[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008224144A - Waste incinerating method - Google Patents

Waste incinerating method Download PDF

Info

Publication number
JP2008224144A
JP2008224144A JP2007063782A JP2007063782A JP2008224144A JP 2008224144 A JP2008224144 A JP 2008224144A JP 2007063782 A JP2007063782 A JP 2007063782A JP 2007063782 A JP2007063782 A JP 2007063782A JP 2008224144 A JP2008224144 A JP 2008224144A
Authority
JP
Japan
Prior art keywords
combustion chamber
burner
combustion
main combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007063782A
Other languages
Japanese (ja)
Inventor
Toyokazu Tanaka
豊和 田中
Takeo Shimizu
剛生 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2007063782A priority Critical patent/JP2008224144A/en
Publication of JP2008224144A publication Critical patent/JP2008224144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the exhaust of nitrogen oxide, suppress the treatment stagnation of waste and suppress wasteful consumption of combustion improver by inhibiting misfire in a combustion chamber when a waste incinerating device using a swirl type melting furnace performs low-air-ratio combustion. <P>SOLUTION: In a main combustion chamber 13 of the melting furnace for combustion melting in environment of an air ratio being 1.0 or lower, a main combustion chamber burner 61 and a pilot burner 74 are provided for supplying seed flames to the main combustion chamber 13 and for assisting the main combustion chamber burner 61, respectively. The pilot burner 74 is kept in combustion at all times during the combustion operation of waste. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、廃棄物をガス化して焼却する焼却炉において、主燃焼室の失火による温度低下と、それによる窒素酸化物の生成を抑える方法に関する。   The present invention relates to a method for suppressing a temperature drop due to misfire of a main combustion chamber and a generation of nitrogen oxides thereby in an incinerator for gasifying and incinerating waste.

都市ゴミや家庭ゴミなどの廃棄物を処理する焼却炉では、ガス化炉で廃棄物を熱分解ガスと固形分であるチャー(炭素質や灰分を含む固形分をいう。)とに分解し、熱分解ガスを燃焼させるとともに灰分を溶融させる溶融炉が用いられている。この灰分を熱溶融するためには1200℃以上の高温が必要となる。しかし、単に助燃剤となる燃料を大量に供給して徹底して燃焼させることで高温化させようとすることは、昨今の資源保護の観点から望ましくない。このため、廃棄物自体のエネルギーで自己熱溶融できるように、助燃無しで十分な高温にすることが検討されている。   In incinerators that process waste such as municipal and household waste, the gasification furnace decomposes the waste into pyrolysis gas and char (solids containing carbon and ash), which are solids, A melting furnace that burns pyrolysis gas and melts ash is used. In order to melt this ash by heat, a high temperature of 1200 ° C. or higher is required. However, it is not desirable from the standpoint of resource protection these days to simply increase the temperature by supplying a large amount of fuel as an auxiliary combustor and thoroughly burning it. For this reason, it has been studied to raise the temperature sufficiently without auxiliary combustion so that self-heat melting can be performed with the energy of the waste itself.

その検討課題の一つとして、主燃焼室で十分に燃焼を行うために、燃焼を起こす火の元となるバーナを最適化するための検討が行われている。   As one of the examination subjects, in order to perform sufficient combustion in the main combustion chamber, examination for optimizing a burner that is a source of fire that causes combustion is being performed.

例えば特許文献1には、主燃焼室に備えた点火用のパイロットバーナにより、主となる起動バーナに点火するより前に主燃焼室を暖めることで、起動バーナの点火までに十分に高温にしておき、低温燃焼を防ぐと共に、起動バーナによる急激な加熱を防ぐ方法が記載されている。   For example, Patent Document 1 discloses that an ignition pilot burner provided in a main combustion chamber warms the main combustion chamber before igniting the main start burner so that the temperature is sufficiently high before the start burner is ignited. In addition, a method for preventing low temperature combustion and preventing rapid heating by a starting burner is described.

また、特許文献2には、熱容量が大きい主バーナと、それよりは熱容量が小さい補助バーナとを備えた燃焼室での燃焼が提案されている。これは、熱容量の大きな主バーナは、一度火が消えると点火するまでの間に時間がかかり、その間に燃焼室内の温度が低下してしまうだけでなく、点火にエネルギーコストもかかるので、主バーナの点火までの間は補助バーナで加熱するとともに、補助バーナの火を種火として、速やかに主バーナを点火できるようにして、燃焼室内の温度を維持する方法である。また、主バーナの点火後も補助バーナを点火させ続けることで、燃焼室内の温度低下を抑制する方法も記載されている。   Patent Document 2 proposes combustion in a combustion chamber provided with a main burner having a large heat capacity and an auxiliary burner having a smaller heat capacity. This is because the main burner with a large heat capacity takes time to ignite once the fire is extinguished, and not only the temperature in the combustion chamber decreases during that period, but also the energy cost for ignition. In this method, the temperature in the combustion chamber is maintained by heating with the auxiliary burner until the ignition of the combustion chamber, and using the fire of the auxiliary burner as a seed flame so that the main burner can be quickly ignited. Also described is a method of suppressing the temperature drop in the combustion chamber by continuing to ignite the auxiliary burner even after the main burner is ignited.

一方で、高温の溶融炉では、酸素濃度が高いほど、燃焼用空気中の窒素と酸素が反応して、所謂サーマルNOxと呼ばれる窒素酸化物が生じやすくなるため、燃焼条件を適切に調整する必要がある。その一つとして、低空気比燃焼技術の検討が行われている。これは空気供給による熱損失を抑えて、外部から供給する空気により炉内が冷却されることを抑え、炉内の高温化を図るものである。また、使用する燃焼用空気を減らすため、最終的に排ガスとなるガス量を削減することもできる。さらに、空気量を減らすことでサーマルNOxの生成を抑制することができる。   On the other hand, in a high-temperature melting furnace, the higher the oxygen concentration, the more nitrogen and oxygen in the combustion air react with each other, so that nitrogen oxides called so-called thermal NOx are likely to be generated. There is. As one of them, a low air ratio combustion technique is being studied. This suppresses heat loss due to air supply, suppresses the inside of the furnace from being cooled by air supplied from the outside, and increases the temperature inside the furnace. Moreover, in order to reduce the combustion air to be used, the amount of gas that eventually becomes exhaust gas can be reduced. Furthermore, generation of thermal NOx can be suppressed by reducing the amount of air.

具体的には、溶融炉での空気比を1.0以下とすることが望ましいとされている。この空気比は、熱分解ガスや助燃剤を完全燃焼させることができる理論空気量に対する、実際の空気供給量の比である。しかし、焼却される廃棄物の性質は一定ではなく、ガス化炉で生じる熱分解ガス及びチャーの発生量には変動が生じる。このため、溶融炉を実際に運転すると、空気比が1.0を上回ることがしばしば発生する。こうなると、高温燃焼であるために空気中の窒素と酸素が反応するサーマルNOxの発生が著しく、窒素酸化物の発生を抑制することが難しい。   Specifically, it is desirable that the air ratio in the melting furnace is 1.0 or less. This air ratio is a ratio of an actual air supply amount to a theoretical air amount capable of completely burning the pyrolysis gas and the auxiliary combustor. However, the nature of the waste to be incinerated is not constant, and the amount of pyrolysis gas and char generated in the gasification furnace varies. For this reason, when the melting furnace is actually operated, the air ratio often exceeds 1.0. In this case, since it is high-temperature combustion, the generation of thermal NOx in which nitrogen and oxygen in the air react is remarkable, and it is difficult to suppress the generation of nitrogen oxides.

