JP2008309043A - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- JP2008309043A JP2008309043A JP2007156831A JP2007156831A JP2008309043A JP 2008309043 A JP2008309043 A JP 2008309043A JP 2007156831 A JP2007156831 A JP 2007156831A JP 2007156831 A JP2007156831 A JP 2007156831A JP 2008309043 A JP2008309043 A JP 2008309043A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- fuel ratio
- hydrogen
- air
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
【課題】アルコール成分を含有する燃料を用いた場合でも、排気ガス中の空燃比を制御することで、アルデヒドの発生を抑制し、NOXの浄化性能を向上させた内燃機関の排気浄化装置を提供する。
【解決手段】排気浄化装置30は、内燃機関1の排気経路7に設けられ、排気経路7を流れるアルコール成分を含有する排気ガスを浄化する上流側触媒11と、上流側触媒11より排気ガスの流れ方向の下流側に設けられる下流側触媒12と、排気ガスの空燃比を検出するA/Fセンサ15と、排気ガスの水素濃度を検出する水素濃度センサ16と、排気ガスの窒素酸化物濃度を検出するNOXセンサ17とを備える排気浄化装置であって、NOX排出量、水素濃度から排気ガスの空燃比を制御し、NOX排出量が所定値以下となるように水素の発生量を制御することで、アルコールから生成されるアルデヒドを酸にまで反応を進め、アルデヒドの発生を抑制する。
【選択図】図1
【解決手段】排気浄化装置30は、内燃機関1の排気経路7に設けられ、排気経路7を流れるアルコール成分を含有する排気ガスを浄化する上流側触媒11と、上流側触媒11より排気ガスの流れ方向の下流側に設けられる下流側触媒12と、排気ガスの空燃比を検出するA/Fセンサ15と、排気ガスの水素濃度を検出する水素濃度センサ16と、排気ガスの窒素酸化物濃度を検出するNOXセンサ17とを備える排気浄化装置であって、NOX排出量、水素濃度から排気ガスの空燃比を制御し、NOX排出量が所定値以下となるように水素の発生量を制御することで、アルコールから生成されるアルデヒドを酸にまで反応を進め、アルデヒドの発生を抑制する。
【選択図】図1
Description
本発明は、アルコール、ガソリンを単独または混合した燃料が使用可能な内燃機関の排気浄化装置に関する。
内燃機関本体から排出される排気ガス中には、炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOX)等の有害成分が含まれており、これら有害成分を除去する必要がある。このため、従来の内燃機関の排気浄化装置では、排気系に排気ガス中の炭化水素類から水素を生成する三元触媒と、リーン運転時に排出されるNOXを吸着するNOX吸着触媒とが設けられている。
一般に、内燃機関が理論空燃比よりもリーンで運転されている場合、従来の三元触媒では排出されるNOXの浄化が困難となるため、リーン運転時に排出されるNOXを吸着するNOX吸着触媒が用いられる。NOX吸着触媒として例えばNOX吸蔵還元触媒が挙げられる。このNOX吸蔵還元触媒は、NOX吸蔵還元触媒に流入する排気ガスの空燃比がリーンであり、排気ガス中の酸素濃度が高いときには排気ガス中のNOXを吸蔵する。また、排気ガスの空燃比がほぼ理論空燃比(ストイキ)又はリッチであり、排気ガス中の酸素濃度が低いときには吸蔵しているNOXを脱離させる。このNOXが脱離されるときには排気ガスの空燃比がほぼ理論空燃比又はリッチであるため、排気ガス中にはHCやCOが存在し、脱離されたNOXは排気ガス中のHC、CO等の還元剤によって還元・浄化され、排気ガス中のNOXを除去している。
また、三元触媒で生成された水素を還元剤として用い、排出される窒素酸化物量から水素の生成量を制御することで、NOX吸着触媒に吸収されたNOXの浄化を行ない、NOXを効率よく浄化していた(特許文献1)。
また、燃料として、例えば重質油ではリッチスパイク(RS)を行なう時間を短めとし、軽質油ではリッチスパイクを行なう時間を長めとし、燃料性状によって触媒昇温を行なう際の昇温制御を行なうようにしていた。これにより、燃料性状に依らず触媒を早期活性化させ、空燃比を最適に保ち、触媒床温を低下させないようにすることにより有害な排気成分を効率よく浄化していた(特許文献2)。
ここで、近年ではガソリン燃料に加え、代替燃料としてアルコールを同時に使用可能なシステムが搭載された自動車などの車両(FFV; Flexible Fuel Vehicle)が実用化され、ガソリン、アルコール、およびこれらの混合燃料により走行が可能となっている。
