[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008238153A - Fluid irradiator with magnetic field - Google Patents

Fluid irradiator with magnetic field Download PDF

Info

Publication number
JP2008238153A
JP2008238153A JP2007114848A JP2007114848A JP2008238153A JP 2008238153 A JP2008238153 A JP 2008238153A JP 2007114848 A JP2007114848 A JP 2007114848A JP 2007114848 A JP2007114848 A JP 2007114848A JP 2008238153 A JP2008238153 A JP 2008238153A
Authority
JP
Japan
Prior art keywords
magnetic field
fluid
cavity
tube
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007114848A
Other languages
Japanese (ja)
Inventor
Sadaji Hongo
定治 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007114848A priority Critical patent/JP2008238153A/en
Publication of JP2008238153A publication Critical patent/JP2008238153A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost and small-sized fluid irradiator with magnetic field capable of efficiently subdividing and performing a distributed processing of fluid molecules such as water requiring the distributed processing, fuel solution, mixture gas of fuel solution and air or the like. <P>SOLUTION: A fluid irradiator with a magnetic field is provided with a fluid passage (14) having a first hollow part (15) and a second hollow part (16) capable of flowing fluids (10) such as water requiring the distributed processing, fuel solution, mixture gas mixed with fuel solution and air or the like, a first magnetic field irradiation equipment (20) capable of irradiating the magnetic field to the fluid molecules flowing through the first hollow part, and a second magnetic field irradiation equipment (30) with a superimposed pulse wave capable of irradiating crystal grains of fluid (10) molecules flowing through the second hollow part already having been irradiated magnetism with the magnetic field with the superimposed pulse waves. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空洞部を有する流体通路を流れる分散処理を必要とする水(特に河川水からの工業用水、地下水または水道水のような飲料水)、燃料液体(特に空気と混合して内燃機関の燃料として使用されるガソリン、軽油、重油)、気体(特に酸素を製造する場合の空気、燃料として使用する場合の天然ガス)、あるいは燃料液体と空気の混合気体(特に噴射ガソリンと空気の混合気体、噴射軽油と空気の混合気体、噴射重油と空気の混合気体、天然ガスに液状飛沫ガスを含む混合気体、等)の流体類の分子に、磁場を用いて流体分子の結晶粒子を順次細分化することにより、流体類分子の分散清浄処理が効率よく行われるように構成される流体への磁場照射装置に関するものである。  The present invention relates to water (especially industrial water from river water, drinking water such as ground water or tap water) flowing through a fluid passage having a cavity, fuel liquid (especially mixed with air and an internal combustion engine) Gasoline (light oil, heavy oil) used as fuel, gas (especially air when producing oxygen, natural gas when used as fuel), or a mixture of fuel liquid and air (especially a mixture of injected gasoline and air) Gas, gas mixture of jet light oil and air, gas mixture of jet heavy oil and air, gas mixture of natural gas and liquid droplet gas, etc.) It is related with the magnetic field irradiation apparatus to the fluid comprised so that the dispersion | distribution cleaning process of fluid molecule | numerators may be performed efficiently.

清浄処理を必要とする水(河川水、地下水または水道水のような飲料水)、燃料液体(ガソリン、軽油、重油)、気体(空気、天然ガス)、あるいは燃料液体と空気の混合気体(噴射ガソリンと空気の混合気体、噴射軽油と空気の混合気体、噴射重油と空気の混合気体、天然ガスに液状飛沫ガスを含む混合気体)等の流体類は、その使用目的により必要な分散清浄処理が施される。  Water that requires cleaning (drinking water such as river water, ground water or tap water), fuel liquid (gasoline, light oil, heavy oil), gas (air, natural gas), or a mixture of fuel liquid and air (injection) Fluids such as gasoline / air mixture gas, injection gas oil / air mixture gas, injection heavy oil / air mixture gas, mixture gas containing liquid droplet gas in natural gas), etc., may be dispersed and cleaned depending on the purpose of use. Applied.

特に、河川水,地下水を飲料用の水道水にする場合、ガソリン,軽油,重油などの燃料液体を空気と混合して内燃機関に使用する場合、気体としての空気から酸素を製造する場合、あるいは天然ガスを燃料として使用する場合など、広い産業分野に於いては、それら水、燃料液体、気体、あるいは燃料液体と空気の混合気体などの流体類に対して、それぞれ用途に応じた品質の水質、燃料液体、気体、液体と空気の混合気体が要求される。  In particular, when river water and groundwater are used as drinking tap water, when fuel liquid such as gasoline, light oil, heavy oil is mixed with air and used in an internal combustion engine, when oxygen is produced from air as a gas, or In a wide range of industrial fields, such as when natural gas is used as a fuel, the quality of water according to the intended use of these fluids such as water, fuel liquid, gas, or a mixture of fuel liquid and air , Fuel liquid, gas, mixed gas of liquid and air are required.

このため、飲料用水あるいは工業用水などの水処理方法として、従来から薬品添加による化学処理法、磁気、電気、超音波処理、あるいは水溶液に磁気照射を行う水処理法などの物理的な清浄法が行われている。特に飲料用の地下水、水道水などの水中に含まれるシリコン、カルシウムなどの不純物処理法の研究提唱も盛んに行われている。  For this reason, as a water treatment method for drinking water or industrial water, there are conventionally physical cleaning methods such as a chemical treatment method by adding chemicals, a magnetic treatment, an electrical treatment, an ultrasonic treatment, or a water treatment method in which an aqueous solution is magnetically irradiated. Has been done. In particular, research proposals have been actively made on methods for treating impurities such as silicon and calcium contained in drinking water such as groundwater and tap water.

東谷公 押谷潤「界面の水と磁場効果」2000年12月、ウオーターサイエンス研究会予稿集、  Kimi Totani Jun Oshiya “Water and Magnetic Field Effect at the Interface” December 2000, Proceedings of Water Science Society, 松崎五三男「磁気処理水の効果と作用メカニズム」Vol.11No.2(1991年)食品加工技術  Matsuzaki Ikuo “Effects and Mechanism of Magnetically Treated Water” Vol. 11No. 2 (1991) Food processing technology

一方、河川水、地下水または水道水に含まれているシリコン、カルシウムなどに起因する析出物の付着防止、錆防止対策に有用であるとして開発された水処理機器として、磁気、あるいは電気を利用した形式の水処理機器が市販されており、輸入販売も行われている。  On the other hand, magnetic or electricity was used as a water treatment device that was developed to be useful for preventing deposits caused by silicon, calcium, etc. contained in river water, groundwater or tap water, and for preventing rust. There are some types of water treatment equipment on the market, and they are imported and sold.

図10は、従来の技術による磁気照射水処理装置を示している。
水処理装置は、水道水41などを通水できる送水管40の両側に直流電源42を有する電磁石43、電磁石44を配置し、電磁石43と電磁石44から発生する静的な磁気が、送水管40を通る炭酸カルシウムを添加した水道水41に照射できるように構成されている。なお、水道水の給排水源路、送水管のバルブは図示を省略した。
FIG. 10 shows a conventional magnetic irradiation water treatment apparatus.
In the water treatment apparatus, an electromagnet 43 and an electromagnet 44 having a DC power source 42 are arranged on both sides of a water pipe 40 through which tap water 41 and the like can pass, and static magnetism generated from the electromagnet 43 and the electromagnet 44 is supplied to the water pipe 40. It is comprised so that it can irradiate to the tap water 41 which added the calcium carbonate which passes through. The tap water supply and drainage source and the water pipe valve are not shown.

図10の水処理装置によると、送水管40の内部を流れる水道水41に磁気を照射しない場合は、水道水41に含まれているカルシウムに起因する生成物の粒子が送水管40の内壁に多数付着しているのに対して、送水管40の両側に配置した電磁石43、電磁石44を用いて、カルシウムの多い水道水41に静的な磁気を照射した場合は、カルシウムに起因する生成物の粒子を細分化するとともに、送水管40の内壁への粒子の付着量も少なくなり、水道水41に磁気を照射した効果が認められると研究論文は報告している。  According to the water treatment device of FIG. 10, when the tap water 41 flowing inside the water pipe 40 is not irradiated with magnetism, the particles of the product due to calcium contained in the tap water 41 are formed on the inner wall of the water pipe 40. When many magnets are attached, but when static magnetism is applied to tap water 41 containing a lot of calcium using the electromagnet 43 and the electromagnet 44 arranged on both sides of the water pipe 40, the product resulting from calcium The research paper reports that the effect of irradiating the tap water 41 with magnetism can be recognized by subdividing the particles and reducing the amount of particles attached to the inner wall of the water pipe 40.

しかし、提唱されている磁気を利用した流体の処理機器の場合、処理時の磁気エネルギー不足が原因して完全な機能を発揮できないという問題がある。現在、市場から調達可能な比較的強い磁場を発生する永久磁石(最高1.4T)、強い電磁石(10T程度)を用いて、磁気処理部の磁気の強度を増加させる方法も考えられるが、強い磁場の磁石を用いると処理機器は高価となり、汎用な小型処理機器を提供できないという課題がある。  However, in the case of the proposed fluid processing equipment using magnetism, there is a problem that a complete function cannot be exhibited due to insufficient magnetic energy during processing. Currently, it is possible to increase the magnetic strength of the magnetic processing unit by using a permanent magnet (up to 1.4T) and a strong electromagnet (about 10T) that generate a relatively strong magnetic field that can be procured from the market. When a magnetic field magnet is used, the processing equipment becomes expensive, and there is a problem that a general-purpose small processing equipment cannot be provided.

さらに、ガソリン,軽油,重油を使用する燃料液体分野、特に燃料液体と空気を混合する内燃機関の分野、気体としての空気から純度の高い酸素を製造する分野、あるいは天然ガスを燃料として使用する分野等においても、それぞれ、流体類を細分化して分散処理ができる機器の出現が強く要望されている。  Furthermore, the field of fuel liquids using gasoline, light oil and heavy oil, especially the field of internal combustion engines that mix fuel liquid and air, the field of producing high-purity oxygen from air as gas, or the field of using natural gas as fuel In addition, there has been a strong demand for the appearance of devices that can disperse fluids and disperse them.

また、従来の電気処理法による物理的な水処理装置によると、処理する流体の水質または成分がそれぞれ異なることに加えて、飲料用水として除去したいシリコン、あるいは工業用水として除去したいカルシウムなどの水中における不純物の挙動が複雑であるために、電気的な流体処理が有効に働く場合と、流体処理への効果が不充分な場合とがあり、すべての水質の成分に対して一様な効果が得られないという課題が残されている。  Moreover, according to the physical water treatment apparatus by the conventional electrical treatment method, the water quality or components of the fluid to be treated are different from each other, and in water such as silicon that is desired to be removed as drinking water or calcium that is desired to be removed as industrial water. Due to the complicated behavior of impurities, there are cases where electrical fluid treatment works effectively and cases where the effect on fluid treatment is insufficient, and a uniform effect is obtained for all water quality components. The problem that it is not possible remains.

