[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008231051A - Fluorene-benzothiadiazole compound and organic electroluminescence device using the same - Google Patents

Fluorene-benzothiadiazole compound and organic electroluminescence device using the same Download PDF

Info

Publication number
JP2008231051A
JP2008231051A JP2007074808A JP2007074808A JP2008231051A JP 2008231051 A JP2008231051 A JP 2008231051A JP 2007074808 A JP2007074808 A JP 2007074808A JP 2007074808 A JP2007074808 A JP 2007074808A JP 2008231051 A JP2008231051 A JP 2008231051A
Authority
JP
Japan
Prior art keywords
fluorene
group
mol
compound
fluorene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007074808A
Other languages
Japanese (ja)
Inventor
Mutsumi Kimura
睦 木村
Erika Suzuki
恵理香 鈴木
Masashi Nunokawa
正史 布川
Yasunori Yamazaki
保範 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Institute of National Colleges of Technologies Japan
Hioki EE Corp
Original Assignee
Shinshu University NUC
Institute of National Colleges of Technologies Japan
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Institute of National Colleges of Technologies Japan, Hioki EE Corp filed Critical Shinshu University NUC
Priority to JP2007074808A priority Critical patent/JP2008231051A/en
Publication of JP2008231051A publication Critical patent/JP2008231051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)

Abstract

【課題】優れたオプトエレクトロニクス特性を有する新規フルオレン化合物、そのフルオレン化合物を含有する有機発光素子材料、及び高効率、高輝度及び高寿命の光出力が可能な有機電界発光素子を提供する。
【解決手段】フルオレン化合物は、下記化学式(A)
【化1】

Figure 2008231051

で示されるものである。発光素子材料は、このフルオレン化合物を含有するものである。有機電界発光素子は、陽極と陰極とからなる電極対の間にこの発光素子材料を含有する層を有している。
【選択図】 なしA novel fluorene compound having excellent optoelectronic properties, an organic light-emitting device material containing the fluorene compound, and an organic electroluminescence device capable of high-efficiency, high-brightness, and long-life light output are provided.
A fluorene compound has the following chemical formula (A):
[Chemical 1]
Figure 2008231051

It is shown by. The light emitting element material contains this fluorene compound. The organic electroluminescent element has a layer containing the light emitting element material between an electrode pair composed of an anode and a cathode.
[Selection figure] None

Description

本発明は、有機発光素子材料として用いることができる新規フルオレン化合物、及びそのフルオレン化合物を使用した発光素子材料、有機電界発光素子に関するものである。   The present invention relates to a novel fluorene compound that can be used as an organic light emitting device material, a light emitting device material using the fluorene compound, and an organic electroluminescent device.

近年、有機電界発光素子に関する研究が活発に行われている。有機電界発光素子は、低印加電圧で高輝度の発光があり、薄型軽量の発光デバイス化が可能となることから、次世代ディスプレイ等への適用が期待される。   In recent years, research on organic electroluminescent devices has been actively conducted. The organic electroluminescence element emits light with high luminance at a low applied voltage, and can be made into a thin and light-emitting device, so that it is expected to be applied to a next generation display or the like.

発光効率と発光輝度とに優れ高寿命の有機電界発光素子を得るためには、オプトエレクトロニクス特性の優れた有機発光材料を、有機電界発光素子の構成材料として用いる必要がある。そのような発光材料として、様々な有機化合物が提案されている。中でも、芳香族環を含有するフルオレンやベンゾチアジアゾールは、高い発光効率と高い電子輸送性とを示すことから、最も期待される発光材料のひとつである。また、フルオレンとベンゾチアジアゾールとのコポリマーは、優れた蛍光発光材料として知られている。特許文献1には、アントラセン環以外の縮合多環式芳香族環とフルオレン環とが直接結合している炭化水素化合物と、それを利用した有機電界発光素子材料及び有機電界発光素子が示されている。   In order to obtain an organic electroluminescent device having excellent luminous efficiency and luminous luminance and a long lifetime, it is necessary to use an organic luminescent material having excellent optoelectronic characteristics as a constituent material of the organic electroluminescent device. Various organic compounds have been proposed as such light-emitting materials. Among them, fluorene and benzothiadiazole containing an aromatic ring are one of the most promising luminescent materials because they exhibit high luminous efficiency and high electron transport properties. Further, a copolymer of fluorene and benzothiadiazole is known as an excellent fluorescent material. Patent Document 1 discloses a hydrocarbon compound in which a condensed polycyclic aromatic ring other than an anthracene ring and a fluorene ring are directly bonded, and an organic electroluminescent element material and an organic electroluminescent element using the same. Yes.

しかし、より一層高効率、高輝度で発光し高寿命の有機電界発光素子を得るために、さらに優れたオプトエレクトロニクス特性を有する発光材料が求められているのが現状である。   However, in order to obtain an organic electroluminescent device that emits light with higher efficiency and brightness and has a longer lifetime, a light emitting material having further excellent optoelectronic properties is required.

特開2004−43349号公報JP 2004-43349 A

本発明は、優れたオプトエレクトロニクス特性を有する新規フルオレン化合物、そのフルオレン化合物を含有する有機発光素子材料、及び高効率、高輝度及び高寿命の光出力が可能な有機電界発光素子を提供することを目的とする。   The present invention provides a novel fluorene compound having excellent optoelectronic properties, an organic light-emitting device material containing the fluorene compound, and an organic electroluminescent device capable of high-efficiency, high-brightness, and long-life light output. Objective.

前記の目的を達成するためになされた、特許請求の範囲の請求項1に記載されたフルオレン化合物は、下記化学式(A)

Figure 2008231051
(式(A)中、−Rは炭素数1〜18のアルキル基、−Rは炭素数1〜18のアルキル基、カルボニル基、ニトロ基、シアノ基、カルバゾール基、置換基を有していてもよいアミノ基、置換基を有していてもよいフェニル基、置換基を有していてもよいスチリル基、置換基を有していてもよいアリール基、nは1〜3の数)で示されることを特徴とする。前記−Rはヘキシル基であるとより好ましい。 The fluorene compound according to claim 1, which has been made to achieve the above object, has the following chemical formula (A):
Figure 2008231051
(In the formula (A), -R 1 has an alkyl group having 1 to 18 carbon atoms, -R 2 has an alkyl group having 1 to 18 carbon atoms, a carbonyl group, a nitro group, a cyano group, a carbazole group, and a substituent. An optionally substituted amino group, an optionally substituted phenyl group, an optionally substituted styryl group, an optionally substituted aryl group, n is a number from 1 to 3 ). The —R 1 is more preferably a hexyl group.

請求項2に記載のフルオレン化合物は、請求項1に記載されたもので、前記式(A)が、下記式(1)〜(7)

Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
のうちのいずれかであることを特徴とする。 The fluorene compound according to claim 2 is the one described in claim 1, wherein the formula (A) is represented by the following formulas (1) to (7).
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
It is any one of these.

請求項3に記載の発光素子材料は、請求項1〜2のいずれかに記載のフルオレン化合物を含有することを特徴とする。   A light emitting device material according to claim 3 contains the fluorene compound according to any one of claims 1 and 2.

請求項4に記載の有機電界発光素子は、陽極と陰極とからなる電極対の間に、請求項3に記載の発光素子材料を含有する層を有することを特徴とする。   The organic electroluminescent element according to claim 4 is characterized in that a layer containing the light emitting element material according to claim 3 is provided between an electrode pair composed of an anode and a cathode.

前記式(1)〜(7)で示されるフルオレン化合物は、本発明によって初めて合成された。これらのフルオレン化合物は温度安定性、化学的安定性に優れ、なおかつ高い蛍光量子収率や発光効率、優れた電子輸送性を示すため、蛍光発光材料として好適に使用できる。   The fluorene compounds represented by the formulas (1) to (7) were synthesized for the first time according to the present invention. Since these fluorene compounds are excellent in temperature stability and chemical stability, and exhibit high fluorescence quantum yield, light emission efficiency, and excellent electron transport properties, they can be suitably used as fluorescent light emitting materials.

本発明のフルオレン化合物を含有する発光素子材料を用いて作製された有機電界発光素子は、印加電圧が低い場合でも高効率、高輝度に発光する。そのため、この有機電界発光素子はディスプレイ材料、照明材料、太陽電池、電界効果トランジスタ等に有用である。   An organic electroluminescent device manufactured using a light emitting device material containing the fluorene compound of the present invention emits light with high efficiency and high luminance even when the applied voltage is low. Therefore, this organic electroluminescent element is useful for display materials, illumination materials, solar cells, field effect transistors and the like.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.

本発明のフルオレン化合物は、フルオレンの両端にそれぞれベンゾチアジアゾールを有するπ共役オリゴマーである。   The fluorene compound of the present invention is a π-conjugated oligomer having benzothiadiazole at both ends of fluorene.

本発明のフルオレン化合物の好ましい一例として、前記化学式(5)で示される化合物は以下の化学反応式のようにして合成される。   As a preferred example of the fluorene compound of the present invention, the compound represented by the chemical formula (5) is synthesized according to the following chemical reaction formula.

