すように対地に接地される。また、非接地回路では、中性点接地の代わりにGPTまたは接地補償用コンデンサで接地されることは公知である。
Next, the insulation deterioration monitoring method in
図1(a)において、電圧VR’は、線間電圧より30度遅れたことを示すものであり、電圧VS’、電圧VT’も同様である。また、R相の線で絶縁劣化が発生し、T相の線にも僅かな絶縁劣化が発生し、S相の線は健全相の例を示す。そして一般に中性点接地のスター回路では、電路の静電容量(コンデンサ)成分は極めて小さいことが知られており、また、非接地回路におけるスター回路、デルタ回路も極めて小さいことが知られているので、R相の漏れ電流IorとT相の漏れ電流Iotの合成された漏れ電流がZCTで検出されIoとしてR相とT相の間に現れる。この時のR相に対する位相をφとする。 In FIG. 1A, the voltage VR 'indicates that it is delayed by 30 degrees from the line voltage, and the voltage VS' and the voltage VT 'are the same. In addition, insulation deterioration occurs in the R-phase line, slight insulation deterioration occurs in the T-phase line, and the S-phase line indicates an example of a healthy phase. In general, a neutral point grounded star circuit is known to have a very small capacitance (capacitor) component of the electric circuit, and a star circuit and a delta circuit in a non-grounded circuit are also known to be extremely small. Therefore, the combined leakage current of the R-phase leakage current Ior and the T-phase leakage current Iot is detected by ZCT and appears between the R phase and the T phase as Io. Let the phase for the R phase at this time be φ.
ここで、ZCTで検出される合成された漏れ電流Ioから元のR相の漏れ電流Iorに展開するには、Io*cosφrとIo*sinφrにtan30度を乗じたものを加算すればよい。または、漏れ電流Ioの二乗からIo*cosφrの二乗を減算したものから平方根をとり、これにtan30度を乗じたものを加算すればよい。またT相の漏れ電流Iotに展開するには、Io*sinφrをtan30度で除算または、漏れ電流Ioの二乗からIo*cosφrの二乗を減算したものから平方根をとり、これにtan30度で除算すればよい。 Here, in order to develop the combined leakage current Io detected by ZCT into the original R-phase leakage current Ior, Io * cosφr and Io * sinφr multiplied by tan 30 degrees may be added. Alternatively, the square root of the value obtained by subtracting the square of Io * cos φr from the square of the leakage current Io, and the result obtained by multiplying the square root by 30 degrees may be added. To develop the leakage current Iot of the T phase, divide Io * sinφr by tan 30 degrees or subtract the square of Io * cosφr from the square of leakage current Io and divide it by tan30 degrees. That's fine.
さて、ここで必要とするのは、絶縁劣化している最大の相であり、上記例はR相が絶縁劣化の最大相、T相がその次に大きい劣化相という前提のものである。しかし、ZCTで検出されるIoはどの位置に現れるか不明である。 What is required here is the maximum phase that has undergone insulation degradation. The above example is based on the premise that the R phase is the maximum phase of insulation degradation and the T phase is the next largest degradation phase. However, it is unknown at which position Io detected by ZCT appears.
本実施例では、次のようにして解決したものである。
まず、漏れ電流IoのR相の電圧VR’と同相成分即ち図1(a)の値(1)であるIo*cosφrを算出し、次にS相の電圧VS’と同相成分即ち図1(b)の値(2)であるIo*cosφsを算出し、この結果の2つを比較して大きい側の値を用いてIo*cosφとIo*sinφにtan30度を乗じたものを加算する、または漏れ電流Ioの二乗からIo*cosφの二乗を減算したものから平方根をとり、これにtan30度を乗じたものを加算するものである。
ここで、Io*cosφとIo*sinφは、各相における漏れ電流Ioの位相角度を代表して表現したものであるが、Io*cosφ即ち漏れ電流Ioの有効成分だけで表現すると漏れ電流Ioの二乗からIo*cosφの二乗を減算したものから平方根をとる方法で統一することができる。
In this embodiment, the problem is solved as follows.