これに対して、燃焼用空気の量を状況に応じて調整するという方法が挙げられる。廃棄物の焼却は定常的ではなく、焼却する廃棄物の内容に応じて時々刻々と状況が変化するが、燃焼により生じる排ガス中の酸素濃度を測定し、この酸素濃度が予め定めた設定値に近づくように、燃焼用空気の供給量を調整するフィードバック制御を行うものである。この他、ごみの処理量や助燃剤の使用量の測定値から理論空気量を計算し、これを元に供給する空気量を制御する制御方法もある。   On the other hand, the method of adjusting the quantity of combustion air according to a condition is mentioned. Incineration of waste is not steady, and the situation changes from moment to moment depending on the content of the waste to be incinerated, but the oxygen concentration in the exhaust gas generated by combustion is measured, and this oxygen concentration is set to a preset value. Feedback control is performed to adjust the supply amount of combustion air so as to approach. In addition, there is also a control method for controlling the amount of air supplied based on the theoretical air amount calculated from the measured values of the amount of waste treated and the amount of auxiliary combustor used.

さらに、溶融炉内で十分に攪拌、混合を行いつつ内部温度を制御するために、排ガスを循環させることが行われている。燃焼用空気の量が増減するため、これにより攪拌混合を行うよりも、定常的に排ガスを送り込む方が確実に攪拌混合出来るためである。また、排ガス自体は燃焼用空気よりも酸素濃度が低いため、低空気比での燃焼の邪魔になりにくい。   Furthermore, in order to control the internal temperature while sufficiently stirring and mixing in the melting furnace, exhaust gas is circulated. This is because the amount of combustion air increases and decreases, so that stirring and mixing can be performed more reliably when exhaust gas is constantly fed than when stirring and mixing is performed. Further, since the exhaust gas itself has a lower oxygen concentration than the combustion air, it is unlikely to interfere with combustion at a low air ratio.

特開2002−22126号公報Japanese Patent Laid-Open No. 2002-22126 特開2004−163070号公報JP 2004-163070 A

しかしながら、熱分解ガスや燃焼用空気の量が変動することで、溶融炉の主燃焼室内の燃焼状況は大きく変動することがある。特に、熱分解ガスや炭素質の保有熱量が高く、十分に主燃焼室が高温になるために助燃剤の使用量を絞り込んでいる場合に、低空気比での燃焼を行おうとして空気供給量を絞ると、酸素と助燃剤との両方が極端に不足して、燃焼室内での燃焼の火種となる主燃焼室用バーナが失火する可能性がある。また、空気と熱分解ガスとの混合が不十分となり、着火に遅れが生じてくるため、助燃剤への着火も期待できなくなり、主燃焼室での燃焼ゾーンが後段の溶融池側へ移行する。こうなると、主燃焼室内での燃焼自体が維持できなくなってしまう。   However, the combustion state in the main combustion chamber of the melting furnace may vary greatly due to fluctuations in the amount of pyrolysis gas and combustion air. In particular, when the amount of heat contained in pyrolysis gas and carbonaceous matter is high, and the amount of combustion aid used is narrowed down because the main combustion chamber is sufficiently hot, the amount of air supplied for combustion at a low air ratio If squeezed, there is a possibility that both the oxygen and the auxiliary combusting agent are extremely insufficient, and the main combustion chamber burner, which is a fire of combustion in the combustion chamber, may misfire. In addition, since the mixing of air and pyrolysis gas becomes insufficient and the ignition is delayed, the ignition of the auxiliary combustor can no longer be expected, and the combustion zone in the main combustion chamber shifts to the subsequent molten pool side. . In this case, the combustion itself in the main combustion chamber cannot be maintained.

一方で、主燃焼室での燃焼が途絶えても、主燃焼室で溶融された固形分等が落下し、ガスが流れ込んでくることになる溶融炉後段の溶融池は高温を維持していることが多い。これは、溶融炉に落ちた溶融状態の固形分や、溶融炉自体を構成する耐火物がなお高温であるために、輻射伝熱が起こり、主燃焼室で燃焼されなかった熱分解ガスや助燃剤等が溶融池付近で燃焼を起こしているためと考えられる。しかし、溶融池部分に燃焼が集中することで熱負荷が過大になりすぎてしまうおそれがあり、また、自己脱硝が十分に進行せず、窒素酸化物が大量に排出されてしまうことがあった。   On the other hand, even if the combustion in the main combustion chamber stops, the molten pool melted in the main combustion chamber falls, and the molten pool in the latter stage of the melting furnace where the gas flows in maintains a high temperature. There are many. This is because the solid content in the molten state that has fallen into the melting furnace or the refractory that constitutes the melting furnace itself is still at a high temperature, so that radiant heat transfer occurs and the pyrolysis gas and auxiliary that were not burned in the main combustion chamber. This is thought to be due to the combustion of the fuel near the molten pool. However, there is a possibility that the heat load becomes excessive due to the concentration of combustion in the molten pool part, and the self-denitrification does not proceed sufficiently, and a large amount of nitrogen oxide may be discharged. .

そこでこの発明は、旋回溶融式溶融炉を使用した廃棄物の焼却装置で低空気比での燃焼を行うにあたって、燃焼室内の失火を抑えて、窒素酸化物の排出量を抑えるとともに、廃棄物の処理が停滞することを抑え、かつ助燃剤の無駄な消費を抑制することを目的とする。   Therefore, the present invention suppresses misfiring in the combustion chamber, reduces the emission of nitrogen oxides, and reduces the amount of waste generated when burning at a low air ratio in a waste incinerator using a swirl melting type melting furnace. The purpose is to suppress the stagnation of processing and to suppress wasteful consumption of the auxiliary combustor.

この発明は、空気比1.0以下に制御された環境で燃焼溶融を行う溶融炉の主燃焼室に、主燃焼室の種火を供給する主燃焼室用バーナとともに、この主燃焼室用バーナの補助となるパイロットバーナを設け、このパイロットバーナを、廃棄物の燃焼運転中は常時燃焼させておくことで、上記の課題を解決したのである。   The present invention comprises a main combustion chamber burner for supplying a main combustion chamber seed flame to a main combustion chamber of a melting furnace that performs combustion melting in an environment controlled to an air ratio of 1.0 or less, and the main combustion chamber burner. A pilot burner that assists the above-mentioned problem is provided, and this pilot burner is always burned during the combustion operation of the waste, thereby solving the above-mentioned problems.

低空気比環境であっても、パイロットバーナを常時燃焼させておくことにより、主燃焼室での燃焼を途切れさせることなく続けることができ、溶融池への燃焼状態の移行を防ぐことができるようになる。この常時燃焼を実現するため、パイロットバーナに火炎検知器を設け、パイロットバーナ自体の失火を検知した場合には速やかにパイロットバーナを再点火するようにする。   Even in a low air ratio environment, by always burning the pilot burner, the combustion in the main combustion chamber can be continued without interruption, and the transition of the combustion state to the molten pool can be prevented. become. In order to realize this constant combustion, a flame detector is provided in the pilot burner, and when a misfire of the pilot burner itself is detected, the pilot burner is promptly re-ignited.

この発明にかかる焼却方法により、低空気比燃焼を行う溶融炉であっても、主燃焼室における燃焼の停止を抑制することができ、適切な燃焼制御を続けながら廃棄物の処理が可能になる。結果として、窒素酸化物の発生を抑制することができる。   By the incineration method according to the present invention, even in a melting furnace that performs low air ratio combustion, stoppage of combustion in the main combustion chamber can be suppressed, and waste can be processed while continuing appropriate combustion control. . As a result, generation of nitrogen oxides can be suppressed.

