[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008236858A - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
JP2008236858A
JP2008236858A JP2007070488A JP2007070488A JP2008236858A JP 2008236858 A JP2008236858 A JP 2008236858A JP 2007070488 A JP2007070488 A JP 2007070488A JP 2007070488 A JP2007070488 A JP 2007070488A JP 2008236858 A JP2008236858 A JP 2008236858A
Authority
JP
Japan
Prior art keywords
magnet
motor
rare earth
earth magnet
brushless motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070488A
Other languages
Japanese (ja)
Inventor
Masaki Tanaka
政樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Industrial Promotion Organization
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to JP2007070488A priority Critical patent/JP2008236858A/en
Publication of JP2008236858A publication Critical patent/JP2008236858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brushless motor which is improved in heat resistance against a temperature load applied to a motor, caused by a temperature rise by overload drive or the like and heat generated in use in a high-temperature atmosphere, and does not cause the lowering of torque even in the high-temperature atmosphere. <P>SOLUTION: The brushless motor comprises a rare earth magnet which is arranged at a rotor or a stator, and is characterized in that the rare earth magnet is of an Nd-Fe-B system whose surface is cleaned by being immersed into an acid liquid after performing grain boundary reforming by being diffusely immersed with an M element (M is Pr, Dy, Tb or Ho) from the surface into its inside, and by making an ultrasonic wave act on the acid liquid. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ブラシレスモータに関し、より詳しくは、使用中に温度上昇を伴うブラシレスモータ(以下、単に「モータ」ともいう)および高温環境下で使用するブラシレスモータに関する。   The present invention relates to a brushless motor, and more particularly to a brushless motor (hereinafter, also simply referred to as “motor”) that increases in temperature during use and a brushless motor that is used in a high temperature environment.

一般的に使用されているモータにおいては、モータの回転子または固定子に備えられた永久磁石(以下、単に「磁石」とも言う)の耐熱性が高くないため、過負荷運転などにより使用中の温度が上昇した場合や、繰り返し高温環境下で使用した場合、磁石が熱による不可逆性の減磁を起こし、その結果として、常温に戻ったとき、モータのトルクが著しく低下し、回復しない。なお、加熱により減少した磁化のうち、室温に戻しても回復しない磁化の加熱前の磁化に対する比率を、不可逆減磁率といい、前記のように、モータのトルクが著しく低下し、回復しないことは、不可逆減磁率が大きいことを示している。   In a generally used motor, the heat resistance of a permanent magnet (hereinafter also simply referred to as “magnet”) provided in the rotor or stator of the motor is not high, so that it is in use due to overload operation. When the temperature rises or when it is repeatedly used in a high temperature environment, the magnet causes irreversible demagnetization due to heat, and as a result, when it returns to room temperature, the torque of the motor is significantly reduced and does not recover. Note that the ratio of the magnetization decreased by heating to the magnetization before heating of the magnetization that does not recover even after returning to room temperature is called the irreversible demagnetization factor, and as mentioned above, the torque of the motor is significantly reduced and does not recover. This indicates that the irreversible demagnetization factor is large.

しかし、近年、FA、電装、H−EV車等の機器において、使用中に温度上昇を伴うモータや、高温環境下で使用するモータとして、耐熱性に優れた、即ち、常温と高温での運転が繰り返されてもモータのトルクが低下しないモータが要望されている(目安としては、150℃における不可逆減磁率が、2%以下)。   However, in recent years, in equipment such as FA, electrical equipment, H-EV cars, etc., it has excellent heat resistance as a motor that increases in temperature during use or a motor that is used in a high temperature environment, that is, operation at normal temperature and high temperature. There is a demand for a motor in which the torque of the motor does not decrease even if is repeated (as a guide, the irreversible demagnetization rate at 150 ° C. is 2% or less).

例えば、物品搬送用のモータ内蔵ローラにおいて、通常のモータを使用しても、使用環境下でのモータ温度が100℃以下であれば、停止等により常温に戻ることに伴い、元のトルクに回復するが、100℃を上回ると磁石の不可逆減磁率が突如として大きくなり、常温に戻ってもトルクが回復しない現象が起こる。つまり、モータが過負荷運転による温度上昇を繰り返し受けることにより、トルクが低下、即ち、搬送能力が徐々に衰えてしまうことになる。その結果、当初は搬送可能であった物品が、場合によっては、搬送できなくなる。
従って、重量物品の搬送による過負荷運転や高温環境下での使用が強いられるモータ内蔵ローラには、耐熱性に優れたモータを提供する必要がある。
For example, in a roller with a built-in motor for conveying goods, even if a normal motor is used, if the motor temperature under the usage environment is 100 ° C or less, the original torque is recovered by returning to normal temperature due to a stop or the like. However, when the temperature exceeds 100 ° C., the irreversible demagnetization rate of the magnet suddenly increases, and a phenomenon occurs in which the torque does not recover even when the temperature returns to room temperature. That is, when the motor repeatedly receives a temperature increase due to the overload operation, the torque is reduced, that is, the conveyance capacity is gradually reduced. As a result, an article that was initially transportable cannot be transported in some cases.
Therefore, it is necessary to provide a motor with excellent heat resistance for the roller with a built-in motor that is forced to be used in an overload operation due to conveyance of heavy articles or in a high temperature environment.