このFFVシステムにおいて燃料として例えばアルコール燃料を用いる場合、燃料に含有するアルコール成分は、下記式(1)〜式(3)の状態に化学変化する。即ち、アルコールが酸化されアルデヒドとなった時は下記式(1)となり、アルデヒドが酸化され酸となった時は下記式(2)となり、酸から最終的に水、二酸化炭素に分解される時は下記式(3)となる。
しかしながら、水素は強還元物質であるため、水素が多く存在するとこの反応がアルデヒドでとどまるか(上記式(1)の酸化反応)、又は酸からアルデヒドに還元され、毒性が強いアルデヒドが残る(上記式(2)の還元反応)、という問題がある。
また、スモッグの原因として、水蒸気や硫酸ミストがあるが、硫酸ミストは下記式のように水素によって二硫化硫黄が脱離されるため、水素が存在することで光化学スモッグの原因ともなりうる、という問題がある。
SO2 + H2O+ 1/2O2 → H2SO4・・・(4)
SO2 + H2O+ 1/2O2 → H2SO4・・・(4)
本発明は、上記問題に鑑みてなされたものであって、アルコール成分を含有する燃料を用いた場合でも、排気ガス中の空燃比を制御することで、アルデヒドの発生を抑制し、NOXの浄化性能を向上させた内燃機関の排気浄化装置を提供することを目的としている。
上記の目的を達成するために、本発明に係る内燃機関の排気浄化装置は、燃料としてアルコール燃料を用いる内燃機関の排気経路に設けられ、前記排気経路を流れる排気ガスを浄化する上流側触媒を収容する上流側触媒装置と、前記上流側触媒装置より前記排気ガスの流れ方向の下流側に設けられ、前記排気ガスの空燃比がリーンのときに窒素酸化物を吸蔵すると共に、理論空燃比ないしリッチのときに吸蔵している窒素酸化物を脱離する下流側触媒を収容する少なくとも一つ以上の下流側触媒装置と、前記上流側触媒装置の上流側に設けられ、前記排気ガスの空燃比を検出する空燃比検出手段と、前記排気経路における前記上流側触媒装置と前記下流側触媒装置との間に設けられ、前記排気ガスの水素濃度を検出する水素濃度検出手段と、前記下流側触媒装置の下流側に設けられ、前記排気ガスの窒素酸化物濃度を検出する窒素酸化物濃度検出手段とを有する排気浄化装置であって、前記排気ガスの空燃比が理論空燃比よりリーンであるとき、前記排気ガスの空燃比を理論空燃比ないしリッチとなるように水素を発生させて前記窒素酸化物を還元すると共に、前記窒素酸化物濃度検出手段による検出結果に基づいて、前記窒素酸化物の濃度が所定値以下となるように水素の発生量を制御することを特徴とする。
本発明に係る内燃機関の排気浄化装置においては、前記窒素酸化物濃度検出手段による前記窒素酸化物の排出量が所定値以上の場合、水素を発生させ、前記窒素酸化物を還元することを特徴とする。
本発明に係る内燃機関の排気浄化装置においては、水素を発生させる場合、前記上流側触媒の触媒温度がアルコールから酸へのシフト反応が起こる所定温度以下であることを特徴とする。
本発明に係る内燃機関の排気浄化装置においては、前記所定温度が、600℃以下であることを特徴とする。
本発明に係る内燃機関の排気浄化装置においては、前記窒素酸化物濃度検出手段による前記窒素酸化物の排出量が所定値未満の場合、水素の発生を制御することを特徴とする。
本発明によれば、アルコール成分を含有する燃料を用いた場合でも、排気ガス中の空燃比を制御し、窒素酸化物の濃度が所定値以下となるように水素の発生量を制御することで、アルデヒドの発生を抑制し、NOXの浄化性能を向上させることができる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
[実施の形態]
図1は、本実施の形態に係る排気浄化装置の概略構成図である。
図1に示すように、本実施の形態に係る内燃機関の排気浄化装置30は、燃料としてアルコール燃料を用いる内燃機関1の排気経路7に設けられ、排気経路7を流れるアルコール成分を含有する排気ガスを浄化する上流側触媒を収容する上流側触媒装置11と、前記上流側触媒装置11より前記排気ガスの流れ方向の下流側に設けられ、前記排気ガスの空燃比(A/F)がリーンのときに窒素酸化物を吸蔵すると共に、理論空燃比ないしリッチのときに吸蔵している窒素酸化物を脱離する下流側触媒を収容する下流側触媒装置12と、前記上流側触媒装置11の上流側に設けられ、前記排気ガスの空燃比(A/F)を検出するA/Fセンサ15と、前記上流側触媒装置11と前記下流側触媒装置12との間に設けられ、前記排気ガスの水素濃度を検出する水素濃度センサ16と、前記下流側触媒装置12の下流側に設けられ、前記排気ガスの窒素酸化物濃度を検出するNOXセンサ17とを有する。
図1は、本実施の形態に係る排気浄化装置の概略構成図である。
図1に示すように、本実施の形態に係る内燃機関の排気浄化装置30は、燃料としてアルコール燃料を用いる内燃機関1の排気経路7に設けられ、排気経路7を流れるアルコール成分を含有する排気ガスを浄化する上流側触媒を収容する上流側触媒装置11と、前記上流側触媒装置11より前記排気ガスの流れ方向の下流側に設けられ、前記排気ガスの空燃比(A/F)がリーンのときに窒素酸化物を吸蔵すると共に、理論空燃比ないしリッチのときに吸蔵している窒素酸化物を脱離する下流側触媒を収容する下流側触媒装置12と、前記上流側触媒装置11の上流側に設けられ、前記排気ガスの空燃比(A/F)を検出するA/Fセンサ15と、前記上流側触媒装置11と前記下流側触媒装置12との間に設けられ、前記排気ガスの水素濃度を検出する水素濃度センサ16と、前記下流側触媒装置12の下流側に設けられ、前記排気ガスの窒素酸化物濃度を検出するNOXセンサ17とを有する。
