[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008227547A - Lithography equipment and fabrication process of device - Google Patents

Lithography equipment and fabrication process of device Download PDF

Info

Publication number
JP2008227547A
JP2008227547A JP2008161741A JP2008161741A JP2008227547A JP 2008227547 A JP2008227547 A JP 2008227547A JP 2008161741 A JP2008161741 A JP 2008161741A JP 2008161741 A JP2008161741 A JP 2008161741A JP 2008227547 A JP2008227547 A JP 2008227547A
Authority
JP
Japan
Prior art keywords
liquid
substrate table
cleaning
substrate
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008161741A
Other languages
Japanese (ja)
Inventor
Hans Jansen
ヤンセン ハンス
Johannes Jacobus Matheus Baselmans
ヤコブス マテウス バーゼルマンス ヨハネス
Sjoerd Nicolaas Lambertus Donders
ニコラース ランベルトゥス ドンダース シュールト
Alexander Hoogendam Christiaan
アレクサンダー ホーゲンダム クリスティアーン
Jeroen Johannes Sophia Maria Mertens
ヨハネス ソフィア マリア メルテンス ジェローン
Johannes Catharinus Hubertus Mulkens
キャサリヌス フーベルトゥス ムルケンス ヨハネス
Marco Koert Stavenga
コエルト シュタフェンガ マルコ
Bob Streefkerk
シュトレーフケルク ボブ
Jan Cornelis V D Hoeven
コーネリス ファン デル ホーフェン ヤン
Cedric D Grouwstra
デジル グローヴシュトラ セドリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2008227547A publication Critical patent/JP2008227547A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and equipment for cleaning the interior of oil immersion lithographic equipment. <P>SOLUTION: Cleaning fluid can be introduced into a space between the projection system and the substrate table of lithographic equipment by especially using the liquid supply system of the lithographic equipment. Additionally or alternatively, a cleaning device may be provided on the substrate table, and an ultrasonic emitter may be provided in order to produce ultrasonic liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リソグラフィ装置とデバイス製造方法に関する。詳しくは、本装置は、液浸リソグラフィ装置のための洗浄デバイスと、液浸リソグラフィ装置の投影システム及び/又は基板テーブルを洗浄する方法とに関する。   The present invention relates to a lithographic apparatus and a device manufacturing method. In particular, the apparatus relates to a cleaning device for an immersion lithographic apparatus and a method for cleaning a projection system and / or a substrate table of an immersion lithographic apparatus.

リソグラフィ装置は、基板の上に、通常は基板の目標部分の上に所望のパターンを加える機械である。リソグラフィ装置を、例えば集積回路(IC)の製造に使用することができる。この場合には、マスク又はレチクルとも代替的に呼ばれるパターン化デバイスを使用して、ICの個別の層の上に形成しようとする回路パターンを発生するために使用することもできる。このパターンを、基板(例えばシリコン・ウェハ)の上の(例えば1つ又はいくつかの金型の一部を含む)目標部分の上に転写することができる。パターンの転写は一般的に、基板の上に形成される放射光感光材料(レジスト)の層の上に結像することを通じて行なわれる。概して単一基板は、順次パターン化される隣接目標部分のネットワークを含むことになる。周知のリソグラフィ装置は、全体パターンを一度に目標部分の上に露光することによって各目標部分が照射される、いわゆるステッパと、所定の方向(「走査」方向)に放射光ビームを通じてパターンを走査し、同時にこの方向と平行又は逆平行に基板を同期的に走査することによって各目標部分が照射される、いわゆるスキャナとを含む。また、パターンを基盤の上にインプリントすることによって、パターンをパターン化デバイスから基板へ転写することも可能である。   A lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate. A lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In this case, a patterning device, alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on a separate layer of the IC. This pattern can be transferred onto a target portion (eg including part of, one, or several dies) on a substrate (eg a silicon wafer). Pattern transfer is generally accomplished through imaging onto a layer of synchrotron radiation-sensitive material (resist) formed on the substrate. In general, a single substrate will contain a network of adjacent target portions that are successively patterned. A known lithographic apparatus scans a pattern through a so-called stepper, in which each target portion is irradiated by exposing the entire pattern onto the target portion at once, and a radiation beam in a predetermined direction ("scanning" direction). A so-called scanner in which each target portion is irradiated by synchronously scanning the substrate parallel or anti-parallel to this direction at the same time. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate.

リソグラフィ投影装置における基板を、投影システムの最終素子と基板との間の空間を満たすように、比較的高い屈折率を有する液体、例えば水の中に浸漬させることも提案されている。この趣旨は、露光放射光の波長が液体の中では短くなるので、より小さな特徴を結像できることである。(液体の効果を、システムの有効NAを増すこと、及び焦点深度も増すことと看做してもよい。)中に懸濁した固体粒子(例えば石英)を有する水を含む、その他の浸液も提案されている。   It has also been proposed to immerse the substrate in the lithographic projection apparatus in a liquid having a relatively high refractive index, for example water, so as to fill a space between the final element of the projection system and the substrate. The gist of this is that the wavelength of the exposure radiation becomes shorter in the liquid, so that smaller features can be imaged. (The effect of the liquid may be viewed as increasing the effective NA of the system and also increasing the depth of focus.) Other immersion liquids, including water with solid particles (eg quartz) suspended therein Has also been proposed.

しかし、基板又は基板テーブルを液浴の中に沈めることは(例えば米国特許US4509852を参照、この全体が参照によって本明細書に組み込まれている)、走査露光中に加速されるべき大量の液体が存在することを意味する。これは追加の又はより強力なモータを必要とし、液体中の乱流が望ましくない不測の影響を引き起こすこともある。   However, immersing the substrate or substrate table in a liquid bath (see, eg, US Pat. No. 4,509,852, which is incorporated herein by reference in its entirety) can cause a large amount of liquid to be accelerated during a scanning exposure. It means to exist. This requires an additional or more powerful motor, and turbulence in the liquid can cause undesirable and unexpected effects.

液体供給システムについて提案される解決策の1つは、液体供給システムを使用して、基板の局部化された区域のみに、投影システムの最終素子と基板との間に液体を供給することである(基板は一般に投影システムの最終素子よりも大きな表面積を有する)。このために準備されるように提案された1つの方法はPCT特許出願WO99/49504に開示されており、この全体は参照によって本明細書に組み込まれている。図2及び3に図示するように、液体は少なくとも1つの入口INによって、好ましくは最終素子に対して基板の移動する方向に沿って基板の上に供給され、投影システムの下を通過した後に少なくとも1つの出口OUTによって除去される。すなわち、基板は−X方向に素子の下で走査されながら、液体は素子の+X側で供給されて、−X側で取り出される。図2は、液体が入口INを通じて供給されて、低圧源に連結された出口OUTによって素子の他の側で取り出される配置を概略的に示す。図2の説明図では、液体は最終素子に対して基板の移動する方向に沿って供給されるが、この場合にすべきであるという必要はない。さまざまな方向配置と個数の入口及び出口が最終要素の周りに位置することが可能であり、その一例が図3に示されており、この場合、4組の入口と出口が、最終素子の周りに規則的なパターンでいずれの側にも準備されている。   One proposed solution for the liquid supply system is to use the liquid supply system to supply liquid between the final element of the projection system and the substrate only in a localized area of the substrate. (The substrate generally has a larger surface area than the final element of the projection system). One method proposed to be prepared for this is disclosed in PCT patent application WO 99/49504, which is incorporated herein by reference in its entirety. As illustrated in FIGS. 2 and 3, the liquid is supplied onto the substrate by at least one inlet IN, preferably along the direction of movement of the substrate relative to the final element, and at least after passing under the projection system. Removed by one outlet OUT. That is, as the substrate is scanned under the element in the −X direction, liquid is supplied on the + X side of the element and taken out on the −X side. FIG. 2 schematically shows an arrangement in which liquid is supplied through the inlet IN and taken out on the other side of the element by an outlet OUT connected to a low pressure source. In the illustration of FIG. 2, the liquid is supplied along the direction of movement of the substrate relative to the final element, but this need not be the case. Various orientations and numbers of inlets and outlets can be located around the final element, an example of which is shown in FIG. 3, where four sets of inlets and outlets are around the final element. Be prepared on either side with a regular pattern.

理想的には、リソグラフィ装置の投影システムの洗浄は、リソグラフィ装置の中断時間とリソグラフィ装置の分解を必要とすることもある複雑で繊細な作業であるから、この必要が決してない方がよい。しかし、例えば液浸リソフラフィ装置において投影システムの最終素子と基板との間の空間に供給される液体のために、最終素子は化学反応又は乾燥する汚れの結果として汚染されることがある。さらに又は代りに、リソグラフィ装置の基板プレートは、特に基板が基板プレートの上に保持される外側領域において汚染されることがある。   Ideally, cleaning the projection system of a lithographic apparatus is a complex and delicate operation that may require lithographic apparatus downtime and lithographic apparatus disassembly, and this need never be present. However, due to the liquid supplied to the space between the final element of the projection system and the substrate, for example in an immersion lithography apparatus, the final element may be contaminated as a result of a chemical reaction or drying dirt. Additionally or alternatively, the substrate plate of the lithographic apparatus may be contaminated, particularly in the outer region where the substrate is held on the substrate plate.

投影システム及び/又は基板テーブルの洗浄は、投影システム及び/又は基板テーブルを柔らかいティッシュで拭いて低刺激性の溶剤を使用して人によって手動で行なうこともできる。中断時間の問題と共に、この方法は、投影システムの最終素子などのリソグラフィ装置の部品にかき傷を生じさせたり、最終素子を洗浄するときに例えば投影領域にわたって望ましくない照射量の変動を作る可能性がある不均一な洗浄となる危険性がある。   The cleaning of the projection system and / or substrate table can also be performed manually by a person using a mild solvent by wiping the projection system and / or substrate table with a soft tissue. Along with the problem of interruption time, this method can scratch the parts of the lithographic apparatus, such as the final element of the projection system, or create undesirable dose fluctuations over the projection area, for example, when cleaning the final element. There is a risk that there will be uneven cleaning.

したがって、液体供給システムの分解する必要のない、及び/又はかき傷を作る危険性を冒さない、投影システムの最終素子及び/又は基板テーブルを洗浄するための方法を提供することは有利であろう。   Accordingly, it would be advantageous to provide a method for cleaning the final element and / or substrate table of a projection system that does not require disassembly of the liquid supply system and / or does not risk the creation of scratches. .

本発明の一態様によれば、
基板を保持するように構成された基板テーブルと、
基板の上にパターン化された放射光ビームを投影するように構成され、基板に隣接して最終素子を含む投影システムと、
投影システムと基板テーブルとの間の空間に液体を供給するように構成された液体供給システムと、
最終光学素子、基板テーブル、又は前記液体に曝される構成部分又は構造の表面の少なくとも1つを洗浄するように構成された洗浄デバイスと
を含むリソグラフィ装置が提供される。
According to one aspect of the invention,
A substrate table configured to hold a substrate;
A projection system configured to project a patterned radiation beam onto a substrate and including a final element adjacent to the substrate;
A liquid supply system configured to supply liquid to a space between the projection system and the substrate table;
A lithographic apparatus is provided that includes a final optical element, a substrate table, or a cleaning device configured to clean at least one of a surface of a component or structure that is exposed to the liquid.

本発明の別の態様によれば、
基板を保持するように構成された基板テーブルと、
基板の上にパターン化された放射光ビームを投影するように構成され、基板に隣接して最終素子を含む投影システムと、
投影システムと基板テーブルとの間の空間に液体を供給するように構成された液体供給システムと、
最終光学素子、基板テーブル、又は前記液体に曝される構成部分又は構造の表面の少なくとも1つを被覆するように構成されたコータと
を含むリソグラフィ装置が提供される。
According to another aspect of the invention,
A substrate table configured to hold a substrate;
A projection system configured to project a patterned radiation beam onto a substrate and including a final element adjacent to the substrate;
A liquid supply system configured to supply liquid to a space between the projection system and the substrate table;
A lithographic apparatus is provided that includes a final optical element, a substrate table, or a coater configured to coat at least one of a surface of a component or structure that is exposed to the liquid.

本発明のさらに別の態様によれば、(i)洗浄流体、(ii)被覆流体、(iii)、被覆剥離剤、又は(iv)(i)〜(iii)のいずれかの組合せを、リソグラフィ装置の投影システムと基板テーブルとの間の空間に直列適用するための、リソグラフィ装置における流体供給システムの使用を提供する。   According to yet another aspect of the invention, (i) a cleaning fluid, (ii) a coating fluid, (iii), a coating stripper, or (iv) any combination of (i)-(iii) is applied to lithography. There is provided the use of a fluid supply system in a lithographic apparatus for serial application in a space between the projection system of the apparatus and a substrate table.

本発明のさらに別の態様によれば、リソグラフィ装置の投影システムの最終光学素子の上に洗浄流体を噴霧するように構成された噴霧ユニットが提供される。   According to yet another aspect of the invention, there is provided a spray unit configured to spray a cleaning fluid onto a final optical element of a projection system of a lithographic apparatus.

本発明のさらに別の態様によれば、リソグラフィ装置の投影システムと基板テーブルとの間の空間に閉じ込められた液体を、超音波洗浄液体の中に入れ込むように構成された超音波エミッタが提供される。   According to yet another aspect of the invention, an ultrasonic emitter configured to entrap liquid confined in a space between a projection system of a lithographic apparatus and a substrate table into an ultrasonic cleaning liquid is provided. Is done.