耐熱性に優れたモータを提供するためには、磁石の最大エネルギー積を低下させずに高保磁力を有すると共に、過負荷運転などによる温度上昇や高温環境下での使用など熱によるモータへの温度負荷に対して、不可逆性の減磁を生じることが少ない、即ち、高温時での減磁耐力に優れた磁石を必要とする。   In order to provide a motor with excellent heat resistance, it has a high coercive force without reducing the maximum energy product of the magnet, and the temperature to the motor due to heat, such as temperature rise due to overload operation or use in a high temperature environment, etc. A magnet that rarely causes irreversible demagnetization with respect to a load, that is, excellent in demagnetization resistance at a high temperature is required.

高保磁力を有すると共に、高温時での減磁耐力に優れた磁石としては、テルビウム(Tb)やディスプロシウム(Dy)などの重希土類元素を含有させたNd−Fe−B系の希土類磁石が挙げられる。   Nd-Fe-B rare earth magnets containing heavy rare earth elements such as terbium (Tb) and dysprosium (Dy) are examples of magnets having high coercive force and excellent demagnetization resistance at high temperatures. Can be mentioned.

この磁石は、NdFe14B化合物主相をNdリッチな粒界相が取り囲んだ構造をしている。従来より、NdFe14B化合物と比較して異方性磁界の大きなDyFe14B又はTbFe14B化合物の磁気的性質を利用して、磁石合金中にDyやTbを数〜十数質量%程度含有させることによって、保磁力を向上させることが行われてきた。しかし、この場合には、同時に、磁束密度Bと磁界Hとの積で表される最大エネルギー積(BHmax)と残留磁化(Br)が著しく低下するという問題があった。 This magnet has a structure in which the Nd 2 Fe 14 B compound main phase is surrounded by an Nd-rich grain boundary phase. Conventionally, by utilizing the magnetic properties of a Dy 2 Fe 14 B or Tb 2 Fe 14 B compound having a large anisotropic magnetic field compared to the Nd 2 Fe 14 B compound, several Dy and Tb are contained in the magnet alloy. Increasing the coercive force has been carried out by adding about 10% by mass or more. However, in this case, at the same time, there is a problem that the maximum energy product (BH max ) and the residual magnetization (Br) represented by the product of the magnetic flux density B and the magnetic field H are significantly reduced.

このような問題に対応するために、残留磁束密度の低下を抑制しつつ保磁力を向上させる方法として、Dy元素等を含まないNd−Fe−B系の焼結磁石の表面からDy金属をスパッタリングによって成膜して熱拡散する方法や、Dyフッ化物を還元して拡散する方法など、いわゆる粒界改質法が開発されている(特許文献1〜3)。   In order to cope with such a problem, as a method for improving the coercive force while suppressing the decrease in the residual magnetic flux density, sputtering of Dy metal from the surface of an Nd—Fe—B based sintered magnet not containing Dy element or the like is performed. So-called grain boundary reforming methods such as a method of forming a film by thermal diffusion and thermally diffusing and a method of reducing and diffusing Dy fluoride have been developed (Patent Documents 1 to 3).

これらの方法により、Dy元素はNdFe14B化合物主相よりも粒界相に選択的に拡散浸透する結果、残留磁化の低下を抑制して大幅な保磁力向上を実現している。これら粒界改質磁石はDy含有量を半減しても、粒界改質しない磁石と同等の保磁力を発生するため、希少資源でかつ高価なDy元素を節減できる効果を併せ持っている。
特開2004−304038号公報 WO 2006/064848 A1公報 特開2005−210876号公報
By these methods, as a result of the Dy element selectively diffusing and penetrating into the grain boundary phase rather than the main phase of the Nd 2 Fe 14 B compound, a decrease in residual magnetization is suppressed and a significant improvement in coercive force is realized. Since these grain boundary modified magnets generate a coercive force equivalent to that of a magnet without grain boundary modification even if the Dy content is halved, they have the effect of saving rare resources and expensive Dy elements.
JP 2004-304038 A WO 2006/064848 A1 publication JP 2005-210876 A

しかしながら、これらの方法で製造されたNd−Fe−B系の粒界改質磁石は、Dy元素を粒界相に拡散させる過程で700〜1000℃の高温熱処理を行うことにより、磁石表面にNdの酸化物が形成され、またDyフッ化物の還元によるCaFなどが生成する。また、一般的に希土類元素は酸化され易いため、希土類磁石を放置すると、放置中に磁石表面に酸化物の被膜が生成する。 However, the Nd—Fe—B based grain boundary modified magnet manufactured by these methods is subjected to a high temperature heat treatment at 700 to 1000 ° C. in the process of diffusing Dy element into the grain boundary phase, so that Nd In addition, CaF 2 and the like are generated by reduction of Dy fluoride. Further, since rare earth elements are generally easily oxidized, if a rare earth magnet is left untreated, an oxide film is formed on the surface of the magnet.

これらの酸化物やフッ化物は磁石表面の不純物残渣であり、例えば磁石に防錆用のNiめっきを施したときのめっきの付着性を阻害するほか、モータに応用された場合の長期間の運転において酸化膜中の酸素やフッ素が磁石内部に拡散して、減磁耐力等の磁気特性(以下、単に磁気特性と言う)が徐々に低下し、モータのトルクが低下するなどの悪影響をおよぼすため、除去する必要がある。   These oxides and fluorides are impurity residues on the magnet surface. For example, they interfere with the adhesion of the plating when the anti-corrosion Ni plating is applied to the magnet, and also operate for a long time when applied to a motor. In this case, oxygen and fluorine in the oxide film diffuse into the magnet, and the magnetic properties such as demagnetization resistance (hereinafter simply referred to as magnetic properties) gradually decrease, which adversely affects motor torque. Need to be removed.