First, Io * cosφr which is the in-phase component with the R-phase voltage VR ′ of the leakage current Io, that is, the value (1) in FIG. 1A, is calculated, and then the in-phase component with the S-phase voltage VS ′, FIG. b) Calculate Io * cosφs which is the value (2) of the two, compare the two of these results, and add the value obtained by multiplying Io * cosφ and Io * sinφ by tan 30 degrees using the larger value. Alternatively, the square root is obtained by subtracting the square of Io * cosφ from the square of the leakage current Io, and the result obtained by multiplying the square root by 30 degrees is added.
Here, Io * cosφ and Io * sinφ are representatively represented by the phase angle of the leakage current Io in each phase, but if expressed only by the effective component of Io * cosφ, that is, the leakage current Io, the leakage current Io The square can be unified by subtracting the square of Io * cosφ from the square.
上記方法によれば、R相の電圧VR’から開始する必要もなく、S相の電圧VS’から開始してもよく、またT相の電圧VT’から開始しても良い。即ち2相について算出すればよいもので、線間電圧を基準とした場合の30度遅れ、150度遅れ、270度遅れの関係を保っていずれかの2相について算出すればよい。
なお、図1(b)では、S相の電圧VS’の同相成分の値(2)が180度反対の位置となっているが、三角関数で計算すれば符号がついた大きさとなり、何ら問題はない。
According to the above method, it is not necessary to start from the R-phase voltage VR ′, and may start from the S-phase voltage VS ′, or may start from the T-phase voltage VT ′. That is, it is only necessary to calculate for two phases, and it is only necessary to calculate for any two phases while maintaining the relationship of 30 degree delay, 150 degree delay, and 270 degree delay with reference to the line voltage.
In FIG. 1B, the value (2) of the in-phase component of the S-phase voltage VS ′ is 180 degrees opposite, but if it is calculated by a trigonometric function, it has a size with a sign. No problem.
以上を計算式で表現すると、
Iox=Io*cosφ+√(Io2−(Io*cosφ)2)・・・式(1)
となる。
Expressing the above in the formula,
Iox = Io * cos φ + √ (Io 2 − (Io * cos φ) 2 ) (1)
It becomes.
次にIo*cosφについての計算即ち漏れ電流Ioの有効成分は、相電圧と同相成分であるため、テーブル化された30度または150度遅れた実効値1の線間電圧波形とで電力演算を行なえばよいが、この内容は当該発明者が出願した前記特許文献1によるものであり、説明を省略する。
Next, since the calculation for Io * cosφ, that is, the effective component of the leakage current Io is the same-phase component as the phase voltage, power calculation is performed with the line voltage waveform of
実施例2を説明する。本実施例の絶縁劣化監視装置について、図4を用いて説明する。実施例1の装置と同じところについては、同じ符号を用いてあり、説明を省略する。実施例2の装置では、記憶部13にさらに線間電圧より210度遅れた実効値1の波形データ13d及び線間電圧より330度遅れた実効値1の波形データ13eをテーブル化して記憶している。
A second embodiment will be described. The insulation deterioration monitoring apparatus of the present embodiment will be described with reference to FIG. The same parts as those of the apparatus of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the apparatus of the second embodiment, the
このように構成された絶縁劣化監視装置5の動作は、前記した電圧30度遅れ及び電圧150度遅れの実効値1の波形データ13b、13cと、漏れ電流Ioの有効成分の計算を行なった後、さらに電圧210度及び330度遅れの実効値1の波形データ13d、13eと漏れ電流Ioの有効成分の計算を行い、4つのうちから一番大きいものを算出結果として用いるものである。
The operation of the insulation deterioration monitoring device 5 configured as described above is performed after the calculation of the effective component of the leakage current Io and the
以上のようにして、ZCTの設置方向誤りあるいはZCTの二次出力線の配線誤りがあっても、絶縁劣化の最大相の漏れ電流の有効成分が正しく算出されるものである。従って、ZCTの設置や施工が行い易く、またZCT二次配線のやり直しなどのための停電も不要となり極めて効果は大きい。 As described above, even if there is a ZCT installation direction error or a ZCT secondary output line wiring error, the effective component of the leakage current of the maximum phase of insulation deterioration is correctly calculated. Therefore, installation and construction of ZCT are easy to perform, and a power failure for re-execution of the ZCT secondary wiring becomes unnecessary, which is extremely effective.