Figure 2008231051
出発物質である9,9−ジヘキシルフルオレン−2,7−ジボロン酸に、4,7−ジブロモ−2,1,3−ベンゾチアジアゾールと、触媒であるトリフェニルホスフィンパラジウム(Pd(PPh)とを加えて、窒素気流下でSuzukiカップリング反応を行い、(i)で示した中間体を合成する。溶媒としては、テトラヒドロフラン(THF)とトルエンとを使用する。
Figure 2008231051
9,9-dihexylfluorene-2,7-diboronic acid as a starting material, 4,7-dibromo-2,1,3-benzothiadiazole and triphenylphosphine palladium as a catalyst (Pd (PPh 3 ) 4 ) And the Suzuki coupling reaction is carried out under a nitrogen stream to synthesize the intermediate shown in (i). Tetrahydrofuran (THF) and toluene are used as the solvent.

(i)の中間体に1−ビニル−4−(2,2−ジフェニル−ビニル)−ベンゼンを導入する。触媒としてパラジウムアセテート(Pd(OAc))とトリス(2−メチルフェニル)ホスフィンとを使用し、ジメチルホルムアミド(DMF)とトリブチルアミンとを溶媒として90℃で2日間撹拌還流させると、化学式(5)で示されるフルオレン化合物(分子量1163.58)を得ることができる。 1-Vinyl-4- (2,2-diphenyl-vinyl) -benzene is introduced into the intermediate of (i). When palladium acetate (Pd (OAc) 2 ) and tris (2-methylphenyl) phosphine were used as catalysts and dimethylformamide (DMF) and tributylamine were used as a solvent and stirred at 90 ° C. for 2 days, the chemical formula (5 ) Can be obtained (molecular weight 1163.58).

合成した化合物は、プロトン核磁気共鳴(H−NMR)、カーボン核磁気共鳴(13C−NMR)、マトリックス支援レーザー脱離イオン化飛行時間型質量分析(MALDI−TOF−Ms)によって生成を確認、同定する。 The synthesized compounds were confirmed to be produced by proton nuclear magnetic resonance ( 1 H-NMR), carbon nuclear magnetic resonance ( 13 C-NMR), matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF-Ms), Identify.

前記化学式(1)〜(4)、(6)、(7)で示されるフルオレン化合物も、同様の反応で合成することができる。   The fluorene compounds represented by the chemical formulas (1) to (4), (6) and (7) can also be synthesized by the same reaction.

前記化学式(A)中の−Rは、前記化学式(1)〜(7)で−Rとして導入されている基の他に、アリール基、カルボニル基、シアノ基、ニトロ基、アミノ基、カルバゾール基であってもよく、これらの基はそれぞれ置換基を有していてもよい。 -R 2 in the chemical formula (A) is an aryl group, a carbonyl group, a cyano group, a nitro group, an amino group, in addition to the group introduced as -R 2 in the chemical formulas (1) to (7). It may be a carbazole group, and each of these groups may have a substituent.

フルオレン化合物は、−Rとして導入する置換基の種類によって、異なる蛍光発光を示す。−Rとしてスチルベンを有する前記化学式(5)で示される化合物はオレンジ色の発光を示し、−Rとしてトリフェニルアミンを有する前記化学式(2)で示される化合物は赤色の発光を示す。 Fluorene compounds, depending on the type of substituents introduced as -R 2, showing a different fluorescent emission. The compound represented by the chemical formula (5) having stilbene as —R 2 exhibits orange light emission, and the compound represented by the chemical formula (2) having triphenylamine as —R 2 exhibits red light emission.

フルオレン化合物は、フルオレン−ベンゾチアジアゾールの単量体を基本骨格としているが、フルオレンの片末端にベンゾチアジアゾールを配したものをモノマーユニットとし、その3量体を基本骨格としてもよい。   The fluorene compound has a fluorene-benzothiadiazole monomer as a basic skeleton, but a fluorene compound having a benzothiadiazole arranged at one end of the fluorene may be a monomer unit, and a trimer thereof may be a basic skeleton.

本発明の発光素子材料は、蛍光色素として前記のフルオレン化合物を含有するものである。発光素子材料は、有機電界発光素子の発光層の構成材料として用いられることが好ましいが、有機電界発光素子のホール注入層、ホール輸送層、電子注入層、電子輸送層等に含まれていてもよい。   The light emitting device material of the present invention contains the fluorene compound as a fluorescent dye. The light emitting device material is preferably used as a constituent material of the light emitting layer of the organic electroluminescent device, but may be contained in the hole injection layer, hole transport layer, electron injection layer, electron transport layer, etc. of the organic electroluminescent device. Good.

本発明の有機電界発光素子は、基板上に設けられた陽極と陰極との間に存在する層の少なくともひとつの層に、前記の発光素子材料を含有するものである。前記発光素子材料を含有する層は、発光層であると特に好ましい。   The organic electroluminescent element of the present invention comprises the above-described light emitting element material in at least one layer present between an anode and a cathode provided on a substrate. The layer containing the light emitting element material is particularly preferably a light emitting layer.

前記発光素子材料を含有する層の形成方法は特に限定されない。例えば、印刷法やスピンコート法やスパッタリング法のようなウェットプロセス、真空蒸着法のようなドライプロセスといった、公知の方法を用いて成膜される。   The method for forming the layer containing the light emitting element material is not particularly limited. For example, the film is formed using a known method such as a wet process such as a printing method, a spin coating method, or a sputtering method, or a dry process such as a vacuum evaporation method.

前記基板としては、例えばガラス基板、石英基板のような透明性基板、または金属製基板、セラミック製基板のような不透明性基板を用いることができる。   As the substrate, for example, a transparent substrate such as a glass substrate or a quartz substrate, or an opaque substrate such as a metal substrate or a ceramic substrate can be used.

前記陽極の材料としては仕事関数が大きなものが好ましく、例えば金、白金、ニッケル、パラジウム、コバルト、セレン、バナジウムのような金属の単体;これらの金属の合金;酸化錫、酸化亜鉛、酸化錫インジウム(ITO)、酸化亜鉛インジウムのような金属酸化物が挙げられる。これらの陽極材料は、単独で陽極を構成してもよく、複数併用して構成してもよい。   The material of the anode is preferably a material having a large work function, for example, a simple metal such as gold, platinum, nickel, palladium, cobalt, selenium, vanadium; an alloy of these metals; tin oxide, zinc oxide, indium tin oxide. (ITO), and metal oxides such as zinc indium oxide. These anode materials may constitute an anode alone or may be used in combination.

前記陰極の材料としては仕事関数が小さなものが好ましく、例えばリチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロムのような金属の単体;これらの金属の合金が挙げられる。これらの陰極材料は、単独で陰極を構成してもよく、複数併用して構成してもよい。   The material of the cathode is preferably a material having a small work function, for example, simple metals such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, silver, lead, tin, chromium; alloys of these metals It is done. These cathode materials may constitute a cathode alone or in combination.

有機電界発光素子は、前記発光層に加えて、ホール注入層、ホール輸送層、ホールブロック層、電子輸送層、電子注入層等の層が設けられていてもよい。これらの層は、単層であっても多層であってもよく、また有機化合物層であっても無機化合物層であってもよい。   The organic electroluminescent element may be provided with layers such as a hole injection layer, a hole transport layer, a hole block layer, an electron transport layer, and an electron injection layer in addition to the light emitting layer. These layers may be single layers or multilayers, and may be organic compound layers or inorganic compound layers.

具体的には、例えばホール注入層として銅フタロシアニンや4,4−ビス(3−メチルフェニルフェニルアミノ)ビフェニル(mTDATA)、ホール輸送層として、4,4,4−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン(TPD)やN,N'−ビス(1−ナフチル)−N,N'−ジフェニルベンジジン(NPD)、ホールブロック層として2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(バソクプロイン;BCP)やビス(2−メチル−8−キノリノレート)(p−フェニルフェノレート)アルミニウム(BAlq)やバソフェンを用いることができる。また、電子輸送層としてアルミニウム トリス 8−ヒドロキシキノリン(Alq)や1,3,5−トリス(1−フェニル−2−ベンズイミダゾリル)ベンゼン(TPBi)を用いてもよい。 Specifically, for example, copper phthalocyanine or 4,4-bis (3-methylphenylphenylamino) biphenyl (mTDATA) as the hole injection layer, and 4,4,4-tris (3-methylphenylphenylamino) as the hole transport layer. ) Triphenylamine (TPD), N, N′-bis (1-naphthyl) -N, N′-diphenylbenzidine (NPD), 2,9-dimethyl-4,7-diphenyl-1,10 as a hole blocking layer -Phenanthroline (basocuproin; BCP), bis (2-methyl-8-quinolinolate) (p-phenylphenolate) aluminum (BAlq), or bathophen can be used. Alternatively, aluminum tris 8-hydroxyquinoline (Alq 3 ) or 1,3,5-tris (1-phenyl-2-benzimidazolyl) benzene (TPBi) may be used as the electron transport layer.