これらの不純物残渣を除去する方法としては、機械的なバレル方法がある。しかし、この方法を採用した場合、磁石相互や研磨片との衝突により磁石に欠けを生じ易く、またバレル装置稼動中の騒音が問題となる。また、砂の粉末などを磁石表面に高速で吹きつけるショットブラスト方法があるが、上述同様に磁石の欠けと騒音の問題、および砂と磁石の分離回収作業での粉塵等の問題がある。   As a method for removing these impurity residues, there is a mechanical barrel method. However, when this method is employed, the magnets are likely to be chipped due to collisions with the magnets and the polishing pieces, and noise during operation of the barrel device becomes a problem. Further, there is a shot blasting method in which sand powder or the like is sprayed onto the magnet surface at high speed, but there are problems of chipping and noise of the magnet, and dust and the like in the separation and collection operation of the sand and magnet as described above.

一方、磁石表面の残渣を除去するための別の方法として、化学的な酸洗浄方法がある。化学的な酸洗浄方法を採用した場合、磁石の表面に強固に付着した不純物残渣を除去することができ、また、塩酸や硝酸などの濃度と時間を調整することによって、簡便に表面の不純物残渣を除去できる。しかし、この酸洗浄を行った磁石は、洗浄前に対して磁気特性が低下し、所望とする高い磁気特性を確保することが困難であり、過負荷運転などによる温度上昇や高温環境下での使用などの熱によるモータへの温度負荷に対して、耐熱性を高め、高温環境下でもトルク低下をきたさないモータを得ることができなかった。   On the other hand, there is a chemical acid cleaning method as another method for removing residues on the magnet surface. When a chemical acid cleaning method is used, impurity residues firmly adhered to the magnet surface can be removed, and by adjusting the concentration and time of hydrochloric acid, nitric acid, etc., surface impurity residues can be easily adjusted. Can be removed. However, magnets that have undergone acid cleaning have a lower magnetic property than before cleaning, making it difficult to ensure the desired high magnetic properties. It was not possible to obtain a motor that has improved heat resistance against temperature load on the motor due to heat during use, etc., and does not cause torque reduction even in a high temperature environment.

上記した酸洗浄後の磁気特性の低下の原因は、以下のように推察される。即ち、例えば塩酸による酸洗浄を行う場合、磁石の主要成分であるNdが、イオン化して溶解する際に水素ガスが発生する。この水素ガスが、Nd−Fe−B系の磁石内の、主としてNdリッチ粒界相に吸収され、保磁力発現の重要な役割を担っている粒界相が変質や体積膨張を起こす結果、保磁力の低下を引き起こすものと推察される。また、酸洗浄は、一般に室温で数分から数十分の短時間処理であるために、吸収された水素は、主に磁石の表面近傍に留まる。そのため、酸洗浄後の磁石の磁気特性は,本来の高い保磁力をもつ磁石の磁気特性と低下した保磁力をもつ磁石の磁気特性とを合成した特性となる。特に、数mm以下の小型の磁石場合には、体積に対する表面積の比率が大きいため、水素の吸収による特性低下が大きい。   The cause of the deterioration of the magnetic properties after the acid cleaning described above is presumed as follows. That is, for example, when acid cleaning with hydrochloric acid is performed, hydrogen gas is generated when Nd, which is a main component of the magnet, is ionized and dissolved. This hydrogen gas is absorbed mainly by the Nd-rich grain boundary phase in the Nd-Fe-B magnet, and the grain boundary phase, which plays an important role in developing the coercive force, causes alteration and volume expansion. It is presumed to cause a decrease in magnetic force. In addition, since the acid cleaning is generally a short time treatment of several minutes to several tens of minutes at room temperature, the absorbed hydrogen remains mainly near the surface of the magnet. For this reason, the magnetic properties of the magnet after acid cleaning are a combination of the magnetic properties of the magnet having the original high coercive force and the magnetic properties of the magnet having the reduced coercive force. Particularly, in the case of a small magnet of several mm or less, since the ratio of the surface area to the volume is large, the characteristic deterioration due to hydrogen absorption is large.

本発明は、上記の問題に鑑み、過負荷運転などによる温度上昇や高温環境下での使用などの熱によるモータへの温度負荷に対して、耐熱性を高め、高温環境下でもトルク低下をきたさないモータを提供することをその課題とする。   In view of the above problems, the present invention increases heat resistance against a temperature load on a motor due to heat increase due to overload operation or use in a high temperature environment, and reduces torque even in a high temperature environment. The problem is to provide a motor that does not.

本発明者は、前記したNd−Fe−B系の粒界改質磁石に対する酸洗浄の方法を工夫することにより、洗浄前に対して磁気特性が低下せず、所望とする高い磁気特性を有する磁石をモータに組み込むことにより、上記の課題が解決できることを見出し、本発明を完成するに至った。
以下、各請求項の発明について説明する。
The present inventor devised a method of acid cleaning for the above-described Nd—Fe—B-based grain boundary modified magnet, so that the magnetic characteristics do not deteriorate with respect to those before cleaning, and the desired high magnetic characteristics are obtained. It has been found that the above problems can be solved by incorporating a magnet into a motor, and the present invention has been completed.
Hereinafter, the invention of each claim will be described.