実施例2の絶縁劣化監視方法について、図2により説明する。漏れ電流を検出するZCTの設置方向は、図7で示すように電源側がKで負荷側がLであり、二次側出力はkとlが対応している。しかしながら、設置方向を誤ったり、二次側の結線を誤ったりすることがあると、合成された漏れ電流Ioの位置が180度異なって現れる。また、線間電圧の取り方を例えばR−SとすべきところをS−Rとすれば同様に180度異なった結果となり、正しい絶縁劣化の最大相の漏れ電流を得ることができない。 The insulation deterioration monitoring method according to the second embodiment will be described with reference to FIG. As shown in FIG. 7, the installation direction of the ZCT for detecting the leakage current is K on the power source side and L on the load side, and k and l correspond to the secondary side output. However, if the installation direction is wrong or the connection on the secondary side is wrong, the position of the combined leakage current Io appears different by 180 degrees. In addition, if the line voltage is taken as R—S, for example, S—R, similarly, the result is 180 degrees different, and the maximum leakage current with the correct insulation deterioration cannot be obtained.
実施例2はこのような問題点を鑑みて解決したものであり、設置・配線が間違っても絶縁劣化相の最大相の漏れ電流を正しく算出するものである。 The second embodiment has been solved in view of such problems, and correctly calculates the leakage current of the maximum phase of the insulation deterioration phase even if the installation and wiring are wrong.
図2において、Ioは実施例1と同じ位置に現れる合成された漏れ電流、Io’は、ZCTの設置方向を誤ったときに現れる合成された漏れ電流で、このIo’についてR相の電圧VR’と同相成分(有効成分)の値(1)を計算し、次にS相の電圧VS’と同相成分(有効成分)の値(2)を計算する。そして値(1)と値(2)の大きさを比較するが、値(1)はマイナスであり、値(2)が大きいので、この値を用いて漏れ電流Io’の計算を第1の実施例と同様の計算を行なう。ところが、設置方向を誤った際の漏れ電流Io’は180度異なっているため、展開した大きさIos’の大きさはIorの大きさより小さくなる。 In FIG. 2, Io is a combined leakage current that appears at the same position as in the first embodiment, Io ′ is a combined leakage current that appears when the installation direction of ZCT is wrong, and this Io ′ has an R-phase voltage VR. The value (1) of the in-phase component (active component) and 'is calculated, and then the value (2) of the in-phase component (active component) and the voltage VS' of the S phase are calculated. Then, the magnitudes of the value (1) and the value (2) are compared. Since the value (1) is negative and the value (2) is large, the leakage current Io ′ is calculated using the first value. The same calculation as in the example is performed. However, since the leakage current Io 'when the installation direction is wrong is different by 180 degrees, the developed size Ios' is smaller than the size of Ior.
そこで、漏れ電流Ioの位相を180度ずらす代わりに、電圧位相VR’及びVS’をそれぞれ180度ずらして線間電圧210度及び330度(30度及び150度に180度を加算したもの)で計算を行なうものである。
即ち、実施例1により計算した後、線間電圧210度及び330度で計算した値の結果を比較し、一番大きい方を絶縁劣化の最大相の値とするものである。
Therefore, instead of shifting the phase of the leakage current Io by 180 degrees, the voltage phases VR ′ and VS ′ are respectively shifted by 180 degrees and the line voltages are 210 degrees and 330 degrees (30 degrees and 150 degrees plus 180 degrees). The calculation is performed.