本発明のフルオレン化合物を合成した例を合成例1〜6に示す。   Examples of synthesizing the fluorene compound of the present invention are shown in Synthesis Examples 1-6.

(合成例1) 2,7−ビス[(4−メチル)−2,1,3−ベンゾチアジアゾール]−9,9−ジヘキシルフルオレン(前記化学式(1)で示されるフルオレン化合物)の合成
THF5mlとトルエン4mlと2N炭酸カリウム水溶液3mlとの混合溶液に、9,9−ジヘキシルフルオレン−2,7−ジボロン酸の0.1g(2.37×10−4mol)と4−ブロモ−7−メチル−2,1,3−ベンゾチアジアゾールの0.12g(5.21×10−4mol)とを加え、窒素気流下で30分撹拌して溶解した。そこにトリフェニルホスフィンパラジウムの0.006g(4.74×10−6mol)を加えてさらに10分間撹拌した後、70℃で2日間撹拌還流した。エーテル/水で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して目的物を得た。得られた生成物は、H−NMR、13C−NMRにより同定した。尚、NMR測定には、NMR分光器AVANCE400(日本ブルカー社製)を使用した。
Synthesis Example 1 Synthesis of 2,7-bis [(4-methyl) -2,1,3-benzothiadiazole] -9,9-dihexylfluorene (fluorene compound represented by the above chemical formula (1)) THF 5 ml and toluene In a mixed solution of 4 ml and 3 ml of 2N aqueous potassium carbonate solution, 0.1 g (2.37 × 10 −4 mol) of 9,9-dihexylfluorene-2,7-diboronic acid and 4-bromo-7-methyl-2 were added. , 1,3-benzothiadiazole 0.12 g (5.21 × 10 −4 mol) was added and dissolved by stirring for 30 minutes under a nitrogen stream. Thereto was added 0.006 g (4.74 × 10 −6 mol) of triphenylphosphine palladium, and the mixture was further stirred for 10 minutes, and then stirred and refluxed at 70 ° C. for 2 days. Liquid separation was performed with ether / water to extract an ether layer, dehydrated with magnesium sulfate, and then concentrated under reduced pressure. The product was purified using a silica gel column (petroleum ether: dichloromethane = 1: 1), further purified by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to obtain the desired product. The obtained product was identified by 1 H-NMR and 13 C-NMR. In addition, NMR spectrometer AVANCE400 (made by Nippon Bruker) was used for NMR measurement.

収量(収率):0.08g(53%)
1H-NMR(CDCl3,400.13MHz):δ=7.97(d,J=8.0Hz,2H,ArH),7.92(s,2H,ArH),7.88(d,J=8.0Hz,2H,ArH),7.69(d,J=6.8Hz,2H,ArH),7.48(d,J=7.2Hz,2H,ArH),2.81(s,6H,Ar-CH3),2.08(m,4H,Ar-CH2-C5H11),1.12(m,12H,-CH2-),0.89(m,4H,-CH2-CH3),0.76(t,J=7.2Hz,6H,-(CH2)5-CH3),
13C-NMR(CDCl3):δ=156.17,153.69,151.64,140.68,136.51,132.52,130.38,128.41,128.12,127.76,123.84,119.89,55.38,40.25,31.50,29.78,23.97,22.60,17.99,14.04
Yield (yield): 0.08 g (53%)
1 H-NMR (CDCl 3 , 400.13MHz): δ = 7.97 (d, J = 8.0Hz, 2H, ArH), 7.92 (s, 2H, ArH), 7.88 (d, J = 8.0Hz, 2H, ArH) , 7.69 (d, J = 6.8Hz, 2H, ArH), 7.48 (d, J = 7.2Hz, 2H, ArH), 2.81 (s, 6H, Ar-CH 3 ), 2.08 (m, 4H, Ar-CH 2 -C 5 H 11 ), 1.12 (m, 12H, -CH 2- ), 0.89 (m, 4H, -CH 2 -CH 3 ), 0.76 (t, J = 7.2Hz, 6H,-(CH 2 ) 5 -CH 3 ),
13 C-NMR (CDCl 3 ): δ = 156.17,153.69,151.64,140.68,136.51,132.52,130.38,128.41,128.12,127.76,123.84,119.89,55.38,40.25,31.50,29.78,23.97,22.60,17.99,14.04

(合成例2) 2,7−ビス[4−(N,N−ジフェニルアミノ)フェニル]−2,1,3−ベンゾチアジアゾール−9,9−ジヘキシルフルオレン(前記化学式(2)で示されるフルオレン化合物)の合成 (Synthesis Example 2) 2,7-bis [4- (N, N-diphenylamino) phenyl] -2,1,3-benzothiadiazole-9,9-dihexylfluorene (a fluorene compound represented by the chemical formula (2)) ) Synthesis

(2−1)
THF6mlとトルエン5mlと2N炭酸カリウム水溶液4mlとの混合溶液に、9,9−ジヘキシルフルオレン−2,7−ジボロン酸の0.25g(5.29×10−4mol)と4,7−ジブロモ−2,1,3−ベンゾチアジアゾールの0.56g(1.89×10−3mol)とを加え、窒素気流下で30分撹拌して溶解した。そこにトリフェニルホスフィンパラジウムの0.014g(1.18×10−6mol)を加えてさらに10分間撹拌した後、70℃で2日間撹拌還流した。エーテル/水で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=8:2)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して目的物を得た。得られた生成物は、H−NMR、MALDI−TOF−Msにより同定した。尚、MALDI−TOF−Ms測定には、Voyager DE Pro(PerSpeptive Biosystems社製)を使用した。
(2-1)
To a mixed solution of 6 ml of THF, 5 ml of toluene and 4 ml of 2N aqueous potassium carbonate solution, 0.25 g (5.29 × 10 −4 mol) of 9,9-dihexylfluorene-2,7-diboronic acid and 4,7-dibromo- 0.56 g (1.89 × 10 −3 mol) of 2,1,3-benzothiadiazole was added and dissolved by stirring for 30 minutes under a nitrogen stream. To this was added 0.014 g (1.18 × 10 −6 mol) of triphenylphosphine palladium, and the mixture was further stirred for 10 minutes, and then stirred and refluxed at 70 ° C. for 2 days. Liquid separation was performed with ether / water to extract an ether layer, dehydrated with magnesium sulfate, and then concentrated under reduced pressure. The product was purified using a silica gel column (petroleum ether: dichloromethane = 8: 2), further purified by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to obtain the desired product. The obtained product was identified by 1 H-NMR and MALDI-TOF-Ms. For measurement of MALDI-TOF-Ms, Voyager DE Pro (manufactured by PerSeptive Biosystems) was used.

収量(収率):0.45g(53%) Yield (yield): 0.45 g (53%)

(2−2)
THF4mlとトルエン3mlと2N炭酸カリウム水溶液2mlとの混合溶液に、2−1で得られた化合物の0.13g(1.71×10−4mol)と4−(ジフェニルアミノ)フェニルボロン酸の0.12g(4.27×10−4mol)とを加え、窒素気流下で30分撹拌して溶解した。そこにトリフェニルホスフィンパラジウムの0.004g(3.42×10−6mol)を加えてさらに10分間撹拌した後、70℃で2日間撹拌還流した。エーテル/水で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して目的物を得た。得られた生成物は、H−NMR、13C−NMRにより同定した。
(2-2)
To a mixed solution of 4 ml of THF, 3 ml of toluene and 2 ml of 2N aqueous potassium carbonate solution, 0.13 g (1.71 × 10 −4 mol) of the compound obtained in 2-1, and 0 of 4- (diphenylamino) phenylboronic acid .12 g (4.27 × 10 −4 mol) was added and dissolved by stirring for 30 minutes under a nitrogen stream. Thereto was added 0.004 g (3.42 × 10 −6 mol) of triphenylphosphine palladium, and the mixture was further stirred for 10 minutes, and then stirred and refluxed at 70 ° C. for 2 days. Liquid separation was performed with ether / water to extract an ether layer, dehydrated with magnesium sulfate, and then concentrated under reduced pressure. The product was purified using a silica gel column (petroleum ether: dichloromethane = 1: 1), further purified by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to obtain the desired product. The obtained product was identified by 1 H-NMR and 13 C-NMR.