請求項1に記載の発明は、
希土類磁石を、回転子または固定子に備えたブラシレスモータであって、
前記希土類磁石が、表面から内部に、M元素(但し、Mは、Pr、Dy、TbまたはHo)を拡散浸透させて粒界改質処理を行った後、酸液に浸漬すると共に、前記酸液に超音波を作用させることによって、表面を洗浄したNd−Fe−B系の希土類磁石であることを特徴とするブラシレスモータである。
The invention described in claim 1
A brushless motor having a rare earth magnet in a rotor or a stator,
The rare earth magnet is subjected to grain boundary modification treatment by diffusing and infiltrating M element (where M is Pr, Dy, Tb or Ho) from the surface to the inside, and then immersed in an acid solution and the acid The brushless motor is an Nd—Fe—B rare earth magnet whose surface is cleaned by applying an ultrasonic wave to the liquid.

本請求項の発明においては、回転子または固定子に備える希土類磁石として、表面から内部に、M元素(但し、Mは、Pr,Dy,Tb,又はHo)を拡散浸透させて粒界改質処理を行った後、酸液に浸漬すると共に、前記酸液に超音波を作用させることによって、表面を洗浄したNd−Fe−B系の希土類磁石を用いるため、以下に述べるように、過負荷運転などによる温度上昇や高温環境下での使用などの熱によるモータへの温度負荷に対して、耐熱性を高め、高温環境下でもトルク低下をきたさないモータを得ることができる。   In the invention of this claim, as the rare earth magnet provided in the rotor or stator, the grain boundary modification is performed by diffusing and penetrating M element (where M is Pr, Dy, Tb, or Ho) from the surface to the inside. After the treatment, the Nd-Fe-B rare earth magnet whose surface is cleaned by immersing in the acid solution and applying ultrasonic waves to the acid solution is used, as described below. It is possible to obtain a motor that increases heat resistance against temperature load on the motor due to heat rise due to temperature rise due to operation or use in a high temperature environment and does not cause a torque decrease even in a high temperature environment.

本請求項の発明においては、Nd−Fe−B系の希土類磁石が用いられ、例えば、NdFe14B化合物からなる固形状の焼結磁石、熱間塑性加工磁石、および粉末を樹脂で固めたボンド磁石を挙げることができる。 In the present invention, an Nd—Fe—B rare earth magnet is used. For example, a solid sintered magnet made of Nd 2 Fe 14 B compound, a hot plastic working magnet, and a powder are hardened with a resin. Can be mentioned bonded magnets.

本請求項の発明においては、上記のNd−Fe−B系の希土類磁石の表面から内部に、M元素(但し、Mは、Pr,Dy,Tb,又はHo)を拡散浸透させて粒界改質処理が行われる。
具体的な粒界改質処理の方法としては、例えば、Dy元素等を含まないNd−Fe−B系の焼結磁石の表面からDy金属をスパッタリングによって成膜して熱拡散する方法や、Dyフッ化物を還元して拡散する方法などを挙げることができる。
In the present invention, the M element (however, M is Pr, Dy, Tb, or Ho) is diffused and penetrated from the surface to the inside of the Nd-Fe-B rare earth magnet, and the grain boundary is improved. Quality processing is performed.
As a specific method of grain boundary modification treatment, for example, a method of thermally diffusing Dy metal by sputtering from the surface of a Nd—Fe—B based sintered magnet not containing Dy element or the like, A method of reducing and diffusing fluoride can be used.

これらの方法により、Dy元素は、NdFe14B化合物主相よりも粒界相に、選択的に拡散浸透し、その結果、残留磁化の低下を抑制して大幅な保磁力向上を実現することができる。これらの方法により粒界改質した磁石は、Dy含有量を半減しても、市販の焼結磁石と同等の保磁力を発生する。 By these methods, the Dy element selectively diffuses and penetrates into the grain boundary phase rather than the main phase of the Nd 2 Fe 14 B compound, and as a result, a decrease in residual magnetization is suppressed and a significant improvement in coercive force is realized. be able to. Magnets modified by grain boundaries by these methods generate a coercive force equivalent to that of commercially available sintered magnets even if the Dy content is halved.

以上のように、M元素を希土類磁石の表面から粒界相に拡散浸透させることによって、磁気特性に優れ、保磁力を高めた希土類磁石とすることができる。この希土類磁石は、従来市販のNd−Fe−B系の磁石に対して、M元素がNdFe14B化合物主相よりも粒界相に選択的に拡散浸透するために、M元素を含有した(Nd、M)Fe14B化合物の生成による磁化の低下を回避することができ、市販磁石に対して大幅に保磁力を向上することができる。また、M元素が主相にほとんど取り込まれなくても大きな保磁力が得られるため、希少資源でかつ高価なDyやTbなどのM元素を従来比50%以下に節減できる効果がある。その結果、このような磁石を備えるモータの製造コストの低減を図ることができる。 As described above, by diffusing and penetrating the M element from the surface of the rare earth magnet to the grain boundary phase, a rare earth magnet having excellent magnetic properties and enhanced coercive force can be obtained. This rare earth magnet contains M element because M element selectively diffuses and penetrates into the grain boundary phase rather than the Nd 2 Fe 14 B compound main phase, compared with the conventional commercially available Nd—Fe—B based magnet. Decrease in magnetization due to the formation of the (Nd, M) 2 Fe 14 B compound can be avoided, and the coercive force can be greatly improved with respect to commercially available magnets. In addition, since a large coercive force can be obtained even if M element is hardly taken into the main phase, there is an effect that the rare elements and expensive M elements such as Dy and Tb can be reduced to 50% or less than the conventional one. As a result, it is possible to reduce the manufacturing cost of a motor including such a magnet.