また、内燃機関1は、シリンダブロック2を有し、前記シリンダブロック2には、シリンダブロック2の内部を往復動可能なピストン4が設けられている。前記ピストン4の上方には、燃焼室5が形成されている。シリンダブロック2の上方には、シリンダヘッド3が設けられている。シリンダヘッド3には、吸気管6及び排気管(排気経路)7が接続されている。吸気管6と燃焼室5との接続部には、吸気弁8が設けられている。排気経路7と燃焼室5との接続部には、排気弁9が設けられている。吸気管6には、吸気に燃料を噴射する燃料噴射弁10が設けられている。
また、排気経路7には、排気ガスを浄化するための上流側触媒を収容する上流側触媒装置11及び下流側触媒を収容する下流側触媒装置12が設けられている。上流側触媒装置11内の上流側触媒は、炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NOX)の3つの物質を酸化・還元反応によって同時に除去することができる三元触媒である。即ち、排気ガス中の有害なHC、CO及びNOXを無害なH2O、CO2、N2へと還元又は酸化させている。
また、下流側触媒装置12内の下流側触媒は、排気ガスの空燃比(A/F)が理論空燃比(ストイキ)のときに排気ガス中に含まれるHC、CO、NOXを酸化還元反応によりH2O,CO2,N2へと同時に浄化処理すると共に、排気ガスの空燃比(A/F)がリーンのときに排気ガス中に含まれるNOXを一旦吸蔵し、排気ガス中の酸素濃度が低下したリッチ燃焼領域にあるときに、吸蔵したNOXを放出し、添加した還元剤としての燃料によりNOXを還元するものである。下流側触媒12として、具体的には、NSR(NOX Storage Reduction)やDPNR(Diesel Particulate−NOx Reduction System)が知られている。NSRとは、リーン運転モードでの運転中にNOxを硝酸塩の形で触媒中に吸蔵し、その硝酸塩を酸素濃度の低下した還元雰囲気でN2に還元するNOx吸蔵還元型触媒のことである。また、DPNRとは、粒子状物質(PM)とNOxを同時に連続して浄化させることが可能なシステムのことであり、例えば、PM捕集装置であるDPF(Diesel Particulate Filter)にNOX吸蔵還元型触媒を担持させたものである。尚、本実施例においては、下流側触媒装置12内の下流側触媒として、NOX吸蔵還元型触媒(NSR)を適用する。
ここでは、下流側触媒装置12を上流側触媒装置11よりも排気ガス流動方向下流に配置して、その上流側触媒装置11内の上流側触媒においてHCやNOXを酸化させ、この上流側触媒で浄化しきれなかったNOXを下流側触媒で吸着させる。また、上流側触媒装置11内の上流側触媒や下流側触媒装置12内の下流側触媒が活性状態にあるか否かについては、その夫々の触媒床温を検出することで判断してもよく、また、図示しない水温センサから検出した内燃機関の冷却水温から判断してもよい。
また、下流側触媒装置12の排気ガス流れ方向の下流側には、NOXセンサ17が設けられている。下流側触媒装置12内の下流側触媒はNOX吸蔵還元型触媒(NSR)である。このため、吸着できるNOX量に限界があるため、一定量を吸収すると、排気ガス中に吸着しきれなかったNOXが増加し、NOXセンサ17により、下流側触媒装置12から流出される排気ガスのNOX濃度が検出される。
また、上流側触媒装置11と下流側触媒装置12との間には、水素センサ16が設けられている。水素センサ16により、上流側触媒装置11から流出される排気ガス中の水素濃度が検出される。
上流側触媒装置11より排気ガスの流れ方向における上流側には、A/Fセンサ15が設けられている。A/Fセンサ15により、エンジン1から排出された排気ガスの空燃比(A/F)が検出される。
NOXセンサ17により検出される下流側触媒装置12内の下流側触媒から流出される排気ガスのNOX濃度の値と、水素センサ16により検出される排気ガスの水素濃度の値と基づいて、上流側触媒装置11内の上流側触媒の触媒床温を調整する。これにより、上流側触媒での水素の発生量を調整する。
また、上流側触媒装置11内の上流側触媒では、下記式(I)、(II)のように部分酸化反応及び水蒸気改質反応により水素を発生している。部分酸化反応は、下記式(I)のように高温で炭化水素類と酸素とを反応させると、COとH2の混合ガスが生成する反応であり、例えばメタン1モルから水素2モルが生成される。また、蒸気改質反応は、下記式(II)のように、例えばメタン1モルから水素が3モル生成される。
2CH4 + O2 → 2CO + 4H2 ・・・(I)
CH4 + H2O→ CO + 3H2 ・・・(II)