本発明のさらに別の態様によれば、光学素子と基板テーブルとの間の空間に液体を有するように構成されたリソグラフィ装置において、投影システムの光学素子、基板テーブル、若しくはその両方を洗浄するための、前記空間を通じて洗浄流体を循環させることを含む方法が提供される。   According to yet another aspect of the invention, in a lithographic apparatus configured to have a liquid in a space between an optical element and a substrate table, for cleaning the optical element of the projection system, the substrate table, or both A method comprising circulating a cleaning fluid through the space.

本発明のさらに別の態様によれば、光学素子と基板テーブルとの間の空間に液体を有するように構成されたリソグラフィ装置において、投影システムの光学素子、基板テーブル、若しくはその両方を被覆するための、前記空間を通じて被覆流体を循環させることを含む方法が提供される。   According to yet another aspect of the invention, in a lithographic apparatus configured to have a liquid in a space between an optical element and a substrate table, for covering the optical element of the projection system, the substrate table, or both A method comprising circulating a coating fluid through the space.

本発明の各実施例を、添付の概略的な図面を参照して、例示としてのみ以下に説明する。図面において対応する参照記号は対応する部分を指示するものである。   Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings. Corresponding reference characters indicate corresponding parts in the drawings.

図1は、本発明の一実施例によるリソグラフィ装置を概略的に示す。この装置は、
放射光ビームB(例えばUV線又はDUV線)を調節するように構成された照射システム(照射器)ILと、
パターン化デバイス(例えばマスク)MAを支持するように作られて、ある一定のパラメータにしたがってパターン化デバイスを正確に位置付けるように構成された第1位置決め装置PMに連結された支持構造(例えばマスク・テーブル)MTと、
基板(例えばレジスト被覆ウェハ)Wを保持するために作られて、ある一定のパラメータにしたがって基板を正確に位置付けるように構成された第2位置決め装置PWに連結された基板テーブル(例えばウェハ・テーブル)と、
パターン化デバイスMAによって放射光ビームBに分与されたパターンを、基板Wの(例えば1つ又は複数の金型を含む)目標部分Cの上に投影するように構成された投影システム(例えば屈折投影レンズ・システム)PSと
を含む。
FIG. 1 schematically depicts a lithographic apparatus according to one embodiment of the invention. This device
An illumination system (illuminator) IL configured to condition a emitted light beam B (eg UV or DUV radiation);
A support structure (eg mask mask) made to support the patterning device (eg mask) MA and coupled to a first positioner PM configured to accurately position the patterning device according to certain parameters Table) MT,
A substrate table (eg, a wafer table) made to hold a substrate (eg, resist coated wafer) W and coupled to a second positioning device PW configured to accurately position the substrate according to certain parameters When,
A projection system (eg, refraction) configured to project the pattern imparted to the radiation beam B by the patterning device MA onto a target portion C (eg, including one or more molds) of the substrate W. Projection lens system) PS.

照射システムは、屈折式、反射式、磁気式、電磁気式、静電式、又はその他の形式の光学構成部分、又はこれらの任意の組合せなどの、放射光を方向付け、形状化し、又は制御するための、さまざまな形式の光学構成部分を含むことができる。   The illumination system directs, shapes, or controls the emitted light, such as refractive, reflective, magnetic, electromagnetic, electrostatic, or other types of optical components, or any combination thereof Various types of optical components can be included.

支持構造は、パターン化デバイスを支持する、すなわちパターン化デバイスの重量を支える。これは、パターン化デバイスの方向配置、リソグラフィ装置の設計、及び例えばパターン化デバイスが真空環境の中に保持されているか否かなどの他の条件に応じた様式で、パターン化デバイスを保持する。支持構造は、パターン化デバイスを保持するために、機械式、真空式、静電式、又はその他の締め付け技法を使用することができる。支持構造は、例えば必要に応じて固定又は可動にすることができるフレーム又はテーブルであってもよい。支持構造は、パターン化デバイスを例えば投影システムに対して所望の位置に確実に置くことができる。本明細書における用語「レチクル」又は「マスク」のいずれの使用も、さらに一般的な用語である「パターン化デバイス」と同義語であると考えてもよい。   The support structure supports the patterning device, i.e. bears the weight of the patterning device. This holds the patterning device in a manner that depends on the orientation of the patterning device, the design of the lithographic apparatus, and other conditions, such as for example whether or not the patterning device is held in a vacuum environment. The support structure can use mechanical, vacuum, electrostatic, or other clamping techniques to hold the patterning device. The support structure may be, for example, a frame or table that can be fixed or movable as required. The support structure may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms “reticle” or “mask” herein may be considered synonymous with the more general term “patterning device.”

本明細書で使用される用語「パターン化デバイス」は、基板の目標部分にパターンを作るように、放射光ビームの断面にパターンを分与するために使用することができるどのようなデバイスも指すとして、広く解釈されるべきである。例えばパターンが位相シフト特性又はいわゆるアシスト特性を含む場合には、放射光ビームに分与されたパターンは基板の目標部分における所望のパターンと正確に対応しないこともあることに留意されたい。一般に、放射光ビームに分与されたパターンは、集積回路などの目標部分に作られるデバイスにおける特定の機能層に対応する。   As used herein, the term “patterning device” refers to any device that can be used to dispense a pattern to a cross-section of a emitted light beam so as to create a pattern on a target portion of a substrate. Should be interpreted widely. It should be noted that, for example, if the pattern includes phase shift characteristics or so-called assist characteristics, the pattern applied to the emitted light beam may not exactly correspond to the desired pattern at the target portion of the substrate. In general, the pattern imparted to the radiation beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.

パターン化デバイスは透過式でも反射式でもよい。パターン化デバイスの例は、マスク、プログラム式ミラー・アレイ、及びプログラム式LCDパネルを含む。マスクはリソグラフィではよく知られており、二進交代位相シフト及び減衰位相シフトなどのマスク形式、並びにさまざまなハイブリッド・マスク形式を含む。プログラム式ミラー・アレイの1例は、小さなミラーのマトリックス配置を使用し、各ミラーを、入ってくる放射光ビームをさまざまな方向に反射するように個別に傾斜させることができる。傾斜したミラーは、ミラー・マトリックスによって反射した放射光ビームの中にパターンを分与する。   The patterning device may be transmissive or reflective. Examples of patterning devices include masks, programmable mirror arrays, and programmed LCD panels. Masks are well known in lithography and include mask types such as binary alternating phase shift and attenuated phase shift, as well as various hybrid mask types. One example of a programmable mirror array uses a matrix arrangement of small mirrors, and each mirror can be individually tilted to reflect the incoming radiation beam in various directions. The tilted mirror imparts a pattern into the emitted light beam reflected by the mirror matrix.

本明細書で使用される用語「投影システム」を、屈折式、反射式、反射屈折光学式、磁気式、電磁気式、及び静電光学式、又はこれらの任意の組合せを含む任意の形式の投影システムを包含するものとして、使用される露光放射のため、又は液浸の使用又は真空の使用などの他のファクタのために適切なものとして、広く解釈すべきである。本明細書における用語「投影レンズ」のいずれの使用も、さらに一般的な用語「投影システム」と同義語であると考えてもよい。   As used herein, the term “projection system” refers to any type of projection, including refractive, reflective, catadioptric, magnetic, electromagnetic, and electrostatic optical, or any combination thereof. It should be broadly interpreted as encompassing the system, as appropriate for the exposure radiation used, or for other factors such as the use of immersion or the use of vacuum. Any use of the term “projection lens” herein may be considered as synonymous with the more general term “projection system”.

ここに図示されるように、装置は(例えば透過式マスクを使用する)透過形式である。代替案として、(上に参照したような形式のプログラム式ミラー・アレイを使用するか、又は反射式マスクを使用する)反射形式にしてもよい。   As illustrated here, the apparatus is in a transmissive format (eg, using a transmissive mask). Alternatively, it may be of a reflective type (using a programmable mirror array of the type referred to above, or using a reflective mask).

リソグラフィ装置は、2つ(2段)又はそれ以上の基板テーブル(及び/又は2つ又はそれ以上の支持構造)を有する形式であってもよい。このような「多段」機械では、追加のテーブルを平行に使用することもでき、又は1つ又は複数のテーブルの上で準備ステップを実施しながら、同時に1つ又は複数の他のテーブルを露光のために使用してもよい。   The lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and / or two or more support structures). In such a “multi-stage” machine, additional tables can be used in parallel, or one or more other tables can be exposed at the same time while performing a preparatory step on one or more tables. May be used for

図1を参照すると、照射器ILは放射光源SOからの放射光ビームを受け取る。放射光源とリソグラフィ装置は、例えば放射光源がエキシマ・レーザであるときには、別個の構成要素である。このような場合には、放射光源はリソグラフィ装置の一部を形成するとは考えられず、放射光ビームは、例えば適当な方向付けミラー及び/又はビーム拡大器を含むビーム分配システムBDの助けによって、放射光源SOから照射器ILへ通される。別の場合には、放射光源は、例えば放射光源が水銀ランプであるときには、リソグラフィ装置の一体部分であってもよい。放射光源SOと照射器ILは、必要であればビーム分配システムBDと共に、放射光システムと呼んでもよい。   Referring to FIG. 1, the illuminator IL receives a radiation light beam from a radiation source SO. The radiation source and the lithographic apparatus are separate components, for example when the radiation source is an excimer laser. In such a case, the radiation source is not considered to form part of the lithographic apparatus, and the radiation light beam is produced, for example, with the aid of a beam distribution system BD including suitable directing mirrors and / or beam expanders. The radiation source SO is passed to the illuminator IL. In other cases the radiation source may be an integral part of the lithographic apparatus, for example when the radiation source is a mercury lamp. The radiation source SO and the illuminator IL may be called a radiation light system together with the beam distribution system BD if necessary.

照射器ILは、放射光ビームの角強度分布を調整するための調整器ADを含んでもよい。一般に、照射器の瞳面における強度分布の少なくとも外側及び/又は内側の径方向程度(通常それぞれσ外、σ内と呼ばれる)を調整することができる。さらに照射器ILは、インテグレータINや集光レンズCOなどのさまざまな他の構成部分を含んでもよい。照射器を使用して、放射光ビームをその断面において所望の均一性と強度分布とを有するように調節することもできる。   The illuminator IL may include an adjuster AD for adjusting the angular intensity distribution of the radiation light beam. In general, it is possible to adjust at least the outer and / or inner radial extent (usually referred to as σ out and σ inside, respectively) of the intensity distribution on the pupil plane of the illuminator. Furthermore, the illuminator IL may include various other components such as an integrator IN and a condenser lens CO. An irradiator can also be used to adjust the emitted light beam to have the desired uniformity and intensity distribution in its cross section.

放射光ビームBは、支持構造MT(例えばマスク・テーブル)の上に保持されるパターン化デバイス(例えばマスクMA)の上の入射ビームであり、パターン化デバイスによってパターン化される。パターン化デバイスMAを横断すると、放射光ビームBは投影システムPSを通過し、投影システムPSはビームを基板Wの目標部分Cの上に集束させる。第2位置決め装置PWと位置センサIF(例えば干渉計デバイス、線形エンコーダ、又は容量型センサ)の助けによって、基板テーブルWTを、例えば放射光ビームBの経路においてさまざまな目標部分Cを位置決めするように、正確に動かすことができる。同様に、第1位置決め装置PMと別の位置センサ(図1には明確に示されていない)とを使用して、例えばマスク・ライブラリからの機械的取込みの後、又は走査中に、パターン化デバイスMAを放射光ビームBの経路に対して正確に位置決めすることができる。一般に、支持構造MTの移動を、第1位置決め装置PMの一部を形成する長ストローク・モジュール(粗い位置決め)と短ストローク・モジュール(精密な位置決め)とを用いて行なうこともできる。同様に、基板テーブルWTの移動を、第2位置決め装置PWの一部を形成する長ストローク・モジュールと短ストローク・モジュールとを用いて行なうこともできる。ステッパの場合には(スキャナとは反対に)支持構造MTを短ストローク・アクチュエータのみに連結してもよく、又は固定してもよい。パターン化デバイスMAと基板Wを、パターン化デバイス位置合せマークM1、M2と基板位置合せマークP1、P2とを使用して位置合せすることもできる。これらの基板位置合せマークは図示するように専用の目標部分を占めるが、これらのマークを目標部分の間の空間においてもよい(これらはスクライブレーン位置合せマークとして知られている)。同様に、パターン化デバイスMAの上に複数の金型が備えられている状況では、パターン化デバイスの位置合せマークを金型の間に置いてもよい。   The emitted light beam B is an incident beam on a patterning device (eg mask MA) held on a support structure MT (eg mask table) and is patterned by the patterning device. When traversing the patterning device MA, the emitted light beam B passes through the projection system PS, which focuses the beam onto the target portion C of the substrate W. With the aid of a second positioning device PW and a position sensor IF (for example an interferometer device, linear encoder or capacitive sensor), the substrate table WT is positioned to position various target portions C, for example in the path of the emitted light beam B. Can move accurately. Similarly, patterning using the first positioning device PM and another position sensor (not explicitly shown in FIG. 1), for example after mechanical acquisition from a mask library or during scanning The device MA can be accurately positioned with respect to the path of the emitted light beam B. In general, the support structure MT can also be moved using a long stroke module (coarse positioning) and a short stroke module (fine positioning) that form part of the first positioning device PM. Similarly, the movement of the substrate table WT can be performed using a long stroke module and a short stroke module that form part of the second positioning device PW. In the case of a stepper (as opposed to a scanner) the support structure MT may be connected to a short stroke actuator only, or may be fixed. Patterning device MA and substrate W may be aligned using patterning device alignment marks M1, M2 and substrate alignment marks P1, P2. These substrate alignment marks occupy dedicated target portions as shown, but these marks may be in the space between the target portions (these are known as scribe lane alignment marks). Similarly, in situations where a plurality of molds are provided on the patterning device MA, patterning device alignment marks may be placed between the molds.