本請求項の発明においては、さらに、前記の粒界改質処理したNd−Fe−B系の希土類磁石を、酸液に浸漬すると共に、前記酸液に超音波を作用させることによって、表面を洗浄する。超音波を作用させながら表面を酸洗浄することにより、磁石表面に生成した酸化物やフッ化物等、磁石表面の不純物残渣を除去することができる。また、酸液に超音波を作用させることにより、酸液中にキャビテーション現象を生じさせるため、発生する水素ガスが希土類磁石内に吸収されにくい状態となり、この結果、希土類磁石は、酸洗浄を行っても、保磁力の低下を引き起こさないで、粒界改質処理によって得られた高い磁気特性を維持することができる。   In the present invention, the Nd-Fe-B rare earth magnet subjected to the grain boundary modification treatment is immersed in an acid solution, and an ultrasonic wave is applied to the acid solution to thereby surface the surface. Wash. By subjecting the surface to acid cleaning while applying ultrasonic waves, impurity residues on the magnet surface such as oxides and fluorides generated on the magnet surface can be removed. Also, by applying ultrasonic waves to the acid solution, a cavitation phenomenon occurs in the acid solution, so that the generated hydrogen gas is hardly absorbed in the rare earth magnet. As a result, the rare earth magnet is subjected to acid cleaning. However, the high magnetic characteristics obtained by the grain boundary modification treatment can be maintained without causing a decrease in coercive force.

超音波の周波数としては、産業上一般に使用される20〜1000kHzを適用することができる。20Hz未満では動作ノイズが大きくなり、1000kHzを超えると洗浄除去される物質が周波数に追随しにくくなって洗浄能力が低下する。   As the frequency of the ultrasonic wave, 20 to 1000 kHz generally used in industry can be applied. If it is less than 20 Hz, the operation noise becomes large, and if it exceeds 1000 kHz, it is difficult for the substance to be removed by cleaning to follow the frequency, and the cleaning ability is reduced.

使用する酸液は特に限定されるものではないが、塩酸、硝酸、硫酸、フッ化水素酸など無機の強酸を、水で数十〜数百倍に希釈したもの、あるいはシュウ酸、ギ酸、酢酸、安息香酸、ベンゼンスルホン酸など有機の酸水溶液を用いることができる。   The acid solution to be used is not particularly limited, but a strong inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid or hydrofluoric acid diluted with water several tens to several hundred times, or oxalic acid, formic acid, acetic acid Organic acid aqueous solutions such as benzoic acid and benzenesulfonic acid can be used.

上記の酸洗浄を行う際、粒界改質処理した磁石と酸液とを強制的に相対運動させたり、酸液を溜めた洗浄槽の系内を減圧もしくは排気すると、水素ガスが磁石内により一層吸収されにくい状態となるため、より好ましい。   When performing the above-mentioned acid cleaning, if the magnet and the acid solution for grain boundary modification are forcibly moved relative to each other, or if the pressure in the cleaning tank system in which the acid solution is stored is reduced or evacuated, the hydrogen gas is moved into the magnet. This is more preferable because it is more difficult to absorb.

以上のように、Nd−Fe−B系の希土類磁石と、粒界改質処理と、超音波の作用下における酸洗浄を利用することにより、耐熱性が高く、高温環境下でもトルク低下をきたさないモータを提供することができる。   As described above, by using the Nd—Fe—B rare earth magnet, the grain boundary modification treatment, and the acid cleaning under the action of ultrasonic waves, the heat resistance is high and the torque is reduced even in a high temperature environment. No motor can be provided.

請求項2に記載の発明は、
前記希土類磁石が、水素含有量50ppm以下のNd−Fe−B系の希土類磁石であることを特徴とすることを特徴とする請求項1に記載のブラシレスモータである。
The invention described in claim 2
2. The brushless motor according to claim 1, wherein the rare earth magnet is an Nd—Fe—B rare earth magnet having a hydrogen content of 50 ppm or less.

本請求項の発明では、回転子または固定子に備える希土類磁石として、酸洗浄後の希土類磁石における水素含有量が50ppm以下のNd−Fe−B系の希土類磁石が用いられているため、上記した酸洗浄処理の効果、ひいては粒界改質処理の効果が、一層顕著に現れ、耐熱性が高く、高温環境下でもトルク低下をきたさないモータを提供することができる。   In the invention of this claim, as the rare earth magnet provided in the rotor or the stator, an Nd—Fe—B rare earth magnet having a hydrogen content of 50 ppm or less after the acid cleaning is used. The effect of the acid cleaning treatment, and hence the effect of the grain boundary modification treatment, appears more remarkably, and it is possible to provide a motor that has high heat resistance and does not cause torque reduction even in a high temperature environment.