That is, after the calculation according to the first embodiment, the results of the values calculated at the line voltages of 210 degrees and 330 degrees are compared, and the largest value is set as the value of the maximum phase of insulation deterioration.
この方法によれば、ZCTの設置方向や二次出力線の接続を間違っても絶縁劣化の最大相の漏れ電流を正しく算出するので、設置時の注意を少なくすることができる。 According to this method, since the leakage current of the maximum phase of insulation deterioration is correctly calculated even if the ZCT installation direction and the connection of the secondary output line are wrong, attention during installation can be reduced.
以上説明したように、実施例の絶縁劣化監視装置は、負荷設備を含めた配電系統の配電線(電路)の漏れ電流計測即ち絶縁劣化状態の監視に適しており、火災事故や漏電事故を未然に防止するために有効であり、配電線(電路)の絶縁劣化の最大相の漏れ電流の有効成分を算出するので絶縁劣化状態を適切に判断することができ、利用した場合の効果は大である。 As described above, the insulation deterioration monitoring device according to the embodiment is suitable for measuring leakage currents of distribution lines (electric circuits) of the distribution system including load facilities, that is, monitoring insulation deterioration states. The effective component of the leakage current of the maximum phase of insulation deterioration of the distribution line (electric circuit) is calculated, so the insulation deterioration state can be judged appropriately, and the effect when used is great. is there.
3 電路、4a、・・・、4n ZCT、5 絶縁劣化監視装置、6、7 電圧引き込み線、9 矩形波発生手段、10a,・・・、10n 増幅・A/D変換手段、11 演算制御手段、12 選択手段、13 記憶手段、13a 電圧0度実効値1波形データ、13b 電圧30度遅れ実効値1波形データ、13c 電圧150度遅れ実効値1波形データ、13d 電圧210度遅れ実効値1波形データ、13e 電圧330度遅れ実効値1波形データ。
3 Electrical path, 4a,..., 4n ZCT, 5 Insulation deterioration monitoring device, 6, 7 Voltage lead-in line, 9 Rectangular wave generating means, 10a,..., 10n Amplification / A / D conversion means, 11 Calculation control means 12 selection means 13 storage means 13a voltage 0 degree
Claims (4)
非測定電路の1つの線間電圧信号と、該線間電圧位相信号のゼロクロス点を検出して演算周期の開始信号を出力する矩形波出力手段と、2組の実効値1の電圧波形をテーブル化して記憶する記憶部と、非測定電路の漏れ電流を検出する零相変流器からの電流信号と上記記憶部に記憶された電圧波形とから漏れ電流を算出する演算部と、上記開始信号を基にテーブル化された第1の電圧波形及び第2の電圧波形と上記零相変流器の出力電流とから漏れ電流の2つの位相成分を算出し、比較して大きい値の位相成分を基に絶縁劣化相の最大相の漏れ電流値を算出することを特徴とする絶縁劣化監視装置。 An insulation deterioration monitoring device that monitors insulation deterioration in a neutral connection star connection or ungrounded three-phase circuit,
Table of one line voltage signal in the non-measurement circuit, rectangular wave output means for detecting the zero cross point of the line voltage phase signal and outputting the start signal of the calculation cycle, and two sets of voltage waveforms having an effective value of 1 A storage unit configured to store, a calculation unit that calculates a leakage current from a current signal from a zero-phase current transformer that detects a leakage current of a non-measurement circuit, and a voltage waveform stored in the storage unit, and the start signal The two phase components of the leakage current are calculated from the first voltage waveform and the second voltage waveform tabulated based on the output current and the output current of the zero-phase current transformer, and the phase component having a larger value is compared. An insulation deterioration monitoring device that calculates a leakage current value of a maximum phase of an insulation deterioration phase based on the above.