図示された装置を、下記のモードの少なくとも1つにおいて使用することができる。すなわち、
1.ステップ・モードにおいて、支持構造MTと基板テーブルWTを本質的に定置させて、放射光ビームに分与されたパターン全体を一度に目標部分の上に投影する(すなわち単一静的露光)。次に基板テーブルWTをX及び/又はY方向にずらして、異なる目標部分Cを露光できるようにする。ステップ・モードでは、露光域の最大サイズが、単一静的露光において結像される目標部分Cのサイズを制限する。
The illustrated apparatus can be used in at least one of the following modes: That is,
1. In step mode, the support structure MT and the substrate table WT are essentially placed to project the entire pattern imparted to the emitted light beam onto the target portion at once (ie, a single static exposure). The substrate table WT is then shifted in the X and / or Y direction so that different target portions C can be exposed. In step mode, the maximum size of the exposure area limits the size of the target portion C imaged in a single static exposure.

2.走査モードでは、支持構造MTと基盤テーブルWTを同期的に走査しながら、放射光ビームに分与されたパターンを目標部分Cの上に投影する(すなわち単一動的露光)。基板テーブルWTの支持構造MTに対する速度と方向を、投影システムPSの(縮小)拡大特性と画像反転特性によって決定することもできる。走査モードでは、露光域の最大サイズは、単一動的露光における目標部分の(非走査方向における)幅を制限し、走査移動の長さが目標部分の(走査方向における)高さを決定する。   2. In scan mode, the pattern imparted to the radiation beam is projected onto a target portion C (ie, a single dynamic exposure) while scanning the support structure MT and the substrate table WT synchronously. The speed and direction of the substrate table WT relative to the support structure MT can also be determined by the (reduction) enlargement characteristics and image reversal characteristics of the projection system PS. In scan mode, the maximum size of the exposure area limits the width (in the non-scan direction) of the target portion in a single dynamic exposure, and the length of the scan movement determines the height (in the scan direction) of the target portion.

3.別のモードでは、支持構造MTを本質的に定置させてプログラム式パターン化デバイスを保持し、放射光ビームに分与されたパターンが目標部分Cの上に投影される間、基板テーブルWTを移動すなわち走査する。このモードでは、一般にパルス化された放射光源が使用され、プログラム式パターン化デバイスは、基板テーブルWTの各移動後に、又は走査中に連続する放射光パルスの間に必要に応じて更新される。この操作モードは、上に参照したような形式のプログラム式ミラー・アレイなどのプログラム式パターン化デバイスを利用するマスクレス・リソグラフィに容易に適用可能である。   3. In another mode, the support structure MT is essentially placed to hold the programmed patterning device and move the substrate table WT while the pattern applied to the emitted light beam is projected onto the target portion C. That is, scan. In this mode, a pulsed radiation source is generally used and the programmed patterning device is updated as necessary after each movement of the substrate table WT or during successive radiation light pulses. This mode of operation is readily applicable to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array of a type as referred to above.

上記の使用モードに関する組合せ、及び/又は変形、又はさらに全く異なる使用モードを採用してもよい。   Combinations and / or variations on the above described modes of use or even entirely different modes of use may be employed.

局部化された液体供給システムによるさらに別の液浸リソグラフィの解決策を図4に示す。液体は、投影システムPLのいずれの側にも2つある溝入口INによって供給され、入口INの外向きに径方向に配置された複数の分離した出口OUTによって排出される。入口INと出口OUTを中央に1つの孔を有するプレートに配置することができ、この孔を通って投影ビームが投影される。液体は、投影システムPLの片側にある1つの溝入口INによって供給され、投影システムPLの他の側にある複数の分離した出口OUTによって排出され、投影システムPLと基板Wとの間に液体の薄膜の流れを生じさせる。1つの入口INと複数の出口OUTとのどの組合せを使用するかの選択は、基板の移動方向によって決めることができる(1つの入口INと複数の出口OUTとの別の組合せは活動しない)。   Yet another immersion lithography solution with a localized liquid supply system is shown in FIG. Liquid is supplied by two groove inlets IN on either side of the projection system PL and discharged by a plurality of separate outlets OUT arranged radially outwardly of the inlet IN. The inlet IN and outlet OUT can be arranged in a plate with one hole in the center, through which the projection beam is projected. The liquid is supplied by one groove inlet IN on one side of the projection system PL and discharged by a plurality of separate outlets OUT on the other side of the projection system PL, and the liquid between the projection system PL and the substrate W is discharged. Create a thin film flow. The selection of which combination of one inlet IN and multiple outlets OUT to use can be determined by the direction of substrate movement (other combinations of one inlet IN and multiple outlets OUT are not active).

提案されている局部化された液体供給システムによるさらに別の液浸リソグラフィの解決策は、投影システムの最終素子と基板テーブルとの間の空間の境界の少なくとも一部に沿って延びる液体閉じ込め構造を有する、液体供給システムを提供することである。液体閉じ込め構造は、Z方向に(光学軸の方向に)いくらかの相対的移動はあってもよいが、XY平面において投影システムに対して実質的に定置している。液体閉じ込め構造と基板の表面との間にはシールが形成されている。ある実施例では、このシールはガス・シールなどの非接触シールである。ガス・シールを有するこのようなシステムは、米国特許出願US10/705783に開示されており、その全体は参照によって本明細書に組み込まれている。   Yet another immersion lithography solution with a proposed localized liquid supply system includes a liquid confinement structure that extends along at least a portion of the boundary of the space between the final element of the projection system and the substrate table. Having a liquid supply system. The liquid confinement structure is substantially stationary relative to the projection system in the XY plane, although there may be some relative movement in the Z direction (in the direction of the optical axis). A seal is formed between the liquid confinement structure and the surface of the substrate. In some embodiments, the seal is a contactless seal such as a gas seal. Such a system with a gas seal is disclosed in US patent application US 10 / 705,783, which is incorporated herein by reference in its entirety.

図5は、本発明の一実施例による液体閉じ込め構造(液浸フード又はシャワーヘッドと呼ばれることもある)を含む液体供給システムを示す。特に図5はリザーバ10の配置を示し、このリザーバ10は、基板表面と投影システムの最終素子との間の空間を満たすために液体を閉じ込めるように、投影システムの画像域の周りに基板に対する非接触シールを形成する。投影システムPLの最終素子の下及び周りに位置する液体閉じ込め構造12がリザーバを形成する。液体は、投影システムの下で液体閉じ込め構造12の中にある空間の中に導かれる。液体閉じ込め構造12は、投影システムの最終素子の少し上に延在し、液体レベルは最終素子の上に上昇するので、この結果液体の緩衝域が形成される。液体閉じ込め構造12は内部周辺を有し、内周辺は上端部において投影システム又はその最終素子の形状に密に従うことが好ましく、例えば丸くてもよい。底部では内部周辺は画像域の形状に密に従い、この場合必要ではないが例えば長方形である。   FIG. 5 illustrates a liquid supply system including a liquid confinement structure (sometimes referred to as an immersion hood or showerhead) according to one embodiment of the present invention. In particular, FIG. 5 shows the arrangement of a reservoir 10, which reservoir 10 is non-relative to the substrate around the image area of the projection system so as to confine liquid to fill the space between the substrate surface and the final element of the projection system. Form a contact seal. A liquid confinement structure 12 located below and around the final element of the projection system PL forms a reservoir. The liquid is guided into a space in the liquid confinement structure 12 under the projection system. The liquid confinement structure 12 extends slightly above the final element of the projection system, and the liquid level rises above the final element, resulting in a liquid buffer area. The liquid confinement structure 12 has an inner periphery, which preferably closely follows the shape of the projection system or its final element at the upper end, for example round. At the bottom, the inner periphery closely follows the shape of the image area and is not required in this case, for example rectangular.

液体は、液体閉じ込め構造12の底部と基板Wの表面との間のガス・シール16によってリザーバの中に閉じ込められる。ガス・シールは、液体閉じ込め構造12と基板との間の入口15を通じて圧力下で供給され、出口14を通じて取り出されるガス、例えば空気、合成空気、N2又は不活性ガスによって形成される。ガス入口15上の過圧、出口14上の真空、及びギャップの形状寸法は、内部への高速ガス流が液体を閉じ込めるように決められる。液体及び/又はガスを除去するための単なる出口などの、他の形式のシールを使用して液体を含むことができるのは当業者には理解されよう。   The liquid is confined in the reservoir by a gas seal 16 between the bottom of the liquid confinement structure 12 and the surface of the substrate W. The gas seal is formed by a gas such as air, synthetic air, N 2 or inert gas supplied under pressure through the inlet 15 between the liquid confinement structure 12 and the substrate and taken out through the outlet 14. The overpressure on the gas inlet 15, the vacuum on the outlet 14, and the gap geometry are determined so that the high velocity gas flow into the interior confines the liquid. Those skilled in the art will appreciate that other types of seals can be used to contain the liquid, such as a mere outlet for removing liquid and / or gas.

図5を参照すると、液体閉じ込め構造12と投影システムPLは、基板W全体にわたって基板が露光され、パターン化された放射光ビームが液体11を通って投影システムPLから基板Wへ通過するように位置している。   Referring to FIG. 5, the liquid confinement structure 12 and the projection system PL are positioned such that the substrate is exposed over the entire substrate W and the patterned radiation beam passes from the projection system PL to the substrate W through the liquid 11. is doing.

図6では、液体閉じ込め構造12と基板テーブルWTは、液体閉じ込め構造12の液体を保持する開口がもう完全に基板Wを覆わないように、互いに移動している。液体閉じ込め構造の開口は基板Wの表面の先まで延びているが、例えば浸液11を洗浄流体110と取り替えることができ、洗浄流体110を浸液11と同じ出口13を介して液体閉じ込め構造へ供給してもよい。この場合、清浄化デバイスは液体閉じ込め構造である。   In FIG. 6, the liquid confinement structure 12 and the substrate table WT are moved relative to each other such that the opening that holds the liquid in the liquid confinement structure 12 no longer completely covers the substrate W. Although the opening of the liquid confinement structure extends beyond the surface of the substrate W, for example, the immersion liquid 11 can be replaced with the cleaning fluid 110, and the cleaning fluid 110 is transferred to the liquid confinement structure through the same outlet 13 as the immersion liquid 11. You may supply. In this case, the cleaning device is a liquid confinement structure.

洗浄流体110を、投影システムPLの最終素子及び/又は基板テーブルWTの両方から汚染物を除去するために使用できる。さらにまた、基板テーブルを清浄化するために、出口14と入口13を介して加圧ガス流を使用することもできる。汚染物は洗い流されるか崩壊され、洗浄流体110が除去されて浸液11によって入れ替えられると除去されて、次の基板を露光する準備ができる。液体閉じ込め構造によって供給できる洗浄流体110はそれ自体、溶剤、洗浄剤、二酸化炭素などの液化ガス、又は酸素、オゾン、又は窒素などの溶存ガスであってもよい。   The cleaning fluid 110 can be used to remove contaminants from both the final element of the projection system PL and / or the substrate table WT. Furthermore, a pressurized gas flow can be used through the outlet 14 and the inlet 13 to clean the substrate table. The contaminants are washed away or disintegrated and removed when the cleaning fluid 110 is removed and replaced by the immersion liquid 11 and is ready to expose the next substrate. The cleaning fluid 110 that can be supplied by the liquid confinement structure may itself be a solvent, a cleaning agent, a liquefied gas such as carbon dioxide, or a dissolved gas such as oxygen, ozone, or nitrogen.

液体閉じ込め構造を、洗浄ガス並びに洗浄液体を入れるために使用してもよい。投影システムPLと液体閉じ込め構造12との間の隙間を、洗浄作用中に一時的に閉じてもよく、人やリソグラフィ装置の他の部分に潜在的に有害であるガスでさえ使用してもよい。   A liquid confinement structure may be used to contain the cleaning gas as well as the cleaning liquid. The gap between the projection system PL and the liquid confinement structure 12 may be temporarily closed during the cleaning operation, and even gases that are potentially harmful to people or other parts of the lithographic apparatus may be used. .

液体閉じ込め構造の異なる使用による粒子汚染のこの減少は、リソグラフィ装置の処理の質のためには利益となり得る。液体閉じ込め構造を使用する洗浄作用は露光の一部となるか、又は例えば汚染のレベルによって必要となるときにはメンテナンス作用の一部ともなり得る。この方策の利点は、洗浄するリソグラフィ装置を分解する必要がないことである。   This reduction in particle contamination due to different uses of liquid confinement structures can be beneficial for the quality of processing of the lithographic apparatus. The cleaning action using the liquid confinement structure can be part of the exposure or it can be part of the maintenance action, for example when required by the level of contamination. The advantage of this measure is that there is no need to disassemble the lithographic apparatus to be cleaned.