本発明により、過負荷運転などによる温度上昇や高温環境下での使用などの熱によるモータへの温度負荷に対して、耐熱性を高め、高温環境下でもトルク低下をきたさないモータを提供できる。
また、希少で高価な元素(DyやTbなど)の使用量を低減できる永久磁石を備えているため、モータ製造に要するコストの上昇を抑制できる。
According to the present invention, it is possible to provide a motor that has improved heat resistance against a temperature load on the motor due to heat, such as a temperature rise due to overload operation or the like, and is used in a high temperature environment, and does not cause a torque decrease even in a high temperature environment.
Moreover, since the permanent magnet which can reduce the usage-amount of rare and expensive elements (Dy, Tb, etc.) is provided, the increase in the cost required for motor manufacture can be suppressed.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. In addition, this invention is not limited to the following embodiment. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(永久磁石の製作)
Nd12.5Fe79.5で示される組成の原料合金を、粉砕、成形、焼結して得られた焼結磁石を切断し、30mm×8mm×2mmのサイズの板状Nd−Fe−B系焼結磁石片を複数個製作した。次に、DyF粉末1gおよびCaH粉末0.6gをエタノールを用いてスラリー化させ、前記磁石片表面に塗布して乾燥させた。続いてこれらの磁石片をSUS製のルツボに装填し、Arガス雰囲気中、900℃で2時間保持して、DyFをDy金属に還元すると同時に磁石内へ拡散させる熱処理を行って粒界改質磁石を作製した。この磁石試料をルツボから取り出し、試料表面のCaF粉末をブラシで軽く除去して、SUS304製網カゴに装填した。
(Permanent magnet production)
A sintered magnet obtained by pulverizing, forming and sintering a raw material alloy having a composition represented by Nd 12.5 Fe 79.5 B 8 is cut to obtain a plate-like Nd—Fe having a size of 30 mm × 8 mm × 2 mm. -A plurality of B-based sintered magnet pieces were produced. Next, 1 g of DyF 3 powder and 0.6 g of CaH 2 powder were slurried with ethanol, applied to the surface of the magnet piece, and dried. Subsequently, these magnet pieces are loaded into a crucible made of SUS, held in an Ar gas atmosphere at 900 ° C. for 2 hours, and subjected to a heat treatment for reducing DyF 3 to Dy metal and simultaneously diffusing into the magnet, thereby changing the grain boundary. A quality magnet was produced. The magnet sample was taken out from the crucible, and the CaF 2 powder on the sample surface was lightly removed with a brush and loaded into a mesh basket made of SUS304.

次に、網カゴを、濃度70%の硝酸を純水で100倍に希釈した酸水溶液中に、発振周波数28kHz、出力100Wの超音波を加えながら浸漬して、酸洗浄処理を行い、Nd−Fe−B系焼結磁石(以下、処理済磁石という)を得た。   Next, the net basket is immersed in an acid aqueous solution in which nitric acid with a concentration of 70% is diluted 100 times with pure water while applying ultrasonic waves with an oscillation frequency of 28 kHz and an output of 100 W, and an acid cleaning treatment is performed. An Fe-B sintered magnet (hereinafter referred to as a treated magnet) was obtained.

図1にその横断面および縦断面の概念図を示すブラシレスモータのロータコア2に、得られた処理済磁石1を埋め込み、ロータシャフト4に圧入固定したインナーロータタイプのIPM(Interior Permanent Magnet)型ブラシレスモータ22を製作した。   An inner rotor type IPM (Interior Permanent Magnet) type brushless in which the obtained processed magnet 1 is embedded in a rotor core 2 of a brushless motor whose conceptual diagram is shown in FIG. A motor 22 was manufactured.

以下、図1に基づき、上記ブラシレスモータ22の構成につき、説明する。
処理済磁石1が円周上90°おきに均等に埋め込まれたロータコア2、および4極着磁された位置検出磁石3は、ロータシャフト4に回転固定されている。ロータシャフト4の両端は、軸受5および軸受5を保持するモータフレーム6を介してモータケース7で保持され、また、モータケース7で圧入固定されているステータ8に対して軸心が同一である。
Hereinafter, the configuration of the brushless motor 22 will be described with reference to FIG.
The rotor core 2 in which the processed magnets 1 are evenly embedded every 90 ° on the circumference and the position detection magnet 3 magnetized with four poles are rotationally fixed to the rotor shaft 4. Both ends of the rotor shaft 4 are held by a motor case 7 via a bearing 5 and a motor frame 6 that holds the bearing 5, and have the same axis as a stator 8 that is press-fitted and fixed by the motor case 7. .

マグネットワイヤ13が巻装されたステータ8に対して、ロータ(4極:パラレル円周方向)は、スラスト方向に同位置に配置し、回転可能になるように軸受5およびモータフレーム6を経てモータケース7に固定されている。   The rotor (four poles: parallel circumferential direction) is arranged at the same position in the thrust direction with respect to the stator 8 around which the magnet wire 13 is wound, and the motor passes through the bearing 5 and the motor frame 6 so as to be rotatable. It is fixed to the case 7.

ホールIC9は、軸心に対して60°毎に3ヶ所ホール基板10上に配置されて、ロータに配置した位置検出磁石3の磁極を検知し、ホール基板10および中空になっている軸19を貫通するケーブル11を介して、別途接続される制御基板12へと信号を送る。別途接続される制御基板12はその信号を受け、適宜ステータ8へ巻装されたマグネットワイヤ13へ電流を流し、ロータシャフト4を回転させる。   The Hall IC 9 is disposed on the Hall substrate 10 at three positions every 60 ° with respect to the axis, detects the magnetic pole of the position detection magnet 3 disposed on the rotor, and moves the Hall substrate 10 and the hollow shaft 19. A signal is sent to the control board 12 connected separately through the cable 11 which penetrates. The separately connected control board 12 receives the signal and appropriately sends a current to the magnet wire 13 wound around the stator 8 to rotate the rotor shaft 4.