従って、本発明の目的は、分散処理を必要とする水(特に河川水からの工業用水、地下水または水道水のような飲料水)、燃料液体(特に内燃機関に使用されるガソリン、軽油、重油)、気体(特に酸素を製造する場合の空気、燃料として使用する場合の天然ガス)、燃料液体と気体の混合気体(特に噴射ガソリンと空気の混合気体、噴射軽油と空気の混合気体、噴射重油と空気の混合気体、天然ガスに液状飛沫ガスを含む混合気体、等)の流体類の分子を、効率よく細分化して分散処理ができる廉価で小型な流体への磁場照射装置を提供することにある。  Accordingly, it is an object of the present invention to provide water (especially industrial water from river water, drinking water such as ground water or tap water), fuel liquid (especially gasoline, light oil, heavy oil used for internal combustion engines) that requires dispersion treatment. ), Gas (especially air when producing oxygen, natural gas when used as fuel), mixed gas of fuel liquid and gas (especially mixed gas of injected gasoline and air, mixed gas of injected light oil and air, injected heavy oil) To provide a low-priced and small-sized magnetic field irradiation device that can efficiently disperse and disperse fluid molecules such as a mixed gas of air and air, a mixed gas containing liquid droplet gas in natural gas, etc. is there.

また、本発明の他の目的は、河川水、地下水、水道水などの飲料用水または工業用水などの流体に含まれる水中不純物としてのシリコンまたはカルシウムなどに対して効率よく分散処理ができ、水質の清浄な飲料用水、あるいは所望の工業用水を経済的に得られる流体への磁場照射装置を提供することにある。  Another object of the present invention is to efficiently disperse silicon or calcium as an underwater impurity contained in fluids such as river water, ground water, tap water, and other drinking water or industrial water. An object of the present invention is to provide an apparatus for irradiating a magnetic field to a fluid from which clean drinking water or desired industrial water can be obtained economically.

本発明は、上記の目的を実現するために、分散処理を必要とする水(河川水、地下水または水道水のような飲料水)、燃料液体(ガソリン、軽油、重油)、気体(空気、天然ガス)、あるいは燃料液体と空気の混合気体(噴射ガソリンと空気の混合気体、噴射軽油と空気の混合気体、噴射重油と空気の混合気体、天然ガスに液状飛沫ガスを含む混合気体、等)の流体類(10)の分子を流せる、第1空洞部(15)および第2空洞部(16)を有する流体通路(14)と、
流体通路(14)の第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に、磁場を照射できる第1磁場照射機器(20)と、
第1磁場照射機器(20)によって、既に磁気を照射された第2空洞部(16)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子の結晶粒子に、パルス波を重畳した磁場を照射できるパルス波重畳第2磁場照射機器(30)とを備えており、
流体通路(14)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に対しては、
第1磁場照射機器(20)によって、合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管(17)の流体通路(14)の第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に、磁場を照射する第1磁場照射手段と、
パルス波重畳第2磁場照射機器(30)によって、合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管(17)の流体通路(14)の第2空洞部(16)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子の結晶粒子に、パルス波を重畳した磁場を照射する第2磁場照射手段とが、連続して行われることにより、
流体通路(14)を流れる流体分子の結晶粒子を、順次細分化して流体分子の分散処理が行われるように構成されていることを特徴とする流体への磁場照射装置を提供する。
In order to realize the above-mentioned object, the present invention provides water (drinking water such as river water, ground water or tap water), fuel liquid (gasoline, light oil, heavy oil), gas (air, natural) Gas) or fuel gas / air mixture (injected gasoline / air mixture, injection gas / air mixture, injection heavy oil / air mixture, natural gas containing liquid droplets, etc.) A fluid passageway (14) having a first cavity (15) and a second cavity (16) through which molecules of fluids (10) can flow;
A first magnetic field irradiation device that can irradiate molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through the first cavity (15) of the fluid passage (14) with a magnetic field. (20) and
The molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through the second cavity (16) that has already been magnetized by the first magnetic field irradiation device (20). A pulse wave superimposing second magnetic field irradiation device (30) capable of irradiating a crystal particle with a magnetic field superimposed with a pulse wave;
For molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through the fluid passage (14),
A first cavity of a fluid passage (14) of a non-magnetic material pipe (17) such as a synthetic resin pipe, a ceramic pipe, a copper pipe, a non-ferrous alloy pipe, a non-magnetic material stainless steel pipe or the like by the first magnetic field irradiation device (20). First magnetic field irradiation means for irradiating molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing in the section (15) with a magnetic field;
By the pulse wave superimposing second magnetic field irradiation device (30), the fluid passage (14) of the nonmagnetic material tube (17) such as a synthetic resin tube, a ceramic tube, a copper tube, a nonferrous alloy tube, a nonmagnetic material stainless steel tube, etc. A second magnetic field that irradiates a magnetic field in which pulse waves are superimposed on crystal particles of molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing in the second cavity (16). By performing irradiation means continuously,
There is provided a magnetic field irradiation apparatus for a fluid, characterized in that the crystal particles of fluid molecules flowing in a fluid passage (14) are sequentially subdivided to perform dispersion treatment of fluid molecules.

また、上記の目的を実現するために、本発明は、流体通路(14)の第1空洞部(15)は、第1空洞部(15)の筒状空洞部分の主要構成材料自体が、第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に対して、
磁場を照射できるように配置されたS極とN極を有する永久磁石(21)の1組または複数組の永久磁石群の組み合わせから成る永久磁石(21)の磁性材料によって構成される第1磁場照射機器(20)、
あるいは第1空洞部(15)の筒状空洞部分の主要構成材料自体が、第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に対して、磁場を照射できるように配置された電磁用コイル(23)により磁化されるS極とN極を有する電磁石(22)の1組または複数組の電磁石の組み合わせから成る電磁石(22)の磁性材料によって構成される第1磁場照射機器(20)を包含していることを特徴とする流体への磁場照射装置を提供する。
In order to achieve the above object, according to the present invention, the first cavity portion (15) of the fluid passage (14) is composed of the main constituent material itself of the cylindrical cavity portion of the first cavity portion (15). For molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through one cavity (15),
1st magnetic field comprised by the magnetic material of the permanent magnet (21) which consists of 1 set of the permanent magnet (21) which has been arrange | positioned so that a magnetic field can be irradiated, and a combination of several sets of permanent magnet groups Irradiation equipment (20),
Alternatively, the main constituent material itself of the cylindrical cavity portion of the first cavity portion (15) is a fluid (10 such as water, fuel liquid, gas, or a mixed gas of fuel liquid and air) flowing through the first cavity portion (15). The electromagnet is composed of one or a plurality of electromagnets having an S pole and an N pole magnetized by an electromagnetic coil (23) arranged so as to be able to irradiate a magnetic field to a molecule of A magnetic field irradiation apparatus for a fluid is provided, which includes the first magnetic field irradiation device (20) made of the magnetic material of (22).

また、上記の目的を実現するために、本発明は、流体通路(14)の第1空洞部(15)は、構成材料が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管(17)から成る第1空洞部(15)と、第1空洞部(15)の周囲に配置されるS極とN極を有する永久磁石(21)の1組または複数組の永久磁石群との組み合わせから成る永久磁石(21)の第1磁場照射機器(20)、
あるいは構成材料が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管(17)から成る第1空洞部(15)と、第1空洞部(15)を流れる流体類(10)の分子に対して、磁場を照射できるように配置される電磁用コイル(23)により磁化されるS極とN極を有する電磁石(22)の1組または複数組の電磁石(22)の磁性材料との組み合わせから成る第1磁場照射機器(20)によって構成されることを特徴とする流体への磁場照射装置を提供する。
In order to realize the above object, according to the present invention, the first hollow portion (15) of the fluid passage (14) is composed of a synthetic resin pipe, a ceramic pipe, a copper pipe, a non-ferrous alloy pipe, a non-magnetic material. A first hollow portion (15) made of a non-magnetic material tube (17) such as a stainless steel tube, and a permanent magnet (21) having S and N poles arranged around the first hollow portion (15). A first magnetic field irradiation device (20) of a permanent magnet (21) composed of a combination with one or more groups of permanent magnets,
Alternatively, the first cavity portion (15) and the first cavity portion (15) are made of a nonmagnetic material tube (17) such as a synthetic resin tube, a ceramic tube, a copper tube, a nonferrous alloy tube, or a nonmagnetic material stainless steel tube. 15) One or more sets of electromagnets (22) having an S pole and an N pole magnetized by an electromagnetic coil (23) arranged so that a magnetic field can be applied to molecules of fluids (10) flowing through 15) Provided is a magnetic field irradiation apparatus for a fluid, characterized by comprising a first magnetic field irradiation device (20) made of a combination of a pair of electromagnets (22) and a magnetic material.

また、上記の目的を実現するために、本発明は、第2空洞部(16)を有する流体通路(14)は、第2空洞部(16)の構成材料自体が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管(17)から成る第2空洞部(16)と、非磁性材管(17)の第2空洞部(16)の周囲に配置されるパルス波を重畳したソレノイドコイル(33)との組み合わせから成るパルス波重畳第2磁場照射機器(30)によって構成されることを特徴とする流体への磁場照射装置提供する。  In order to achieve the above object, according to the present invention, the fluid passage (14) having the second cavity portion (16) is made of a synthetic resin tube, a ceramic tube, and a material constituting the second cavity portion (16) itself. A second cavity portion (16) made of a nonmagnetic material tube (17) such as a copper tube, a non-ferrous alloy tube, a nonmagnetic material stainless steel tube, etc., and a second cavity portion (16) of the nonmagnetic material tube (17). Provided is a magnetic field irradiation apparatus for a fluid, characterized by being constituted by a pulse wave superimposed second magnetic field irradiation device (30) composed of a combination with a solenoid coil (33) superimposed with a pulse wave arranged around.