収量(収率):0.15g(79%)
1H-NMR(CDCl3,400.13MHz):δ=8.04(d,J=8.0Hz,1H,ArH),7.99(s,2H,ArH),7.91(m,5H,ArH),7.86(d,1H,J=7.6Hz,ArH),7.80(d,J=7.6Hz,1H,ArH),7.30(t,J=8.4Hz,8H,ArH),7.22(m,12H,ArH),7.15(t,J=7.6Hz,2H,ArH),7.07(t,J=7.6Hz,4H,ArH),6.75(t,J=7.6Hz,1H,ArH),6.68(d,J=8.4Hz,1H,ArH),2.11(m,4H,Ar-CH2-C5H11),1.13(m,12H,-CH2-),0.91(m,4H,-CH2-CH3),0.77(t,J=7.2Hz,6H,-(CH2)5-CH3),
13C-NMR(CDCl3):δ=154.41,154.22,151.73,147.52,140.86,136.46,131.03,129.97,129.38,128.29,128.03,127.36,124.96,123.97,123.35,122.92,120.00,115.11,77.33,77.01,76.70,55.45,40.30,31.53,29.80,24.01,22.61,14.05
Yield (yield): 0.15 g (79%)
1 H-NMR (CDCl 3 , 400.13 MHz): δ = 8.04 (d, J = 8.0 Hz, 1H, ArH), 7.99 (s, 2H, ArH), 7.91 (m, 5H, ArH), 7.86 (d, 1H, J = 7.6Hz, ArH), 7.80 (d, J = 7.6Hz, 1H, ArH), 7.30 (t, J = 8.4Hz, 8H, ArH), 7.22 (m, 12H, ArH), 7.15 (t , J = 7.6Hz, 2H, ArH), 7.07 (t, J = 7.6Hz, 4H, ArH), 6.75 (t, J = 7.6Hz, 1H, ArH), 6.68 (d, J = 8.4Hz, 1H, ArH), 2.11 (m, 4H , Ar-CH 2 -C 5 H 11), 1.13 (m, 12H, -CH 2 -), 0.91 (m, 4H, -CH 2 -CH 3), 0.77 (t, J = 7.2Hz, 6H,-(CH 2 ) 5 -CH 3 ),
13 C-NMR (CDCl 3 ): δ = 154.41,154.22,151.73,147.52,140.86,136.46,131.03,129.97,129.38,128.29,128.03,127.36,124.96,123.97,123.35,122.92,120.00,115.11,77.33,77.01 , 76.70,55.45,40.30,31.53,29.80,24.01,22.61,14.05

(合成例3) 2,7−ビス−4−(N,N−ジフェニルアミノ)−2,1,3−ベンゾチアジアゾール−9,9−ジヘキシルフルオレン(前記化学式(3)で示されるフルオレン化合物)の合成
乾燥トルエン5mlに、2−1で得られた化合物の0.15g(1.97×10−4mol)と、ジフェニルアミン0.073g(4.34×10−4mol)と、tert−ブトキシナトリウム0.076g(7.89×10−4mol)とを加え、窒素気流下で30分撹拌して溶解した。そこにパラジウムアセテート0.002g(9.86×10−6mol)を加えてさらに10分間撹拌した後、トリ−tert−ブチルホスフィン0.01ml(3.94×10−5mol)を加えて一晩撹拌した。エーテル/水で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して目的物を得た。得られた生成物は、H−NMR、13C−NMR、MALDI−TOF−Msにより同定した。
(Synthesis Example 3) 2,7-bis-4- (N, N-diphenylamino) -2,1,3-benzothiadiazole-9,9-dihexylfluorene (fluorene compound represented by the above chemical formula (3)) Synthesis To 5 ml of dry toluene, 0.15 g (1.97 × 10 −4 mol) of the compound obtained in 2-1, 0.073 g (4.34 × 10 −4 mol) of diphenylamine, and tert-butoxy sodium 0.076 g (7.89 × 10 −4 mol) was added and dissolved by stirring for 30 minutes under a nitrogen stream. Thereto was added 0.002 g (9.86 × 10 −6 mol) of palladium acetate, and the mixture was further stirred for 10 minutes, and then 0.01 ml (3.94 × 10 −5 mol) of tri-tert-butylphosphine was added. Stir overnight. Liquid separation was performed with ether / water to extract an ether layer, dehydrated with magnesium sulfate, and then concentrated under reduced pressure. The product was purified using a silica gel column (petroleum ether: dichloromethane = 1: 1), further purified by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to obtain the desired product. The obtained product was identified by 1 H-NMR, 13 C-NMR, and MALDI-TOF-Ms.

収量(収率):0.18g(100%)
1H-NMR(CDCl3,400.13MHz):δ=7.99(d,J=8.0Hz,2H,ArH),7.94(s,2H,ArH),7.88(d,J=8.0Hz,2H,ArH),7.69(d,2H,J=7.6Hz,ArH),7.28(t,J=7.6Hz,10H,ArH),7.11(m,12H,ArH),2.08(m,4H,Ar-CH2-C5H11),1.11(m,12H,-CH2-),0.87(m,4H,-CH2-CH3),0.75(t,J=7.2Hz,6H,-(CH2)5-CH3)
13C-NMR(CDCl3):δ=151.62,147.73,138.90,136.34,130.06,129.24,128.29,128.04,124.08,123.89,123.69,123.06,119.91,77.33,77.02,76.70,55.36,40.32,31.53,29.80,23.96,22.60,14.05
MALDI-TOF-Ms(Dithranol):m/z=937.23,calculated for C61H56N6S2;937.27
Yield (yield): 0.18 g (100%)
1 H-NMR (CDCl 3 , 400.13 MHz): δ = 7.99 (d, J = 8.0 Hz, 2H, ArH), 7.94 (s, 2H, ArH), 7.88 (d, J = 8.0 Hz, 2H, ArH) , 7.69 (d, 2H, J = 7.6Hz, ArH), 7.28 (t, J = 7.6Hz, 10H, ArH), 7.11 (m, 12H, ArH), 2.08 (m, 4H, Ar-CH 2 -C 5 H 11 ), 1.11 (m, 12H, -CH 2- ), 0.87 (m, 4H, -CH 2 -CH 3 ), 0.75 (t, J = 7.2Hz, 6H,-(CH 2 ) 5 -CH 3 )
13 C-NMR (CDCl 3 ): δ = 151.62,147.73,138.90,136.34,130.06,129.24,128.29,128.04,124.08,123.89,123.69,123.06,119.91,77.33,77.02,76.70,55.36,40.32,31.53,29.80 , 23.96,22.60,14.05
MALDI-TOF-Ms (Dithranol): m / z = 937.23, calculated for C 61 H 56 N 6 S 2 ; 937.27

(合成例4) 2,7−ビス(4−カルバゾール−9−イル)−2,1,3−ベンゾチアジアゾール−9,9−ジヘキシルフルオレン(前記化学式(4)で示されるフルオレン化合物)の合成
乾燥トルエン10mlに、2−1で得られた化合物の0.30g(3.94×10−4mol)と、カルバゾール0.15g(8.68×10−4mol)と、tert−ブトキシナトリウム0.15g(7.89×10−5mol)とを加え、窒素気流下で30分撹拌して溶解した。そこにパラジウムアセテート0.004g(1.97×10−5mol)を加えてさらに10分間撹拌した後、トリ−tert−ブチルホスフィン0.019ml(7.89×10−5mol)を加えて100℃で一晩撹拌した。エーテル/水で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して目的物を得た。
Synthesis Example 4 Synthesis of 2,7-bis (4-carbazol-9-yl) -2,1,3-benzothiadiazole-9,9-dihexylfluorene (fluorene compound represented by the above chemical formula (4)) Drying To 10 ml of toluene, 0.30 g (3.94 × 10 −4 mol) of the compound obtained in 2-1, 0.15 g (8.68 × 10 −4 mol) of carbazole, 0. 15 g (7.89 × 10 −5 mol) was added and dissolved by stirring for 30 minutes under a nitrogen stream. Thereto was added 0.004 g (1.97 × 10 −5 mol) of palladium acetate, and the mixture was further stirred for 10 minutes, and then 0.019 ml (7.89 × 10 −5 mol) of tri-tert-butylphosphine was added and 100% was added. Stir overnight at ° C. Liquid separation was performed with ether / water to extract an ether layer, dehydrated with magnesium sulfate, and then concentrated under reduced pressure. The product was purified using a silica gel column (petroleum ether: dichloromethane = 1: 1), further purified by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to obtain the desired product.

収量(収率):0.19g(51%) Yield (yield): 0.19 g (51%)

(合成例5) 2,7−ビス[4−(2,2−ジフェニル−ビニル)−フェニル]−2,1,3−ベンゾチアジアゾール−9,9−ジヘキシルフルオレン(前記化学式(5)で示されるフルオレン化合物)の合成 Synthesis Example 5 2,7-bis [4- (2,2-diphenyl-vinyl) -phenyl] -2,1,3-benzothiadiazole-9,9-dihexylfluorene (shown by the above chemical formula (5)) Synthesis of fluorene compounds)

(5−1)
4−ブロモベンジルブロミン1g(4.0×10mol)にトリエチルホスフィン2.1ml(1.2×10mol)を加え、145℃で一晩撹拌還流した。過剰のトリエチルホスフィンを減圧蒸留によって除去し、1−ブロモ−4−(ジエチルホスフィノイルメチル)ベンゼンを得た。
(5-1)
To 1 g (4.0 × 10 3 mol) of 4-bromobenzyl bromine was added 2.1 ml (1.2 × 10 2 mol) of triethylphosphine, and the mixture was stirred and refluxed at 145 ° C. overnight. Excess triethylphosphine was removed by distillation under reduced pressure to give 1-bromo-4- (diethylphosphinoylmethyl) benzene.