ソフトウェアを使用して、基板の単なる露光に必要な方向よりも、さらにすべての方向又は所望の方向に基板テーブルの移動を導くこともできる。この方法では、全部又は所望の部分はある点では液体閉じ込め構造の下にあることもあるので、基板テーブルWTの全部又は所望の部分が洗浄される。   Software can also be used to guide the movement of the substrate table in all directions or in a desired direction, rather than the direction required for simple exposure of the substrate. In this way, all or a desired part of the substrate table WT is cleaned because all or a desired part may be at some point under the liquid confinement structure.

液体閉じ込め構造に洗浄流体を供給するように構成された他の洗浄デバイスは、図7を参照すると、基板テーブルWTの中に設けられた洗浄ステーション20である。投影システムPLの最終素子及び/又は基板テーブルWTの洗浄が必要になると、洗浄ステーション20が最終素子の下方に位置するように液体閉じ込め構造に対して移動される。この方法では、洗浄液110が洗浄ステーション20から、洗浄液110を噴霧するように構成された噴霧器によって、液体閉じ込め構造12のリザーバの中へ、及び投影システムPLの最終素子の上に供給される。これによって、洗浄液110は最終素子を洗浄することができる。追加的に又は代替案として、洗浄液110は、基板テーブルWTを洗浄できるようにリザーバを満たすこともできる。いったん洗浄が完了すると、次いで液体閉じ込め構造12は、超純水又は別の適切な液体が残った洗浄液を完全に洗い流すように活動化される。洗浄液の代りに、洗浄ステーションはオゾン又はプラズマなどの洗浄ガスを供給してもよい。ある実施例では、洗浄液を液体CO2にしてもよい(この洗浄は「スノー・クリーニング」と呼ばれることもある)。   Another cleaning device configured to supply a cleaning fluid to the liquid confinement structure, referring to FIG. 7, is a cleaning station 20 provided in the substrate table WT. When the final element of the projection system PL and / or the substrate table WT needs to be cleaned, the cleaning station 20 is moved relative to the liquid confinement structure so that it is located below the final element. In this method, cleaning liquid 110 is supplied from the cleaning station 20 by a sprayer configured to spray the cleaning liquid 110 into the reservoir of the liquid confinement structure 12 and onto the final element of the projection system PL. Accordingly, the cleaning liquid 110 can clean the final element. Additionally or alternatively, the cleaning liquid 110 can fill the reservoir so that the substrate table WT can be cleaned. Once cleaning is complete, the liquid confinement structure 12 is then activated to completely wash away the cleaning liquid left with ultrapure water or another suitable liquid. Instead of the cleaning liquid, the cleaning station may supply a cleaning gas such as ozone or plasma. In some embodiments, the cleaning liquid may be liquid CO 2 (this cleaning may be referred to as “snow cleaning”).

使用される洗浄流体は、除去すべき汚染物質によって決まることになる。乾燥する汚れは通常は塩の付着物であり、的確な塩に応じて高pH溶液又は低pH溶液を使用してもよい。金属の付着物を除去するためにその他の洗浄剤を使用してもよい。有機汚染物、ヘプタンなどの有機溶剤、ヘクサン(無極性)、アルコール、例えばエタノール、又はアセトン(有極性)を使用することもできる。   The cleaning fluid used will depend on the contaminant to be removed. The soil to be dried is usually a salt deposit and a high pH solution or a low pH solution may be used depending on the exact salt. Other cleaning agents may be used to remove metal deposits. Organic contaminants, organic solvents such as heptane, hexane (nonpolar), alcohols such as ethanol, or acetone (polar) can also be used.

さらに、ある一定の有機汚染物を破壊するために洗浄する間に、最終素子PLを通じて投影ビームを投影してもよい。   Furthermore, the projection beam may be projected through the final element PL during cleaning to destroy certain organic contaminants.

ある実施例では、最終素子にかき傷がつく恐れを減らすために最終素子とのいかなる機械的接触も避けることが望まれる。しかし必要な場合には、液体閉じ込め構造12及び/又は基板テーブルWTはモータの上にブラシを含んでもよい。   In some embodiments, it is desirable to avoid any mechanical contact with the final element to reduce the risk of scratching the final element. However, if necessary, the liquid confinement structure 12 and / or the substrate table WT may include a brush on the motor.

洗浄ステーション20を、液体閉じ込め構造自体及び閉鎖プレートなども洗浄できるように、基板テーブルWTの中又は上、若しくは液体閉じ込め構造12の中又は上のどこに置いてもよい。液浸リソグラフィ装置における多くの表面は、乾燥する汚れ、基板から蒸発するレジストからの有機汚染物、浸液自体からの汚染物質などのために、汚染される危険性がある。したがって洗浄流体110は、液体閉じ込め構造12によって供給されても、又は洗浄ステーション20によって供給されても、浸液に曝されることのある同じ表面すべてに供給される。   The cleaning station 20 may be placed anywhere in or on the substrate table WT or in or on the liquid confinement structure 12 so that the liquid confinement structure itself and the closure plate, etc. can also be cleaned. Many surfaces in immersion lithographic apparatus are at risk of contamination due to dirt that dries, organic contaminants from the resist evaporating from the substrate, contaminants from the immersion liquid itself, and the like. Accordingly, the cleaning fluid 110 is supplied to all the same surfaces that may be exposed to the immersion liquid, whether supplied by the liquid confinement structure 12 or supplied by the cleaning station 20.

図8は、液浸システム、特に投影システムPLの最終素子を洗浄できる別の実施例を示す。この場合には、洗浄流体110を導入せず、又は導入すると共に、液体閉じ込め構造12における流体を、基板テーブルWTに及び/又は液体閉じ込め構造12に超音波エミッタ30を洗浄デバイスとして組み込むことによって、超音波洗浄浴の中に移すことができる。   FIG. 8 shows another embodiment in which the final element of the immersion system, in particular the projection system PL, can be cleaned. In this case, the cleaning fluid 110 is not introduced or is introduced and the fluid in the liquid confinement structure 12 is incorporated into the substrate table WT and / or the ultrasonic emitter 30 as a cleaning device in the liquid confinement structure 12, Can be transferred into an ultrasonic cleaning bath.

超音波洗浄は、乾燥及び硬化した例えば投影システムPLの最終素子の上の塩を有する汚染物を除去するために特にすぐれている。超音波洗浄はまた、基板テーブルWTの小突起やふしこぶのあるプレートの凹凸物などの、ブラシやティッシュが到達できない区域における洗浄にも有用である。   Ultrasonic cleaning is particularly good for removing contaminants that have dried and hardened, for example, salts on the final elements of the projection system PL. Ultrasonic cleaning is also useful for cleaning areas where brushes or tissues cannot reach, such as small protrusions on the substrate table WT and bumpy plate irregularities.

さらに別の実施例では、メガヘルツの周波数を発信するメガ音波発信装置が、基板テーブルWT及び/又は液体閉じ込め構造12の中に組み込まれ、これは液体閉じ込め構造12の中の液体をメガ音波洗浄液の中に向けるように構成されている。これは、ハードウェアに対する有害性が少なく、音波がさらに液体供給システムを通じて伝播することができる点で有利である。   In yet another embodiment, a megasonic transmitter that emits megahertz frequencies is incorporated into the substrate table WT and / or the liquid confinement structure 12, which causes the liquid in the liquid confinement structure 12 to pass through the megasonic cleaning liquid. It is configured to point inward. This is advantageous in that it is less harmful to the hardware and the sound waves can further propagate through the liquid supply system.

洗浄流体110と共に、又はこの代りに、液体閉じ込め構造12を通じて、及び/又は洗浄ステーション20を通じて、被覆物を液体閉じ込め構造12のリザーバの中に導入してもよい。この場合には、液体閉じ込め構造及び/又は洗浄ステーションはコータと呼ばれることもある。この被覆物を、液体閉じ込め構造、最終素子、又はその他の表面を保護するために使用してもよく、又は他の用途に供してもよいことは当業者には明らかであろう。被覆物除去剤を同じ方法で液体閉じ込め構造の中に導入することもできる。   The coating may be introduced into the reservoir of the liquid confinement structure 12 through the liquid confinement structure 12 and / or through the cleaning station 20 with or instead of the cleaning fluid 110. In this case, the liquid confinement structure and / or the cleaning station may be referred to as a coater. It will be apparent to those skilled in the art that this coating may be used to protect liquid confinement structures, final devices, or other surfaces, or may be subjected to other applications. The coating remover can also be introduced into the liquid confinement structure in the same manner.

微生物学的汚染(すなわち細菌培養物)を洗浄するために使用できる別の洗浄デバイスは、UV線である。このUV線を供給するために他の線源も使用できるが、リソグラフィ装置の放射光源を使用してもよい。例えば、リソグラフィ装置の放射光源は193nmの線を放射することがあり、この放射の一形式は、液体閉じ込め構造の中、基板テーブルの上、及び/又は最終素子の上に存在するかもしれない細菌を殺す。   Another cleaning device that can be used to clean microbiological contamination (ie bacterial cultures) is UV radiation. Other radiation sources can be used to supply this UV radiation, but the radiation source of the lithographic apparatus may be used. For example, a radiation source of a lithographic apparatus may emit a 193 nm line, one type of this radiation being bacteria that may be present in the liquid confinement structure, on the substrate table, and / or on the final element. Kill.

投影システムPL自体からのUV線を使用して基板テーブル上の細菌を殺すこともできる少なくとも2つの方法がある。第1の方法は、UV線を透過する閉鎖プレートによるものであり、この閉鎖プレートは液体閉じ込め構造12の中の液体を保持するが、それでもUV線は基板テーブルWTに達してその上の細菌を殺すことができる。第2の方法は、閉鎖ディスクを使用するものではないが、細菌に照射して、同時に液体閉じ込め構造12の中の液体の流れによって死んだ細菌を洗い落とす。   There are at least two ways in which UV radiation from the projection system PL itself can be used to kill bacteria on the substrate table. The first method is by means of a closure plate that is transparent to UV radiation, which retains the liquid in the liquid confinement structure 12, but still the UV radiation reaches the substrate table WT to dispose of bacteria thereon. Can kill. The second method does not use a closed disc, but irradiates the bacteria and at the same time wash away dead bacteria due to the flow of liquid in the liquid confinement structure 12.

投影システムPLの最終素子又は液体閉じ込め構造12の表面から細菌を除去しようとする場合には、上述のように投影システムPL自体からUV線を供給してもよく、又は個別の光学素子から供給してもよい。例えば、図8における超音波エミッタ30と同じ場所に位置する光学素子を、投影システムPLの最終素子及び/又は液体閉じ込め構造12の表面にUV線を供給するために使用することができる。この場合には、UV線は例えば、UV線に透過性の閉鎖プレートを介して液体閉じ込め構造12に入ることができる。   If bacteria are to be removed from the final element of the projection system PL or the surface of the liquid confinement structure 12, UV radiation may be supplied from the projection system PL itself, as described above, or from a separate optical element. May be. For example, an optical element located at the same location as the ultrasonic emitter 30 in FIG. 8 can be used to provide UV radiation to the final element of the projection system PL and / or the surface of the liquid confinement structure 12. In this case, the UV rays can enter the liquid confinement structure 12 via a closing plate that is transparent to UV rays, for example.

UV線の使用は、微生物学的汚染を低く抑えると共に、例えば過酸化水素又はオゾン水を使用する湿式化学的消毒を実施する必要によって起こり得る長時間の休止を防ぐという利点を有する。この処理を、予防又は治療策として実施することができる。   The use of UV radiation has the advantage of keeping microbiological contamination low and preventing prolonged pauses that may occur due to the need to perform wet chemical disinfection using, for example, hydrogen peroxide or ozone water. This treatment can be implemented as a prophylactic or therapeutic strategy.

欧州特許出願第03257072.3号に、2段又は双段液浸リソグラフィ装置の構想が開示されている。このような装置は基板を支持するために2つのテーブルを備えている。平準化測定が第1位置において浸液なしでテーブルによって実施され、浸液が存在する第2位置において露光がテーブルによって実施される。代替案として、装置はただ1つのテーブルを有する。   European Patent Application No. 03257072.3 discloses the concept of a two-stage or double-stage immersion lithographic apparatus. Such an apparatus is provided with two tables for supporting the substrate. Leveling measurements are performed by the table without immersion liquid at the first position, and exposure is performed by the table at the second position where immersion liquid is present. As an alternative, the device has only one table.

本文においてはIC製造におけるリソグラフィ装置の使用を特に参照するが、本明細書に説明されるリソグラフィ装置は、磁区メモリ、平坦パネル表示装置、液晶表示装置(LCD)、薄膜磁気ヘッドなどのための統合光学システム、誘導パターン、及び検知パターンの製造などの、他の適用分野も有することを理解されたい。このような代替適用例に関連して、本明細書における用語「ウェハ」又は「金型」のいかなる使用も、さらに一般的な用語である「基板」又は「目標部分」とそれぞれ同義語であると考えてもよい。本明細書に参照される基板を露光の前又は後に、例えばトラック(一般的に基板にレジスト層を当てて、露光されたレジストを現像するツール)、計測ツール、及び/又は検査ツールにおいて加工してもよい。適用可能な場合には、本明細書に開示されたものを、このような及びその他の基板加工ツールに適用することもできる。さらに、例えば多層ICを作り出すために基板を複数回加工することもでき、したがって、本明細書で使用する基板という用語は、すでに複数の加工された層を含む基板を指してもよい。   Although the text specifically refers to the use of lithographic apparatus in IC manufacturing, the lithographic apparatus described herein is an integrated for magnetic domain memory, flat panel display, liquid crystal display (LCD), thin film magnetic head, etc. It should be understood that there are other application areas, such as manufacturing optical systems, inductive patterns, and sensing patterns. In connection with such alternative applications, any use of the terms “wafer” or “mold” herein is synonymous with the more general terms “substrate” or “target portion”, respectively. You may think. The substrate referred to herein may be processed before or after exposure, for example, in a track (typically a tool that applies a resist layer to the substrate and develops the exposed resist), metrology tool, and / or inspection tool. May be. Where applicable, what is disclosed herein may be applied to such and other substrate processing tools. Further, a substrate can be processed multiple times, for example to create a multi-layer IC, so the term substrate as used herein may refer to a substrate that already contains multiple processed layers.