また、上記の目的を実現するために、本発明は、流体通路(14)の空洞部分を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)分子への磁場の連続照射は、
第1空洞部(15)にパルス波重畳第2磁場照射機器(30)を配置し、第2空洞部(16)に第1磁場照射機器(20)を配置して構成される配置替えした磁場照射装置によって、パルス波を重畳した磁場を照射する第2磁場照射手段と、磁場を照射する第1磁場照射手段による磁場を連続して照射することにより、
流体通路(14)を流れる流体類(10)の分子の結晶粒子を順次細分化して流体類(10)分子の分散処理が行われるように構成される配置替えした磁場照射装置を包含していることを特徴とする流体への磁場照射装置を提供する。
In order to achieve the above object, the present invention is directed to fluid (10) molecules such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing in the cavity of the fluid passage (14). Continuous irradiation of magnetic field
A rearranged magnetic field in which the pulse wave superimposed second magnetic field irradiation device (30) is disposed in the first cavity (15) and the first magnetic field irradiation device (20) is disposed in the second cavity (16). By continuously irradiating the magnetic field by the second magnetic field irradiating means for irradiating the magnetic field superimposed with the pulse wave and the first magnetic field irradiating means for irradiating the magnetic field by the irradiation device,
It includes a rearranged magnetic field irradiation apparatus configured to sequentially subdivide crystal particles of molecules of fluids (10) flowing through a fluid passage (14) and to disperse fluids (10) molecules. An apparatus for irradiating a magnetic field to a fluid is provided.

本発明の流体への磁場照射装置によると、第1空洞部および第2空洞部を有する流体通路を流れる分散処理を必要とする水(特に河川水からの工業用水、地下水または水道水のような飲料水)、燃料液体(特にガソリン、軽油、重油)、気体(特に酸素を製造する場合の空気、燃料として使用する場合の天然ガス)、燃料液体と空気の混合気体(特に内燃機関の燃料に使用される噴射ガソリンと空気の混合気体、噴射軽油と空気の混合気体、噴射重油と空気の混合気体、天然ガスに液状飛沫ガスを含む混合気体)等の流体類の分子は、最初に第1空洞部に配置されている第1磁場照射機器による磁場の照射によって分散処理される。
つぎに既に磁気を照射した第2空洞部を流れる流体類の分子の結晶粒子に対して、パルス波を重畳した磁場を照射できるパルス波重畳第2磁場照射機器によって、流体類の分子に対する連続的な磁場の照射により、流体分子の結晶粒子を更に細分化して流体分子の分散処理を行うことができるという効果が得られる。
According to the magnetic field irradiation apparatus for the fluid of the present invention, water that requires a dispersion treatment flowing through the fluid passage having the first cavity portion and the second cavity portion (especially, industrial water, river water, or tap water from river water). Drinking water), fuel liquid (especially gasoline, light oil, heavy oil), gas (especially air when producing oxygen, natural gas when used as fuel), mixed gas of fuel liquid and air (especially for fuel of internal combustion engines) Molecule of fluids such as a mixed gas of injected gasoline and air, a mixed gas of injected light oil and air, a mixed gas of injected heavy oil and air, and a mixed gas containing liquid droplet gas in natural gas are used first. Dispersion processing is performed by irradiation of a magnetic field by a first magnetic field irradiation device arranged in the cavity.
Next, the fluid molecules are continuously applied to the fluid molecules by the pulse wave superimposing second magnetic field irradiation device capable of irradiating the magnetic particles superposed with the pulse waves on the crystal particles of the fluid molecules flowing through the second cavity already irradiated with magnetism. By applying a simple magnetic field, it is possible to further disperse the crystal molecules of the fluid molecules and perform the dispersion treatment of the fluid molecules.

しかも、本発明による流体への磁場照射装置は、第1空洞部に配置されている永久磁石または電磁石を用いた第1磁場照射機器と、第2空洞部に配置されているソレノイドコイルを用いたパルス波を重畳した磁場を照射できるパルス波重畳した第2磁場照射機器によって構成されているので、廉価で小型な流体への磁場照射装置を提供することができるという効果がある。  And the magnetic field irradiation apparatus to the fluid by this invention used the 1st magnetic field irradiation apparatus using the permanent magnet or the electromagnet arrange | positioned in the 1st cavity part, and the solenoid coil arrange | positioned in the 2nd cavity part. Since it is configured by the second magnetic field irradiation device on which the pulse wave is superimposed, which can irradiate the magnetic field on which the pulse wave is superimposed, there is an effect that it is possible to provide an inexpensive and small-sized magnetic field irradiation device.

また、本発明の流体への磁場照射装置によると、河川水、地下水、水道水などの飲料用水の流体に含まれる水中不純物としてのシリコンまたはカルシウムなどを効率よく分散処理ができ、水質の清浄な飲料用水を経済的に得られるという効果がある。  In addition, according to the magnetic field irradiation apparatus for fluid of the present invention, it is possible to efficiently disperse silicon or calcium as an underwater impurity contained in the fluid of drinking water such as river water, ground water, tap water, etc., and the water quality is clean. There is an effect that drinking water can be obtained economically.

(第1の実施の形態)
図1は、本発明の第1実施形態による流体への磁場照射装置を示している。
この磁場照射装置は、分散処理を必要とする流体類10の分子を流せる第1空洞部15と、第2空洞部16を有する流体通路14と、第1空洞部15を流れる水、燃料液体、気体、あるいは燃料用液体と空気の混合気体等の流体類10の分子に、磁場を照射できる第1磁場照射機器20と、既に磁気を照射された第2空洞部16を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類10の分子の結晶粒子に、パルス波を重畳した磁場を照射できるパルス波重畳第2磁場照射機器30とを備えている。
流体類10の分子を流せる第1空洞部15と第2空洞部16を有する流体通路14は、主に合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管で構成される。
(First embodiment)
FIG. 1 shows a magnetic field irradiation apparatus for a fluid according to a first embodiment of the present invention.
This magnetic field irradiation apparatus includes a first cavity portion 15 through which molecules of fluids 10 that require dispersion treatment can flow, a fluid passage 14 having a second cavity portion 16, water flowing through the first cavity portion 15, fuel liquid, A first magnetic field irradiation device 20 capable of irradiating a molecule of fluids 10 such as a gas or a mixture of fuel liquid and air with a magnetic field; water flowing in a second cavity 16 that has already been irradiated with magnetism; a fuel liquid; A pulse wave superimposing second magnetic field irradiation device 30 capable of irradiating a magnetic field in which a pulse wave is superimposed on crystal particles of molecules of fluids 10 such as gas or a mixed gas of fuel liquid and air is provided.
The fluid passage 14 having the first cavity portion 15 and the second cavity portion 16 through which the molecules of the fluids 10 can flow mainly includes a synthetic resin pipe, a ceramic pipe, a copper pipe, a non-ferrous alloy pipe, a non-magnetic material stainless steel pipe, and the like. It consists of a non-magnetic material tube.

図1の流体への磁場照射装置においては、流体通路14の第1空洞部15を流れる流体類10の分子に対して、第1磁場照射機器20によって磁場を照射する第1磁場照射手段と、第2空洞部16を流れる流体類10の分子の結晶粒子に対して、パルス波を重畳した磁場を照射できるパルス波重畳第2磁場照射機器30によってパルス波を重畳した磁場を照射する第2磁場照射手段とが連続して行われ、流体類10の分子に対する連続的な磁場の照射により、流体通路14を流れる流体類10の分子の結晶粒子を、順次細分化して流体分子の分散処理が行われる。  In the magnetic field irradiation apparatus for the fluid in FIG. 1, a first magnetic field irradiation unit that irradiates a molecule of the fluids 10 flowing through the first cavity 15 of the fluid passage 14 with a first magnetic field irradiation device 20, A second magnetic field that irradiates a magnetic field superimposed with a pulse wave by a pulse wave superimposed second magnetic field irradiation device 30 that can irradiate a crystal particle of molecules of the fluids 10 flowing in the second cavity 16 with a magnetic field superimposed with a pulse wave. The irradiation means is continuously performed, and by the continuous magnetic field irradiation to the molecules of the fluid 10, the crystal particles of the molecules of the fluid 10 flowing in the fluid passage 14 are sequentially subdivided to perform the dispersion processing of the fluid molecules. Is called.

図1の第1の実施の形態の磁場照射装置による流体分子の分散処理能力は、第1磁場照射機器20の永久磁石21のN極S極に発生する磁場の強度(磁束密度F1)と、重畳するパルス波の強さにより発生するパルス波重畳第2磁場照射機器30の磁場の強度(磁束密度F2)との強さによって決定される。
磁束密度(F1)の強さは、第1磁場照射機器20が永久磁石の場合、磁性材料の構成により決まり、第1磁場照射機器20が電磁石の場合は、電磁用コイルの巻線数(n)・電流容量(A)によって決まる。
さらに、第2磁場照射機器30の磁束密度(F2)の強さは、第2磁場照射機器30を構成するソレノイドコイルの巻線数(n)・電流容量(A)による重畳するパルス波の強さにより発生する磁場の強度によって決まる。
The dispersion processing capability of fluid molecules by the magnetic field irradiation apparatus of the first embodiment of FIG. 1 is the intensity of the magnetic field (magnetic flux density F1) generated at the north pole and the south pole of the permanent magnet 21 of the first magnetic field irradiation apparatus 20; It is determined by the strength of the magnetic field strength (magnetic flux density F2) of the pulse wave superimposed second magnetic field irradiation device 30 generated by the strength of the superimposed pulse wave.
When the first magnetic field irradiation device 20 is a permanent magnet, the strength of the magnetic flux density (F1) is determined by the configuration of the magnetic material. When the first magnetic field irradiation device 20 is an electromagnet, the number of windings (n ) • Determined by current capacity (A).
Furthermore, the strength of the magnetic flux density (F2) of the second magnetic field irradiation device 30 is the strength of the pulse wave superimposed by the number of windings (n) and current capacity (A) of the solenoid coil constituting the second magnetic field irradiation device 30. It depends on the strength of the magnetic field generated.

(第2の実施の形態)
図2は、本発明の第2実施形態による第1磁場照射機器20の横断説明図であり、流体通路14の第1空洞部15の周囲に設置して使用され、図1に示したパルス波重畳第2磁場照射機器30と一緒に併用される。
図2において、第1磁場照射機器20は、第1空洞部15の流体通路部分の主要構成材料自体が、第1空洞部15を流れる流体類10の分子に対して、磁場を照射できるように配置されたS極とN極を有する永久磁石21(1組または複数組)と、第1空洞部15を形成し流体類10を所望の方向に流すための非磁性材系ステンレス板18を有する。
第1空洞部15に対して複数組の永久磁石21を用いる場合は、流体類10が流れる方向に永久磁石21を直列に配置する。永久磁石21のN極から出る磁力線は、流体類10の分子を横切る形でS極の方へ伸びて、流体類10の分子に対して磁場を照射できる。
(Second Embodiment)
FIG. 2 is a cross-sectional explanatory view of the first magnetic field irradiation device 20 according to the second embodiment of the present invention, which is used by being installed around the first cavity portion 15 of the fluid passage 14 and shown in FIG. It is used together with the superimposed second magnetic field irradiation device 30.
In FIG. 2, the first magnetic field irradiation device 20 allows the main constituent material itself of the fluid passage portion of the first cavity 15 to irradiate the molecules of the fluids 10 flowing through the first cavity 15 with a magnetic field. A permanent magnet 21 (one set or a plurality of sets) having an S pole and an N pole disposed, and a nonmagnetic material stainless steel plate 18 for forming the first cavity 15 and flowing the fluids 10 in a desired direction. .
When a plurality of sets of permanent magnets 21 are used for the first cavity portion 15, the permanent magnets 21 are arranged in series in the direction in which the fluids 10 flow. The lines of magnetic force emerging from the north pole of the permanent magnet 21 extend toward the south pole in a manner that crosses the molecules of the fluids 10 and can irradiate the molecules of the fluids 10 with a magnetic field.