(5−2)
THF20mlにtert−ブトキシカリウム1.12g(1.0×10−2mol)を加えて、氷浴中で撹拌した。そこへ、THF10mlにベンゾフェノン0.73g(4.0×10−3mol)と5−1で得られた1−ブロモ−4−(ジエチルホスフィノイルメチル)ベンゼンの1.23g(4.0×10−3mol)とを溶解した溶液をゆっくりと滴下して、70℃で一晩撹拌還流した。反応混合物を氷水に注いで塩酸で中和した。その後エーテル/水で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して、1−ブロモ−4−(2,2−ジフェニルビニル)ベンゼンを得た。
(5-2)
To 20 ml of THF, 1.12 g (1.0 × 10 −2 mol) of tert-butoxypotassium was added and stirred in an ice bath. Thereto, 0.73 g (4.0 × 10 −3 mol) of benzophenone and 1.23 g (4.0 × 10) of 1-bromo-4- (diethylphosphinoylmethyl) benzene obtained in 5-1 in 10 ml of THF were obtained. 10 −3 mol) was slowly added dropwise and stirred and refluxed at 70 ° C. overnight. The reaction mixture was poured into ice water and neutralized with hydrochloric acid. Thereafter, the mixture was separated with ether / water to extract the ether layer, dehydrated with magnesium sulfate, and concentrated under reduced pressure. Purification was performed using a silica gel column (petroleum ether: dichloromethane = 1: 1), further purification was performed by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to give 1-bromo-4- (2,2-diphenyl). Vinyl) benzene was obtained.

収量(収率):0.89g(66%) Yield (yield): 0.89 g (66%)

(5−3)
乾燥トルエン5mlに、5−2で得られた1−ブロモ−4−(2,2−ジフェニルビニル)ベンゼンの0.47g(1.40×10−3mol)と、2,6−ジtert−ブチル−4−メチルフェノールの0.03g(1.36×10−4mol)とを加え、窒素気流下で30分撹拌して溶解した。そこにトリフェニルホスフィンパラジウム0.014g(2.80×10−5mol)を加えてさらに10分間撹拌した後、トリブチル(ビニル)スズ0.49ml(1.68×10−3mol)を加えて100℃で一晩撹拌した。エーテル/フッ化カリウム水溶液で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=8:2)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して、1−ビニル−4−(2,2−ジフェニルビニル)ベンゼンを得た。
(5-3)
To 5 ml of dry toluene, 0.47 g (1.40 × 10 −3 mol) of 1-bromo-4- (2,2-diphenylvinyl) benzene obtained in 5-2 and 2,6-ditert- 0.03 g (1.36 × 10 −4 mol) of butyl-4-methylphenol was added and dissolved by stirring for 30 minutes under a nitrogen stream. Thereto was added 0.014 g (2.80 × 10 −5 mol) of triphenylphosphine palladium, and the mixture was further stirred for 10 minutes, and then 0.49 ml (1.68 × 10 −3 mol) of tributyl (vinyl) tin was added. Stir at 100 ° C. overnight. The ether layer was extracted with an ether / potassium fluoride aqueous solution, dehydrated with magnesium sulfate, and concentrated under reduced pressure. Purification was performed using a silica gel column (petroleum ether: dichloromethane = 8: 2), further purification was performed by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to give 1-vinyl-4- (2,2-diphenyl). Vinyl) benzene was obtained.

収量(収率):0.18g(45%) Yield (yield): 0.18 g (45%)

(5−4)
乾燥トルエン8mlに、2−1で得られた化合物の0.22g(2.89×10−4mol)と、5−3で得られた1−ビニル−4−(2,2−ジフェニルビニル)ベンゼンの0.18g(6.36×10−4mol)とを溶解し、さらにパラジウムアセテート0.002g(1.16×10−5mol)と、トリス(2−メチルフェニル)ホスフィン0.018g(5.78×10−5mol)とを加えて、窒素気流下で20分間撹拌した。そこに乾燥トリブチルアミン3.0ml(1.26×10−2mol)を加えて90℃で2日間撹拌還流した。溶媒を減圧濃縮し、シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して目的物を得た。得られた生成物は、H−NMR、13C−NMR、MALDI−TOF−Msにより同定した。
(5-4)
To 8 ml of dry toluene, 0.22 g (2.89 × 10 −4 mol) of the compound obtained in 2-1 and 1-vinyl-4- (2,2-diphenylvinyl) obtained in 5-3 0.18 g (6.36 × 10 −4 mol) of benzene was dissolved, and 0.002 g (1.16 × 10 −5 mol) of palladium acetate and 0.018 g of tris (2-methylphenyl) phosphine ( 5.78 × 10 −5 mol) was added and stirred for 20 minutes under a nitrogen stream. Thereto was added 3.0 ml (1.26 × 10 −2 mol) of dry tributylamine, and the mixture was stirred and refluxed at 90 ° C. for 2 days. The solvent was concentrated under reduced pressure, purified using a silica gel column (petroleum ether: dichloromethane = 1: 1), further purified by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to obtain the desired product. The obtained product was identified by 1 H-NMR, 13 C-NMR, and MALDI-TOF-Ms.

収量(収率):0.22g(67%)
1H-NMR(CDCl3,400.13MHz):δ=8.01(d,J=7.6Hz,2H,ArH),7.97(d,J=7.2Hz,2H,ArH),7.90(d,J=8.0Hz,2H,ArH),7.79(d,2H,J=7.6Hz,ArH),7.76(d,J=7.6Hz,2H,ArH),7.67(s,1H,ArH),7.62(s,1H,ArH),7.45(d,J=8.4Hz,4H,ArH),7.31(m,22H,ArH),7.06(d,J=8.4Hz,4H,-CH=CH-),7.00(s,2H,ArH),2.11(m,4H,Ar-CH2-C5H11),1.13(m,12H,-CH2-),0.88(m,4H,-CH2-CH3),0.77(t,J=6.8Hz,6H,-(CH2)5-CH3)
13C-NMR(CDCl3):δ=143.33,137.42,136.38,135.89,132.78,130.40,129.98,129.45,128.76,128.24,127.79,127.62,126.75,126.57,124.28,120.01,77.33,77.01,76.69,31.50,29.77,23.97,22.60,14.06
MALDI-TOF-Ms (Dithranol):m/z=1163.51,calculated for C81H70N4S2;1163.58
Yield (yield): 0.22 g (67%)
1 H-NMR (CDCl 3 , 400.13 MHz): δ = 8.01 (d, J = 7.6 Hz, 2H, ArH), 7.97 (d, J = 7.2 Hz, 2H, ArH), 7.90 (d, J = 8.0 Hz , 2H, ArH), 7.79 (d, 2H, J = 7.6Hz, ArH), 7.76 (d, J = 7.6Hz, 2H, ArH), 7.67 (s, 1H, ArH), 7.62 (s, 1H, ArH ), 7.45 (d, J = 8.4Hz, 4H, ArH), 7.31 (m, 22H, ArH), 7.06 (d, J = 8.4Hz, 4H, -CH = CH-), 7.00 (s, 2H, ArH ), 2.11 (m, 4H, Ar-CH 2 -C 5 H 11 ), 1.13 (m, 12H, -CH 2- ), 0.88 (m, 4H, -CH 2 -CH 3 ), 0.77 (t, J = 6.8Hz, 6H,-(CH 2 ) 5 -CH 3 )
13 C-NMR (CDCl 3 ): δ = 143.33,137.42,136.38,135.89,132.78,130.40,129.98,129.45,128.76,128.24,127.79,127.62,126.75,126.57,124.28,120.01,77.33,77.01,76.69,31.50 , 29.77,23.97,22.60,14.06
MALDI-TOF-Ms (Dithranol): m / z = 1163.51, calculated for C 81 H 70 N 4 S 2 ; 1163.58

(合成例6) 2,7−ビス{4−[4−(10,11−ジヒドロ−ジベンゾシクロヘプタン−5−イリデンメチル)−フェニル]−2,1,3−ベンゾチアジアゾール}−9,9−ジヘキシルフルオレン(前記化学式(6)で示されるフルオレン化合物)の合成 Synthesis Example 6 2,7-bis {4- [4- (10,11-dihydro-dibenzocycloheptane-5-ylidenemethyl) -phenyl] -2,1,3-benzothiadiazole} -9,9-dihexyl Synthesis of fluorene (fluorene compound represented by the chemical formula (6))

(6−1)
THF20mlにtert−ブトキシカリウム1.12g(1.0×10−2mol)を加えて、氷浴中で撹拌した。そこへ、THF10mlにジベンゾスベロン0.83g(4.0×10−3mol)と5−1で得られた1−ブロモ−4−(ジエチルホスフィノイルメチル)ベンゼンの1.23g(4.0×10−3mol)とを溶解した溶液をゆっくりと滴下して、70℃で一晩撹拌還流した。反応混合物を氷水に注いで塩酸で中和した。その後エーテル/水で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して、5−(4−ブロモベンジリデン)−10,11−ジヒドロ−5H−ジベンゾシクロヘプタンを得た。
(6-1)
To 20 ml of THF, 1.12 g (1.0 × 10 −2 mol) of tert-butoxypotassium was added and stirred in an ice bath. Thereto, 0.83 g (4.0 × 10 −3 mol) of dibenzosuberone in 10 ml of THF and 1.23 g (4. 4 of 1-bromo-4- (diethylphosphinoylmethyl) benzene obtained in 5-1. 0 × 10 −3 mol) was slowly added dropwise and stirred and refluxed at 70 ° C. overnight. The reaction mixture was poured into ice water and neutralized with hydrochloric acid. Thereafter, the mixture was separated with ether / water to extract the ether layer, dehydrated with magnesium sulfate, and concentrated under reduced pressure. Purification is performed using a silica gel column (petroleum ether: dichloromethane = 1: 1), and further purification is performed by high performance liquid chromatography (HPLC), followed by concentration under reduced pressure to give 5- (4-bromobenzylidene) -10,11. -Dihydro-5H-dibenzocycloheptane was obtained.