(耐熱性の確認)
まず、常温(25℃)でモータの動特性を、モータアナライザを用いて、測定する。
測定方法は、以下の通りである。
(動特性測定要素):回転数、トルク、入力電圧、入力電流、入力、出力、効率(モータ単体及び制御基板込の2種)
(Confirmation of heat resistance)
First, the dynamic characteristics of a motor are measured using a motor analyzer at room temperature (25 ° C.).
The measuring method is as follows.
(Dynamic characteristic measurement elements): Rotational speed, torque, input voltage, input current, input, output, efficiency (motor alone and control board included)

(測定方法)
供試品(処理済磁石を組込んだブラシレスモータ)を専用固定台に取り付け、カップリングを介してモータアナライザへとロータシャフト4を回転固定する。上記測定要素が測定できるようモータアナライザ専用端子へモータおよび制御基板12の電源線および信号線等を接続する。モータアナライザはPC操作のため、予めインストールされたソフトを使用し、必要試験条件を設定する。回転数またはトルク基準で特性測定を行うことができ、今回は回転数基準を選択した。設定回転数毎にその他の要素が測定することができ、それぞれの要素を画面上にプロットし、CSV形式でデータとして残すことができるのでその資料を基に評価を行う。
(Measuring method)
A specimen (brushless motor incorporating a processed magnet) is attached to a dedicated fixing base, and the rotor shaft 4 is rotationally fixed to the motor analyzer via the coupling. The power line and signal line of the motor and control board 12 are connected to the motor analyzer dedicated terminal so that the measurement element can be measured. The motor analyzer uses a pre-installed software to set the necessary test conditions for PC operation. Characteristic measurement can be performed based on the rotational speed or torque, and this time the rotational speed standard was selected. Other elements can be measured for each set number of revolutions, and each element can be plotted on the screen and left as data in CSV format, so evaluation is performed based on the data.

(測定条件)
最初に、室内常温常湿で測定を行う。
(Measurement condition)
First, the measurement is performed at room temperature and humidity.

次いで、マントルヒーターでモータ全体を包み込み仮想的に高温環境下を作り出す。
熱電対をモータコイル部に取付け、PCカード型データ収集システムで温度を監視し、各所定温度(60/100/120/150/180℃)に加熱して1時間保持し、その後空冷する。常温に戻った後、再度動特性を測定する。
Next, the whole motor is wrapped with a mantle heater to virtually create a high temperature environment.
A thermocouple is attached to the motor coil section, the temperature is monitored by a PC card type data collection system, heated to each predetermined temperature (60/100/120/150/180 ° C.), held for 1 hour, and then air-cooled. After returning to room temperature, the dynamic characteristics are measured again.

常温のトルクを基準とし、所定温度に加熱した後のトルクの変化率を求めた。
結果を、図2に示す。
図2に示すように、処理前は100℃を超えるとトルクが激減しているのに対し、処理後は180℃でもトルクの低下は漸減程度(2%以下)であり、安定したモータトルクが得られていることが分かる。
Using the normal temperature torque as a reference, the rate of change in torque after heating to a predetermined temperature was determined.
The results are shown in FIG.
As shown in FIG. 2, the torque decreases drastically when the temperature exceeds 100 ° C. before the treatment, but after the treatment, the decrease in the torque is gradually reduced (less than 2%) even at 180 ° C. You can see that it is obtained.

(モータの使用例)
図3は、前記のIPM型ブラシレスモータを内蔵したローラの断面概念図である。
図1に示したモータのロータシャフト4の先端に対し回転固定で勘合する太陽歯車14は、遊星減速機構15を経て減速された出力軸16へと出力され、出力軸16は、パイプ17へ回転固定された出力板18と回転固定で勘合し、パイプ17へと出力伝達することにより、パイプ17が回転する。また、軸19は、モータケース7に対して回転固定かつパイプ17に対して回転可能に固定および取付フレーム20に対して固定金具21を介して固定される。軸19を取付フレーム20に取り付け、回転固定させることによりパイプ17が回転し物品を搬送可能とする。
(Example of motor use)
FIG. 3 is a cross-sectional conceptual diagram of a roller incorporating the IPM brushless motor.
The sun gear 14 that engages with the tip of the rotor shaft 4 of the motor shown in FIG. 1 by rotation is output to the output shaft 16 that has been decelerated through the planetary reduction mechanism 15, and the output shaft 16 rotates to the pipe 17. The pipe 17 is rotated by engaging with the fixed output plate 18 by rotation and transmitting the output to the pipe 17. Further, the shaft 19 is fixed to the motor case 7 so as to rotate and be fixed to the pipe 17 and is fixed to the mounting frame 20 via a fixing fitting 21. By attaching the shaft 19 to the attachment frame 20 and rotating and fixing it, the pipe 17 rotates and the article can be conveyed.

従来は、高温環境下での使用や、重量搬送物による過負荷運転がある場合、モータ内蔵ローラは熱を持つたびに徐々にトルク低下し、場合によっては物品を搬送しなくなる可能性があった。処理済磁石を応用した本発明のブラシレスモータをローラに内蔵することにより、高温環境下での使用や重量搬送物による過負荷運転等を経てもモータトルクの低下はなく、搬送不良を生じることはない。   Conventionally, when used in a high-temperature environment or overloaded with heavy transported objects, the motor built-in roller gradually decreases in torque each time it is heated, and in some cases, it may not be able to transport articles. . By incorporating the brushless motor of the present invention using a treated magnet in the roller, the motor torque does not decrease even after use under high temperature conditions or overload operation due to heavy transported objects, resulting in poor conveyance. Absent.

本発明に係るブラシレスモータの縦、横断面の概念図である。It is a conceptual diagram of the vertical and horizontal cross section of the brushless motor which concerns on this invention. モータ温度とトルク変化率の関係を示す図である。It is a figure which shows the relationship between motor temperature and a torque change rate. 本発明に係るブラシレスモータを内蔵したローラの断面概念図である。It is a cross-sectional conceptual diagram of the roller incorporating the brushless motor according to the present invention.