2CH4 + O2 → 2CO + 4H2 ・・・(I)
CH4 + H2O→ CO + 3H2 ・・・(II)
排気ガスの空燃比(A/F)を一時的にリッチとし、水素の発生量をフィードバック制御し、水素濃度を調整した排気ガスを上流側触媒装置11に供給し、A/Fセンサ15により検出された空燃比(A/F)の値を所定の範囲となるように制御する。
ここで、所定の範囲とは、NOXが脱離して水素が発生しない空燃比をいう。
ここで、所定の範囲とは、NOXが脱離して水素が発生しない空燃比をいう。
即ち、A/Fセンサ15による検出結果に基づいて、排気ガスの空燃比(A/F)が理論空燃比よりもリーンであるとき、排気ガスの空燃比(A/F)を理論空燃比ないしリッチとして水素を発生させ、窒素酸化物を還元する。また、NOXセンサ17による検出結果に基づいて、窒素酸化物の濃度が所定値以下となるように水素の発生量を制御する。
NOXセンサ17により検出されたNOX濃度が所定値以上でリーンの場合には、排気ガスの空燃比(A/F)をリッチ側の値に補正する。これにより、空燃比がリッチ化された排気ガスが上流側触媒装置11に流入し、排気ガス中のHCが部分酸化され、水素を発生させることができる。
また、水素センサ16により検出された水素濃度に基づき、例えば水素濃度が所定値以上の場合、NOXの脱離をすることができるため、同様に、排気ガスの空燃比はそのままリッチ側の値で維持する。
また、上流側触媒装置11内の上流側触媒の触媒床温が所定温度(例えば600℃)以下であれば、上流側触媒装置11内の上流側触媒でのアルコールから酸へのシフト反応を進行することができるため、そのまま維持する。
また、水素を発生させる場合には、触媒床温を下げる必要があるため進角制御し、一方水素を発生させない場合には、触媒床温を上げて遅角制御するようにしてもよい。
また、上流側触媒装置11と下流側触媒装置12との間には、酸素センサ18が設けられている。酸素センサ18により、上流側触媒装置11から流出される排気ガス中の酸素濃度が検出される。酸素センサ18の検出結果に基づいて、酸素センサ18により検出される酸素濃度が低い場合には、排気ガスの空燃比(A/F)がほぼ理論空燃比又はリッチであるため、下流側触媒装置12内の下流側触媒のリッチ化を制御し、リーンとなるようにしてもよい。また、酸素センサ18により検出される酸素濃度が高い場合には、排気ガスの空燃比(A/F)がリーンであるため、下流側触媒12のリッチ化を制御し、理論空燃比又はリッチとなるようにしてもよい。
また、エンジン1が搭載された車両(図示せず)には、車両各部を制御するECU(Electronic Control Unit)を有する車両制御部20が設けられている。A/Fセンサ15、水素センサ16、酸素センサ18及びNOXセンサ17は、車両制御部20に接続されており、それぞれの計測結果が車両制御部20に入力される。燃料噴射弁10及び図示しない流量制御弁は、車両制御部20に接続されており、それぞれの動作が車両制御部20により制御される。
これにより、アルコール成分を含有する燃料を用いた場合でも、A/Fセンサ15、水素センサ16及びNOxセンサ17の検出結果に基づいて、NOX濃度が所定値以下となるように水素の発生量を制御し、排気ガス中の空燃比(A/F)を制御することで、アルコールから生成されるアルデヒドをそのままとさせず酸にまで反応を一気に進めることができる。この結果、アルコールを含有する燃料を用いたとしてもNOXの排出量を制御しつつ、アルデヒドの発生を大幅に抑制することができる。
ここで、本実施の形態に係る内燃機関の排気浄化装置を用いた制御方法について説明する。
図2−1〜図2−3は、本実施の形態に係る内燃機関の排気浄化装置の動作を示すフローチャートである。図2−1は、本来の制御動作の一例を示すフローチャートであり、図2−2は、ステップS11の時の制御動作の一例を示すフローチャートであり、図2−3は、ステップS12の時の制御動作の一例を示すフローチャートである。
図2−1に示すように、まず、ステップS11では、NOXセンサ17において排気ガス中のNOX排出量が所定値以上であるか否かについて判定される。ステップS11の判定の結果、NOX排出量が所定値以上と判定された(ステップS11肯定)場合には、ステップS12へ移行する。
図2−1に示すように、まず、ステップS11では、NOXセンサ17において排気ガス中のNOX排出量が所定値以上であるか否かについて判定される。ステップS11の判定の結果、NOX排出量が所定値以上と判定された(ステップS11肯定)場合には、ステップS12へ移行する。
ステップS12では、水素センサ16において水素濃度が所定値以上であるか否かについて判定される。ステップS12の判定の結果、水素濃度が所定値以上と判定された(ステップS12肯定)場合には、ステップS13へ移行する。
ステップS13では、排気ガスの空燃比(A/F)を制御し、所定の範囲の空燃比(A/F)に調整する。
ここで、空燃比(A/F)の制御について説明する。
A/Fセンサ15により検出された空燃比(A/F)がリッチ及びリーンである場合の空燃比(A/F)の調整は、予め定められたマップを参照して決定される。