(第3の実施の形態)
図3は、本発明の第3実施形態によるパルス波重畳第2磁場照射機器30の横断説明図であり、流体通路14の第2空洞部16の周囲に設置して使用され、図1に示した第1磁場照射機器20と一緒に併用される。
図3において、パルス波重畳第2磁場照射機器30は、流体通路14の構成材料が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管から成る第2空洞部16と、第2空洞部16の流体通路14の周囲に配置された流体類10の分子に対して、パルス波を重畳した磁場を照射できるソレノイドコイル33とを有する。ソレノイドコイル33にはコンデンサー(図示省略)を用いたパルス波重畳回路35を有する直流電源34が接続されている。また、第2空洞部16の流体通路14とソレノイドコイル33の間には、ソレノイドコイル33にパルス波を重畳した電流を直流電源34から流した場合の磁場によるコイル方向とコイル内径方向への応力から、流体通路14とソレノイドコイル33を保護するために、非磁性材系のステンレス補強管19が配置されている。
(Third embodiment)
FIG. 3 is a cross-sectional explanatory view of the pulse wave superimposed second magnetic field irradiation device 30 according to the third embodiment of the present invention, which is used by being installed around the second cavity 16 of the fluid passage 14 and shown in FIG. The first magnetic field irradiation device 20 is used together.
In FIG. 3, the pulse wave superimposing second magnetic field irradiation device 30 includes a non-magnetic material tube such as a synthetic resin tube, a ceramic tube, a copper tube, a non-ferrous alloy tube, a non-magnetic material stainless steel tube, etc. And a solenoid coil 33 that can irradiate the molecules of the fluids 10 arranged around the fluid passage 14 of the second cavity 16 with a magnetic field superimposed with a pulse wave. A DC power supply 34 having a pulse wave superimposing circuit 35 using a capacitor (not shown) is connected to the solenoid coil 33. Further, between the fluid passage 14 of the second cavity portion 16 and the solenoid coil 33, the stress in the coil direction and the coil inner diameter direction due to the magnetic field when a current in which a pulse wave is superimposed on the solenoid coil 33 is supplied from the DC power supply 34. Therefore, in order to protect the fluid passage 14 and the solenoid coil 33, a stainless steel reinforcing pipe 19 made of a nonmagnetic material is disposed.

図4は、本発明の実施の形態による磁場照射装置において、流体類の分子の変化を模式的に示す説明図である。
図4の模式図によると、流体通路を流れる流体類の流体分子11は、第1磁場照射機器(20)の磁場による磁束密度によって細分化されて結晶粒子12となり、つぎに、パルス波を重畳した磁場を照射する第2磁場照射機器(30)によるパルス波重畳磁場の磁束密度によって分散粒子13となり、順次、流体分子の分散処理が行われるものである。
FIG. 4 is an explanatory diagram schematically showing changes in molecules of fluids in the magnetic field irradiation apparatus according to the embodiment of the present invention.
According to the schematic diagram of FIG. 4, the fluid molecules 11 of the fluids flowing through the fluid passage are subdivided into magnetic particles 12 by the magnetic flux density due to the magnetic field of the first magnetic field irradiation device (20), and then a pulse wave is superimposed. The dispersed particles 13 are formed by the magnetic flux density of the pulse wave superimposed magnetic field by the second magnetic field irradiation device (30) that irradiates the magnetic field, and the fluid molecules are sequentially dispersed.

(第4の実施の形態)
図5は、本発明の第4実施形態による第1磁場照射機器20の横断説明図であり、流体通路14の第1空洞部15の周囲に設置して使用され、図1に示したパルス波重畳第2磁場照射機器30と一緒に併用される。
図5の第1磁場照射機器20は、第1空洞部15の流体通路部分の主要構成材料自体が、第1空洞部15を流れる流体類10の分子に対して、磁場を照射できるように配置された電磁用コイル23と直流電源24により磁化されるS極とN極を有する電磁石22(1組または複数組)と、第1空洞部15を形成し流体類10を所望の方向に流すための非磁性材系のステンレス板18を有する。
第1空洞部15に対して複数組の電磁石22を用いる場合は、流体類10が流れる方向に電磁石22を直列に配置する。電磁石22のN極から出る磁力線は、流体類10の分子を横切る形でS極の方へ伸びて、流体類10の分子に対して磁場を照射できる。
(Fourth embodiment)
FIG. 5 is a cross-sectional explanatory view of the first magnetic field irradiation apparatus 20 according to the fourth embodiment of the present invention, which is used by being installed around the first cavity 15 of the fluid passage 14 and shown in FIG. It is used together with the superimposed second magnetic field irradiation device 30.
The first magnetic field irradiation device 20 of FIG. 5 is arranged so that the main constituent material itself of the fluid passage portion of the first cavity 15 can irradiate the molecules of the fluids 10 flowing through the first cavity 15 with a magnetic field. In order to flow the fluids 10 in a desired direction by forming the electromagnet 22 (one set or a plurality of sets) having the S pole and the N pole magnetized by the electromagnetic coil 23 and the DC power source 24 and the first cavity 15. The non-magnetic material type stainless steel plate 18 is provided.
When using a plurality of sets of electromagnets 22 for the first cavity 15, the electromagnets 22 are arranged in series in the direction in which the fluids 10 flow. The lines of magnetic force emerging from the N pole of the electromagnet 22 extend toward the S pole in a manner that crosses the molecules of the fluids 10 and can irradiate the molecules of the fluids 10 with a magnetic field.

(第5の実施の形態)
図6は、本発明の第5実施形態による第1磁場照射機器20の横断説明図であり、流体通路14の第1空洞部15の周囲に設置して使用され、図1に示したパルス波重畳第2磁場照射機器30と一緒に併用される。
図6の第1磁場照射機器20は、第1空洞部15の流体通路自体の構成材料が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管から成る流体通路14と、第1空洞部15の流体通路14の周囲に配置されたS極とN極を有する永久磁石21(1組または複数組)とを有する。流体通路14の第1空洞部15を流れる流体類10の分子に対しては、永久磁石21により磁場を照射できるように配置されている。
第1空洞部15の流体通路14の周囲に対して複数組の永久磁石21を用いる場合は、流体類10が流れる方向に直列に並べて永久磁石21が配置される。永久磁石21のN極から出る磁力線は、流体類10の分子を横切る形でS極の方へ伸びて、流体類10の分子に対して磁場を照射できる。永久磁石21のN極から出る磁力線は、流体類10の分子を横切る形でS極の方へ伸びて、流体類10の分子に対して磁場を照射できる。
(Fifth embodiment)
FIG. 6 is a cross-sectional explanatory view of the first magnetic field irradiation device 20 according to the fifth embodiment of the present invention, which is used by being installed around the first cavity portion 15 of the fluid passage 14 and shown in FIG. It is used together with the superimposed second magnetic field irradiation device 30.
In the first magnetic field irradiation device 20 of FIG. 6, the constituent material of the fluid passage itself of the first cavity 15 is a non-magnetic material such as a synthetic resin tube, a ceramic tube, a copper tube, a non-ferrous alloy tube, a non-magnetic material stainless steel tube, or the like. A fluid passage 14 made of a tube and a permanent magnet 21 (one set or a plurality of sets) having an S pole and an N pole disposed around the fluid passage 14 of the first cavity 15. It arrange | positions so that the magnetic field can be irradiated with the permanent magnet 21 with respect to the molecule | numerator of the fluids 10 which flows through the 1st cavity part 15 of the fluid channel | path 14. FIG.
When a plurality of sets of permanent magnets 21 are used around the fluid passage 14 of the first cavity 15, the permanent magnets 21 are arranged in series in the direction in which the fluids 10 flow. The lines of magnetic force emerging from the north pole of the permanent magnet 21 extend toward the south pole in a manner that crosses the molecules of the fluids 10 and can irradiate the molecules of the fluids 10 with a magnetic field. The lines of magnetic force emerging from the north pole of the permanent magnet 21 extend toward the south pole in a manner that crosses the molecules of the fluids 10 and can irradiate the molecules of the fluids 10 with a magnetic field.

(第6の実施の形態)
図7は、本発明の第6実施形態による第1磁場照射機器20の横断説明図であり、流体通路14の第1空洞部15の周囲に設置して使用され、図1に示したパルス波重畳第2磁場照射機器30と一緒に併用される。
図7の第1磁場照射機器20は、第1空洞部15の流体通路自体の構成材料が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管から成る流体通路14と、第1空洞部15を流れる流体類10の分子に対して、磁場を照射できるように配置された電磁用コイル23と直流電源24により磁化されるS極とN極を有する電磁石22(1組または複数組)とを有する。流体通路14の第1空洞部15を流れる流体類10の分子に対しては、電磁石22により磁場を照射する。
(Sixth embodiment)
FIG. 7 is a cross-sectional explanatory view of the first magnetic field irradiation device 20 according to the sixth embodiment of the present invention, which is used by being installed around the first cavity 15 of the fluid passage 14 and shown in FIG. It is used together with the superimposed second magnetic field irradiation device 30.
In the first magnetic field irradiation device 20 of FIG. 7, the constituent material of the fluid passage itself of the first cavity 15 is a non-magnetic material such as a synthetic resin tube, a ceramic tube, a copper tube, a non-ferrous alloy tube, a non-magnetic material stainless steel tube, or the like. An S pole and an N pole magnetized by an electromagnetic coil 23 and a DC power supply 24 arranged so that a magnetic field can be applied to a fluid passage 14 composed of a tube and molecules of the fluid 10 flowing in the first cavity 15. And an electromagnet 22 (one set or plural sets). The molecules of the fluids 10 flowing through the first cavity 15 of the fluid passage 14 are irradiated with a magnetic field by the electromagnet 22.