符号の説明Explanation of symbols

1 処理済磁石
2 ロータコア
3 位置検出磁石
4 ロータシャフト
5 軸受
6 モータフレーム
7 モータケース
8 ステータ
9 ホールIC
10 ホール基板
11 ケーブル
12 制御基板
13 マグネットワイヤ
14 太陽歯車
15 遊星減速機構
16 出力軸
17 パイプ
18 出力板
19 軸
20 取付フレーム
21 固定金具
22 モータ
DESCRIPTION OF SYMBOLS 1 Processed magnet 2 Rotor core 3 Position detection magnet 4 Rotor shaft 5 Bearing 6 Motor frame 7 Motor case 8 Stator 9 Hall IC
10 Hall board 11 Cable 12 Control board 13 Magnet wire 14 Sun gear 15 Planetary speed reduction mechanism 16 Output shaft 17 Pipe 18 Output plate 19 Shaft 20 Mounting frame 21 Fixing bracket 22 Motor

Claims (2)

希土類磁石を、回転子または固定子に備えたブラシレスモータであって、
前記希土類磁石が、表面から内部に、M元素(但し、Mは、Pr、Dy、TbまたはHo)を拡散浸透させて粒界改質処理を行った後、酸液に浸漬すると共に、前記酸液に超音波を作用させることによって、表面を洗浄したNd−Fe−B系の希土類磁石であることを特徴とするブラシレスモータ。
A brushless motor having a rare earth magnet in a rotor or a stator,
The rare earth magnet is subjected to grain boundary modification treatment by diffusing and infiltrating M element (where M is Pr, Dy, Tb or Ho) from the surface to the inside, and then immersed in an acid solution and the acid A brushless motor, which is a Nd-Fe-B rare earth magnet whose surface is cleaned by applying ultrasonic waves to the liquid.
前記希土類磁石が、水素含有量50ppm以下のNd−Fe−B系の希土類磁石であることを特徴とすることを特徴とする請求項1に記載のブラシレスモータ。   The brushless motor according to claim 1, wherein the rare earth magnet is an Nd—Fe—B rare earth magnet having a hydrogen content of 50 ppm or less.
JP2007070488A 2007-03-19 2007-03-19 Brushless motor Pending JP2008236858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070488A JP2008236858A (en) 2007-03-19 2007-03-19 Brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070488A JP2008236858A (en) 2007-03-19 2007-03-19 Brushless motor

Publications (1)

Publication Number Publication Date
JP2008236858A true JP2008236858A (en) 2008-10-02

Family

ID=39908980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070488A Pending JP2008236858A (en) 2007-03-19 2007-03-19 Brushless motor

Country Status (1)

Country Link
JP (1) JP2008236858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174705A (en) * 2018-07-23 2018-11-08 三菱電機株式会社 Motor, compressor, method for using motor, and method for using compressor
JP2018198527A (en) * 2018-07-23 2018-12-13 三菱電機株式会社 Compressor, electric motor, method for using compressor, and method for using electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018174705A (en) * 2018-07-23 2018-11-08 三菱電機株式会社 Motor, compressor, method for using motor, and method for using compressor
JP2018198527A (en) * 2018-07-23 2018-12-13 三菱電機株式会社 Compressor, electric motor, method for using compressor, and method for using electric motor

Similar Documents

Publication Publication Date Title
US8823235B2 (en) Rotor for axial gap-type permanent magnetic rotating machine
Hirota et al. Coercivity enhancement by the grain boundary diffusion process to Nd–Fe–B sintered magnets
JP4737431B2 (en) Permanent magnet rotating machine
JP5472444B2 (en) Rare earth sintered magnet and motor
DK2254131T3 (en) PROCEDURE FOR MANUFACTURING AN ND-BASED SINTER MAGNET
JP5493663B2 (en) Assembling method of rotor for IPM type permanent magnet rotating machine
JP4564993B2 (en) Rare earth magnet and manufacturing method thereof
US8269392B2 (en) Rotor for permanent magnet rotary machine
JP2007053351A (en) Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
US20090200885A1 (en) Self starting permanent magnet synchronous motor
US8638017B2 (en) Rotor for permanent magnet rotating machine
Chen et al. Reduced dysprosium permanent magnets and their applications in electric vehicle traction motors
JP2006238604A5 (en)
JP2008266767A (en) Treating solution for forming fluoride coating film and method for forming fluoride coating film
WO2006064848A1 (en) Nd-Fe-B MAGNET WITH MODIFIED GRAIN BOUNDARY AND PROCESS FOR PRODUCING THE SAME
JP2009254092A (en) Rotor for permanent magnet rotating machine
JP2010022147A (en) Sintered magnet motor
JP2014180209A (en) Rotor and permanent magnet type rotary machine
JP2010103346A (en) Magnet for ipm type concentrated winding motor and method of manufacturing the same, and ipm type concentrated winding motor using the magnet
JP2009033907A (en) Spindle motor
JP2009165349A (en) Permanent magnet rotating machine, and manufacturing method of permanent magnet segment for permanent magnet rotating machine
JP2008236858A (en) Brushless motor
KR101638090B1 (en) Rotor for permanent magnet type rotary machine
JP2008218647A (en) Acid cleaning method for rare-earth magnet, and rare-earth magnet subjected to acid cleaning by the method
JP2011029293A (en) Rare earth magnet and magnet motor for transportation equipment using the same