A/Fセンサ15により検出された空燃比(A/F)がリッチ及びリーンである場合の空燃比(A/F)の調整は、予め定められたマップを参照して決定される。
アルコール燃料を用いた時の空燃比、窒素酸化物排出量及び水素濃度の関係を図3、図4に示す。
図3、図4は、E13(エタノールがガソリンに13%混入した燃料)を用いた時における排気ガスの空燃比(A/F)、窒素酸化物濃度及び水素濃度の関係を示す関係図である。図3は、排気ガス温度が600℃の時のものであり、図4は、排気ガス温度が700℃の時のものである。
図3、図4は、E13(エタノールがガソリンに13%混入した燃料)を用いた時における排気ガスの空燃比(A/F)、窒素酸化物濃度及び水素濃度の関係を示す関係図である。図3は、排気ガス温度が600℃の時のものであり、図4は、排気ガス温度が700℃の時のものである。
図3に示す600℃の時では、水素が発生する排気ガスの空燃比(A/F)は例えば14.5付近よりリッチ側からであり、排気ガスの空燃比(A/F)は例えば14.5付近よりリーン側のリーン雰囲気下では、水素が発生していないのが確認された。
図4に示す700℃の時では、水素が発生する排気ガスの空燃比(A/F)が例えば15.0付近よりリッチ側からであり、排気ガスの空燃比(A/F)は例えば15.0付近よりリーン側のリーン雰囲気下では、水素が発生していないのが確認された。
よって、A/Fセンサ11、水素センサ16及びNOXセンサ17の検出結果と、予め定められた燃料の空燃比(A/F)、窒素酸化物濃度及び水素濃度の関係を示すマップに基づいて、水素をフィードバック制御するか否か判定し、排気ガスの空燃比(A/F)を制御する。
排気ガスが理論空燃比ないしリッチとなるように制御して水素を発生させて前記窒素酸化物を還元すると共に、前記NOXセンサ17による検出結果に基づいて、前記窒素酸化物の濃度が所定値以下となるように水素の発生量を制御する。
水素の発生量を制御することにより、酸からアルデヒドに還元されるのを抑制すると共に、アルコールから酸への反応を一気に進めることができるため、アルデヒドの生成を抑制することができる。
その後、図2−1に示すステップS14では、触媒温度が所定温度(例えば600℃)以下であるか否かについて判定される。これは、前記上流側触媒の触媒温度がアルコールから酸へのシフト反応が起こる所定温度以下とすることが必要であり、例えば600℃以下でこのシフト反応が起こるためである。
ステップS14の判定の結果、触媒昇温が所定温度(例えば600℃)以下と判定された(ステップS14肯定)場合には、排ガスの空燃比(A/F)の制御を終了する。
また、ステップS14の判定の結果、触媒床温が所定温度以上と判定された(ステップS14否定)場合には、ステップS15へ移行する。ステップS15では、上流側触媒11の触媒床温を所定温度(例えば600℃)以下に下げ、排気ガスの空燃比(A/F)の制御を終了する。
また、ステップS11の判定の結果、NOx排出量が所定値以下と判定された(ステップS11否定)場合には、図2−2に示すステップS21へ移行する。
ステップS21では、水素センサ16において水素濃度が所定値以上であるか否かについて判定される。ステップS21の判定の結果、水素濃度が所定値以上と判定された(ステップS21肯定)場合には、ステップS22へ移行する。
ステップS22では、上流側触媒装置11内の前記上流側触媒の触媒床温を上げて、水素の発生量を減らし、ステップS23へ移行する。
ステップS23では、上流側触媒装置11内の前記上流側触媒の触媒床温が所定温度(例えば600℃)以下であるか否かについて判定される。ステップS23の判定の結果、上流側触媒装置11内の前記上流側触媒の触媒床温が所定温度(例えば600℃)以下と判定された(ステップS23肯定)場合には、排気ガスの空燃比(A/F)の制御を終了する。
また、ステップS21の判定の結果、水素濃度が所定値以下と判定された(ステップS21否定)場合には、ステップS24へ移行し、排気ガスの空燃比(A/F)を制御し、ステップS23へ移行する。
ステップS23で、上述のように上流側触媒装置11内の前記上流側触媒の触媒床温が所定温度(例えば600℃)以下であるか否かについて判定され、判定の結果、上流側触媒装置11内の前記上流側触媒の触媒昇温が所定温度以下と判定された(ステップS23肯定)場合には、排気ガスの空燃比(A/F)の制御を終了する。
また、ステップS23の判定の結果、触媒昇温が所定温度以上と判定された(ステップS23否定)場合には、ステップS25へ移行し、上流側触媒装置11内の前記上流側触媒の触媒床温を下げた後、排気ガスの空燃比(A/F)の制御を終了する。
また、図2−1においてステップS12の判定の結果、水素濃度が所定値以下と判定された(ステップS12否定)場合には、図2−3に示すステップS31へ移行し、排気ガスの空燃比(A/F)を制御し、所定の空燃比(A/F)に調整する。