本明細書で使用される「放射光」及び「ビーム」という用語は、紫外(UV)線(例えば約365、248、193、157、又は126nmの波長を有する)を含むあらゆる形式の電磁放射線を包含する。   As used herein, the terms “radiant light” and “beam” refer to any type of electromagnetic radiation, including ultraviolet (UV) radiation (eg, having a wavelength of about 365, 248, 193, 157, or 126 nm). Include.

この状況で許される「レンズ」という用語は、屈折式及び反射式光学構成部分を含むさまざまな形式の光学構成部分のいずれか1つ又は組合せを指す。   The term “lens” allowed in this context refers to any one or combination of various types of optical components, including refractive and reflective optical components.

本発明の特定の実施例を上に説明したが、本発明を説明した以外の様式で実現してもよいことが理解されよう。例えば、本発明は、上に開示された方法を記載する機械読み出し可能な一連又は複数連の命令を含むコンピュータ・プログラムの形、又はこのようなコンピュータ・プログラムが中に記憶されたデータ記憶媒体(例えば半導体メモリ、磁気ディスク、又は光ディスク)の形をとってもよい。   While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. For example, the invention may be in the form of a computer program comprising a machine-readable sequence or sequence of instructions describing the method disclosed above, or a data storage medium having such a computer program stored therein ( For example, it may take the form of a semiconductor memory, a magnetic disk, or an optical disk.

本発明の1つ又は複数の実施例を、上述した形式などのあらゆる液浸リソグラフィ装置に適用することができ、浸液は浴の形で適用されるか、又は基板の局部化された表面区域のみに適用される。液体供給システムは、投影システムと基板及び/又は基板テーブルの間の空間に液体を供給する任意の機構である。これは、1つ又は複数の構造、1つ又は複数の液体入口、1つ又は複数のガス入口、1つ又は複数のガス出口、及び/又は1つ又は複数の液体出口の任意の組合せを含んでもよく、この組合せは空間に液体を供給して閉じ込める。ある実施例では、この空間の表面は基板及び/若しくは基板テーブルの一部に限られてもよく、又はこの空間の表面が基板及び/若しくは基板テーブルを完全に覆ってもよく、又はこの空間が基板及び/若しくは基板テーブルを包囲してもよい。   One or more embodiments of the invention can be applied to any immersion lithographic apparatus, such as the type described above, where the immersion liquid is applied in the form of a bath or localized surface area of the substrate. Applies only to. A liquid supply system is any mechanism that supplies liquid to the space between the projection system and the substrate and / or substrate table. This includes any combination of one or more structures, one or more liquid inlets, one or more gas inlets, one or more gas outlets, and / or one or more liquid outlets. However, this combination supplies and confines liquid in the space. In some embodiments, the surface of this space may be limited to a portion of the substrate and / or substrate table, or the surface of this space may completely cover the substrate and / or substrate table, or The substrate and / or the substrate table may be enclosed.

上記の説明は例示を意図したものであって、限定するものではない。したがって、記載の特許請求の範囲を逸脱することなく、説明したような本発明に変更を行なってもよいことは当業者には明らかであろう。   The above description is intended to be illustrative and not limiting. Thus, it will be apparent to one skilled in the art that modifications may be made to the invention as described without departing from the scope of the claims set out below.

本発明の一実施例によるリソグラフィ装置を示す図である。1 shows a lithographic apparatus according to one embodiment of the invention. リソグラフィ投影装置において使用するための液体供給システムを示す図である。FIG. 1 shows a liquid supply system for use in a lithographic projection apparatus. リソグラフィ投影装置において使用するための液体供給システムを示す図である。FIG. 1 shows a liquid supply system for use in a lithographic projection apparatus. リソグラフィ投影装置において使用するための別の液体供給システム示す図である。FIG. 5 shows another liquid supply system for use in a lithographic projection apparatus. 本発明の一実施例による液体供給システムを示す図である。It is a figure which shows the liquid supply system by one Example of this invention. 基板テーブルの上に位置する図5の液体閉じ込め構造を示す図である。FIG. 6 shows the liquid confinement structure of FIG. 5 located on a substrate table. 本発明の一実施例による基板テーブルにおける清浄化ステーションを示す図である。FIG. 3 shows a cleaning station in a substrate table according to an embodiment of the present invention. 本発明の一実施例による超音波洗浄浴を示す図である。It is a figure which shows the ultrasonic cleaning bath by one Example of this invention.

符号の説明Explanation of symbols

B 放射光ビーム
BD ビーム分配システム
C 目標部分
IF 位置センサ
IL 照射システム(照射器)
IN 入口
M1、M2 パターン化デバイス位置合せマーク
MA パターン化デバイス
MT 支持構造
OUT 出口
P1、P2 基板位置合せマーク
PM 第1位置決め装置
PS 投影システム
PW 第2位置決め装置
SO 放射光源
W 基板
WT 基板テーブル
10 リザーバ
11 液体、浸液
12 液体閉じ込め構造
13 出口
14 出口
15 入口
16 ガス・シール
20 洗浄ステーション
30 超音波エミッタ
110 洗浄流体、洗浄液
B Radiation beam BD Beam distribution system C Target part IF Position sensor IL Irradiation system (Irradiator)
IN entrance M1, M2 patterning device alignment mark MA patterning device MT support structure OUT exit P1, P2 substrate alignment mark PM first positioning device PS projection system PW second positioning device SO radiation source W substrate WT substrate table 10 reservoir DESCRIPTION OF SYMBOLS 11 Liquid, immersion liquid 12 Liquid confinement structure 13 Outlet 14 Outlet 15 Inlet 16 Gas seal 20 Cleaning station 30 Ultrasonic emitter 110 Cleaning fluid, cleaning liquid

Claims (30)

基板を保持するように構成された基板テーブルと、
前記基板の上にパターン化された放射光ビームを投影するように構成され、前記基板に隣接する最終光学素子を含む投影システムと、
前記投影システムと前記基板テーブルとの間の空間に液体を供給するように構成された液体供給システムと、
前記最終光学素子、前記基板テーブル、又は前記液体に曝される構成部分又は構造の表面の少なくとも1つを洗浄するように構成された洗浄デバイスと
を含むリソグラフィ装置。
A substrate table configured to hold a substrate;
A projection system configured to project a patterned radiation beam onto the substrate and including a final optical element adjacent to the substrate;
A liquid supply system configured to supply liquid to a space between the projection system and the substrate table;
A lithographic apparatus, comprising: a cleaning device configured to clean at least one of the final optical element, the substrate table, or a surface of a component or structure exposed to the liquid.
前記洗浄デバイスが、前記液体供給システムの液体閉じ込め構造を含み、リソグラフィ装置に直列に並ぶ前記最終光学素子を洗浄するように構成されている請求項1に記載の装置。   The apparatus of claim 1, wherein the cleaning device includes a liquid confinement structure of the liquid supply system and is configured to clean the final optical element in series with a lithographic apparatus. 前記洗浄デバイスが、前記空間内の液体をそれぞれ超音波洗浄液体、又はメガ音波洗浄液体に変えるように構成された、超音波トランスミッタ及びメガ音波トランスミッタの群から選択された音波トランスミッタを含む請求項1に記載の装置。   2. The cleaning device includes a sonic transmitter selected from the group of an ultrasonic transmitter and a megasonic transmitter configured to change the liquid in the space to an ultrasonic cleaning liquid or a megasonic cleaning liquid, respectively. The device described in 1. 前記洗浄デバイスが、低波長紫外線を供給するように構成された光学素子を含む請求項1に記載の装置。   The apparatus of claim 1, wherein the cleaning device includes an optical element configured to provide low wavelength ultraviolet radiation. 前記液体供給システムが、低波長紫外線を透過する表面を含む請求項4に記載の装置。   The apparatus of claim 4, wherein the liquid supply system includes a surface that transmits low wavelength ultraviolet light. 低波長紫外線が193nmの波長を有する請求項4に記載の装置。   The apparatus of claim 4 wherein the low wavelength ultraviolet radiation has a wavelength of 193 nm. 前記洗浄デバイスが前記空間に洗浄流体を供給するように構成されている請求項1に記載の装置。   The apparatus of claim 1, wherein the cleaning device is configured to supply a cleaning fluid to the space. 前記洗浄流体が溶剤を含む請求項7に記載の装置。   The apparatus of claim 7, wherein the cleaning fluid comprises a solvent. 前記洗浄流体が洗浄剤を含む請求項7に記載の装置。   The apparatus of claim 7, wherein the cleaning fluid comprises a cleaning agent. 前記洗浄流体が溶存ガスを含む請求項7に記載の装置。   The apparatus of claim 7, wherein the cleaning fluid comprises dissolved gas. 前記ガスが酸素、オゾン、又は窒素から選択される請求項10に記載の装置。   The apparatus of claim 10, wherein the gas is selected from oxygen, ozone, or nitrogen. 前記洗浄デバイスが基板テーブルの中にある請求項1に記載の装置。   The apparatus of claim 1, wherein the cleaning device is in a substrate table. 前記洗浄デバイスが噴霧ユニットを含む請求項12に記載の装置。   The apparatus of claim 12, wherein the cleaning device includes a spray unit. 前記噴霧ユニットが光学素子、基板テーブル、又はその両方の上に洗浄流体を噴霧するように構成されている請求項13に記載の装置。   The apparatus of claim 13, wherein the spray unit is configured to spray a cleaning fluid onto an optical element, a substrate table, or both. 前記洗浄流体がオゾンを含む請求項14に記載の装置。   The apparatus of claim 14, wherein the cleaning fluid comprises ozone. 前記洗浄流体がプラズマを含む請求項14に記載の装置。   The apparatus of claim 14, wherein the cleaning fluid comprises a plasma. 前記洗浄流体が液体二酸化炭素を含む請求項14に記載の装置。   The apparatus of claim 14, wherein the cleaning fluid comprises liquid carbon dioxide. 前記洗浄流体が無極性有機溶剤を含む請求項14に記載の装置。   The apparatus of claim 14, wherein the cleaning fluid comprises a nonpolar organic solvent. 前記洗浄流体が有極性有機溶剤を含む請求項14に記載の装置。   The apparatus of claim 14, wherein the cleaning fluid comprises a polar organic solvent. 前記洗浄デバイスが、最終光学素子のみを洗浄するため、又は基板テーブルのみを洗浄するように構成されている請求項14に記載の装置。   15. An apparatus according to claim 14, wherein the cleaning device is configured to clean only the final optical element or to clean only the substrate table. 基板を保持するように構成された基板テーブルと、
前記基板の上にパターン化された放射光ビームを投影するように構成され、前記基板に隣接する最終光学素子を含む投影システムと、
前記投影システムと前記基板テーブルとの間の空間に液体を供給するように構成された液体供給システムと、
前記最終光学素子、前記基板テーブル、又は前記液体に曝される構成部分又は構造の表面の少なくとも1つを被覆するように構成されたコータと
を含むリソグラフィ装置。
A substrate table configured to hold a substrate;
A projection system configured to project a patterned radiation beam onto the substrate and including a final optical element adjacent to the substrate;
A liquid supply system configured to supply liquid to a space between the projection system and the substrate table;
A lithographic apparatus comprising: the final optical element; the substrate table; or a coater configured to cover at least one surface of a component or structure exposed to the liquid.
前記コータが基板テーブルの中に噴霧ユニットを含む請求項21に記載の装置。   The apparatus of claim 21, wherein the coater includes a spray unit in a substrate table. 前記コータが前記液体供給システムの液体閉じ込め構造を含み、前記被覆デバイスがリソグラフィ装置に直列に並ぶ前記最終光学素子を被覆するように構成されている請求項21に記載の装置。   The apparatus of claim 21, wherein the coater includes a liquid confinement structure of the liquid supply system, and the coating device is configured to cover the final optical element in series with a lithographic apparatus. 前記被覆デバイスが、最終光学素子のみを被覆するため、又は基板テーブルのみを洗浄するように構成されている請求項21に記載の装置。   The apparatus of claim 21, wherein the coating device is configured to coat only the final optical element or to clean only the substrate table. (i)洗浄流体、(ii)被覆流体、(iii)被覆剥離剤、又は(iv)(i)〜(iii)のいずれかの組合せを、リソグラフィ装置の投影システムと基板テーブルとの間の空間に直列適用するための、リソグラフィ装置における流体供給システムの使用。   (I) a cleaning fluid, (ii) a coating fluid, (iii) a coating stripper, or (iv) any combination of (i) to (iii) in the space between the projection system of the lithographic apparatus and the substrate table Use of a fluid supply system in a lithographic apparatus for serial application. リソグラフィ装置の投影システムの最終光学素子の上に洗浄流体を噴霧するように構成された噴霧ユニット。   A spray unit configured to spray a cleaning fluid onto a final optical element of a projection system of a lithographic apparatus. リソグラフィ装置の投影システムと基板テーブルとの間の空間に閉じ込められた液体を、超音波洗浄液体の中に入れ込むように構成された超音波エミッタ。   An ultrasonic emitter configured to entrap a liquid confined in a space between a projection system of a lithographic apparatus and a substrate table into an ultrasonic cleaning liquid. リソグラフィ装置の投影システムと基板テーブルとの間の空間に閉じ込められた液体を、メガ音波洗浄液体の中に入れ込むように構成されたメガ音波エミッタ。   A megasonic emitter configured to entrain liquid confined in a space between a projection system of a lithographic apparatus and a substrate table into a megasonic cleaning liquid. 光学素子と基板テーブルとの空間に液体を有するように構成されたリソグラフィ装置において、投影システムの光学素子、基板テーブル、若しくはその両方を洗浄するための、前記空間を通じて洗浄流体を循環させることを含む方法。   In a lithographic apparatus configured to have a liquid in a space between an optical element and a substrate table, including circulating a cleaning fluid through the space for cleaning the optical element of the projection system, the substrate table, or both Method. 光学素子と基板テーブルとの空間に液体を有するように構成されたリソグラフィ装置において、投影システムの光学素子、基板テーブル、若しくはその両方を被覆するための、前記空間を通じて被覆流体を循環させることを含む方法。   In a lithographic apparatus configured to have a liquid in a space between an optical element and a substrate table, including circulating a coating fluid through the space for coating the optical element of the projection system, the substrate table, or both Method.
JP2008161741A 2004-12-20 2008-06-20 Lithography equipment and fabrication process of device Pending JP2008227547A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/015,767 US7880860B2 (en) 2004-12-20 2004-12-20 Lithographic apparatus and device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005364310A Division JP4825510B2 (en) 2004-12-20 2005-12-19 Lithographic apparatus