図7において、第1空洞部15の流体通路14の周囲に対して複数組の電磁石22を用いる場合は、流体類10が流れる方向に直列に並べて電磁石22が配置される。電磁石22のN極から出る磁力線は、流体類10の分子を横切る形でS極の方へ伸びて、流体類10の分子に対して磁場を照射できる。電磁石22のN極から出る磁力線は、流体類10の分子を横切る形でS極の方へ伸びて、流体類10の分子に対して磁場を照射できる。  In FIG. 7, when using a plurality of sets of electromagnets 22 around the fluid passage 14 of the first cavity 15, the electromagnets 22 are arranged in series in the direction in which the fluids 10 flow. The lines of magnetic force emerging from the N pole of the electromagnet 22 extend toward the S pole in a manner that crosses the molecules of the fluids 10 and can irradiate the molecules of the fluids 10 with a magnetic field. The lines of magnetic force emerging from the N pole of the electromagnet 22 extend toward the S pole in a manner that crosses the molecules of the fluids 10 and can irradiate the molecules of the fluids 10 with a magnetic field.

(第7の実施の形態)
図8は、本発明の第7実施形態による流体への磁場照射装置を示す説明図であり、特に、気体としての空気(窒素約78%,酸素約21%)から純度の高い酸素を製造する分野の流体への磁場照射装置である。
図8の磁場照射装置は、流体類10としての空気の分子を流せる第1空洞部と第2空洞部を有する流体通路14と、流体通路14の第1空洞部の周囲に配置されるS極とN極を有する永久磁石21から成る第1磁場照射機器20を有する。
流体通路14の第2空洞部の周囲には、流体通路14を流れる気体としての空気の分子に対して磁場を照射できるソレノイドコイル33と、ソレノイドコイル33に接続されるコンデンサー(図示省略)を用いたパルス波重畳回路35を備えた直流電源34を有するパルス波重畳第2磁場照射機器30とを備えている。
さらに、流体通路14の末端には、パルス波重畳第2磁場照射機器30のパルス波を重畳した磁場により細分化された空気の分子の中から、酸素を分離するための永久磁石または電磁石から成る強磁性材36と、細分化された空気の分子の中から窒素と水素を吸着するための触媒37とを備えている。触媒37の事例としては、細分化された空気の分子から窒素と水素を吸着分離するのに適した結晶性の多孔質アルミケイ酸塩(ゼオライト)がある。
(Seventh embodiment)
FIG. 8 is an explanatory view showing a magnetic field irradiation apparatus for a fluid according to a seventh embodiment of the present invention. In particular, high-purity oxygen is produced from air as a gas (about 78% nitrogen and about 21% oxygen). It is a magnetic field irradiation device for a fluid in the field.
The magnetic field irradiation apparatus of FIG. 8 has a fluid passage 14 having a first cavity portion and a second cavity portion through which air molecules as the fluids 10 can flow, and an S pole disposed around the first cavity portion of the fluid passage 14. And a first magnetic field irradiation device 20 composed of a permanent magnet 21 having N poles.
Around the second cavity of the fluid passage 14, there are used a solenoid coil 33 capable of irradiating a magnetic field to air molecules as gas flowing through the fluid passage 14, and a capacitor (not shown) connected to the solenoid coil 33. And a pulse wave superimposing second magnetic field irradiation device 30 having a DC power source 34 having a pulse wave superimposing circuit 35.
Further, the end of the fluid passage 14 is composed of a permanent magnet or an electromagnet for separating oxygen from air molecules subdivided by the magnetic field superimposed with the pulse wave of the pulse wave superimposed second magnetic field irradiation device 30. A ferromagnetic material 36 and a catalyst 37 for adsorbing nitrogen and hydrogen from the subdivided air molecules are provided. An example of the catalyst 37 is a crystalline porous aluminum silicate (zeolite) suitable for adsorbing and separating nitrogen and hydrogen from finely divided air molecules.

図8の磁場照射装置において、流体通路14は、主に合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管で構成される。
流体通路14の第1空洞部の周囲に配置される第1磁場照射機器20は、S極とN極を有する永久磁石または電磁石により構成される。複数組の永久磁石または電磁石を用いる場合は、流体類10が流れる方向に永久磁石または電磁石を直列に配置する。
In the magnetic field irradiation apparatus of FIG. 8, the fluid passage 14 is mainly composed of a non-magnetic material tube such as a synthetic resin tube, a ceramic tube, a copper tube, a non-ferrous alloy tube, a non-magnetic material stainless steel tube, or the like.
The 1st magnetic field irradiation apparatus 20 arrange | positioned around the 1st cavity part of the fluid channel | path 14 is comprised with the permanent magnet or electromagnet which has a south pole and a north pole. When a plurality of sets of permanent magnets or electromagnets are used, the permanent magnets or electromagnets are arranged in series in the direction in which the fluids 10 flow.

図8の磁場照射装置によると、第1磁場照射機器20を構成する永久磁石または電磁石のN極から出る磁力線は、流体類10の空気の分子を横切る形でS極の方へ伸びて、流体類10の空気の分子に対して磁場を照射できる。磁場を照射された空気の結晶分子は細分化される。  According to the magnetic field irradiation apparatus of FIG. 8, the magnetic field lines emanating from the N pole of the permanent magnet or electromagnet constituting the first magnetic field irradiation device 20 extend toward the S pole in a form that crosses the air molecules of the fluids 10. A magnetic field can be applied to a class 10 air molecule. Crystal molecules of air irradiated with a magnetic field are subdivided.

図8において、また、細分化した結晶粒子に対して、パルス波を重畳した磁場を照射できるパルス波重畳第2磁場照射機器30によるパルス波を重畳した磁場を照射すると、さらに、空気の分子の細分化と分散処理は加速されて分散粒子となり、空気の分散粒子は、酸素分子の磁気吸着と、窒素分子と水素分子の触媒吸着作用によって、空気分子の酸素分子への分離と、窒素分子・水素分子への分離が、効果的に活性化される。  In FIG. 8, when the magnetic field superimposed with the pulse wave by the pulse wave superimposing second magnetic field irradiation device 30 capable of irradiating the subdivided crystal particles with the magnetic field superimposed with the pulse wave is further applied, The fragmentation and dispersion process are accelerated to form dispersed particles. Air dispersed particles are separated into oxygen molecules by the magnetic adsorption of oxygen molecules and the catalytic adsorption of nitrogen and hydrogen molecules. Separation into hydrogen molecules is effectively activated.

図8の磁場照射装置によると、空気の分散粒子は、空気分子自体が、永久磁石または電磁石から成る強磁性材36による酸素分子の磁気吸着と、触媒37による窒素分子と水素分子の触媒吸着作用により、空気の分散粒子は、酸素分子領域と、窒素分子・水素分子の領域に、それぞれ分離されることになる。  According to the magnetic field irradiation apparatus of FIG. 8, the dispersed particles of air are air molecules themselves, which are magnetic adsorption of oxygen molecules by a ferromagnetic material 36 made of a permanent magnet or an electromagnet, and catalytic adsorption action of nitrogen molecules and hydrogen molecules by a catalyst 37. Thus, the dispersed particles of air are separated into an oxygen molecule region and a nitrogen molecule / hydrogen molecule region.

因に、図8において、空気の分散粒子に磁場(磁束密度=2.4テスラ(T))を照射した場合、空気を構成する酸素分子、窒素分子・水素分子などの分子別の着磁(磁気吸着)、非着磁(磁気非吸着)の現象は、参考までに分子別の磁化率(μ)として数値的に表わすと、例えば、磁化率(μ)は、酸素(O)=107.8、窒素(N)=−0.43、二炭化窒素(N2)=−1.98、のようになる。
このため、図8において、空気の分散粒子が、酸素分子への領域と、窒素分子・水素分子への領域に分離する場合の微細な挙動としては、磁場を照射したときに磁化され易い酸素が、永久磁石または電磁石のような強磁性材36側に吸着集合する流れとなり、非磁化性の窒素分子・水素分子が、触媒吸着作用が盛んなゼオライトのような触媒37側に吸着集合する流れとなり、それぞれ、酸素と、窒素及び水素への分離が行われるものである。
For example, in FIG. 8, when a magnetic field (magnetic flux density = 2.4 Tesla (T)) is applied to dispersed particles of air, magnetization of each molecule such as oxygen molecules, nitrogen molecules / hydrogen molecules constituting the air ( The phenomenon of magnetic adsorption) and non-magnetization (magnetic non-adsorption) is expressed numerically as a magnetic susceptibility (μ) for each molecule for reference. For example, the magnetic susceptibility (μ) is oxygen (O) = 107. 8. Nitrogen (N) = − 0.43, Nitrogen dicarbide (N2) = − 1.98.
For this reason, in FIG. 8, the fine behavior in the case where the dispersed particles of air are separated into a region to oxygen molecules and a region to nitrogen molecules / hydrogen molecules is that oxygen that is easily magnetized when irradiated with a magnetic field. The flow is such that a non-magnetizable nitrogen molecule / hydrogen molecule adsorbs and collects on the side of the catalyst 37 such as zeolite, which has a strong catalyst adsorption action. Are separated into oxygen, nitrogen and hydrogen, respectively.

(第8の実施の形態)
図9は、本発明の第8実施形態による流体への磁場照射装置を示す説明図である。この磁場照射装置は、内燃機関に燃料液体としてガソリンを使用する場合、特に噴射ガソリンと空気の混合気体を内燃機関に供給して使用する場合の流体への磁場照射装置である。
図9において、流体類の空気の分子を流せる第1空洞部と第2空洞部を有する流体通路14と、流体通路14の第1空洞部の周囲に配置されるS極とN極を有する永久磁石21から成る第1磁場照射機器20と、流体通路14を流れる液体としてのガソリンに対して磁場を照射できると共に、流体通路14の第2空洞部の周囲に配置されるソレノイドコイル33と、ソレノイドコイル33に接続されるコンデンサー(図示省略)を用いたパルス波重畳回路35を備えた直流電源34を有するパルス波重畳第2磁場照射機器30とを備えている。
(Eighth embodiment)
FIG. 9 is an explanatory view showing a magnetic field irradiation apparatus for fluid according to an eighth embodiment of the present invention. This magnetic field irradiation device is a magnetic field irradiation device for a fluid when gasoline is used as a fuel liquid in an internal combustion engine, particularly when a mixed gas of injected gasoline and air is supplied to the internal combustion engine.
In FIG. 9, a fluid passage 14 having a first cavity portion and a second cavity portion through which air molecules of fluids can flow, and a permanent having an S pole and an N pole disposed around the first cavity portion of the fluid passage 14. A first magnetic field irradiation device 20 including a magnet 21, a solenoid coil 33 that can irradiate a magnetic field to gasoline as a liquid flowing in the fluid passage 14, and is disposed around the second cavity portion of the fluid passage 14, and a solenoid And a pulse wave superimposing second magnetic field irradiation device 30 having a DC power source 34 provided with a pulse wave superimposing circuit 35 using a capacitor (not shown) connected to the coil 33.