その後、ステップS32では、上流側触媒装置11内の前記上流側触媒の触媒温度が所定温度(例えば600℃)以下であるか否かについて判定される。ステップS32の判定の結果、上流側触媒装置11内の前記上流側触媒の触媒床温が所定温度(例えば600℃)以下と判定された(ステップS32肯定)場合には、排気ガスの空燃比(A/F)の制御を終了する。
また、ステップS32の判定の結果、上流側触媒装置11内の前記上流側触媒の触媒床温が所定温度以上と判定された(ステップS23否定)場合には、ステップS33へ移行し、触媒床温を所定温度(例えば600℃)以下に下げ、排気ガスの空燃比(A/F)の制御を終了する。
また、本実施の形態では、一連の制御方法をアルコール成分を含有する燃料としてE13(エタノールがガソリンに13%混入した燃料)を用いた場合について説明したが、本発明はこれに限定されるものではなく他のアルコール成分を含有する燃料を用いるようにしてよい。
この一連の制御方法により、アルコール成分を含有する燃料を用いた場合でも、NOX濃度が所定値以下となるように水素の発生量を調整し、排気ガス中の空燃比(A/F)を制御することで、水素により酸が還元されアルコールが生成されるのを抑止すると共に、アルコールから生成されるアルデヒドをアルデヒドの状態で反応が停止することなく、一気に酸にまで反応を進めることができる。この結果、NOXの排出量を制御しつつ、アルデヒドの発生を大幅に抑制することができる。
また、下流側触媒装置12を一つとしているが、本発明はこれに限定されるものではなく、下流側触媒装置12を二つ以上配設してもよい。
FFVシステムで燃料としてアルコール燃料を用いる場合、通常、下流側触媒装置12を2つ設けるようにしている。排気ガス流れ方向の前段の下流側触媒装置で排気ガスの空燃比(A/F)を理論空燃比よりリッチ側となるように調整した後、後段の下流側触媒装置で排気ガスの空燃比(A/F)を下流側触媒装置で調整した排気ガスの空燃比(A/F)を例えば14.1よりリーン側となるように調整するようにしている。これにより水素が発生しないようにすることができる。
FFVシステムで燃料としてアルコール燃料を用いる場合、通常、下流側触媒装置12を2つ設けるようにしている。排気ガス流れ方向の前段の下流側触媒装置で排気ガスの空燃比(A/F)を理論空燃比よりリッチ側となるように調整した後、後段の下流側触媒装置で排気ガスの空燃比(A/F)を下流側触媒装置で調整した排気ガスの空燃比(A/F)を例えば14.1よりリーン側となるように調整するようにしている。これにより水素が発生しないようにすることができる。
図5は、下流側触媒装置12を二つ配設した内燃機関の排気浄化装置である。図5に示すように下流側触媒装置12として第一の下流側触媒装置12−1、第二の下流側触媒装置12−2を設けている。
第一の下流側触媒装置12−1は、排気ガスの空燃比(A/F)を理論空燃比よりリッチ側となるように調整する。また、第二の下流側触媒装置12−2は、第一の下流側触媒装置12−1でリッチ側とした排気ガスの空燃比(A/F)をリーン側に調整するようにしている。
第一の下流側触媒装置12−1では、排気ガスの空燃比(A/F)を理論空燃比より例えば12.0〜13.0程度とリッチ側となるように調整するようにしている。
そして、第二の下流側触媒装置12−2では、第一の下流側触媒装置12−1で調整した排気ガスの空燃比(A/F)を例えば14.1程度よりリーン側に調整するようにしている。
E13(エタノールがガソリンに13%混入した燃料)を用いた時、上流側触媒装置11内の前記上流側触媒の触媒床温が所定温度(例えば600℃)の場合、図3、4に示すように水素の発生し始める排気ガスの空燃比(A/F)が14.5付近である。よって、第二の下流側触媒装置12−2の排出側の空燃比を例えば14.5よりリーン側の値である例えば14.5又は14.6とし、理論空燃比(ストイキ)乃至リッチとすることにより、NOXを脱離して反応させることができると共に、水素が発生しない空燃比とすることができる。
このように本実施例の内燃機関の排気浄化装置によれば、NOX排出量、水素濃度から排気ガス中の空燃比を制御し、NOX排出量が所定値以下となるように水素の発生量を制御することができる。このため、アルコール成分を含有する燃料を用いた場合でも、アルコールから生成されるアルデヒドを酸にまで一気に反応を進めることができるため、NOXの排出量を制御しつつ、アルデヒドの発生を大幅に抑制することができる。
以上のように、本実施例の内燃機関の排気浄化装置は、排気ガス中の空燃比を制御し、NOX排出量が所定値以下となるように水素の発生量を制御することで、アルコール燃料中のアルコールから生成されるアルデヒドを酸にまで反応を進め、NOX排出量を制御しつつ、アルデヒドの発生の抑制を図るものであり、自動車に搭載されるガソリン機関、特にアルコール燃料を用いたFFVシステムに有用である。
1 内燃機関(エンジン)
2 シリンダブロック
3 シリンダヘッド
4 ピストン
5 燃焼室
6 吸気管
7 排気管(排気経路)
8 吸気弁
9 排気弁
10 燃料噴射弁
11 上流側触媒
12 下流側触媒
12−1 第一の下流側触媒装置
12−2 第二の下流側触媒装置
15 A/Fセンサ
16 水素濃度センサ
17 NOXセンサ
20 車両制御部