従来、パイロットバーナは、着火用の火種であるために、常時燃焼させていても無駄であると考えられ、特に助燃剤として、保存に手間が掛かる分燃焼量を抑えたいLPGを使用する場合は、速やかにパイロットバーナを消火していた。しかし、そのデメリット以上に、常時パイロットバーナを燃焼させて燃焼状態を維持することで、失火後の温度再上昇のために無駄になる助燃剤の量を減らし、かつ、廃棄物の処理を途切れさせないことによるメリットの方が大きく、燃焼装置の運用をより効率的に行えるようになった。   Conventionally, since the pilot burner is an ignition fire type, it is considered that it is useless even if it is always burned, especially when using an LPG as an auxiliary combustor that wants to reduce the amount of combustion that takes time to save. The pilot burner was extinguished quickly. However, more than its disadvantages, by always burning the pilot burner and maintaining the combustion state, the amount of auxiliary combusting agent that is wasted due to temperature rise after misfire is reduced, and waste processing is not interrupted. The benefits of this have been greater, and the operation of the combustion system has become more efficient.

以下、この発明について、図1に示す実施形態により説明する。図1は、この発明にかかる廃棄物焼却装置の溶融炉の断面図である。溶融炉の上流に設けられたガス化炉で廃棄物Aを熱分解して得られた熱分解ガスBと、炭素質や灰分を含む固形分Cとが、熱分解ガス・チャー導入口63を通じて、主燃焼室13の上部に供給される。一方で、バーナ燃焼用空気口62からは燃焼用空気Dが主燃焼室13の上部に供給される。これらを、主燃焼室13の上部に設けた主燃焼室用バーナ61により点火して、熱分解ガスBを燃焼させる。主燃焼室用バーナ61自体の燃焼に用いる助燃剤Mは、助燃剤供給管64から導入し、それとともに、助燃剤を燃焼させるための助燃剤燃焼用空気Nも供給される。これらにより形成される炎により点火される、熱分解ガスBと、それを燃焼させるための燃焼用空気Dとを供給する熱分解ガス・チャー導入口63及びバーナ燃焼用空気口62の主燃焼室13への供給口は、主燃焼室用バーナ61の周囲を取り巻くように設置されている。   The present invention will be described below with reference to the embodiment shown in FIG. FIG. 1 is a sectional view of a melting furnace of a waste incinerator according to the present invention. A pyrolysis gas B obtained by pyrolyzing the waste A in a gasification furnace provided upstream of the melting furnace and a solid content C containing carbonaceous matter and ash are passed through the pyrolysis gas / char inlet 63. , Supplied to the upper part of the main combustion chamber 13. On the other hand, combustion air D is supplied to the upper part of the main combustion chamber 13 from the burner combustion air port 62. These are ignited by the main combustion chamber burner 61 provided in the upper part of the main combustion chamber 13 to burn the pyrolysis gas B. The auxiliary combustion agent M used for the combustion of the main combustion chamber burner 61 itself is introduced from the auxiliary combustion agent supply pipe 64 and is also supplied with auxiliary combustion air N for burning the auxiliary combustion agent. The main combustion chambers of the pyrolysis gas / char inlet 63 and the burner combustion air inlet 62 for supplying the pyrolysis gas B and the combustion air D for burning it, which are ignited by the flame formed thereby. The supply port to 13 is installed so as to surround the periphery of the main combustion chamber burner 61.

燃焼により、熱分解ガスBは二酸化炭素等になり、固形分C中の灰分は高熱により熱溶融する。主燃焼室13の壁面には、上中下段の三段に亘り、それぞれ円周方向等間隔に複数のノズル71,72,73が設けられている。これらから燃焼用ガスと排ガスとを吹き込むことで、旋回流を生じさせて熱分解ガスBと燃焼用空気Dとを攪拌するとともに、燃焼した気体を順次下方の溶融池14へと押し流す。また、溶融した固形分C中の灰分(スラグ)は壁面を伝って溶融池14へと落下し、出滓口15を経て系外へ排出される。   By the combustion, the pyrolysis gas B becomes carbon dioxide or the like, and the ash content in the solid content C is melted by high heat. The wall surface of the main combustion chamber 13 is provided with a plurality of nozzles 71, 72, 73 at equal intervals in the circumferential direction over the upper, middle, and lower stages. By blowing combustion gas and exhaust gas from these, a swirling flow is generated to stir the pyrolysis gas B and combustion air D, and the burned gas is sequentially pushed down to the molten pool 14. Further, the ash (slag) in the melted solid content C falls along the wall surface to the molten pool 14 and is discharged out of the system through the tap port 15.

上記の主燃焼室用バーナ61の、主燃焼室13に向いた点火部分の近傍に、パイロットバーナ74の先端が設けてある。このパイロットバーナ74は、主燃焼室用バーナ61への点火を行うために、主燃焼室用バーナ61よりも先に点火するものであり、主燃焼室用バーナ61よりも熱容量が小さく、熱分解ガスBではなく助燃剤を燃焼させるものである。すなわち、それぞれは、パイロットバーナ74の先端に生じる炎が、主燃焼室用バーナ61に燃え移ることが可能な位置関係で設けられている。   The tip of the pilot burner 74 is provided in the vicinity of the ignition portion of the main combustion chamber burner 61 facing the main combustion chamber 13. The pilot burner 74 is ignited before the main combustion chamber burner 61 in order to ignite the main combustion chamber burner 61, has a smaller heat capacity than the main combustion chamber burner 61, and is thermally decomposed. The combustion aid is burned instead of the gas B. That is, each is provided in such a positional relationship that the flame generated at the tip of the pilot burner 74 can be transferred to the main combustion chamber burner 61.

このパイロットバーナ74の拡大図を図2に示す。燃料である灯油が、油入口101から送油管102を通して、バーナの先端のノズルチップ103まで供給される。一方で、燃焼用空気入口管105を通じて、燃焼用空気が供給される。スパークプラグ107の先端にあるスパークロッド108が発する火花により、供給される灯油に点火する。なお、ディフューザ111は、下流部に燃焼ガスの循環流を発生させ、混合気への着火を促進させる保炎器である。   An enlarged view of the pilot burner 74 is shown in FIG. Kerosene as fuel is supplied from the oil inlet 101 through the oil feed pipe 102 to the nozzle tip 103 at the tip of the burner. On the other hand, combustion air is supplied through the combustion air inlet pipe 105. The supplied kerosene is ignited by a spark emitted from the spark rod 108 at the tip of the spark plug 107. The diffuser 111 is a flame holder that generates a circulation flow of combustion gas in the downstream portion and promotes ignition of the air-fuel mixture.

また、このパイロットバーナ74には、ノズルチップ103近傍の点火状態を検知する火炎検知器112が併設されている。この火炎検知器は、燃焼している炎の存在の有無を確認できるものであれば特に限定されるものではなく、炎が消えたことを検知した場合には、パイロットバーナ74へ信号を送り、スパークプラグ107をスパークさせ、速やかに再点火させるようになっている。具体的には、赤外線式、紫外線式などの方式が挙げられ、パイロットバーナ74の後部に取り付けて検知させると好ましい。   The pilot burner 74 is also provided with a flame detector 112 that detects the ignition state in the vicinity of the nozzle tip 103. This flame detector is not particularly limited as long as it can confirm the presence or absence of a burning flame. When it is detected that the flame has disappeared, a signal is sent to the pilot burner 74, The spark plug 107 is made to spark and quickly reignited. Specifically, an infrared type, an ultraviolet type, or the like can be cited, and it is preferable that the pilot burner 74 is attached to the rear portion to detect it.