Publications (1)

Publication Number Publication Date
JP2008227547A true JP2008227547A (en) 2008-09-25

Family

ID=36595231

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2005364310A Expired - Fee Related JP4825510B2 (en) 2004-12-20 2005-12-19 Lithographic apparatus
JP2008161741A Pending JP2008227547A (en) 2004-12-20 2008-06-20 Lithography equipment and fabrication process of device
JP2008161707A Pending JP2008277854A (en) 2004-12-20 2008-06-20 Lithographic apparatus and method of manufacturing device
JP2008161756A Pending JP2008227548A (en) 2004-12-20 2008-06-20 Lithographic apparatus and device manufacturing method
JP2008161719A Pending JP2008263221A (en) 2004-12-20 2008-06-20 Lithographic apparatus and device manufacturing method
JP2011260597A Pending JP2012044227A (en) 2004-12-20 2011-11-29 Lithographic apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2005364310A Expired - Fee Related JP4825510B2 (en) 2004-12-20 2005-12-19 Lithographic apparatus

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2008161707A Pending JP2008277854A (en) 2004-12-20 2008-06-20 Lithographic apparatus and method of manufacturing device
JP2008161756A Pending JP2008227548A (en) 2004-12-20 2008-06-20 Lithographic apparatus and device manufacturing method
JP2008161719A Pending JP2008263221A (en) 2004-12-20 2008-06-20 Lithographic apparatus and device manufacturing method
JP2011260597A Pending JP2012044227A (en) 2004-12-20 2011-11-29 Lithographic apparatus

Country Status (2)

Country Link
US (6) US7880860B2 (en)
JP (6) JP4825510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736631B2 (en) 2009-07-17 2014-05-27 Mitsubishi Electric Corporation Facility operation display device, air-conditioning system, and non-transitory computer-readable medium

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525335B1 (en) * 2003-04-11 2015-06-03 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
TWI503865B (en) 2003-05-23 2015-10-11 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
US7684008B2 (en) * 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4760708B2 (en) 2004-06-09 2011-08-31 株式会社ニコン Exposure apparatus, exposure method, device manufacturing method, and maintenance method
EP3098835B1 (en) * 2004-06-21 2017-07-26 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
JP2006024692A (en) * 2004-07-07 2006-01-26 Toshiba Corp Forming method of resist pattern
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
JP4772306B2 (en) * 2004-09-06 2011-09-14 株式会社東芝 Immersion optical device and cleaning method
US7385670B2 (en) * 2004-10-05 2008-06-10 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
EP1814144B1 (en) * 2004-10-26 2012-06-06 Nikon Corporation Substrate processing method and device production system
US20070242248A1 (en) * 2004-10-26 2007-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device
KR101559621B1 (en) * 2004-12-06 2015-10-13 가부시키가이샤 니콘 Maintenance method, maintenance apparatus, exposure apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) * 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2006261606A (en) * 2005-03-18 2006-09-28 Canon Inc Exposure device, exposure method and device manufacturing method
US7291850B2 (en) * 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7315033B1 (en) * 2005-05-04 2008-01-01 Advanced Micro Devices, Inc. Method and apparatus for reducing biological contamination in an immersion lithography system
KR100638107B1 (en) * 2005-06-09 2006-10-24 연세대학교 산학협력단 Light-modulating nano/micro scale aperture array device having immersion layer and high speed nano scale pattern recording system using the same
US7291569B2 (en) * 2005-06-29 2007-11-06 Infineon Technologies Ag Fluids for immersion lithography systems
JP2007012375A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Fuel cell, method of manufacturing electrode catalyst layer, and operation method thereof
US20070004182A1 (en) * 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and system for inhibiting immersion lithography defect formation
WO2007007746A1 (en) * 2005-07-11 2007-01-18 Nikon Corporation Exposure apparatus and method for manufacturing device
US7986395B2 (en) * 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
JP2007150102A (en) * 2005-11-29 2007-06-14 Fujitsu Ltd Exposure device, and cleaning method of optical element
US8125610B2 (en) * 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
JP2007266074A (en) * 2006-03-27 2007-10-11 Toshiba Corp Fabrication process of semiconductor device and oil immersion lithography system
KR20090018024A (en) * 2006-05-18 2009-02-19 가부시키가이샤 니콘 Exposure method and apparatus, maintenance method and device manufacturing method
TW200818256A (en) * 2006-05-22 2008-04-16 Nikon Corp Exposure method and apparatus, maintenance method, and device manufacturing method
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
CN102156389A (en) * 2006-05-23 2011-08-17 株式会社尼康 Maintenance method, exposure method and apparatus, and device manufacturing method
US8564759B2 (en) * 2006-06-29 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for immersion lithography
JP5245825B2 (en) * 2006-06-30 2013-07-24 株式会社ニコン Maintenance method, exposure method and apparatus, and device manufacturing method
KR101523388B1 (en) * 2006-08-30 2015-05-27 가부시키가이샤 니콘 Exposure apparatus, device production method, cleaning method, and cleaning member
WO2008029884A1 (en) * 2006-09-08 2008-03-13 Nikon Corporation Cleaning member, cleaning method and device manufacturing method
US8040490B2 (en) * 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8013975B2 (en) * 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20080156356A1 (en) * 2006-12-05 2008-07-03 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
WO2008089990A2 (en) * 2007-01-26 2008-07-31 Carl Zeiss Smt Ag Method for operating an immersion lithography apparatus
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
JP4366407B2 (en) * 2007-02-16 2009-11-18 キヤノン株式会社 Exposure apparatus and device manufacturing method
US8947629B2 (en) * 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7841352B2 (en) * 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7866330B2 (en) * 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
KR20100031694A (en) * 2007-05-28 2010-03-24 가부시키가이샤 니콘 Exposure apparatus, device manufacturing method, cleaning device, cleaning method and exposure method
US20090025753A1 (en) * 2007-07-24 2009-01-29 Asml Netherlands B.V. Lithographic Apparatus And Contamination Removal Or Prevention Method
US7916269B2 (en) * 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
SG151198A1 (en) * 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
NL1035942A1 (en) * 2007-09-27 2009-03-30 Asml Netherlands Bv Lithographic Apparatus and Method of Cleaning a Lithographic Apparatus.
JP5017232B2 (en) * 2007-10-31 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. Cleaning apparatus and immersion lithography apparatus
KR20100102580A (en) * 2007-12-17 2010-09-24 가부시키가이샤 니콘 Exposure apparatus, exposure method and device manufacturing method
NL1036273A1 (en) * 2007-12-18 2009-06-19 Asml Netherlands Bv Lithographic apparatus and method of cleaning a surface or an immersion lithographic apparatus.
NL1036306A1 (en) 2007-12-20 2009-06-23 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus.
US8451425B2 (en) * 2007-12-28 2013-05-28 Nikon Corporation Exposure apparatus, exposure method, cleaning apparatus, and device manufacturing method
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20100039628A1 (en) * 2008-03-19 2010-02-18 Nikon Corporation Cleaning tool, cleaning method, and device fabricating method
NL1036709A1 (en) 2008-04-24 2009-10-27 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
US7838425B2 (en) * 2008-06-16 2010-11-23 Kabushiki Kaisha Toshiba Method of treating surface of semiconductor substrate
JP2010021370A (en) * 2008-07-10 2010-01-28 Canon Inc Immersion exposure equipment and method of manufacturing device
US20100045949A1 (en) * 2008-08-11 2010-02-25 Nikon Corporation Exposure apparatus, maintaining method and device fabricating method
EP2159638B1 (en) * 2008-08-26 2015-06-17 ASML Netherlands BV Radiation source and lithographic apparatus
NL2003363A (en) * 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
JP5120193B2 (en) * 2008-10-08 2013-01-16 株式会社ニコン Exposure apparatus, maintenance method, exposure method, and device manufacturing method
TW201017347A (en) * 2008-10-31 2010-05-01 Nikon Corp Exposure device, exposure method, and device manufacturing method
NL2005610A (en) 2009-12-02 2011-06-06 Asml Netherlands Bv Lithographic apparatus and surface cleaning method.
JP5404361B2 (en) 2009-12-11 2014-01-29 株式会社東芝 Semiconductor substrate surface treatment apparatus and method
WO2011090690A1 (en) * 2009-12-28 2011-07-28 Pioneer Hi-Bred International, Inc. Sorghum fertility restorer genotypes and methods of marker-assisted selection
NL2006127A (en) * 2010-02-17 2011-08-18 Asml Netherlands Bv A substrate table, a lithographic apparatus and a method for manufacturing a device using a lithographic apparatus.
US20120019802A1 (en) * 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, immersion exposure apparatus, device fabricating method, program, and storage medium
US20120019803A1 (en) * 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, liquid immersion member, immersion exposure apparatus, device fabricating method, program, and storage medium
WO2013086217A1 (en) 2011-12-06 2013-06-13 Masco Corporation Of Indiana Ozone distribution in a faucet
CA3007437C (en) 2015-12-21 2021-09-28 Delta Faucet Company Fluid delivery system including a disinfectant device
US20180032409A1 (en) 2016-07-26 2018-02-01 Netapp, Inc. Backup and recovery of application data of an application executing in a virtual machine

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (en) * 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH11162831A (en) * 1997-11-21 1999-06-18 Nikon Corp Projection aligner and projection aligning method
JP2004165666A (en) * 2002-11-12 2004-06-10 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004053955A1 (en) * 2002-12-10 2004-06-24 Nikon Corporation Exposure system and device producing method
WO2004081666A1 (en) * 2003-03-11 2004-09-23 University Of North Carolina At Chapel Hill Immersion lithography methods using carbon dioxide
JP2004289126A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithography system and process for fabricating device
JP2004289128A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004093130A2 (en) * 2003-04-11 2004-10-28 Nikon Corporation Cleanup method for optics in immersion lithography
WO2004102646A1 (en) * 2003-05-15 2004-11-25 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2006510146A (en) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Liquid removal in a method and apparatus for irradiating a spot on a layer
JP2006134999A (en) * 2004-11-04 2006-05-25 Sony Corp Immersion-type exposure device and method for cleaning holding base in immersion-type exposure device
JP2006148093A (en) * 2004-11-18 2006-06-08 Internatl Business Mach Corp <Ibm> Method and equipment for cleaning semiconductor substrate in immersion lithography system
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
JP2006523028A (en) * 2003-04-10 2006-10-05 株式会社ニコン Environmental system including a transfer area for an immersion lithography apparatus