30 排気浄化装置
2 シリンダブロック
3 シリンダヘッド
4 ピストン
5 燃焼室
6 吸気管
7 排気管(排気経路)
8 吸気弁
9 排気弁
10 燃料噴射弁
11 上流側触媒
12 下流側触媒
12−1 第一の下流側触媒装置
12−2 第二の下流側触媒装置
15 A/Fセンサ
16 水素濃度センサ
17 NOXセンサ
20 車両制御部
30 排気浄化装置
Claims (5)
- 燃料としてアルコール燃料を用いる内燃機関の排気経路に設けられ、前記排気経路を流れる排気ガスを浄化する上流側触媒を収容する上流側触媒装置と、
前記上流側触媒装置より前記排気ガスの流れ方向の下流側に設けられ、前記排気ガスの空燃比がリーンのときに窒素酸化物を吸蔵すると共に、理論空燃比ないしリッチのときに吸蔵している窒素酸化物を脱離する下流側触媒を収容する少なくとも一つ以上の下流側触媒装置と、
前記上流側触媒装置の上流側に設けられ、前記排気ガスの空燃比を検出する空燃比検出手段と、
前記排気経路における前記上流側触媒装置と前記下流側触媒装置との間に設けられ、前記排気ガスの水素濃度を検出する水素濃度検出手段と、
前記下流側触媒装置の下流側に設けられ、前記排気ガスの窒素酸化物濃度を検出する窒素酸化物濃度検出手段とを有する排気浄化装置であって、
前記排気ガスの空燃比が理論空燃比よりリーンであるとき、前記排気ガスの空燃比を理論空燃比ないしリッチとなるように水素を発生させて前記窒素酸化物を還元すると共に、
前記窒素酸化物濃度検出手段による検出結果に基づいて、前記窒素酸化物の濃度が所定値以下となるように水素の発生量を制御することを特徴とする内燃機関の排気浄化装置。 - 請求項1において、
前記窒素酸化物濃度検出手段による前記窒素酸化物の排出量が所定値以上の場合、水素を発生させ、前記窒素酸化物を還元することを特徴とする内燃機関の排気浄化装置。 - 請求項1又は2において、
水素を発生させる場合、前記上流側触媒の触媒温度がアルコールから酸へのシフト反応が起こる所定温度以下であることを特徴とする内燃機関の排気浄化装置。 - 請求項2又は3において、
前記所定温度が、600℃以下であることを特徴とする内燃機関の排気浄化装置。 - 請求項1乃至4に何れか一つにおいて、
前記窒素酸化物濃度検出手段による前記窒素酸化物の排出量が所定値未満の場合、水素の発生を制御することを特徴とする内燃機関の排気浄化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007156831A JP2008309043A (ja) | 2007-06-13 | 2007-06-13 | 内燃機関の排気浄化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007156831A JP2008309043A (ja) | 2007-06-13 | 2007-06-13 | 内燃機関の排気浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008309043A true JP2008309043A (ja) | 2008-12-25 |
Family
ID=40236867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007156831A Pending JP2008309043A (ja) | 2007-06-13 | 2007-06-13 | 内燃機関の排気浄化装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008309043A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009203104A (ja) * | 2008-02-27 | 2009-09-10 | Toyota Motor Corp | 燃料改質装置 |
US8240194B2 (en) | 2009-07-30 | 2012-08-14 | Ford Global Technologies, Llc | Methods and systems for diagnostics of an emission system with more than one SCR region |
US8516798B2 (en) | 2009-07-30 | 2013-08-27 | Ford Global Technologies, Llc | Methods and systems for control of an emission system with more than one SCR region |
CN106837571A (zh) * | 2015-12-07 | 2017-06-13 | 现代自动车株式会社 | 通过分析车辆的行驶模式提高燃料效率的方法 |
-
2007
- 2007-06-13 JP JP2007156831A patent/JP2008309043A/ja active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009203104A (ja) * | 2008-02-27 | 2009-09-10 | Toyota Motor Corp | 燃料改質装置 |