主燃焼室13に供給される熱分解ガスBは、その前のガス化炉に投入される廃棄物により量や質が大きく変化し、熱分解ガスBが特に多くなると、保有熱量が多くなり、助燃剤を使用しなくても十分に燃焼が進み、助燃剤を供給することで燃焼が進みすぎ、高温になりすぎる場合もある。この場合、助燃剤の供給量を一時的に最小限にまで絞ることで、過度の高温化を防ぐ。この環境で、さらに主燃焼室の燃焼空気を、上記の通りの低空気比で制御すると、熱分解ガスや炭素質への着火も不安定になり、助燃剤の低下と相乗して、主燃焼室用バーナ61が吹き消えてしまうことで、主燃焼室13の失火が起こると考えられる。   The amount and quality of the pyrolysis gas B supplied to the main combustion chamber 13 vary greatly depending on the waste introduced into the previous gasification furnace. If the pyrolysis gas B is particularly large, the amount of retained heat increases. Even if no auxiliary combustor is used, the combustion proceeds sufficiently. By supplying the auxiliary combustor, the combustion proceeds excessively, and the temperature may become too high. In this case, excessively high temperature is prevented by temporarily reducing the supply amount of the auxiliary combustor to the minimum. In this environment, if the combustion air in the main combustion chamber is further controlled at the low air ratio as described above, the ignition of the pyrolysis gas and carbonaceous matter also becomes unstable, synergistically with the decrease in the combustion aid, and the main combustion It is considered that misfire of the main combustion chamber 13 occurs when the chamber burner 61 is blown off.

この発明にかかる焼却方法では、このパイロットバーナ74の失火時には速やかに点火させることができるようにして常時燃焼させておく。これにより、主燃焼室用バーナ61が失火してもパイロットバーナ74は燃焼しているため、パイロットバーナ74の炎により、主燃焼室13内の燃焼を維持し続けることができる。このため、主燃焼室13が失火して溶融池14に燃焼の主体が移動することを防ぎ、溶融池14に過度の熱負荷がかかることを抑えられる。また、再点火のために廃棄物の処理が滞り、助燃剤を浪費することを防ぐことができる。   In the incineration method according to the present invention, when the pilot burner 74 is misfired, it is burned at all times so that it can be quickly ignited. Thereby, even if the main combustion chamber burner 61 misfires, the pilot burner 74 is still burning, so that the combustion in the main combustion chamber 13 can be maintained by the flame of the pilot burner 74. For this reason, it is possible to prevent the main combustion chamber 13 from misfiring and the combustion main body from moving to the molten pool 14 and to prevent an excessive heat load from being applied to the molten pool 14. Further, it is possible to prevent waste treatment from being delayed due to reignition and waste of the auxiliary combustion agent.

なお、主燃焼室用バーナ61とパイロットバーナ74とは、その燃料が共通していると機構が簡略化できて好ましい。この燃料としては、灯油や液化石油ガス(以下「LPG」と略記する。)が挙げられる。しかし、主燃焼室用バーナ61は通常消費する量が大量であるため、高圧環境を維持しなければならないLPGでは保存にかかる手間や費用が軽視できなくなる。このため、主燃焼室用バーナ61が用いる燃料は、常温で液体の燃料を用いると好ましく、灯油が好適に用いられる。これに伴い、パイロットバーナ74も灯油を燃料とすることが好ましい。   Note that it is preferable that the main combustion chamber burner 61 and the pilot burner 74 have the same fuel because the mechanism can be simplified. Examples of the fuel include kerosene and liquefied petroleum gas (hereinafter abbreviated as “LPG”). However, since the main combustion chamber burner 61 normally consumes a large amount, the LPG that must maintain a high-pressure environment cannot easily save the labor and cost of storage. For this reason, the fuel used by the main combustion chamber burner 61 is preferably a liquid fuel at room temperature, and kerosene is preferably used. In connection with this, it is preferable that the pilot burner 74 also uses kerosene as fuel.

この発明にかかる焼却方法は、主燃焼室13の空気比が、所謂、低空気比と呼ばれる、燃焼用空気の供給量を抑えた環境に適用する意義がある。具体的には、空気比が1.3以下であるとよく、1.0以下であると特に失火しやすいため、この発明がより有益となる。なお、空気比とは、主燃焼室13に供給される熱分解ガスBと助燃剤とを完全燃焼させるのに必要な理論空気量に対する実際の空気量の比である。空気が過剰であると、固形分Cを溶融可能にしなければならない高温環境で、サーマルNOxとしての窒素酸化物が発生しやすいため、燃焼用空気Dの供給量を絞る必要があるので、空気比1.0以下の低空気比での運転を行う。ただし、空気比が低すぎると、不完全燃焼が起きて一酸化炭素が発生しやすくなり、図3に示すように主燃焼室13を含む溶融炉12の下流に二次燃焼室21を設けて完全燃焼しようとしても難しくなるので、主燃焼室の空気比の制御目標の下限は0.8以上であるとよく、0.9以上であるのが好ましい。なお、ここで記載の空気比は目標値であり、投入される廃棄物の量や質により熱分解ガスBの量や質が変化し、必要な空気量も大きく変動することがあるので、一時的に上記の空気比の範囲から逸脱することがある。   The incineration method according to the present invention is meaningful for application to an environment in which the air ratio of the main combustion chamber 13 is called a so-called low air ratio and the supply amount of combustion air is suppressed. Specifically, the air ratio is preferably 1.3 or less, and if it is 1.0 or less, it is particularly easy to misfire, so the present invention is more useful. The air ratio is a ratio of an actual air amount to a theoretical air amount necessary for completely burning the pyrolysis gas B supplied to the main combustion chamber 13 and the auxiliary combustor. If air is excessive, nitrogen oxides as thermal NOx are likely to be generated in a high temperature environment where the solid content C must be meltable. Therefore, it is necessary to reduce the supply amount of combustion air D. Operate at a low air ratio of 1.0 or less. However, if the air ratio is too low, incomplete combustion occurs and carbon monoxide is likely to be generated, and a secondary combustion chamber 21 is provided downstream of the melting furnace 12 including the main combustion chamber 13 as shown in FIG. Since it becomes difficult even when trying to complete combustion, the lower limit of the control target of the air ratio in the main combustion chamber is preferably 0.8 or more, and preferably 0.9 or more. Note that the air ratio described here is a target value, and the amount and quality of the pyrolysis gas B change depending on the amount and quality of waste input, and the required amount of air may vary greatly. In particular, the above air ratio range may be deviated.

上記のような空気比に制御する具体的な方法としては、例えば、主燃焼室13の下流、溶融炉12の出口12a部分に酸素濃度計17を設けて、この酸素濃度計17の値が、予め定めた目標値になるように、溶融炉出口酸素濃度調節計18によって主燃焼室13に供給される燃焼用空気Dの量を調節する溶融炉供給空気調整弁19を調整するフィードバック制御を行う方法が挙げられる。なお、酸素濃度計の代わりに、又は併用して、窒素酸化物濃度計、一酸化炭素濃度計を用いて、それぞれについて予め定めた目標値に近づくように燃焼条件を調節するフィードバック制御を行ってもよい。   As a specific method for controlling the air ratio as described above, for example, an oxygen concentration meter 17 is provided downstream of the main combustion chamber 13 and at the outlet 12a portion of the melting furnace 12, and the value of the oxygen concentration meter 17 is Feedback control is performed to adjust the melting furnace supply air adjustment valve 19 that adjusts the amount of combustion air D supplied to the main combustion chamber 13 by the melting furnace outlet oxygen concentration controller 18 so as to reach a predetermined target value. A method is mentioned. In place of or in combination with an oxygen concentration meter, a nitrogen oxide concentration meter and a carbon monoxide concentration meter are used to perform feedback control for adjusting the combustion conditions so as to approach the predetermined target values for each. Also good.