図9の磁場照射装置によると、永久磁石または電磁石のN極から出る磁力線は、流体類10の空気の分子を横切る形でS極の方へ伸びて、流体通路14を流れる液体としてのガソリンに対して磁場を照射でき、ガソリンの分子に照射された磁力線がガソリン分子を細分化し分散処理が行われる。
さらに、第1磁場照射機器20の永久磁石または電磁石によって磁場を照射されたガソリン分子の結晶粒子に対して、更に、パルス波を重畳した磁場を照射できるパルス波重畳第2磁場照射機器30によるパルス波を重畳した磁場を照射すると、格段とガソリン分子の細分化と分散処理は更に加速される。
According to the magnetic field irradiation apparatus of FIG. 9, the magnetic lines of force emanating from the north pole of the permanent magnet or electromagnet extend toward the south pole in a manner that crosses the air molecules of the fluids 10, and the gasoline as a liquid flowing in the fluid passage 14. On the other hand, a magnetic field can be irradiated, and the lines of magnetic force applied to the gasoline molecules subdivide the gasoline molecules for dispersion treatment.
Further, the pulse generated by the pulse wave superimposing second magnetic field irradiation device 30 that can further irradiate the crystal particles of gasoline molecules irradiated with the magnetic field by the permanent magnet or the electromagnet of the first magnetic field irradiation device 20 can be irradiated with the magnetic field superimposed with the pulse wave. Irradiation with a magnetic field superimposed with waves further accelerates the fragmentation and dispersion of gasoline molecules.

また、強い磁場を照射してガソリン分子を分散処理して細分化したガソリンを、内燃機関のシリンダ内に噴射して空気と噴射ガソリンとの混合気体として点火燃焼させたときに、その燃焼効率が飛躍的に向上するとともに、特に、燃焼後に排出される燃焼ガスの一酸化炭素(CO)と炭化窒素(NC)の発生が著しく低減されることが確認された。  In addition, when gasoline that has been divided into fine particles by irradiating a strong magnetic field and dispersing gasoline molecules is injected into a cylinder of an internal combustion engine and ignited and burned as a mixed gas of air and injected gasoline, the combustion efficiency is reduced. In addition to the dramatic improvement, it has been confirmed that the generation of carbon monoxide (CO) and nitrogen carbide (NC), particularly the combustion gas discharged after combustion, is significantly reduced.

(実施例1)
(a)実験は、本発明の磁場照射装置を装着しない場合(装着しない場合)と、本発明の磁場照射装置を装着した場合(装着した場合)とで比較し測定した。
(b)(装着しない場合)の実験装置は、排気量750cc大型自動二輪内燃機関を用いて、30分間アイドリングして、排気ガスの一酸化炭素(CO)排出量(%)と、炭化窒素(NC)排出量(ppm)を測定した。
(c)(装着した場合)の実験装置は、同一排気量750cc大型自動二輪内燃機関のシリンダに通じる銅管製ガソリン供給通路(14)の周囲に、S極とN極を有する永久磁石から成る第1磁場照射機器(20)と、コンデンサー用いたパルス波重畳回路を備えた直流電源に接続されるソレノイドコイル(33)から成るパルス波重畳第2磁場照射機器(30)を配置したものを用い、30分間アイドリングして、排気ガスの一酸化炭素(CO)排出量(%)と、炭化窒素(NC)排出量(ppm)を測定した。
(d)排気ガスの測定結果(測定項目と排出量)
(測定項目) (装着しない場合) (本発明装置を装着した場合)
一酸化炭素量[CO(%)] 5.3〜5.5 0.25〜0.7
炭化窒素量[NC(ppm)] 4500〜5000 780〜920
(e)考察結果として、本発明の磁場照射装置を装着した場合(装着した場合)と、本発明の磁場照射装置を装着しない場合(装着しない場合)との比較では、排気ガスの一酸化炭素量[CO(%)]の排出量と、炭化窒素量[NC(ppm)]の排出量の双方において、本発明の磁場照射装置を装着した750cc大型自動二輪内燃機関に於ける優位差が明確にされた。
Example 1
(A) The experiment was measured by comparing the case where the magnetic field irradiation apparatus of the present invention was not mounted (when not mounted) and the case where the magnetic field irradiation apparatus of the present invention was mounted (when mounted).
(B) The experimental apparatus (when not installed) was idled for 30 minutes using a 750cc large-sized motorcycle internal combustion engine, and the exhaust gas carbon monoxide (CO) emissions (%) and nitrogen carbide ( NC) emissions (ppm) were measured.
(C) The experimental device (when installed) is composed of a permanent magnet having an S pole and an N pole around a gasoline supply passage (14) made of copper pipe leading to a cylinder of the same 750 cc large motorcycle internal combustion engine. A first magnetic field irradiation device (20) and a pulse wave superimposing second magnetic field irradiation device (30) composed of a solenoid coil (33) connected to a direct current power source provided with a pulse wave superposition circuit using a capacitor are used. And idling for 30 minutes, the carbon monoxide (CO) emission amount (%) of the exhaust gas and the nitrogen carbide (NC) emission amount (ppm) were measured.
(D) Exhaust gas measurement results (measurement items and emissions)
(Measurement item) (When not wearing) (When wearing the device of the present invention)
Carbon monoxide amount [CO (%)] 5.3 to 5.5 0.25 to 0.7
Amount of nitrogen carbide [NC (ppm)] 4500-5000 780-920
(E) As a result of consideration, in comparison between the case where the magnetic field irradiation apparatus of the present invention is mounted (when mounted) and the case where the magnetic field irradiation apparatus of the present invention is not mounted (when not mounted), carbon monoxide of exhaust gas Clearly, the difference in the amount of emissions [CO (%)] and the amount of nitrogen carbide [NC (ppm)] in the 750cc large motorcycle internal combustion engine equipped with the magnetic field irradiation device of the present invention is clear. It was made.

(実施例2)
(a)実験装置は、四つの形式によって行ない、測定結果を比較した。
(装着形式1)、本発明磁場照射装置における第1磁場照射機器(20)のみを装着
(装着形式2)、本発明磁場照射装置における第1磁場照射機器(20)と第2磁場照射機器(30)とを直列に装着
(装着形式3)、本発明磁場照射装置における第1磁場照射機器(20)と第2磁場照射機器(30)とを直列に装着(ソレノイドコイルの位置を少し変えた)
(装着形式4)、本発明磁場照射装置における第2磁場照射機器(30)と第1磁場照射機器(20)とを直列に装着
(b)実験装置は、排気量750cc大型自動二輪内燃機関のシリンダに通じる銅管製ガソリン供給通路(14)の周囲に、S極とN極を有する永久磁石から成る第1磁場照射機器(20)と、コンデンサー用いたパルス波重畳回路を備えた直流電源に接続されるソレノイドコイル(33)から成るパルス波重畳第2磁場照射機器(30)とを、それぞれ配置したものを用い、30分間アイドリングして、排気ガスの一酸化炭素(CO)排出量(%)と、炭化窒素(NC)排出量(ppm)を測定した。
(c)排気ガスの測定結果(測定項目と排出量)
(測定項目) 一酸化炭素量[CO(%)] 炭化窒素量[NC(ppm)]
(装着形式1) 0.15〜0.20 1680〜1750
(装着形式2) 0.25〜0.70 780〜 920
(装着形式3) 0.60〜1.02 820〜 920
(装着形式4) 0.18〜0.20 830〜 900
(d)考察結果
(1)(装着形式1)第1磁場照射機器(20)のみを装着した場合
一酸化炭素排出量[CO(%)]は減少するが、炭化窒素排出量[NC(ppm)]に改善の余地がある。
(2)(装着形式2)第1磁場照射機器(20)と第2磁場照射機器(30)とを直列に装着した場合
炭化窒素排出量[NC(ppm)]の減少と、一酸化炭素排出量[CO(%)]の改善がみられ、ともに良好である。
(3)(装着形式3)第1磁場照射機器(20)と第2磁場照射機器(30)とを直列に装着した場合(ソレノイドコイルの位置を少し変えた)
炭化窒素排出量[NC(ppm)]は減少し、一酸化炭素排出量[CO(%)]の改善もみられ、ともに良好である。
(4)(装着形式4)第2磁場照射機器(30)と第1磁場照射機器(20)とを直列に装着した場合
炭化窒素排出量[NC(ppm)]は減少し、一酸化炭素排出量[CO(%)]の改善もみられ、ともに良好である。
(Example 2)
(A) The experimental apparatus was performed in four formats, and the measurement results were compared.
(Mounting format 1), only the first magnetic field irradiation device (20) in the magnetic field irradiation apparatus of the present invention is mounted (mounting format 2), the first magnetic field irradiation device (20) and the second magnetic field irradiation device (in the magnetic field irradiation device of the present invention) 30) is mounted in series (mounting format 3), and the first magnetic field irradiation device (20) and the second magnetic field irradiation device (30) in the magnetic field irradiation apparatus of the present invention are mounted in series (the position of the solenoid coil is slightly changed). )
(Mounting type 4), the second magnetic field irradiation device (30) and the first magnetic field irradiation device (20) in the magnetic field irradiation device of the present invention are mounted in series. (B) The experimental device is a large-sized motorcycle internal combustion engine with a displacement of 750cc. A DC power supply having a first magnetic field irradiation device (20) composed of a permanent magnet having an S pole and an N pole, and a pulse wave superposition circuit using a capacitor, around a gasoline supply passage (14) made of copper pipe leading to a cylinder. Carbon monoxide (CO) emissions (%) of exhaust gas by idling for 30 minutes using devices arranged with a pulse wave superimposed second magnetic field irradiation device (30) composed of connected solenoid coils (33). ) And nitrogen carbide (NC) emissions (ppm).
(C) Exhaust gas measurement results (measurement items and emissions)
(Measurement item) Carbon monoxide amount [CO (%)] Nitrogen carbide amount [NC (ppm)]
(Mounting type 1) 0.15-0.20 1680-1750
(Mounting type 2) 0.25 to 0.70 780 to 920
(Mounting type 3) 0.60 to 1.02 820 to 920
(Mounting format 4) 0.18-0.20 830-900
(D) Consideration result (1) (Mounting type 1) When only the first magnetic field irradiation device (20) is mounted, the carbon monoxide emission [CO (%)] decreases, but the nitrogen carbide emission [NC (ppm) )] Has room for improvement.
(2) (Mounting format 2) When the first magnetic field irradiation device (20) and the second magnetic field irradiation device (30) are mounted in series. Reduction of nitrogen carbide discharge [NC (ppm)] and carbon monoxide discharge The amount [CO (%)] is improved and both are good.
(3) (Mounting format 3) When the first magnetic field irradiation device (20) and the second magnetic field irradiation device (30) are mounted in series (the position of the solenoid coil is slightly changed).
Nitrogen carbide emissions [NC (ppm)] have decreased and carbon monoxide emissions [CO (%)] have been improved, both of which are favorable.
(4) (Mounting format 4) When the second magnetic field irradiation device (30) and the first magnetic field irradiation device (20) are mounted in series. The nitrogen carbide emission amount [NC (ppm)] decreases and the carbon monoxide emission An improvement in the amount [CO (%)] was also observed, both being good.