収量(収率):0.41g(44%) Yield (yield): 0.41 g (44%)

(6−2)
乾燥トルエン5mlに、6−1で得られた化合物の0.40g(1.11×10−3mol)と、2,6−ジtert−ブチル−4−メチルフェノールの0.03g(1.36×10−4mol)とを加え、窒素気流下で30分撹拌して溶解した。そこにトリフェニルホスフィンパラジウム0.026g(2.21×10−5mol)を加えてさらに10分間撹拌した後、トリブチル(ビニル)スズ0.39ml(1.33×10−3mol)を加えて100℃で一晩撹拌した。エーテル/フッ化カリウム水溶液で分液を行ってエーテル層を抽出し、硫酸マグネシウムで脱水処理を行った後、減圧濃縮した。シリカゲルカラム(石油エーテル:ジクロロメタン=8:2)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して、5−(4−ビニルベンジリデン)−10,11−ジヒドロ−5H−ジベンゾシクロヘプタンを得た。
(6-2)
In 5 ml of dry toluene, 0.40 g (1.11 × 10 −3 mol) of the compound obtained in 6-1 and 0.03 g (1.36) of 2,6-ditert-butyl-4-methylphenol were obtained. × 10 −4 mol) was added and dissolved by stirring for 30 minutes under a nitrogen stream. Thereto was added 0.026 g (2.21 × 10 −5 mol) of triphenylphosphine palladium, and the mixture was further stirred for 10 minutes, and then 0.39 ml (1.33 × 10 −3 mol) of tributyl (vinyl) tin was added. Stir at 100 ° C. overnight. The ether layer was extracted with an ether / potassium fluoride aqueous solution, dehydrated with magnesium sulfate, and concentrated under reduced pressure. Purification is performed using a silica gel column (petroleum ether: dichloromethane = 8: 2), and further purification is performed by high performance liquid chromatography (HPLC), followed by concentration under reduced pressure, and 5- (4-vinylbenzylidene) -10,11. -Dihydro-5H-dibenzocycloheptane was obtained.

収量(収率):0.20g(59%) Yield (yield): 0.20 g (59%)

(6−3)
乾燥DMF7mlに、2−1で得られた化合物の0.15g(1.97×10−4mol)と、6−2で得られた化合物の0.13g(4.34×10−4mol)とを溶解し、さらにパラジウムアセテート0.002g(7.89×10−6mol)と、トリス(2−メチルフェニル)ホスフィン0.012g(3.94×10−5mol)とを加えて、窒素気流下で20分間撹拌した。そこに乾燥トリブチルアミン3.0ml(1.26×10−2mol)を加えて90℃で2日間撹拌還流した。溶媒を減圧濃縮し、シリカゲルカラム(石油エーテル:ジクロロメタン=1:1)を用いて精製を行い、高速液体クロマトグラフィー(HPLC)でさらに精製を行った後減圧濃縮して目的物を得た。
(6-3)
In 5 ml of dry DMF, 0.15 g (1.97 × 10 −4 mol) of the compound obtained in 2-1 and 0.13 g (4.34 × 10 −4 mol) of the compound obtained in 6-2 Further, 0.002 g (7.89 × 10 −6 mol) of palladium acetate and 0.012 g (3.94 × 10 −5 mol) of tris (2-methylphenyl) phosphine were added, and nitrogen was added. Stir for 20 minutes under air flow. Thereto was added 3.0 ml (1.26 × 10 −2 mol) of dry tributylamine, and the mixture was stirred and refluxed at 90 ° C. for 2 days. The solvent was concentrated under reduced pressure, purified using a silica gel column (petroleum ether: dichloromethane = 1: 1), further purified by high performance liquid chromatography (HPLC), and then concentrated under reduced pressure to obtain the desired product.

収量(収率):0.13g(54%) Yield (yield): 0.13 g (54%)

(紫外・可視(UV−Vis)スペクトル測定)
V−650分光光度計(日本分光(株)社製)を使用して、合成例1、2、3、5で得られた化合物のジクロロメタン中におけるUV−Visスペクトル測定を行った。結果を図1に示す。
(Ultraviolet / visible (UV-Vis) spectrum measurement)
Using a V-650 spectrophotometer (manufactured by JASCO Corporation), UV-Vis spectrum measurement of the compounds obtained in Synthesis Examples 1, 2, 3, and 5 in dichloromethane was performed. The results are shown in FIG.

(蛍光スペクトル測定)
FP−750分光蛍光光度計(日本分光(株)社製)を使用して、合成例1、2、3、5で得られた化合物のフルオレンの励起波長における蛍光スペクトル測定を行った。結果を図2に示す。
(Fluorescence spectrum measurement)
Using an FP-750 spectrofluorometer (manufactured by JASCO Corporation), the fluorescence spectra at the excitation wavelength of fluorene of the compounds obtained in Synthesis Examples 1, 2, 3, and 5 were measured. The results are shown in FIG.

UV−Visスペクトル測定の結果、いずれの化合物も310nm付近にフルオレン由来のピークがみられた。また、合成例2、3、5の化合物では、460から490nm付近にベンゾチアジアゾールに由来するピークが観察された。さらに、合成例2と合成例3の化合物では340nm付近に、合成例5の化合物では350nm付近に、それぞれフルオレン−ベンゾチアジアゾールの周辺置換基に由来するピークがみられた。   As a result of UV-Vis spectrum measurement, a peak derived from fluorene was observed in the vicinity of 310 nm for all the compounds. Further, in the compounds of Synthesis Examples 2, 3, and 5, a peak derived from benzothiadiazole was observed around 460 to 490 nm. Furthermore, peaks derived from the peripheral substituents of fluorene-benzothiadiazole were observed at around 340 nm for the compounds of Synthesis Example 2 and Synthesis Example 3 and at around 350 nm for the compound of Synthesis Example 5.

蛍光スペクトル測定の結果、合成例5の化合物では570nm付近にベンゾチアジアゾールに由来する蛍光ピークが、また合成例2と3の化合物では630nm付近にそれぞれトリフェニルアミン、ジフェニルアミンに由来する蛍光ピークが、観察された。   As a result of the fluorescence spectrum measurement, a fluorescence peak derived from benzothiadiazole was observed around 570 nm in the compound of Synthesis Example 5, and a fluorescence peak derived from triphenylamine and diphenylamine was observed around 630 nm in the compounds of Synthesis Examples 2 and 3, respectively. It was done.

合成例2、3、5の化合物のUV−Visスペクトル及び蛍光スペクトルのピークを、合成例1の化合物のピークと比較すると、それぞれレッドシフトしていることがわかる。このレッドシフトは、合成例5の化合物については共役長の増大によるものであり、合成例2と3の化合物についてはドナー性置換基であるアミノ基の導入に伴う分子内相互作用によるものであると考えられる。   When the peaks of the UV-Vis spectrum and the fluorescence spectrum of the compounds of Synthesis Examples 2, 3, and 5 are compared with the peak of the compound of Synthesis Example 1, it can be seen that they are red-shifted. This red shift is due to an increase in conjugation length for the compound of Synthesis Example 5, and due to an intramolecular interaction associated with the introduction of an amino group which is a donor substituent for the compounds of Synthesis Examples 2 and 3. it is conceivable that.

(蛍光量子収率測定)
有機EL量子収率測定装置(浜松ホトニクス社製)を使用して、合成例1〜6で得られた化合物についてそれぞれの励起波長における蛍光量子収率を測定した。結果を表1に示す。
(Fluorescence quantum yield measurement)
Using an organic EL quantum yield measuring apparatus (manufactured by Hamamatsu Photonics), the fluorescence quantum yield at each excitation wavelength was measured for the compounds obtained in Synthesis Examples 1-6. The results are shown in Table 1.

Figure 2008231051
表1から明らかなとおり、いずれの化合物でも良好な蛍光量子収率が得られた。
Figure 2008231051
As is clear from Table 1, good fluorescence quantum yield was obtained with any compound.

次に、合成例2、3、4、6で得られた化合物を用いて有機電界発光素子(EL素子)を作製した例を、実施例1〜4に示す。   Next, Examples 1 to 4 show examples in which organic electroluminescent elements (EL elements) were produced using the compounds obtained in Synthesis Examples 2, 3, 4, and 6.