非測定電路の1つの線間電圧信号と、該線間電圧位相信号のゼロクロス点を検出して演算周期の開始信号を出力する矩形波出力手段と、2組の実効値1の電圧波形と前記2組について180度位相をずらした2組の実効値1の電圧波形とをテーブル化して記憶する記憶部と、非測定電路の漏れ電流を検出する零相変流器からの電流信号と上記記憶部に記憶された電圧波形とから漏れ電流を算出する演算部と、上記開始信号を基にテーブル化された第1の電圧波形、第2の電圧波形、第3の電圧波形及び第4の電圧波形と上記零相変流器の出力電流とから漏れ電流の4つの位相成分を算出し、比較して一番大きい値の位相成分を基に絶縁劣化相の最大相の漏れ電流値を算出することを特徴とする絶縁劣化監視装置。 An insulation deterioration monitoring device that monitors insulation deterioration in a neutral connection star connection or ungrounded three-phase circuit,
One line voltage signal of the non-measurement circuit, a rectangular wave output means for detecting a zero-crossing point of the line voltage phase signal and outputting a start signal of an operation cycle, two sets of effective value 1 voltage waveforms, Two sets of voltage waveforms having an effective value of 1 that are 180 degrees out of phase with respect to two sets are stored in a table, a current signal from a zero-phase current transformer that detects a leakage current of a non-measurement circuit, and the above storage A calculation unit that calculates a leakage current from the voltage waveform stored in the unit, and a first voltage waveform, a second voltage waveform, a third voltage waveform, and a fourth voltage that are tabulated based on the start signal. The four phase components of the leakage current are calculated from the waveform and the output current of the zero-phase current transformer, and the leakage current value of the maximum phase of the insulation degradation phase is calculated based on the phase component having the largest value by comparison. An insulation deterioration monitoring device characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007158531A JP2008309681A (en) | 2007-06-15 | 2007-06-15 | Insulation deterioration monitoring device and its method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007158531A JP2008309681A (en) | 2007-06-15 | 2007-06-15 | Insulation deterioration monitoring device and its method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008309681A true JP2008309681A (en) | 2008-12-25 |
Family
ID=40237412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007158531A Pending JP2008309681A (en) | 2007-06-15 | 2007-06-15 | Insulation deterioration monitoring device and its method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008309681A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015064265A (en) * | 2013-09-25 | 2015-04-09 | 株式会社関電工 | Leakage monitoring device and method |
WO2018167909A1 (en) * | 2017-03-16 | 2018-09-20 | 頼数 頭本 | Leakage current detection device, method, and program for detecting leakage current |
CN110957709A (en) * | 2019-12-09 | 2020-04-03 | 国网江苏省电力有限公司镇江供电分公司 | Line break protection method for comparing line voltage vector difference at two sides of line and matching with spare power automatic switching |
CN113109662A (en) * | 2021-03-03 | 2021-07-13 | 中国电力科学研究院有限公司 | Method and system for determining relative aging degree of cable based on interphase relative dielectric loss |
-
2007
- 2007-06-15 JP JP2007158531A patent/JP2008309681A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015064265A (en) * | 2013-09-25 | 2015-04-09 | 株式会社関電工 | Leakage monitoring device and method |
KR102293345B1 (en) * | 2017-03-16 | 2021-08-25 | 요리가쓰 가시라모도 | Leakage current detection device, method and program for detecting leakage current |
CN110402396A (en) * | 2017-03-16 | 2019-11-01 | 头本頼数 | Detect leakage current detection device, method and the program of leakage current |
KR20190127807A (en) * | 2017-03-16 | 2019-11-13 | 요리가쓰 가시라모도 | Leakage current detection device, method and program for detecting leakage current |
JPWO2018167909A1 (en) * | 2017-03-16 | 2020-01-16 | 頼数 頭本 | Leakage current detection device, method, and program for detecting leakage current |