この発明による効果が好適に発揮されるのは、熱分解ガスBが十分に供給されることで、主燃焼室13内が十分に高温になり、主燃焼室用バーナ61における助燃剤Mの供給量を絞って、主燃焼室用バーナ61による燃焼を抑えた状況で、さらに、上記の通り低空気比での燃焼を実現するために、燃焼用空気Dの供給量が制御されて変動した場合が挙げられる。このような助燃剤の低下と燃焼用空気Dの不足との相乗効果が起きて、主燃焼室用バーナ61が失火したとしても、燃焼し続けるパイロットバーナ74が種火となって、速やかに主燃焼室用バーナ61に再点火することができ、主燃焼室13内での燃焼状態を維持し続けることができる。   The effect of the present invention is preferably exhibited when the pyrolysis gas B is sufficiently supplied, so that the temperature in the main combustion chamber 13 becomes sufficiently high, and the auxiliary combustion agent M is supplied to the main combustion chamber burner 61. When the amount of combustion air D supplied is controlled and fluctuated in order to achieve combustion at a low air ratio as described above in a situation where the amount is reduced and combustion by the main combustion chamber burner 61 is suppressed Is mentioned. Even if the synergistic effect of such a decrease in the auxiliary combustor and the shortage of the combustion air D occurs and the main combustion chamber burner 61 misfires, the pilot burner 74 that continues to burn becomes a seed fire, and the main burner quickly The combustion chamber burner 61 can be re-ignited, and the combustion state in the main combustion chamber 13 can be maintained.

また、逆に、主燃焼室用バーナ61における助燃剤の燃焼が不要なほどに、熱分解ガスBと固形分Cに含まれる成分とにより供給される熱容量が十分確保でき、燃焼溶融を行うために必要な温度を維持出来る場合には、主燃焼室用バーナ61への助燃剤の供給を意図的に停止して、上記主燃焼室用バーナ61の火を消して、パイロットバーナ74のみを種火として燃焼を続けることで、助燃剤の無駄な消費を抑えてもよい。主燃焼室用バーナ61は、焼却を始める前の起動時において昇温を行う役割もあるため、主燃焼室13の規模に対して十分に大きい熱容量を有していることが多い。しかし、一般的に主燃焼室用バーナ61に用いられるバーナは、供給できる最低油量と最高油量(LPGの場合も含む。)の比であるターンダウン比が1:10程度であり、最低油量に絞っても十分な省エネができない。このため、油量を絞るのではなく、そもそも燃焼を止めてしまい、種火の維持を主燃焼室用バーナ61の最低油量より消費油量が小さいパイロットバーナ74に任せることで、より効果的な省エネが可能となる。   Conversely, the heat capacity supplied by the pyrolysis gas B and the components contained in the solid content C can be sufficiently secured so that combustion of the auxiliary combustor in the main combustion chamber burner 61 is unnecessary, and combustion melting is performed. If the necessary temperature can be maintained, the supply of the auxiliary combustion agent to the main combustion chamber burner 61 is intentionally stopped, the main combustion chamber burner 61 is extinguished, and only the pilot burner 74 is seeded. By continuing combustion as fire, useless consumption of the auxiliary combustor may be suppressed. The main combustion chamber burner 61 also has a role of raising the temperature at the start-up before starting incineration, and therefore often has a heat capacity sufficiently large with respect to the scale of the main combustion chamber 13. However, the burner generally used for the main combustion chamber burner 61 has a turndown ratio of about 1:10, which is a ratio of the minimum oil amount that can be supplied and the maximum oil amount (including LPG). Even if the amount of oil is reduced, sufficient energy cannot be saved. Therefore, rather than reducing the amount of oil, the combustion is stopped in the first place, and it is more effective to leave the pilot fire to the pilot burner 74 that consumes less oil than the minimum amount of oil in the main combustion chamber burner 61. Energy saving is possible.

このような、熱分解ガスBと固形分Cのみで十分な熱容量を確保出来る状態になったことを検知する方法としては、主燃焼室13内の温度で判断し、設定された温度値以上で油量を制御する方法が挙げられる。具体的には、主燃焼室13内の温度を測定する温度計を設置するとともに、この温度計の測定値が1200℃以上となったら、上記主燃焼室用バーナ61への助燃剤Mの供給を停止し、測定値が1150℃以下となったら助燃剤Mの供給を再開するように制御する制御機構を設ける。   As a method for detecting that a sufficient heat capacity can be ensured with only the pyrolysis gas B and the solid content C, it is determined based on the temperature in the main combustion chamber 13 and the set temperature value is exceeded. A method for controlling the amount of oil is mentioned. Specifically, a thermometer for measuring the temperature in the main combustion chamber 13 is installed, and when the measured value of the thermometer reaches 1200 ° C. or more, the auxiliary combustion agent M is supplied to the main combustion chamber burner 61. And a control mechanism is provided for controlling the supply of the auxiliary combustion agent M to resume when the measured value becomes 1150 ° C. or lower.

この発明にかかる方法により、主燃焼室の燃焼状態を維持することによって、低温、不完全燃焼による窒素酸化物や一酸化炭素の発生を抑制することができる。また、主燃焼室内の温度が安定するため、燃焼効率を維持でき、主燃焼室やその下流に設けた二次燃焼室等で燃焼条件を適正にするための制御による変化を小さくすることもできる。さらに、従来、失火の際に起きていた、高温状態に復帰させるための暖機運転を行う必要がなくなった。これにより、助燃剤の消費量を抑制することができるとともに、廃棄物の処理作業が途切れにくくなるため、結果として廃棄物の処理量を増やすことができる。   By maintaining the combustion state of the main combustion chamber by the method according to the present invention, generation of nitrogen oxides and carbon monoxide due to low temperature and incomplete combustion can be suppressed. In addition, since the temperature in the main combustion chamber is stabilized, combustion efficiency can be maintained, and changes due to control for making combustion conditions appropriate in the main combustion chamber or a secondary combustion chamber provided downstream thereof can be reduced. . Furthermore, it is no longer necessary to perform a warm-up operation for returning to a high temperature state, which has conventionally occurred in the event of a misfire. As a result, the consumption of the auxiliary combustor can be suppressed, and the waste processing operation is hardly interrupted. As a result, the waste processing amount can be increased.

(実施例)
この発明にかかる焼却方法を実際に実行した実施例について、以下に説明する。主燃焼室とその周辺の構造は、図1のような構成とし、パイロットバーナは図2に記載の構造である物を用いて行った。パイロットバーナ74の先端で燃焼する炎により、主燃焼室用バーナ61に点火できるようにした。主燃焼室用バーナ61及びパイロットバーナ74に供給する助燃剤はいずれも灯油とした。
(Example)
An embodiment in which the incineration method according to the present invention is actually executed will be described below. The structure of the main combustion chamber and its surroundings was configured as shown in FIG. 1, and the pilot burner used was the structure shown in FIG. The main combustion chamber burner 61 can be ignited by a flame burning at the tip of the pilot burner 74. The auxiliary combustion agent supplied to the main combustion chamber burner 61 and the pilot burner 74 was kerosene.