本発明の実施の形態の磁場照射装置においては、流体通路の空洞部を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類の分子への磁場の連続照射は、第1空洞部にパルス波重畳第2磁場照射機器を配置し、第2空洞部に第1磁場照射機器を配置して構成される配置替えした磁場照射装置によって、流体通路を流れる流体分子の結晶粒子に対し、パルス波を重畳した磁場を照射する第2磁場照射手段と、磁場を照射する第1磁場照射手段による磁場を連続して照射して、流体通路を流れる流体類の分子の結晶粒子を順次細分化して流体類分子の分散処理が行われる構成に配置替えした磁場照射装置を包含している。これらの配置替の設定は、本発明の流体への磁場照射装置を製作する場合に通常の設計変更の領域内で任意に行われる。  In the magnetic field irradiation apparatus according to the embodiment of the present invention, the continuous irradiation of the magnetic field to the molecules of fluids such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through the cavity of the fluid passage is Crystal particles of fluid molecules flowing in a fluid passage by a rearranged magnetic field irradiation device configured by arranging a pulse wave superimposed second magnetic field irradiation device in one cavity and arranging the first magnetic field irradiation device in a second cavity On the other hand, the second magnetic field irradiating means for irradiating the magnetic field on which the pulse wave is superimposed and the first magnetic field irradiating means for irradiating the magnetic field are continuously irradiated with the magnetic field, and the crystal particles of the molecules of the fluid flowing through the fluid passage It includes a magnetic field irradiation device that is sequentially subdivided and rearranged into a configuration in which fluid molecules are dispersed. The setting of the rearrangement is arbitrarily performed within a normal design change region when the magnetic field irradiation apparatus for the fluid of the present invention is manufactured.

本発明の実施の形態の磁場照射装置において、流体通路の空洞部を流れる流体類の分子への磁場の照射に使用される第1磁場照射機器20、およびパルス波重畳第2磁場照射機器30は、磁場の照射が流体類の流れる方向に発せられる適正な強弱を持つ電磁波による磁場(流体類の流れる方向に直角に生じる磁束密度)も包含するものである。また、パルス波を重畳した磁場を照射するパルス波重畳第2磁場照射機器30が発するパルス波の波形は特に制限されない。  In the magnetic field irradiation apparatus of the embodiment of the present invention, the first magnetic field irradiation device 20 and the pulse wave superimposed second magnetic field irradiation device 30 used for irradiation of the magnetic field to the molecules of the fluid flowing through the cavity of the fluid passage include In addition, a magnetic field (magnetic flux density generated at right angles to the flow direction of fluids) by an electromagnetic wave having an appropriate strength that is emitted in the flow direction of fluids is included. Further, the waveform of the pulse wave generated by the pulse wave superimposed second magnetic field irradiation device 30 that irradiates the magnetic field on which the pulse wave is superimposed is not particularly limited.

本発明の実施の形態の磁場照射装置において、空洞部分を有する非磁性材の流体通路の形状は磁場照射装置の仕様書の規模に合わせて所望の形状に設定することができる。流体通路の両端に接続される流体の供給路および排出路を備える磁気照射処理装置は、必要に応じて、電磁バルブを付加した給水バルブ(入口)、送水バルブ(出口)と、給送水ポンプに電気系統の制御回路を組み込んで、磁場照射装置の給水・送水管理システムを自動的に管理することが可能である。  In the magnetic field irradiation apparatus according to the embodiment of the present invention, the shape of the fluid passage of the nonmagnetic material having the hollow portion can be set to a desired shape according to the scale of the specifications of the magnetic field irradiation apparatus. A magnetic irradiation processing apparatus including a fluid supply path and a discharge path connected to both ends of a fluid passage is provided in a water supply valve (inlet), a water supply valve (outlet), and a water supply pump to which an electromagnetic valve is added, if necessary. It is possible to automatically manage the water supply / water supply management system of the magnetic field irradiation device by incorporating the control circuit of the electric system.

本発明の第1実施形態による流体への磁場照射装置を示す説明図である。It is explanatory drawing which shows the magnetic field irradiation apparatus to the fluid by 1st Embodiment of this invention. 本発明の第2実施形態による第1磁場照射機器の横断説明図である。It is a cross-sectional explanatory drawing of the 1st magnetic field irradiation apparatus by 2nd Embodiment of this invention. 本発明の第3実施形態による第2磁場照射機器の横断説明図である。It is a cross-sectional explanatory drawing of the 2nd magnetic field irradiation apparatus by 3rd Embodiment of this invention. 本発明の実施の形態による流体類の分子の変化を模式的に示す説明図である。It is explanatory drawing which shows typically the change of the molecule | numerator of the fluid by embodiment of this invention. 本発明の第4実施形態による第1磁場照射機器の横断説明図である。It is transverse explanatory drawing of the 1st magnetic field irradiation apparatus by 4th Embodiment of this invention. 本発明の第5実施形態による第1磁場照射機器の横断説明図である。It is a cross-sectional explanatory drawing of the 1st magnetic field irradiation apparatus by 5th Embodiment of this invention. 本発明の第6実施形態による第1磁場照射機器の横断説明図である。It is cross-sectional explanatory drawing of the 1st magnetic field irradiation apparatus by 6th Embodiment of this invention. 本発明の第7実施形態による流体への磁場照射装置を示す説明図である。It is explanatory drawing which shows the magnetic field irradiation apparatus to the fluid by 7th Embodiment of this invention. 本発明の第8実施形態による流体への磁場照射装置を示す説明図である。It is explanatory drawing which shows the magnetic field irradiation apparatus to the fluid by 8th Embodiment of this invention. 従来の技術による磁気照射水処理装置を示す説明図である。It is explanatory drawing which shows the magnetic irradiation water processing apparatus by a prior art.

符号の説明Explanation of symbols

10 流体類
11 流体分子
12 結晶粒子
13 分散粒子
14 流体通路
15 第1空洞部
16 第2空洞部
18 ステンレス板
19 ステンレス補強管
20 第1磁場照射機器
21 永久磁石
22 電磁石
23 電磁コイル
24 直流電源
30 第2磁場照射機器
33 ソレノイドコイル
34 直流電源
35 パルス波重畳回路
36 強磁性材
37 触媒
40 送水管
41 水道水
42 直流電源
43 電磁石
44 電磁石
DESCRIPTION OF SYMBOLS 10 Fluids 11 Fluid molecule 12 Crystal particle 13 Dispersed particle 14 Fluid passage 15 1st cavity part 16 2nd cavity part 18 Stainless steel plate 19 Stainless steel reinforcement tube 20 1st magnetic field irradiation apparatus 21 Permanent magnet 22 Electromagnet 23 Electromagnetic coil 24 DC power supply 30 Second magnetic field irradiation device 33 Solenoid coil 34 DC power supply 35 Pulse wave superposition circuit 36 Ferromagnetic material 37 Catalyst 40 Water supply pipe 41 Tap water 42 DC power supply 43 Electromagnet 44 Electromagnet

Claims (5)