EP3598153A4 (en) * | 2017-03-16 | 2020-03-11 | Yorikazu Kashiramoto | Leakage current detection device, method, and program for detecting leakage current |
WO2018167909A1 (en) * | 2017-03-16 | 2018-09-20 | 頼数 頭本 | Leakage current detection device, method, and program for detecting leakage current |
JP2021175983A (en) * | 2017-03-16 | 2021-11-04 | 頼数 頭本 | Leakage current detection device, method, and program for detecting leakage current |
JP7122444B2 (en) | 2017-03-16 | 2022-08-19 | 頼数 頭本 | LEAKAGE CURRENT DETECTION DEVICE, METHOD AND PROGRAM FOR DETECTING LEAKAGE CURRENT |
JP2022166121A (en) * | 2017-03-16 | 2022-11-01 | 頼数 頭本 | Leakage current detection device, method, and program for detecting leakage current |
JP7346794B2 (en) | 2017-03-16 | 2023-09-20 | 頼数 頭本 | Leakage current detection device, method and program for detecting leakage current |
CN110957709A (en) * | 2019-12-09 | 2020-04-03 | 国网江苏省电力有限公司镇江供电分公司 | Line break protection method for comparing line voltage vector difference at two sides of line and matching with spare power automatic switching |
CN110957709B (en) * | 2019-12-09 | 2021-04-20 | 国网江苏省电力有限公司镇江供电分公司 | Line break protection method for comparing line voltage vector difference at two sides of line and matching with spare power automatic switching |
CN113109662A (en) * | 2021-03-03 | 2021-07-13 | 中国电力科学研究院有限公司 | Method and system for determining relative aging degree of cable based on interphase relative dielectric loss |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5544517B2 (en) | Leakage current measuring device and measuring method in electrical equipment | |
TWI557412B (en) | Leakage current calculation device and leakage current calculation method | |
JP7346794B2 (en) | Leakage current detection device, method and program for detecting leakage current | |
JP2009058234A (en) | Leak current measuring instrument and measuring method | |
JP2008164374A (en) | Device and method for measuring leakage current | |
JP4977481B2 (en) | Insulation monitoring device | |
Xiu et al. | Novel fault location methods for ungrounded radial distribution systems using measurements at substation | |
JP5638729B1 (en) | Anomaly diagnosis device for current transformer for Rogowski instrument | |
JP2008309681A (en) | Insulation deterioration monitoring device and its method | |
JP2011058826A (en) | Method and device for detecting ground fault current | |
JP6328591B2 (en) | High voltage insulation monitoring method and high voltage insulation monitoring device | |
JP2006071341A (en) | Insulation monitoring device and method of electric installation | |
JP2009069065A (en) | Device for measuring effective leakage current | |
JP2011153913A (en) | Leak current measuring device and measurement method in electric apparatus | |
JP2004012147A (en) | Insulation monitoring device and insulation monitoring method | |
KR102442617B1 (en) | Protection relay installation compliance inspection method and inspection apparatus | |
JP2011149959A (en) | Insulation monitoring device | |
JP2017194465A (en) | Monitoring device | |
JP2005227132A (en) | Insulation condition monitoring apparatus and insulation condition monitoring method | |
JP5679480B2 (en) | Indirect AC megger measuring instrument and insulation resistance measuring method | |
JP2009058235A (en) | Leak current measuring instrument for electric path and electric apparatus, and its method | |
JP4835286B2 (en) | Insulation monitoring system and method for low voltage electrical equipment | |
JP2008145155A (en) | Apparatus for detecting resistance component current of zero-phase current and leakage monitoring apparats | |
Yusoh et al. | Identification of the source location Neutral to Earth Voltage (NTEV) rise on the commercial building | |
JP6517667B2 (en) | Ground fault detection device |