Family Cites Families (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE221563C (en)
DE206607C (en)
DE224448C (en)
DE242880C (en)
US738649A (en) * 1903-01-21 1903-09-08 Walter D Young Contact-shoe for electric railways.
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3573975A (en) * 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
ATE1462T1 (en) 1979-07-27 1982-08-15 Werner W. Dr. Tabarelli OPTICAL LITHOGRAPHY PROCESS AND DEVICE FOR COPYING A PATTERN ONTO A SEMICONDUCTOR DISC.
FR2474708B1 (en) 1980-01-24 1987-02-20 Dme HIGH-RESOLUTION MICROPHOTOLITHOGRAPHY PROCESS
JPS5754317A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Method and device for forming pattern
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4468120A (en) * 1981-02-04 1984-08-28 Nippon Kogaku K.K. Foreign substance inspecting apparatus
US4390273A (en) * 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
JPS57153433A (en) 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (en) 1982-05-21 1983-11-25 Hitachi Ltd Exposing device
DD206607A1 (en) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech METHOD AND DEVICE FOR ELIMINATING INTERFERENCE EFFECTS
JPS5919912A (en) 1982-07-26 1984-02-01 Hitachi Ltd Immersion distance holding device
DD242880A1 (en) 1983-01-31 1987-02-11 Kuch Karl Heinz DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION
DD221563A1 (en) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech IMMERSIONS OBJECTIVE FOR THE STEP-BY-STEP PROJECTION IMAGING OF A MASK STRUCTURE
DD224448A1 (en) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION
JPS6265326A (en) 1985-09-18 1987-03-24 Hitachi Ltd Exposure device
JPS6265326U (en) 1985-10-16 1987-04-23
JPS62121417A (en) 1985-11-22 1987-06-02 Hitachi Ltd Liquid-immersion objective lens device
JPS62121417U (en) 1986-01-24 1987-08-01
JPS63157419A (en) 1986-12-22 1988-06-30 Toshiba Corp Fine pattern transfer apparatus
JPS63157419U (en) 1987-03-31 1988-10-14
US5040020A (en) * 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
US5257128A (en) 1988-06-22 1993-10-26 Board Of Regents, The University Of Texas System Freezing/perfusion microscope stage
JPH03209479A (en) 1989-09-06 1991-09-12 Sanee Giken Kk Exposure method
JP3158446B2 (en) 1990-12-13 2001-04-23 株式会社ニコン Surface position detecting device, surface position detecting method, exposure apparatus, exposure method, and semiconductor manufacturing method
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305917A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH04305915A (en) 1991-04-02 1992-10-28 Nikon Corp Adhesion type exposure device
JPH0562877A (en) 1991-09-02 1993-03-12 Yasuko Shinohara Optical system for lsi manufacturing contraction projection aligner by light
JPH06104167A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Manufacture of aligner and semiconductor device
JP2520833B2 (en) 1992-12-21 1996-07-31 東京エレクトロン株式会社 Immersion type liquid treatment device
JPH08316125A (en) 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
JPH08316124A (en) * 1995-05-19 1996-11-29 Hitachi Ltd Method and apparatus for projection exposing
US6104687A (en) * 1996-08-26 2000-08-15 Digital Papyrus Corporation Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP3612920B2 (en) 1997-02-14 2005-01-26 ソニー株式会社 Exposure apparatus for producing an optical recording medium master
JP3747566B2 (en) 1997-04-23 2006-02-22 株式会社ニコン Immersion exposure equipment
JP3817836B2 (en) 1997-06-10 2006-09-06 株式会社ニコン EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
JP2002511934A (en) * 1997-06-18 2002-04-16 ウルリッヒ・ジェイ・クルール Nucleic acid biosensor diagnostic device
US5900354A (en) * 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
AU1175799A (en) * 1997-11-21 1999-06-15 Nikon Corporation Projection aligner and projection exposure method
JPH11283903A (en) * 1998-03-30 1999-10-15 Nikon Corp Projection optical system inspection device and projection aligner provided with the device
JPH11176727A (en) 1997-12-11 1999-07-02 Nikon Corp Projection aligner
AU1505699A (en) 1997-12-12 1999-07-05 Nikon Corporation Projection exposure method and projection aligner
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
US6459472B1 (en) 1998-05-15 2002-10-01 Asml Netherlands B.V. Lithographic device
JP2000058436A (en) 1998-08-11 2000-02-25 Nikon Corp Projection aligner and exposure method
JP2001121063A (en) 1999-10-26 2001-05-08 Tokyo Electron Ltd Filter apparatus and liquid treatment apparatus
JP2000147204A (en) 1998-11-06 2000-05-26 Nikon Corp Optical element with protective coat, its production, optical device and semiconductor exposure device
US6379746B1 (en) 1999-02-02 2002-04-30 Corning Incorporated Method for temporarily protecting glass articles
TWI242111B (en) * 1999-04-19 2005-10-21 Asml Netherlands Bv Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus
JP2000323396A (en) 1999-05-13 2000-11-24 Canon Inc Exposure method, aligner, and manufacture thereof
JP4504479B2 (en) 1999-09-21 2010-07-14 オリンパス株式会社 Immersion objective lens for microscope
US6127101A (en) 1999-10-12 2000-10-03 Air Products And Chemicals, Inc. Alkylated aminoalkylpiperazine surfactants and their use in photoresist developers
US6995930B2 (en) * 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7187503B2 (en) 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
JP2001272604A (en) * 2000-03-27 2001-10-05 Olympus Optical Co Ltd Immersion objective lens and optical device using the same
US6466365B1 (en) * 2000-04-07 2002-10-15 Corning Incorporated Film coated optical lithography elements and method of making
TW591653B (en) * 2000-08-08 2004-06-11 Koninkl Philips Electronics Nv Method of manufacturing an optically scannable information carrier
US6301055B1 (en) 2000-08-16 2001-10-09 California Institute Of Technology Solid immersion lens structures and methods for producing solid immersion lens structures
KR100866818B1 (en) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 Projection optical system and exposure apparatus comprising the same
JP2002236111A (en) 2001-02-09 2002-08-23 Masahiro Nishikawa Bubble detecting method and device for liquid pump
US20020163629A1 (en) 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
US6600547B2 (en) * 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
JP2006502558A (en) * 2001-11-07 2006-01-19 アプライド マテリアルズ インコーポレイテッド Optical spot grating array printer
DE10210899A1 (en) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection lens for immersion lithography
US7092069B2 (en) * 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10229818A1 (en) * 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Focus detection method and imaging system with focus detection system
US6882406B2 (en) * 2002-06-14 2005-04-19 Asml Netherlands B.V. Euv lithographic projection apparatus comprising an optical element with a self-assembled monolayer, optical element with a self-assembled monolayer, method of applying a self-assembled monolayer, device manufacturing method and device manufactured thereby
AU2002950185A0 (en) * 2002-07-12 2002-09-12 The Australian National University Enzyme inhibitors
JP2005536775A (en) 2002-08-23 2005-12-02 株式会社ニコン Projection optical system, photolithography method and exposure apparatus, and method using exposure apparatus
US6988326B2 (en) 2002-09-30 2006-01-24 Lam Research Corporation Phobic barrier meniscus separation and containment
US7367345B1 (en) 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
US6954993B1 (en) 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
US7093375B2 (en) 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
US6829035B2 (en) * 2002-11-12 2004-12-07 Applied Materials Israel, Ltd. Advanced mask cleaning and handling
KR100588124B1 (en) * 2002-11-12 2006-06-09 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
CN101470360B (en) * 2002-11-12 2013-07-24 Asml荷兰有限公司 Immersion lithographic apparatus and device manufacturing method
US7110081B2 (en) * 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE10253679A1 (en) * 2002-11-18 2004-06-03 Infineon Technologies Ag Optical arrangement used in the production of semiconductor components comprises a lens system arranged behind a mask, and a medium having a specified refractive index lying between the mask and the lens system
SG131766A1 (en) * 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI255971B (en) * 2002-11-29 2006-06-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004050266A1 (en) 2002-12-03 2004-06-17 Nikon Corporation Contaminant removing method and device, and exposure method and apparatus
DE10258718A1 (en) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projection lens, in particular for microlithography, and method for tuning a projection lens
JP4352874B2 (en) 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
US7242455B2 (en) 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
WO2004053951A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
KR101036114B1 (en) 2002-12-10 2011-05-23 가부시키가이샤 니콘 Exposure apparatus, exposure method and method for manufacturing device
AU2003289272A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Surface position detection apparatus, exposure method, and device porducing method
EP1429190B1 (en) * 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
KR20050085026A (en) 2002-12-10 2005-08-29 가부시키가이샤 니콘 Optical device and projection exposure apparatus using such optical device
KR20050085236A (en) 2002-12-10 2005-08-29 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
WO2004053952A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
JP4232449B2 (en) 2002-12-10 2009-03-04 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
DE10257766A1 (en) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Method for setting a desired optical property of a projection lens and microlithographic projection exposure system
AU2003289237A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Exposure apparatus and method for manufacturing device
CN101852993A (en) 2002-12-10 2010-10-06 株式会社尼康 Exposure method, and manufacturing method of device
US7010958B2 (en) * 2002-12-19 2006-03-14 Asml Holding N.V. High-resolution gas gauge proximity sensor
CN1316482C (en) 2002-12-19 2007-05-16 皇家飞利浦电子股份有限公司 Method and device for irradiating spots on a layer
EP1732075A3 (en) 2002-12-19 2007-02-21 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6781670B2 (en) * 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
TWI247339B (en) 2003-02-21 2006-01-11 Asml Holding Nv Lithographic printing with polarized light
US6943941B2 (en) 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US7206059B2 (en) 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US20050164522A1 (en) 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
KR20110104084A (en) 2003-04-09 2011-09-21 가부시키가이샤 니콘 Immersion lithography fluid control system
JP4656057B2 (en) 2003-04-10 2011-03-23 株式会社ニコン Electro-osmotic element for immersion lithography equipment
CN104597717B (en) 2003-04-10 2017-09-05 株式会社尼康 Include the environmental system of the vacuum removing for immersion lithography device
KR101129213B1 (en) 2003-04-10 2012-03-27 가부시키가이샤 니콘 Run-off path to collect liquid for an immersion lithography apparatus
JP4582089B2 (en) 2003-04-11 2010-11-17 株式会社ニコン Liquid jet recovery system for immersion lithography
KR101498405B1 (en) 2003-04-11 2015-03-04 가부시키가이샤 니콘 Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
WO2004095135A2 (en) 2003-04-17 2004-11-04 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
JP4025683B2 (en) 2003-05-09 2007-12-26 松下電器産業株式会社 Pattern forming method and exposure apparatus
JP4146755B2 (en) 2003-05-09 2008-09-10 松下電器産業株式会社 Pattern formation method
TWI295414B (en) * 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7274472B2 (en) 2003-05-28 2007-09-25 Timbre Technologies, Inc. Resolution enhanced optical metrology
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) * 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4054285B2 (en) 2003-06-12 2008-02-27 松下電器産業株式会社 Pattern formation method
JP4084710B2 (en) 2003-06-12 2008-04-30 松下電器産業株式会社 Pattern formation method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4029064B2 (en) 2003-06-23 2008-01-09 松下電器産業株式会社 Pattern formation method
JP4084712B2 (en) 2003-06-23 2008-04-30 松下電器産業株式会社 Pattern formation method
JP4343597B2 (en) 2003-06-25 2009-10-14 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2005019616A (en) * 2003-06-25 2005-01-20 Canon Inc Immersion type exposure apparatus
JP3862678B2 (en) 2003-06-27 2006-12-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
EP1498778A1 (en) * 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
KR20060027832A (en) 2003-07-01 2006-03-28 가부시키가이샤 니콘 Using isotopically specified fluids as optical elements
WO2005010611A2 (en) 2003-07-08 2005-02-03 Nikon Corporation Wafer table for immersion lithography
KR101211451B1 (en) * 2003-07-09 2012-12-12 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
SG109000A1 (en) 2003-07-16 2005-02-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
US7006209B2 (en) 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7175968B2 (en) * 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7326522B2 (en) * 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7700267B2 (en) * 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7579135B2 (en) * 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US7061578B2 (en) 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
JP2005072404A (en) 2003-08-27 2005-03-17 Sony Corp Aligner and manufacturing method of semiconductor device
JP4305095B2 (en) 2003-08-29 2009-07-29 株式会社ニコン Immersion projection exposure apparatus equipped with an optical component cleaning mechanism and immersion optical component cleaning method
US7070915B2 (en) 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7014966B2 (en) * 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
KR101748923B1 (en) 2003-09-03 2017-06-19 가부시키가이샤 니콘 Apparatus and method for providing fluid for immersion lithography
JP4378136B2 (en) 2003-09-04 2009-12-02 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP3870182B2 (en) 2003-09-09 2007-01-17 キヤノン株式会社 Exposure apparatus and device manufacturing method
WO2005031820A1 (en) 2003-09-26 2005-04-07 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of projection exposure apparatus, and method of producing device
US6961186B2 (en) * 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
US7369217B2 (en) * 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
WO2005036623A1 (en) 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. Substrate transporting apparatus and method, exposure apparatus and method, and device producing method
US7678527B2 (en) * 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
JP2005159322A (en) 2003-10-31 2005-06-16 Nikon Corp Surface plate, stage apparatus, exposure device and exposing method
JP2007525824A (en) 2003-11-05 2007-09-06 ディーエスエム アイピー アセッツ ビー.ブイ. Method and apparatus for manufacturing a microchip
US7924397B2 (en) * 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
US7528929B2 (en) * 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7545481B2 (en) * 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8854602B2 (en) 2003-11-24 2014-10-07 Asml Netherlands B.V. Holding device for an optical element in an objective
US7125652B2 (en) 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium
JP2005175016A (en) 2003-12-08 2005-06-30 Canon Inc Substrate holding device, exposure device using the same, and method of manufacturing device
JP2005175034A (en) 2003-12-09 2005-06-30 Canon Inc Aligner
JP2007516613A (en) 2003-12-15 2007-06-21 カール・ツアイス・エスエムテイ・アーゲー Objective lens as a microlithographic projection objective comprising at least one liquid lens
KR101200654B1 (en) 2003-12-15 2012-11-12 칼 짜이스 에스엠티 게엠베하 Projection objective having a high aperture and a planar end surface
US20050185269A1 (en) * 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7460206B2 (en) 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
JP5102492B2 (en) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー Objective lens for microlithography projection with crystal elements
DE602004028511D1 (en) * 2003-12-23 2010-09-16 Koninkl Philips Electronics Nv RADIATION METHOD
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7119884B2 (en) 2003-12-24 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005191381A (en) 2003-12-26 2005-07-14 Canon Inc Exposure method and system thereof
JP2005191393A (en) 2003-12-26 2005-07-14 Canon Inc Exposing method and equipment
US20050147920A1 (en) * 2003-12-30 2005-07-07 Chia-Hui Lin Method and system for immersion lithography
US7088422B2 (en) * 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
US7145641B2 (en) * 2003-12-31 2006-12-05 Asml Netherlands, B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP4371822B2 (en) * 2004-01-06 2009-11-25 キヤノン株式会社 Exposure equipment
JP4429023B2 (en) 2004-01-07 2010-03-10 キヤノン株式会社 Exposure apparatus and device manufacturing method
US20050153424A1 (en) * 2004-01-08 2005-07-14 Derek Coon Fluid barrier with transparent areas for immersion lithography
CN102169226B (en) 2004-01-14 2014-04-23 卡尔蔡司Smt有限责任公司 Catadioptric projection objective
CN1910522B (en) 2004-01-16 2010-05-26 卡尔蔡司Smt股份公司 Polarization-modulating optical element
WO2005069078A1 (en) 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
KR101204157B1 (en) 2004-01-20 2012-11-22 칼 짜이스 에스엠테 게엠베하 Microlithographic projection exposure apparatus and measuring device for a projection lens
US7026259B2 (en) * 2004-01-21 2006-04-11 International Business Machines Corporation Liquid-filled balloons for immersion lithography
US7391501B2 (en) * 2004-01-22 2008-06-24 Intel Corporation Immersion liquids with siloxane polymer for immersion lithography
KR20070039869A (en) 2004-02-03 2007-04-13 브루스 더블유. 스미스 Method of photolithography using a fluid and a system thereof
EP1716454A1 (en) 2004-02-09 2006-11-02 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
JP4018647B2 (en) 2004-02-09 2007-12-05 キヤノン株式会社 Projection exposure apparatus and device manufacturing method
US7050146B2 (en) * 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005076323A1 (en) * 2004-02-10 2005-08-18 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
US20070165198A1 (en) 2004-02-13 2007-07-19 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
WO2005081030A1 (en) 2004-02-18 2005-09-01 Corning Incorporated Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
US20050205108A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
US7027125B2 (en) 2004-03-25 2006-04-11 International Business Machines Corporation System and apparatus for photolithography
US7084960B2 (en) 2004-03-29 2006-08-01 Intel Corporation Lithography using controlled polarization
JP2005286068A (en) 2004-03-29 2005-10-13 Canon Inc Exposure device and method therefor
JP4510494B2 (en) 2004-03-29 2010-07-21 キヤノン株式会社 Exposure equipment
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7271878B2 (en) 2004-04-22 2007-09-18 International Business Machines Corporation Wafer cell for immersion lithography
US7244665B2 (en) 2004-04-29 2007-07-17 Micron Technology, Inc. Wafer edge ring structures and methods of formation
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7091502B2 (en) * 2004-05-12 2006-08-15 Taiwan Semiconductor Manufacturing, Co., Ltd. Apparatus and method for immersion lithography
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4760708B2 (en) 2004-06-09 2011-08-31 株式会社ニコン Exposure apparatus, exposure method, device manufacturing method, and maintenance method
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
DE102004033208B4 (en) 2004-07-09 2010-04-01 Vistec Semiconductor Systems Gmbh Device for inspecting a microscopic component with an immersion objective
US7307263B2 (en) 2004-07-14 2007-12-11 Asml Netherlands B.V. Lithographic apparatus, radiation system, contaminant trap, device manufacturing method, and method for trapping contaminants in a contaminant trap
KR200363781Y1 (en) 2004-07-21 2004-10-11 주식회사 엘지화학 Stiffness reinforced sandwich panel for house access floor system
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US20060026755A1 (en) 2004-08-05 2006-02-09 Bain Colin C Patient lift with integrated foot push pad
JP4772306B2 (en) * 2004-09-06 2011-09-14 株式会社東芝 Immersion optical device and cleaning method
US7385670B2 (en) * 2004-10-05 2008-06-10 Asml Netherlands B.V. Lithographic apparatus, cleaning system and cleaning method for in situ removing contamination from a component in a lithographic apparatus
US20090021709A1 (en) 2004-10-13 2009-01-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006120674A (en) * 2004-10-19 2006-05-11 Canon Inc Aligner and exposure method, and method for manufacturing device
JP2006133661A (en) * 2004-11-09 2006-05-25 Minebea Co Ltd Color wheel, its manufacturing method and its manufacturing tool
US7732123B2 (en) * 2004-11-23 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion photolithography with megasonic rinse
KR101559621B1 (en) 2004-12-06 2015-10-13 가부시키가이샤 니콘 Maintenance method, maintenance apparatus, exposure apparatus and device manufacturing method
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006310706A (en) 2005-05-02 2006-11-09 Nikon Corp Cleaning method for optical component, immersion projection aligner and exposure method
US20060250588A1 (en) 2005-05-03 2006-11-09 Stefan Brandl Immersion exposure tool cleaning system and method
US7315033B1 (en) * 2005-05-04 2008-01-01 Advanced Micro Devices, Inc. Method and apparatus for reducing biological contamination in an immersion lithography system
WO2006122578A1 (en) 2005-05-17 2006-11-23 Freescale Semiconductor, Inc. Contaminant removal apparatus and method therefor
US20070085989A1 (en) * 2005-06-21 2007-04-19 Nikon Corporation Exposure apparatus and exposure method, maintenance method, and device manufacturing method
US20070002296A1 (en) * 2005-06-30 2007-01-04 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography defect reduction
US7262422B2 (en) * 2005-07-01 2007-08-28 Spansion Llc Use of supercritical fluid to dry wafer and clean lens in immersion lithography
DE102005031792A1 (en) 2005-07-07 2007-01-11 Carl Zeiss Smt Ag Method for removing contamination of optical elements, in particular surfaces of optical elements, and an optical system or subsystem therefor
JP2007029973A (en) 2005-07-25 2007-02-08 Sony Corp Apparatus and method for laser beam machining, and apparatus and method for collecting debris
JP2007088328A (en) 2005-09-26 2007-04-05 Toshiba Corp Method for washing immersion exposure device
JP2007103658A (en) * 2005-10-04 2007-04-19 Canon Inc Method and device for exposure as well as method of manufacturing device
US7986395B2 (en) * 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
CN1963673A (en) 2005-11-11 2007-05-16 台湾积体电路制造股份有限公司 Infiltrating type micro-image exposal apparatus and method thereof
JP2007142217A (en) 2005-11-18 2007-06-07 Taiwan Semiconductor Manufacturing Co Ltd Immersion lithography exposure apparatus and its method
JP2007150102A (en) 2005-11-29 2007-06-14 Fujitsu Ltd Exposure device, and cleaning method of optical element
US8125610B2 (en) * 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7462850B2 (en) 2005-12-08 2008-12-09 Asml Netherlands B.V. Radical cleaning arrangement for a lithographic apparatus
US7405417B2 (en) * 2005-12-20 2008-07-29 Asml Netherlands B.V. Lithographic apparatus having a monitoring device for detecting contamination
US20070146658A1 (en) * 2005-12-27 2007-06-28 Asml Netherlands B.V. Lithographic apparatus and method
US7522263B2 (en) * 2005-12-27 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and method
JP4704221B2 (en) * 2006-01-26 2011-06-15 株式会社Sokudo Substrate processing apparatus and substrate processing method
JP2007227543A (en) 2006-02-22 2007-09-06 Toshiba Corp Immersion optical device, cleaning method, and immersion exposure method
JP2007227580A (en) 2006-02-23 2007-09-06 Sony Corp Device and method for liquid-immersed exposure
JP2007266074A (en) 2006-03-27 2007-10-11 Toshiba Corp Fabrication process of semiconductor device and oil immersion lithography system
JP2007294817A (en) 2006-04-27 2007-11-08 Sokudo:Kk Method, system, and apparatus for processing substrates
US7628865B2 (en) 2006-04-28 2009-12-08 Asml Netherlands B.V. Methods to clean a surface, a device manufacturing method, a cleaning assembly, cleaning apparatus, and lithographic apparatus
KR20090018024A (en) 2006-05-18 2009-02-19 가부시키가이샤 니콘 Exposure method and apparatus, maintenance method and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
CN102156389A (en) 2006-05-23 2011-08-17 株式会社尼康 Maintenance method, exposure method and apparatus, and device manufacturing method
JP2007317987A (en) 2006-05-29 2007-12-06 Sokudo:Kk Substrate processing apparatus, and substrate processing method
JP5245825B2 (en) 2006-06-30 2013-07-24 株式会社ニコン Maintenance method, exposure method and apparatus, and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US20090025753A1 (en) * 2007-07-24 2009-01-29 Asml Netherlands B.V. Lithographic Apparatus And Contamination Removal Or Prevention Method
US7916269B2 (en) * 2007-07-24 2011-03-29 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
NL1035942A1 (en) * 2007-09-27 2009-03-30 Asml Netherlands Bv Lithographic Apparatus and Method of Cleaning a Lithographic Apparatus.
SG151198A1 (en) * 2007-09-27 2009-04-30 Asml Netherlands Bv Methods relating to immersion lithography and an immersion lithographic apparatus
JP5017232B2 (en) * 2007-10-31 2012-09-05 エーエスエムエル ネザーランズ ビー.ブイ. Cleaning apparatus and immersion lithography apparatus
NL1036273A1 (en) * 2007-12-18 2009-06-19 Asml Netherlands Bv Lithographic apparatus and method of cleaning a surface or an immersion lithographic apparatus.
NL1036306A1 (en) * 2007-12-20 2009-06-23 Asml Netherlands Bv Lithographic apparatus and in-line cleaning apparatus.
US8339572B2 (en) * 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (en) * 1992-10-09 1994-05-06 Canon Inc Liquid-soaking type projection exposure apparatus
JPH06168866A (en) * 1992-11-27 1994-06-14 Canon Inc Projection aligner immersed in liquid
JPH11162831A (en) * 1997-11-21 1999-06-18 Nikon Corp Projection aligner and projection aligning method
JP2004165666A (en) * 2002-11-12 2004-06-10 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2004289126A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithography system and process for fabricating device
JP2004289128A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004053955A1 (en) * 2002-12-10 2004-06-24 Nikon Corporation Exposure system and device producing method
JP2006510146A (en) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Liquid removal in a method and apparatus for irradiating a spot on a layer
WO2004081666A1 (en) * 2003-03-11 2004-09-23 University Of North Carolina At Chapel Hill Immersion lithography methods using carbon dioxide
JP2006520104A (en) * 2003-03-11 2006-08-31 ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Immersion lithography method using carbon dioxide
JP2006523028A (en) * 2003-04-10 2006-10-05 株式会社ニコン Environmental system including a transfer area for an immersion lithography apparatus
WO2004093130A2 (en) * 2003-04-11 2004-10-28 Nikon Corporation Cleanup method for optics in immersion lithography
JP2006523031A (en) * 2003-04-11 2006-10-05 株式会社ニコン Optical element cleaning method in immersion lithography
WO2004102646A1 (en) * 2003-05-15 2004-11-25 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
JP2006134999A (en) * 2004-11-04 2006-05-25 Sony Corp Immersion-type exposure device and method for cleaning holding base in immersion-type exposure device
JP2006148093A (en) * 2004-11-18 2006-06-08 Internatl Business Mach Corp <Ibm> Method and equipment for cleaning semiconductor substrate in immersion lithography system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736631B2 (en) 2009-07-17 2014-05-27 Mitsubishi Electric Corporation Facility operation display device, air-conditioning system, and non-transitory computer-readable medium