(実施例1)
素子構成は、ITO/PEDOT−PSS/合成例2の化合物、及びFlFl/LiF/Ca/Alである。
(Example 1)
The element structure is ITO / PEDOT-PSS / the compound of Synthesis Example 2 and FlFl / LiF / Ca / Al.

ガラス基板上に、陽極としてITOをスパッタ法にて150nmの膜厚で成膜し、中性洗剤、アルカリ性洗剤、純水、アセトン、イソプロピルアルコール(IPA)で順次超音波洗浄、乾燥した。   On a glass substrate, ITO was formed into a film having a thickness of 150 nm by sputtering as an anode, and was successively subjected to ultrasonic cleaning and drying with a neutral detergent, an alkaline detergent, pure water, acetone, and isopropyl alcohol (IPA).

次いで前記陽極の上に、ホール輸送層として導電性高分子であるポリ(3,4−エチレンジオキシチオフェン)−ポリ(4−スチレンスルホナート)(PEDOT−PSS)層を形成した。PEDOT−PSS(Baytron P AI4083)をスピンコート法(2000rpm)にて50nmの膜厚で成膜し、200℃で乾燥、焼成した。   Next, a poly (3,4-ethylenedioxythiophene) -poly (4-styrenesulfonate) (PEDOT-PSS) layer, which is a conductive polymer, was formed as a hole transport layer on the anode. PEDOT-PSS (Baytron P AI4083) was formed into a film with a film thickness of 50 nm by spin coating (2000 rpm), dried at 200 ° C., and baked.

次いで前記ホール輸送層の上に、発光層として合成例2で得られた化合物の層を形成した。合成例2の化合物の4.5mgと、2,7−ビス(7,9,10−トリフェニルフルオランテニル)−9,9’ジヘキシルフルオレン(FlFl)の25.5mg(15重量%)とをp−キシレン1.0gに溶解し、フィルタリングの後スピンコート法(2000rpm)にて成膜後、140℃で乾燥、焼成し、膜厚80nmの発光層を得た。   Next, a layer of the compound obtained in Synthesis Example 2 was formed as a light emitting layer on the hole transport layer. 4.5 mg of the compound of Synthesis Example 2 and 25.5 mg (15 wt%) of 2,7-bis (7,9,10-triphenylfluoranthenyl) -9,9 ′ dihexylfluorene (FlFl) It melt | dissolved in p-xylene 1.0g, and after filtering, it formed into a film with the spin coat method (2000 rpm), dried and baked at 140 degreeC, and obtained the light emitting layer with a film thickness of 80 nm.

次いで前記発光層の上に、陰極としてフッ化リチウム(LiF)とカルシウム(Ca)とアルミニウム(Al)とを蒸着した。真空蒸着法にてフッ化リチウムを成膜速度0.1オングストローム/秒で0.5nmの膜厚で成膜し、次いでその上に、カルシウムを成膜速度0.3オングストローム/秒で20nmの膜厚で成膜し、次いでその上に、真空蒸着法にてアルミニウムを成膜速度1〜5オングストローム/秒で200nmの膜厚で成膜して、EL素子を作製した。   Next, lithium fluoride (LiF), calcium (Ca), and aluminum (Al) were vapor-deposited on the light emitting layer as a cathode. Lithium fluoride is deposited at a film thickness of 0.1 angstrom / second by a vacuum deposition method at a film thickness of 0.5 nm, and then a calcium film is deposited thereon at a film deposition speed of 0.3 angstrom / second at a film thickness of 20 nm. A film was formed with a thickness, and then aluminum was formed thereon with a film thickness of 200 nm at a film formation rate of 1 to 5 angstroms / second by a vacuum deposition method, thereby manufacturing an EL element.

(実施例2)
素子構成は、ITO/PEDOT−PSS/合成例3の化合物、FlFl/LiF/Ca/Alである。
(Example 2)
The element structure is ITO / PEDOT-PSS / the compound of Synthesis Example 3, FlFl / LiF / Ca / Al.

合成例2の化合物に代えて合成例3の化合物を使用したこと以外は実施例1と同様にして、EL素子を作製した。   An EL device was produced in the same manner as in Example 1 except that the compound of Synthesis Example 3 was used instead of the compound of Synthesis Example 2.

(実施例3)
素子構成は、ITO/PEDOT−PSS/合成例4の化合物、FlFl/LiF/Ca/Alである。
(Example 3)
The element configuration is ITO / PEDOT-PSS / the compound of Synthesis Example 4, FlFl / LiF / Ca / Al.

合成例2の化合物に代えて合成例4の化合物を使用したこと以外は実施例1と同様にして、EL素子を作製した。   An EL device was produced in the same manner as in Example 1 except that the compound of Synthesis Example 4 was used instead of the compound of Synthesis Example 2.

(実施例4)
素子構成は、ITO/PEDOT−PSS/合成例6の化合物、FlFl/LiF/Ca/Alである。
Example 4
The element configuration is ITO / PEDOT-PSS / the compound of Synthesis Example 6, FlFl / LiF / Ca / Al.

合成例2の化合物に代えて合成例6の化合物を使用したこと以外は実施例1と同様にして、EL素子を作製した。   An EL device was produced in the same manner as in Example 1 except that the compound of Synthesis Example 6 was used instead of the compound of Synthesis Example 2.

(電流密度、発光輝度の測定)
EL1003(プレサイスゲージ社製)を用い、実施例1〜4で作製したEL素子の電流密度と発光輝度とを測定した。実施例1で作製したEL素子の電流密度、発光輝度の測定結果を図3(a)に、その素子の励起波長を図3(b)に、実施例2で作製したEL素子の電流密度、発光輝度の測定結果を図4(a)に、その素子の励起波長を図4(b)に、実施例3で作製したEL素子の電流密度、発光輝度の測定結果を図5(a)に、その素子の励起波長を図5(b)に、実施例4で作製したEL素子の電流密度、発光輝度の測定結果を図6(a)に、その素子の励起波長を図6(b)に、それぞれ示す。
(Measurement of current density and emission luminance)
Using EL1003 (manufactured by Precise Gauge), the current density and light emission luminance of the EL elements produced in Examples 1 to 4 were measured. The measurement results of the current density and light emission luminance of the EL element produced in Example 1 are shown in FIG. 3A, the excitation wavelength of the element is shown in FIG. 3B, the current density of the EL element produced in Example 2, FIG. 4A shows the measurement result of the light emission luminance, FIG. 4B shows the excitation wavelength of the device, and FIG. 5A shows the measurement result of the current density and light emission luminance of the EL device manufactured in Example 3. FIG. 5B shows the excitation wavelength of the device, FIG. 6A shows the measurement results of the current density and light emission luminance of the EL device produced in Example 4, and FIG. 6B shows the excitation wavelength of the device. Respectively.

図3〜6から明らかなように、実施例1のEL素子は580nm付近に、実施例2のEL素子は610nm付近に、実施例3のEL素子は550nm付近に、実施例4のEL素子は560nm付近に、それぞれ発光ピークを有していた。また、各実施例のEL素子は発光輝度が良好で、優れたエレクトロルミネッセンス特性を有していた。   As apparent from FIGS. 3 to 6, the EL element of Example 1 is around 580 nm, the EL element of Example 2 is around 610 nm, the EL element of Example 3 is around 550 nm, and the EL element of Example 4 is Each had an emission peak in the vicinity of 560 nm. Moreover, the EL element of each Example had favorable light emission luminance, and had excellent electroluminescence characteristics.

以上の結果から、本発明のフルオレン化合物はEL素子材料として有用であることが確認できた。   From the above results, it was confirmed that the fluorene compound of the present invention is useful as an EL device material.

合成例1、5の化合物を用いて作製したEL素子についても、同様に優れた発光輝度が得られた。   Similarly, excellent light emission luminance was obtained for EL devices manufactured using the compounds of Synthesis Examples 1 and 5.

本発明を適用するフルオレン化合物のUV−Visスペクトルである。It is a UV-Vis spectrum of a fluorene compound to which the present invention is applied. 本発明を適用するフルオレン化合物の蛍光スペクトルである。It is a fluorescence spectrum of a fluorene compound to which the present invention is applied. 実施例1で作製したEL素子の電流密度及び発光輝度を測定したグラフである。4 is a graph obtained by measuring current density and light emission luminance of an EL element manufactured in Example 1. FIG. 実施例2で作製したEL素子の電流密度及び発光輝度を測定したグラフである。4 is a graph obtained by measuring current density and light emission luminance of an EL element manufactured in Example 2. FIG. 実施例3で作製したEL素子の電流密度及び発光輝度を測定したグラフである。6 is a graph obtained by measuring current density and light emission luminance of an EL device manufactured in Example 3. FIG. 実施例4で作製したEL素子の電流密度及び発光輝度を測定したグラフである。6 is a graph obtained by measuring current density and light emission luminance of an EL element manufactured in Example 4. FIG.