上段ノズル71として100Aのノズルを円周方向等間隔に6本、中段ノズル72、下段ノズル73として50Aノズルを円周方向等間隔にそれぞれ3本づつ設けてある。なお、これらのノズル71〜73はいずれも旋回流を生じるように、同一方向に傾いた方向を向いて設置されている。   Six 100A nozzles are provided at equal intervals in the circumferential direction as upper nozzles 71, and three 50A nozzles are provided at equal intervals in the circumferential direction as middle nozzles 72 and lower nozzles 73, respectively. In addition, these nozzles 71 to 73 are all installed in a direction inclined in the same direction so as to generate a swirling flow.

火炎検知器112としては、赤外線検知器を使用して、パイロットバーナの後部に設け、パイロットバーナ74先端部での失火を速やかに検知できるようにした。検知した場合には、信号ケーブルにより直接パイロットバーナ74を制御して、プラグをスパークさせて再点火するようにした。   As the flame detector 112, an infrared detector was used and provided at the rear part of the pilot burner so that a misfire at the tip of the pilot burner 74 could be detected quickly. When detected, the pilot burner 74 was directly controlled by the signal cable to spark the plug and reignite it.

燃焼装置全体の構成及びフローは図3のように行った。すなわち、主燃焼室13と二次燃焼室21とにより二段燃焼を行うため、それぞれに燃焼用空気Dと攪拌用の排ガスJ’を供給して、熱分解ガスB、又はその未燃焼ガスを燃焼させた。また、溶融炉の出口12aに排ガスJ’を供給することで二次燃焼室に供給される気体を冷却した。排ガス再循環用送風機33から排ガス溶融炉環流配管32、排ガス溶融炉出口環流配管43、及び排ガス二次燃焼室環流配管42に供給する排ガスJ’は、二次燃焼室21から排出されたガスJを、誘引送風機31に繋がる一連の煙道24、24’を通じてガス冷却室25、空気予熱器26、減温塔29を通り、冷却した後、バグフィルタ30で集塵してダストを除去したものを環流させた。なお、空気予熱器26では、溶融炉燃焼用空気送風機27から空気供給配管28を通して送られる導入前の燃焼用空気Dと熱交換した。溶融した灰分はスラグFとして水槽16に送った。
このとき、二次燃焼室21の出口に温度計46を設けて、その測定値に従い二次燃焼室出口温度調節計47により二次燃焼室燃焼用空気調整弁48を調整して、二次燃焼用送風機44から二次燃焼室空気導入配管45を通り二次燃焼室21に供給される二次燃焼用空気D’の供給量を調整した。また、主燃焼室用バーナ61に送る空気はバーナ供給空気調整弁41により調整した。
The configuration and flow of the entire combustion apparatus were performed as shown in FIG. That is, in order to perform the two-stage combustion in the main combustion chamber 13 and the secondary combustion chamber 21, the combustion air D and the exhaust gas J ′ for stirring are supplied to each, and the pyrolysis gas B or its unburned gas is supplied. Burned. Further, the gas supplied to the secondary combustion chamber was cooled by supplying the exhaust gas J ′ to the outlet 12a of the melting furnace. The exhaust gas J ′ supplied from the exhaust gas recirculation blower 33 to the exhaust gas melting furnace recirculation pipe 32, the exhaust gas melting furnace outlet recirculation pipe 43, and the exhaust gas secondary combustion chamber recirculation pipe 42 is the gas J discharged from the secondary combustion chamber 21. After passing through the gas cooling chamber 25, the air preheater 26, and the temperature reducing tower 29 through a series of fluees 24, 24 'connected to the induction blower 31, the dust is collected by the bag filter 30 to remove dust. Was refluxed. In the air preheater 26, heat exchange was performed with the combustion air D before introduction sent from the melting furnace combustion air blower 27 through the air supply pipe 28. The molten ash was sent to the water tank 16 as slag F.
At this time, a thermometer 46 is provided at the outlet of the secondary combustion chamber 21, and the secondary combustion chamber combustion air regulating valve 48 is adjusted by the secondary combustion chamber outlet temperature controller 47 according to the measured value, so that the secondary combustion is performed. The amount of secondary combustion air D ′ supplied from the blower 44 to the secondary combustion chamber 21 through the secondary combustion chamber air introduction pipe 45 was adjusted. The air sent to the main combustion chamber burner 61 was adjusted by the burner supply air adjustment valve 41.

上記の主燃焼室に設けられたノズルのうち、中段ノズル72から排ガスJ’を供給し、上段ノズル71と下段ノズル73から燃焼用空気Dを供給する。供給される燃焼用空気Dの量は、熱分解ガスBに対する空気比が0.8〜1.0になるように制御する。この制御のため、溶融炉出口12aに赤外線レーザー式である酸素濃度計17を設け、この酸素濃度計の値が1.5%となるように燃焼用空気を供給して、主燃焼室の目標空気比が0.8〜0.9となるようにフィードバック制御を行った。また、主燃焼室13と二次燃焼室21とを合わせた燃焼装置全体に供給される燃焼用空気と熱分解ガスBとの空気比が1.3となるように燃焼用空気の量を制御した。   Of the nozzles provided in the main combustion chamber, exhaust gas J ′ is supplied from the middle nozzle 72, and combustion air D is supplied from the upper nozzle 71 and the lower nozzle 73. The amount of combustion air D supplied is controlled so that the air ratio to the pyrolysis gas B is 0.8 to 1.0. For this control, an infrared laser type oxygen concentration meter 17 is provided at the melting furnace outlet 12a, and combustion air is supplied so that the value of the oxygen concentration meter becomes 1.5%. Feedback control was performed so that the air ratio was 0.8 to 0.9. Further, the amount of combustion air is controlled so that the air ratio of combustion air and pyrolysis gas B supplied to the entire combustion apparatus including the main combustion chamber 13 and the secondary combustion chamber 21 is 1.3. did.

上記の条件で運用した際の、二次燃焼室21から排出される排ガスJの温度計46を設けた箇所における、一酸化炭素(CO)濃度、窒素酸化物(NOx)濃度、酸素(O)濃度と、溶融炉出口12aにおける酸素濃度を図4に示す。なお、CO濃度とNOx濃度は、12%酸素濃度での換算値を示す。窒素酸化物濃度は平均的に80ppm以下で推移した。さらに、一酸化炭素濃度は、初期の時点に二つのピークが現れたのみで、それ以降はまったくグラフに現れない程度の値であり、一旦燃焼を安定させると、一酸化炭素の発生をほぼ完全に抑えて完全燃焼を達成できていることがわかった。 The carbon monoxide (CO) concentration, nitrogen oxide (NOx) concentration, oxygen (O 2 ) concentration at the location where the thermometer 46 of the exhaust gas J discharged from the secondary combustion chamber 21 is provided when operated under the above conditions. 4) The concentration and the oxygen concentration at the melting furnace outlet 12a are shown in FIG. Note that the CO concentration and the NOx concentration are converted values at a 12% oxygen concentration. The nitrogen oxide concentration averaged below 80 ppm. In addition, the carbon monoxide concentration is such that there are only two peaks at the initial time and does not appear on the graph after that. Once the combustion is stabilized, the generation of carbon monoxide is almost complete. It was found that complete combustion could be achieved while suppressing the pressure to a minimum.

また、このときのガス化炉11、溶融炉出滓口15、主燃焼室13における温度の変遷を図5に示す。ある程度ガス化炉の温度に影響が見られるが、主燃焼室は800℃を下回ることがなく、平均して1000℃程度を維持できており、出滓口は1300℃前後を推移しており、いずれも温度は安定していることがわかり、燃焼効率の低下は見られず、廃棄物投入を停止する必要に迫られることはなかった。   In addition, FIG. 5 shows changes in temperature in the gasification furnace 11, the melting furnace outlet 15, and the main combustion chamber 13 at this time. Although the temperature of the gasifier is affected to some extent, the main combustion chamber does not fall below 800 ° C, it can maintain an average of about 1000 ° C, and the outlet has been around 1300 ° C. In both cases, it was found that the temperature was stable, no decrease in combustion efficiency was observed, and there was no need to stop the input of waste.