US8240194B2 (en) | 2009-07-30 | 2012-08-14 | Ford Global Technologies, Llc | Methods and systems for diagnostics of an emission system with more than one SCR region |
US8516798B2 (en) | 2009-07-30 | 2013-08-27 | Ford Global Technologies, Llc | Methods and systems for control of an emission system with more than one SCR region |
US8661882B2 (en) | 2009-07-30 | 2014-03-04 | Ford Global Technologies, Llc | Methods and systems for diagnostics of an emission system with more than one SCR region |
US9304061B2 (en) | 2009-07-30 | 2016-04-05 | Ford Global Technologies, Llc | Methods and systems for diagnostics of an emission system with more than one SCR region |
CN106837571A (zh) * | 2015-12-07 | 2017-06-13 | 现代自动车株式会社 | 通过分析车辆的行驶模式提高燃料效率的方法 |
CN106837571B (zh) * | 2015-12-07 | 2021-08-31 | 现代自动车株式会社 | 通过分析车辆的行驶模式提高燃料效率的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101393221B1 (ko) | 내연 기관의 배기 정화 방법 | |
WO2011114501A1 (ja) | 内燃機関の排気浄化装置 | |
US20080295498A1 (en) | Exhaust gas purifying apparatus for international combustion | |
JPWO2011114540A1 (ja) | 内燃機関の排気浄化装置 | |
KR101317411B1 (ko) | 매연 필터 재생 시스템 및 그 방법 | |
WO2015194155A1 (en) | Deterioration diagnosis apparatus for exhaust gas purification apparatus | |
JP4244648B2 (ja) | 排気ガス浄化装置 | |
JP2016522739A (ja) | Nox吸蔵触媒の脱硫 | |
US20070003455A1 (en) | Exhaust purifying device for internal combustion engine | |
JP2008309043A (ja) | 内燃機関の排気浄化装置 | |
JP4507018B2 (ja) | 内燃機関の排気浄化装置 | |
JP5131389B2 (ja) | 内燃機関の排気浄化装置 | |
WO2013118254A1 (ja) | 内燃機関の排気浄化装置 | |
JP4946725B2 (ja) | 排気ガス浄化方法及び排気ガス浄化装置 | |
JP2008190461A (ja) | 排ガス浄化装置及び排ガス浄化装置の脱硫方法 | |
WO2014024311A1 (ja) | 火花点火式内燃機関の排気浄化装置 | |
JP2021173212A (ja) | 水素燃料エンジンの排気浄化システム | |
JP5476771B2 (ja) | 排気ガス浄化システム及び排気ガス浄化システムの制御方法 | |
US11441464B2 (en) | Use of ozone with LNT and MnO2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion | |
KR101305187B1 (ko) | 배기 가스 정화 장치 및 이를 제어하는 방법 | |
US11686236B1 (en) | Device for the reduction of ammonia and nitrogen oxides emissions | |
KR20130064154A (ko) | 배기 가스 정화 시스템 및 그 방법 | |
JP5347996B2 (ja) | 排ガス浄化装置 | |
KR101816424B1 (ko) | 질소산화물 정화 장치의 배출 가스 공연비 제어 방법 | |
JP2024123807A (ja) | 排気浄化装置 |