Claims (4)

下記化学式(A)
Figure 2008231051
(式(A)中、−Rは炭素数1〜18のアルキル基、−Rは炭素数1〜18のアルキル基、カルボニル基、ニトロ基、シアノ基、カルバゾール基、置換基を有していてもよいアミノ基、置換基を有していてもよいフェニル基、置換基を有していてもよいスチリル基、置換基を有していてもよいアリール基、nは1〜3の数)で示されることを特徴とするフルオレン化合物。
The following chemical formula (A)
Figure 2008231051
(In the formula (A), -R 1 has an alkyl group having 1 to 18 carbon atoms, -R 2 has an alkyl group having 1 to 18 carbon atoms, a carbonyl group, a nitro group, a cyano group, a carbazole group, and a substituent. An optionally substituted amino group, an optionally substituted phenyl group, an optionally substituted styryl group, an optionally substituted aryl group, n is a number from 1 to 3 The fluorene compound characterized by the above-mentioned.
前記式(A)が、下記式(1)〜(7)
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
のうちのいずれかであることを特徴とする請求項1に記載のフルオレン化合物。
The formula (A) is represented by the following formulas (1) to (7).
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
Figure 2008231051
The fluorene compound according to claim 1, wherein the fluorene compound is any one of the above.
請求項1〜2のいずれかに記載のフルオレン化合物を含有することを特徴とする発光素子材料。   A light emitting device material comprising the fluorene compound according to claim 1. 陽極と陰極とからなる電極対の間に、請求項3に記載の発光素子材料を含有する層を有することを特徴とする有機電界発光素子。   The organic electroluminescent element characterized by having a layer containing the light emitting element material of Claim 3 between the electrode pair which consists of an anode and a cathode.
JP2007074808A 2007-03-22 2007-03-22 Fluorene-benzothiadiazole compound and organic electroluminescence device using the same Pending JP2008231051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074808A JP2008231051A (en) 2007-03-22 2007-03-22 Fluorene-benzothiadiazole compound and organic electroluminescence device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074808A JP2008231051A (en) 2007-03-22 2007-03-22 Fluorene-benzothiadiazole compound and organic electroluminescence device using the same

Publications (1)

Publication Number Publication Date
JP2008231051A true JP2008231051A (en) 2008-10-02

Family

ID=39904286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074808A Pending JP2008231051A (en) 2007-03-22 2007-03-22 Fluorene-benzothiadiazole compound and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (1) JP2008231051A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062948A3 (en) * 2008-11-26 2010-09-10 University Of Florida Research Foundation, Inc. Black soluble conjugated polymers with high charge carrier mobilities
WO2012008558A1 (en) * 2010-07-14 2012-01-19 Canon Kabushiki Kaisha Organic light-emitting device material having dibenzosuberone skeleton
US20140167002A1 (en) * 2010-11-22 2014-06-19 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
JP2019048908A (en) * 2017-09-07 2019-03-28 信一郎 礒部 Fluorescent dye
WO2019216574A1 (en) * 2018-05-11 2019-11-14 주식회사 엘지화학 Nitrogen-containing cyclic compound and color conversion film comprising same
TWI695001B (en) * 2018-05-11 2020-06-01 南韓商Lg化學股份有限公司 Cyclic compound containing nitrogen, color conversion film, backlight unit, and display device, comprising the same
CN116003346A (en) * 2022-10-25 2023-04-25 山东省分析测试中心 Fluorescent material for detecting dimethyl sulfide with high selectivity as well as preparation method and application thereof
EP4104262A4 (en) * 2020-02-13 2023-11-22 KOALA Tech Inc. Organic solid-state laser, compound and use thereof
JP7505379B2 (en) 2020-11-13 2024-06-25 株式会社リコー Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364331A2 (en) * 2008-11-26 2011-09-14 University of Florida Research Foundation, Inc. Black soluble conjugated polymers with high charge carrier mobilities
CN102292374A (en) * 2008-11-26 2011-12-21 佛罗里达大学研究基金公司 Black soluble conjugated polymers with high charge carrier mobilities
US8383762B2 (en) 2008-11-26 2013-02-26 University Of Florida Research Foundation, Inc. Black soluble conjugated polymers with high charge carrier mobilities
EP2364331A4 (en) * 2008-11-26 2013-12-11 Univ Florida SOLUBLE BLACK CONJUGATED POLYMERS HAVING HIGH LOAD CARRIER MOBILITY
WO2010062948A3 (en) * 2008-11-26 2010-09-10 University Of Florida Research Foundation, Inc. Black soluble conjugated polymers with high charge carrier mobilities
WO2012008558A1 (en) * 2010-07-14 2012-01-19 Canon Kabushiki Kaisha Organic light-emitting device material having dibenzosuberone skeleton
JP2012023185A (en) * 2010-07-14 2012-02-02 Canon Inc Organic light emitting element material having dibenzosuberone skeleton
US10892421B2 (en) 2010-11-22 2021-01-12 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
US20140167002A1 (en) * 2010-11-22 2014-06-19 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
US9893294B2 (en) * 2010-11-22 2018-02-13 The Regents Of The University Of California Organic small molecule semiconducting chromophores for use in organic electronic devices
JP2019048908A (en) * 2017-09-07 2019-03-28 信一郎 礒部 Fluorescent dye
JP7014549B2 (en) 2017-09-07 2022-02-01 信一郎 礒部 Fluorescent dye
WO2019216574A1 (en) * 2018-05-11 2019-11-14 주식회사 엘지화학 Nitrogen-containing cyclic compound and color conversion film comprising same
TWI695001B (en) * 2018-05-11 2020-06-01 南韓商Lg化學股份有限公司 Cyclic compound containing nitrogen, color conversion film, backlight unit, and display device, comprising the same
CN111051303A (en) * 2018-05-11 2020-04-21 株式会社Lg化学 Nitrogen-containing cyclic compound and color conversion film containing the same
KR102276612B1 (en) 2018-05-11 2021-07-12 주식회사 엘지화학 Compound containing nitrogen and color conversion film comprising the same
KR20190129548A (en) * 2018-05-11 2019-11-20 주식회사 엘지화학 Compound containing nitrogen and color conversion film comprising the same
US11479549B2 (en) 2018-05-11 2022-10-25 Lg Chem, Ltd. Nitrogen-containing cyclic compound and color conversion film comprising same
CN111051303B (en) * 2018-05-11 2023-06-02 株式会社Lg化学 Nitrogen-containing cyclic compound and color conversion film comprising same
EP4104262A4 (en) * 2020-02-13 2023-11-22 KOALA Tech Inc. Organic solid-state laser, compound and use thereof
JP7505379B2 (en) 2020-11-13 2024-06-25 株式会社リコー Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
CN116003346A (en) * 2022-10-25 2023-04-25 山东省分析测试中心 Fluorescent material for detecting dimethyl sulfide with high selectivity as well as preparation method and application thereof
CN116003346B (en) * 2022-10-25 2024-05-31 山东省分析测试中心 Fluorescent material for detecting dimethyl sulfide with high selectivity as well as preparation method and application thereof

Similar Documents

Publication Publication Date Title
TWI435861B (en) Arylamine compounds and electronic components
EP1902013B1 (en) Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
CN102482575B (en) New heterocyclic derivative and organic light emitting device using same
JP4227628B2 (en) Compound and organic light emitting device
RU2434836C2 (en) Condensed cyclic aromatic compound for organic light-emitting device and organic light-emitting device containing said compound
TWI779018B (en) High molecular weight compound having substituted triarylamine skeleton
JP2008231051A (en) Fluorene-benzothiadiazole compound and organic electroluminescence device using the same
JP5335284B2 (en) Fused polycyclic compound and organic light emitting device having the same
WO2011025282A2 (en) Novel organic compound and organic light-emitting device using same
KR20100119077A (en) New compounds and organic electronic device using the same
JP2007191465A (en) Amine compound, organic light emitting device and blue organic light emitting device
JP2006151866A (en) Phenanthroline compound and light-emitting element
JP5773638B2 (en) Fused polycyclic compound and organic light emitting device using the same
KR20080096440A (en) Novel diamine derivatives and organic electronic devices using the same
CN109928936B (en) Organic electroluminescent compounds and use thereof
CN101279888A (en) 9,10-divinyl anthracene derivatives and their applications in organic electroluminescent devices
JP2003221579A (en) Organic luminescent material
KR101334204B1 (en) A New Pyrene Compounds, Method of Producing the Same and Organic Electroluminescent Device Comprising the Same
JP5441348B2 (en) Benzo [a] fluoranthene compound and organic light-emitting device using the same
CN101265258A (en) A kind of organic material and its application in organic electroluminescence device
KR101324150B1 (en) Organic compounds for organic electro luminescente device and organic electro luminescent device using same
JPWO2003050201A1 (en) Organic electroluminescence element material
JP2000034476A (en) Organic fluorescent material and organic electroluminescent device
JP2007246468A (en) Fluorene compound and organic electroluminescence device using the same
CN101525335B (en) Full-bridge linked triphenylamine compound and application thereof in electroluminescent device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090624