(比較例)
上記の実施例において、パイロットバーナを、燃料としてLPGを使用するものとし、主燃焼室用バーナに着火後消火する場合の、温度計46を設けた箇所におけるCO濃度、NOx濃度、O濃度と溶融炉出口12aにおける酸素濃度を図6に示す。また、その際の、ガス化炉、溶融炉出滓口15と、主燃焼室13とにおける温度の変遷を図7に示す。ガス化炉の温度は比較的安定しているものの、主燃焼室の温度が600℃以下にまで急激に減少することがあった(図中「温度低下」部分を示す。)。温度低下の直前には一酸化炭素濃度の急激な上昇が見られ、不完全燃焼が起きていたことがわかり、それから窒素酸化物が大量に生成する間に、主燃焼室内は急激に温度が低下していた。その間、出滓口の温度の低下はほとんど見られなかった。これは、主燃焼室での燃焼は途絶えても、溶融池での輻射伝熱により熱分解ガスが溶融池付近で燃焼するため、出滓口での温度は結果としてほとんど変わっていないものと考えられる。
(Comparative example)
In the above embodiment, when the pilot burner uses LPG as fuel and the main combustion chamber burner is ignited after ignition, the CO concentration, NOx concentration, and O 2 concentration at the location where the thermometer 46 is provided FIG. 6 shows the oxygen concentration at the melting furnace outlet 12a. Moreover, the transition of the temperature in the gasifier, the melting furnace outlet 15, and the main combustion chamber 13 in that case is shown in FIG. Although the temperature of the gasification furnace was relatively stable, the temperature of the main combustion chamber sometimes suddenly decreased to 600 ° C. or less (shown as “temperature drop” in the figure). Immediately before the temperature drop, the carbon monoxide concentration increased rapidly, indicating that incomplete combustion had occurred, and then the temperature in the main combustion chamber dropped rapidly while nitrogen oxides were being produced in large quantities. Was. During that time, there was almost no decrease in the temperature at the taphole. This is because, even if the combustion in the main combustion chamber stops, the pyrolysis gas burns in the vicinity of the molten pool due to radiant heat transfer in the molten pool, and as a result, the temperature at the outlet is almost unchanged. It is done.

その温度低下後には、一旦廃棄物の供給を絞って熱分解ガスの供給量を抑えた上で、パイロットバーナに点火して、主燃焼室用バーナに火を移して点火し、十分に主燃焼室内の温度が戻るまで暖機運転を行い(図中「温度上昇」部分を示す。)、その後に、廃棄物の投入を再開した。   After the temperature drop, once the supply of waste is reduced to reduce the amount of pyrolysis gas supplied, the pilot burner is ignited, the fire is transferred to the main combustion chamber burner, and the main combustion is sufficiently performed. Warm-up operation was performed until the room temperature returned (indicated by the “temperature rise” portion in the figure), and then the input of waste was resumed.

(結果)
パイロットバーナを常時燃焼させておくことにより、主燃焼室での燃焼が途絶えてしまうことを防ぎ、不完全燃焼による一酸化炭素の発生や窒素酸化物の発生を抑制することができた。また、十分な燃焼温度での燃焼状態を長時間に亘って維持することができるため、灰分の溶融を途切れずに行うことができ、それに由来するスラグの回収率を高めることができた。
(result)
By always burning the pilot burner, it was possible to prevent the combustion in the main combustion chamber from being interrupted and to suppress the generation of carbon monoxide and nitrogen oxides due to incomplete combustion. Further, since the combustion state at a sufficient combustion temperature can be maintained for a long time, the ash can be melted without interruption, and the recovery rate of slag derived therefrom can be increased.

この発明にかかる焼却方法を実施する溶融炉主燃焼室の例を示す断面図Sectional drawing which shows the example of the melting furnace main combustion chamber which enforces the incineration method concerning this invention (a)この発明で用いるパイロットバーナの例を示す図、(b)(a)の燃料口側からの図(A) The figure which shows the example of the pilot burner used by this invention, (b) The figure from the fuel inlet side of (a) この発明を実施する焼却装置及び方法の例を示すフロー図Flow chart showing an example of an incineration apparatus and method for carrying out the present invention 実施例におけるCO,O,NOxの濃度の変遷を示すグラフGraph showing CO, and changes of the concentration of O 2, NOx in the embodiment 実施例におけるガス化炉、溶融炉の温度の変遷を示すグラフThe graph which shows the transition of the temperature of the gasification furnace in the Example, the melting furnace 比較例におけるCO,O,NOxの濃度の変遷を示すグラフGraph showing changes in concentration of CO, O 2 and NOx in Comparative Example 比較例におけるガス化炉、溶融炉の温度の変遷を示すグラフGraph showing changes in gasification furnace and melting furnace temperatures in comparative examples

符号の説明Explanation of symbols

A 廃棄物
B 熱分解ガス
C 固形分
D,D’ 燃焼用空気
E 燃焼後のガス
F スラグ
J、J’ 排ガス
M 助燃剤
N 助燃剤燃焼用空気
11 ガス化炉
12 溶融炉
12a (溶融炉の)出口
13 主燃焼室
14 溶融池
15 出滓口
16 水槽
17 酸素濃度計
18 溶融炉出口酸素濃度調節計
19 溶融炉供給空気調整弁
20,20’ 信号ケーブル
21 二次燃焼室
24、24’ 煙道
25 ガス冷却室
26 空気予熱器
27 溶融炉燃焼用空気送風機
28 空気供給配管
29 減温塔
30 バグフィルタ
31 誘引送風機
32 排ガス溶融炉環流配管
33 排ガス再循環用送風機
41 バーナ供給空気調整弁
42 排ガス二次燃焼室環流配管
43 排ガス溶融炉出口環流配管
44 二次燃焼用送風機
45 二次燃焼室空気導入配管
46 温度計
47 二次燃焼室出口温度調節計
48 二次燃焼室燃焼用空気調整弁
61 主燃焼室用バーナ
62 バーナ燃焼用空気口
63 熱分解ガス・チャー導入口
64 助燃剤供給管
71 上段ノズル
72 中段ノズル
73 下段ノズル
74 パイロットバーナ
101 油入口
102 送油管
103 ノズルチップ
105 燃焼用空気入口管
107 スパークプラグ
108 スパークロッド
111 ディフューザ
112 火炎検知器
A Waste B Pyrolysis gas C Solids D, D 'Combustion air E Gas after combustion F Slag J, J' Exhaust gas M Combustion agent N Combustion combustion air 11 Gasification furnace 12 Melting furnace 12a (of melting furnace ) Outlet 13 Main combustion chamber 14 Molten pool 15 Outlet 16 Water tank 17 Oxygen concentration meter 18 Melting furnace outlet oxygen concentration controller 19 Melting furnace supply air adjustment valve 20, 20 'Signal cable 21 Secondary combustion chambers 24, 24' Smoke Road 25 Gas cooling chamber 26 Air preheater 27 Air blower for melting furnace combustion 28 Air supply pipe 29 Temperature reducing tower 30 Bag filter 31 Induction fan 32 Exhaust gas melting furnace recirculation pipe 33 Exhaust gas recirculation fan 41 Burner supply air adjustment valve 42 Exhaust gas Secondary combustion chamber circulation pipe 43 Exhaust gas melting furnace outlet circulation pipe 44 Secondary combustion blower 45 Secondary combustion chamber air introduction pipe 46 Thermometer 47 Secondary combustion chamber outlet temperature controller 48 Secondary combustion Combustion air regulating valve 61 Main combustion chamber burner 62 Burner combustion air port 63 Pyrolysis gas / char introduction port 64 Auxiliary combustion agent supply pipe 71 Upper nozzle 72 Middle nozzle 73 Lower nozzle 74 Pilot burner 101 Oil inlet 102 Oil feed pipe 103 Nozzle tip 105 Combustion air inlet pipe 107 Spark plug 108 Spark rod 111 Diffuser 112 Flame detector