Also Published As

Publication number Publication date
JP2008263221A (en) 2008-10-30
US20170285488A1 (en) 2017-10-05
US20150116675A1 (en) 2015-04-30
JP2008277854A (en) 2008-11-13
US10509326B2 (en) 2019-12-17
JP2006179909A (en) 2006-07-06
US8638419B2 (en) 2014-01-28
JP2008227548A (en) 2008-09-25
US20060132731A1 (en) 2006-06-22
US20110109887A1 (en) 2011-05-12
JP2012044227A (en) 2012-03-01
US9703210B2 (en) 2017-07-11
US8115899B2 (en) 2012-02-14
US8941811B2 (en) 2015-01-27
US7880860B2 (en) 2011-02-01
US20080002162A1 (en) 2008-01-03
JP4825510B2 (en) 2011-11-30
US20120008119A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP4825510B2 (en) Lithographic apparatus
JP4938424B2 (en) Method for preventing or reducing contamination of an immersion projection apparatus and immersion lithography apparatus
JP4903769B2 (en) Lithographic apparatus and device manufacturing method
JP4728382B2 (en) Lithographic apparatus and device manufacturing method
JP2009246375A (en) Lithographic apparatus and device manufacturing method
JP5070233B2 (en) Lithographic projection apparatus and cleaning method
JP5118235B2 (en) Lithographic apparatus and liquid removal method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120425