分散処理を必要とする水(河川水、地下水または水道水のような飲料水)、燃料液体(ガソリン、軽油、重油)、気体(空気、天然ガス)、あるいは燃料液体と空気の混合気体(噴射ガソリンと空気の混合気体、噴射軽油と空気の混合気体、噴射重油と空気の混合気体、天然ガスに液状飛沫ガスを含む混合気体)等の流体類(10)の分子を流せる、第1空洞部(15)および第2空洞部(16)を有する流体通路(14)と、
前記流体通路(14)の第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に、磁場を照射できる第1磁場照射機器(20)と、
前記第1磁場照射機器(20)によって、既に磁気を照射された第2空洞部(16)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子の結晶粒子に、パルス波を重畳した磁場を照射できるパルス波重畳第2磁場照射機器(30)とを備えており、
前記流体通路(14)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に対して、
前記第1磁場照射機器(20)によって、合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管の流体通路(14)の第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に、磁場を照射する第1磁場照射手段と、
前記パルス波重畳第2磁場照射機器(30)によって、合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管の流体通路(14)の第2空洞部(16)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子の結晶粒子に、パルス波を重畳した磁場を照射する第2磁場照射手段とが、連続して行われることにより、
前記流体通路(14)を流れる流体分子の結晶粒子を、順次細分化して流体分子の分散処理が行われるように構成されていることを特徴とする流体への磁場照射装置。
Water that requires dispersion treatment (drinking water such as river water, ground water or tap water), fuel liquid (gasoline, light oil, heavy oil), gas (air, natural gas), or a mixture of fuel liquid and air (injection) 1st cavity which can flow molecules of fluids (10), such as a mixed gas of gasoline and air, a mixed gas of injection light oil and air, a mixed gas of injection heavy oil and air, and a mixed gas containing liquid droplet gas in natural gas) A fluid passageway (14) having (15) and a second cavity (16);
First magnetic field irradiation capable of irradiating a molecule of fluid (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing in the first cavity (15) of the fluid passage (14) with a magnetic field. Equipment (20);
Molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through the second cavity (16) that has been irradiated with magnetism by the first magnetic field irradiation device (20). A pulse wave superimposing second magnetic field irradiation device (30) capable of irradiating the crystal particles with a magnetic field superimposed with a pulse wave,
For molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through the fluid passage (14),
By the first magnetic field irradiation device (20), a first cavity portion (14) of a fluid passage (14) of a non-magnetic material tube such as a synthetic resin tube, a ceramic tube, a copper tube, a non-ferrous alloy tube, a non-magnetic material stainless steel tube, or the like ( 15) a first magnetic field irradiation means for irradiating a molecule of fluids (10) such as water, fuel liquid, gas, or a mixed gas of fuel liquid and air flowing through a magnetic field;
A second fluid passage (14) of a non-magnetic material pipe such as a synthetic resin pipe, a ceramic pipe, a copper pipe, a non-ferrous alloy pipe, a non-magnetic material stainless steel pipe or the like is obtained by the pulse wave superimposed second magnetic field irradiation device (30). Second magnetic field irradiating means for irradiating crystal particles of molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing in the cavity (16) with a magnetic field superimposed with a pulse wave. Is performed continuously,
An apparatus for irradiating a fluid with a magnetic field, wherein crystal particles of fluid molecules flowing through the fluid passage (14) are sequentially subdivided to perform dispersion processing of fluid molecules.
前記流体通路(14)の第1空洞部(15)は、第1空洞部(15)の筒状空洞部分の主要構成材料自体が、第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子に対して、磁場を照射できるように配置されたS極とN極を有する永久磁石(21)の1組または複数組の永久磁石群の組み合わせから成る永久磁石(21)の磁性材料によって構成される第1磁場照射機器(20)、
あるいは第1空洞部(15)の筒状空洞部分の主要構成材料自体が、第1空洞部(15)を流れる水、燃料液体、気体、あるいは燃料用液体と空気の混合気体等の流体類(10)の分子に対して、磁場を照射できるように配置された電磁用コイル(23)により磁化されるS極とN極を有する電磁石(22)の1組または複数組の電磁石の組み合わせから成る電磁石(22)の磁性材料によって構成される第1磁場照射機器(20)を包含していることを特徴とする「請求項1」に記載の流体への磁場照射装置。
In the first cavity (15) of the fluid passage (14), the main constituent material itself of the cylindrical cavity of the first cavity (15) is water, fuel liquid, gas flowing in the first cavity (15). Or one or more sets of permanent magnets (21) having S and N poles arranged to irradiate a magnetic field against molecules of fluids (10) such as a mixture of fuel liquid and air. A first magnetic field irradiation device (20) composed of a magnetic material of a permanent magnet (21) comprising a combination of permanent magnet groups,
Alternatively, the main constituent material itself of the cylindrical hollow portion of the first hollow portion (15) is a fluid such as water, fuel liquid, gas, or a mixed gas of fuel liquid and air flowing through the first hollow portion (15) ( It consists of one set or a combination of a plurality of sets of electromagnets (22) having an S pole and an N pole magnetized by an electromagnetic coil (23) arranged so as to be able to irradiate a magnetic field to the molecule of 10). The apparatus for irradiating a fluid with a magnetic field according to claim 1, comprising a first magnetic field irradiating device (20) constituted by a magnetic material of an electromagnet (22).
前記流体通路の第1空洞部(15)は、構成材料が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管から成る第1空洞部(15)と、第1空洞部(15)の周囲に配置されるS極とN極を有する永久磁石(21)の1組または複数組の永久磁石群との組み合わせから成る永久磁石(21)の第1磁場照射機器(20)、
あるいは構成材料が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管から成る第1空洞部(15)と、第1空洞部(15)を流れる流体類(10)の分子に対して、磁場を照射できるように配置される電磁用コイル(23)により磁化されるS極とN極を有する電磁石(22)の1組または複数組の電磁石(22)の磁性材料との組み合わせから成る第1磁場照射機器(20)によって構成されることを特徴とする「請求項1」に記載の流体への磁場照射装置。
The first hollow portion (15) of the fluid passage has a first hollow portion (15) made of a non-magnetic material tube such as a synthetic resin tube, a ceramic tube, a copper tube, a non-ferrous alloy tube, a non-magnetic material stainless steel tube, or the like. 15) and a permanent magnet (21) composed of a combination of one or more permanent magnet groups of a permanent magnet (21) having an S pole and an N pole disposed around the first cavity (15). First magnetic field irradiation device (20),
Alternatively, the first cavity portion (15) and the first cavity portion (15), each of which is made of a nonmagnetic material tube such as a synthetic resin tube, a ceramic tube, a copper tube, a nonferrous alloy tube, or a nonmagnetic material stainless steel tube. One or more sets of electromagnets (22) having an S pole and an N pole magnetized by an electromagnetic coil (23) arranged so as to irradiate a magnetic field to molecules of the flowing fluid (10) The magnetic field irradiation apparatus for fluid according to claim 1, wherein the magnetic field irradiation apparatus is configured by a first magnetic field irradiation device (20) made of a combination with the magnetic material of (22).
前記第2空洞部(16)を有する流体通路(14)は、構成材料自体が合成樹脂管、セラミックス管、銅管、非鉄合金管、非磁性材系ステンレス管、等の非磁性材管から成る第2空洞部(16)と、非磁性材管の第2空洞部(16)の周囲に配置されるパルス波を重畳したソレノイドコイル(33)との組み合わせから成るパルス波重畳第2磁場照射機器(30)によって構成されることを特徴とする「請求項1」に記載の流体への磁場照射装置。  The fluid passage (14) having the second cavity portion (16) is made of a nonmagnetic material tube such as a synthetic resin tube, a ceramic tube, a copper tube, a nonferrous alloy tube, or a nonmagnetic material stainless steel tube. Pulse wave superimposed second magnetic field irradiation device comprising a combination of the second cavity (16) and a solenoid coil (33) superimposed with a pulse wave disposed around the second cavity (16) of the nonmagnetic material tube. (30), The magnetic field irradiation apparatus to the fluid according to [1]. 前記流体通路(14)の空洞部分を流れる水、燃料液体、気体、あるいは燃料液体と空気の混合気体等の流体類(10)の分子への磁場の連続照射は、
前記第1空洞部(15)にパルス波重畳第2磁場照射機器(30)を配置し、第2空洞部(16)に第1磁場照射機器(20)を配置して構成される配置替えした磁場照射装置によって、パルス波を重畳した磁場を照射する第2磁場照射手段と、磁場を照射する第1磁場照射手段による磁場を連続して照射することにより、
前記流体通路(14)を流れる流体類(10)の分子の結晶粒子を順次細分化して流体類(10)の分子の分散処理が行われるように構成される配置替えした磁場照射装置を包含していることを特徴とする「請求項1」に記載の流体への磁場照射装置。
Continuous irradiation of a magnetic field to molecules of fluids (10) such as water, fuel liquid, gas, or a mixture of fuel liquid and air flowing through the cavity of the fluid passage (14),
The first cavity portion (15) is arranged with a pulse wave superimposed second magnetic field irradiation device (30), and the second cavity portion (16) is arranged with the first magnetic field irradiation device (20). By continuously irradiating the magnetic field by the second magnetic field irradiating means for irradiating the magnetic field superimposed with the pulse wave and the first magnetic field irradiating means for irradiating the magnetic field by the magnetic field irradiating device,
Including a rearranged magnetic field irradiation device configured to sequentially subdivide crystal particles of molecules of the fluids (10) flowing through the fluid passage (14) and perform dispersion treatment of the molecules of the fluids (10). An apparatus for irradiating a fluid with a magnetic field according to claim 1.
JP2007114848A 2007-03-28 2007-03-28 Fluid irradiator with magnetic field Pending JP2008238153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114848A JP2008238153A (en) 2007-03-28 2007-03-28 Fluid irradiator with magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114848A JP2008238153A (en) 2007-03-28 2007-03-28 Fluid irradiator with magnetic field

Publications (1)

Publication Number Publication Date
JP2008238153A true JP2008238153A (en) 2008-10-09

Family

ID=39910124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114848A Pending JP2008238153A (en) 2007-03-28 2007-03-28 Fluid irradiator with magnetic field

Country Status (1)

Country Link
JP (1) JP2008238153A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020825A1 (en) * 2010-08-13 2012-02-16 株式会社志賀機能水研究所 Electromagnetic field processing method and electromagnetic field processing device for water
JP2013193029A (en) * 2012-03-19 2013-09-30 Minoru Fukaya Modification treatment device
CN108554332A (en) * 2018-05-15 2018-09-21 中亚民生科技发展有限公司 The true quantum haulage capacity wave of N-S vectors is implanted into equipment
CN111517432A (en) * 2020-04-21 2020-08-11 江苏更美科技有限公司 Preparation method and device of small molecular water with whitening effect for skin care
JP2021010908A (en) * 2019-07-03 2021-02-04 健水ライフサイエンス株式会社 Microbubble generator and microbubble generation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020825A1 (en) * 2010-08-13 2012-02-16 株式会社志賀機能水研究所 Electromagnetic field processing method and electromagnetic field processing device for water
JPWO2012020825A1 (en) * 2010-08-13 2013-10-28 株式会社志賀機能水研究所 Water electromagnetic field treatment method and electromagnetic field treatment apparatus
JP5844259B2 (en) * 2010-08-13 2016-01-13 株式会社志賀機能水研究所 Electromagnetic field treatment method for water
JP2013193029A (en) * 2012-03-19 2013-09-30 Minoru Fukaya Modification treatment device
CN108554332A (en) * 2018-05-15 2018-09-21 中亚民生科技发展有限公司 The true quantum haulage capacity wave of N-S vectors is implanted into equipment
CN108554332B (en) * 2018-05-15 2024-03-08 中亚民生科技发展有限公司 N-S vector true quantum traction energy wave implantation equipment
JP2021010908A (en) * 2019-07-03 2021-02-04 健水ライフサイエンス株式会社 Microbubble generator and microbubble generation method
CN111517432A (en) * 2020-04-21 2020-08-11 江苏更美科技有限公司 Preparation method and device of small molecular water with whitening effect for skin care
CN111517432B (en) * 2020-04-21 2021-03-12 江苏更美科技有限公司 Preparation method and device of micromolecular water for skin care

Similar Documents

Publication Publication Date Title
JPH04503684A (en) Device for magnetic treatment of fluids
KR20140025449A (en) Method for optimizing combustion engines
JP2008238153A (en) Fluid irradiator with magnetic field
US20010006161A1 (en) Magnetic filter and method for purifying and treating liquids using permanent magnetic balls
EP3129447B1 (en) Device and method for treating hydrogen and hydrocarbon liquid and gas substances more efficiently due to magnetical impact
US9381520B2 (en) Apparatus and method for magnetically treating fluids
US20140263015A1 (en) Apparatus and method for magnetically treating fluids
US20050126974A1 (en) Water purifier having magnetic field generation
JPWO2006022013A1 (en) Engine magnetic processing apparatus and engine magnetic processing system
JP2008149255A (en) Method and device for activating magnetic body-containing liquid
WO2017126988A1 (en) Method for electric-field processing of fluid media
JPH0833840A (en) Magnetizer and magnetization treatment and chemical reaction control method
JP2002263655A (en) Production apparatus for magnetically treated water and apparatus for magnetically treating liquid fuel
WO1997005065A1 (en) Oil and water processing device
JP3966421B2 (en) Ultra-high magnetic field fluid treatment system
CN101900060A (en) High-efficiency fuel-saving purifier
JPS6253714A (en) Magnetic cleaning apparatus for fluid
JP2006105443A (en) Fuel petroleum magnetic treatment device
JP5542683B2 (en) Fluid modification method and fluid magnetic reactor
CN108059129A (en) A kind of multiple radial separation air of magnetic method produces oxygen-enriched device
JP3128743U (en) Fluid magnetic processing equipment
JP2002058994A (en) Magnetic circuit device for modifying fluid
JP2016026278A (en) Method for utilizing special synthetic magnetic field
KR200435306Y1 (en) Fuel Saver
JP2022022904A (en) Fluid fuel reformer, and method of producing reformed fluid fuel