Claims (4)

廃棄物を熱分解させた熱分解ガスと固形分とを空気比0.8以上1.0以下の環境に制御された主燃焼室で燃焼溶融させる廃棄物の焼却方法であって、
前記燃焼溶融中に、主燃焼室の種火を供給する主燃焼室用バーナへの点火を行う、助燃剤により燃焼させるパイロットバーナを、常時燃焼させておくことを特徴とする、廃棄物の焼却方法。
A waste incineration method in which a pyrolysis gas obtained by thermally decomposing waste and a solid content are burned and melted in a main combustion chamber controlled in an environment having an air ratio of 0.8 to 1.0,
Incineration of waste, characterized in that, during the combustion and melting, a pilot burner for igniting a burner for a main combustion chamber that supplies a seed flame for the main combustion chamber and burning with a combustion aid is always burned. Method.
火炎検知器により上記パイロットバーナの失火を検知し、検知後速やかに上記パイロットバーナを再点火することで常時燃焼させる請求項1に記載の廃棄物の焼却方法。   The waste incineration method according to claim 1, wherein a misfire of the pilot burner is detected by a flame detector, and the pilot burner is re-ignited promptly after the detection to cause constant combustion. 上記主燃焼室用バーナ及び上記パイロットバーナの燃料として灯油を用いる、請求項1又は2に記載の廃棄物の焼却方法。   The waste incineration method according to claim 1 or 2, wherein kerosene is used as fuel for the main combustion chamber burner and the pilot burner. 上記熱分解ガスと、上記固形分に含まれる炭素質とによる熱容量のみにより、上記の燃焼溶融に必要な温度を維持できる際に、上記主燃焼室用バーナへの助燃剤の供給を停止して上記主燃焼室用バーナの火を消して、上記パイロットバーナのみを点火させておくことを特徴とする、請求項1乃至3のいずれかに廃棄物の焼却方法。   When the temperature required for the combustion melting can be maintained only by the heat capacity of the pyrolysis gas and the carbonaceous matter contained in the solid content, the supply of the auxiliary combustor to the main combustion chamber burner is stopped. 4. The waste incineration method according to claim 1, wherein the main combustion chamber burner is extinguished and only the pilot burner is ignited.
JP2007063782A 2007-03-13 2007-03-13 Waste incinerating method Pending JP2008224144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063782A JP2008224144A (en) 2007-03-13 2007-03-13 Waste incinerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063782A JP2008224144A (en) 2007-03-13 2007-03-13 Waste incinerating method

Publications (1)

Publication Number Publication Date
JP2008224144A true JP2008224144A (en) 2008-09-25

Family

ID=39842978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063782A Pending JP2008224144A (en) 2007-03-13 2007-03-13 Waste incinerating method

Country Status (1)

Country Link
JP (1) JP2008224144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990303A (en) * 2017-12-12 2019-07-09 杜尔系统股份公司 For purifying the method and exhaust gas purification apparatus of exhaust
CN113685807A (en) * 2021-08-11 2021-11-23 安徽德博永锋新能源有限公司 Biomass gasification combustion equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141207A (en) * 1999-08-31 2001-05-25 Nkk Corp Combustor and method for combustion
JP2002022126A (en) * 2000-07-12 2002-01-23 Babcock Hitachi Kk System for waste gasification-melting and its operation- control method
JP2002031312A (en) * 2000-07-13 2002-01-31 Babcock Hitachi Kk EQUIPMENT AND METHOD FOR LOW-NOx COMBUSTION IN REFUSE GASIFYING AND MELTING FACILITY
JP2004163070A (en) * 2002-11-15 2004-06-10 Kangen Yoyu Gijutsu Kenkyusho:Kk Combustion equipment for exhaust gas generated inside gasification melting furnace and combustion method
JP2005265390A (en) * 2004-03-22 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Combustion air blowing method for combustion melting furnace, and combustion melting furnace
JP2006200886A (en) * 2006-02-15 2006-08-03 Jfe Engineering Kk Processing method and device for waste, and heat recovery method and device from waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141207A (en) * 1999-08-31 2001-05-25 Nkk Corp Combustor and method for combustion
JP2002022126A (en) * 2000-07-12 2002-01-23 Babcock Hitachi Kk System for waste gasification-melting and its operation- control method
JP2002031312A (en) * 2000-07-13 2002-01-31 Babcock Hitachi Kk EQUIPMENT AND METHOD FOR LOW-NOx COMBUSTION IN REFUSE GASIFYING AND MELTING FACILITY
JP2004163070A (en) * 2002-11-15 2004-06-10 Kangen Yoyu Gijutsu Kenkyusho:Kk Combustion equipment for exhaust gas generated inside gasification melting furnace and combustion method
JP2005265390A (en) * 2004-03-22 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Combustion air blowing method for combustion melting furnace, and combustion melting furnace
JP2006200886A (en) * 2006-02-15 2006-08-03 Jfe Engineering Kk Processing method and device for waste, and heat recovery method and device from waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990303A (en) * 2017-12-12 2019-07-09 杜尔系统股份公司 For purifying the method and exhaust gas purification apparatus of exhaust
CN113685807A (en) * 2021-08-11 2021-11-23 安徽德博永锋新能源有限公司 Biomass gasification combustion equipment

Similar Documents

Publication Publication Date Title
CN102537972B (en) Destructive gasifying incinerating and treating device
US9995481B2 (en) Method and apparatus for a dual mode burner yielding low NOx emission
KR20040035880A (en) Ash melting type u-firing combustion boiler and method of operating the boiler
JP4126316B2 (en) Operation control method of gasification and melting system and system
JP4474429B2 (en) Waste incinerator and incineration method
JP2009250571A (en) Starting method of circulating fluidized bed furnace
JP4829817B2 (en) Waste incinerator and incineration method
JP2006153339A (en) Treatment method and device of combustible gas in waste melting furnace
KR20100091402A (en) Incinerator with overheating prevention apparatus using the flue gas recirculation at the incineration of high caloric waste and control method of overheating prevention
JP2008224144A (en) Waste incinerating method
JP3033015B2 (en) Semi-dry distillation gasification incineration method and apparatus
JP2009058216A (en) Gasification melting system, and its combustion control method
JP5256553B2 (en) Dry distillation gasification incineration processing apparatus and incineration processing method
TW201020475A (en) Diffusion combustion burner
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
RU2230991C2 (en) Method of lighting-up and/or stabilization of pulverized coal flame in boiler units
JP2004239509A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP3963925B2 (en) Secondary combustion method and apparatus in incineration system
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP6286516B1 (en) Incinerator
JP5044317B2 (en) Combustion chamber and combustion method for waste gasification and melting equipment
JPS63267814A (en) Combustion method for pulverized coal
JP2002022126A (en) System for waste gasification-melting and its operation- control method
CN114183758B (en) Device for burning wastes by low-calorific-value gas
JP2001141207A (en) Combustor and method for combustion

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213