[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008215851A - Probe for laser induced fluorescence analysis and laser induced fluorescence analyzer - Google Patents

Probe for laser induced fluorescence analysis and laser induced fluorescence analyzer Download PDF

Info

Publication number
JP2008215851A
JP2008215851A JP2007049836A JP2007049836A JP2008215851A JP 2008215851 A JP2008215851 A JP 2008215851A JP 2007049836 A JP2007049836 A JP 2007049836A JP 2007049836 A JP2007049836 A JP 2007049836A JP 2008215851 A JP2008215851 A JP 2008215851A
Authority
JP
Japan
Prior art keywords
laser
induced fluorescence
selective excitation
probe
window material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007049836A
Other languages
Japanese (ja)
Other versions
JP4734273B2 (en
Inventor
Hiroyuki Kondo
裕之 近藤
Akifumi Asahara
紀史 浅原
Itsuro Kitagawa
逸朗 北川
Mitsutaka Matsuo
充高 松尾
Satoshi Washisu
敏 鷲巣
Mikito Furukawa
幹人 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007049836A priority Critical patent/JP4734273B2/en
Publication of JP2008215851A publication Critical patent/JP2008215851A/en
Application granted granted Critical
Publication of JP4734273B2 publication Critical patent/JP4734273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration of a signal/background ratio due to the stray light of an exciting laser. <P>SOLUTION: A probe 19 for laser induced fluorescence analysis is used in a laser induced fluorescence analyzer for determining the concentration of an analyzing target element in a sample by measuring the quantity of fluorescence produced by irradiating the analyzing target element with a laser beam of a resonance wavelength and has at least a selected exciting laser reflecting mirror 4 for irradiating the sample with a selected exciting laser, a light quantity detector 12 for detecting the quantity of the laser induced fluorescence produced from the sample irradiated with the selected exciting laser, a laser induced fluorescence reflecting mirror 2 for guiding the laser induced fluorescence to the light quantity detector 12 and the window material 1 provided between the selected exciting laser reflecting mirror 4 and the sample to transmit the selected exciting laser. The window material 1 is installed so as to be inclined at a predetermined angle preventing the reflected laser due to the window material 1 of the selected exciting laser from being thrown on the laser induced fluorescence reflecting mirror 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザを用いた分光分析装置に関するものであり、特に金属精錬炉内の溶融金属中の元素濃度を遠隔にモニタリングする、レーザ誘起蛍光分析用プローブ及びレーザ誘起蛍光分析装置に関するものである。   The present invention relates to a spectroscopic analysis apparatus using a laser, and more particularly to a laser-induced fluorescence analysis probe and a laser-induced fluorescence analysis apparatus for remotely monitoring the element concentration in a molten metal in a metal refining furnace. .

金属材料の精錬工程において、精錬反応進行中の溶融金属中の成分元素濃度をリアルタイムでモニターすることは、精錬工程最適化制御の上で非常に重要である。以下、金属材料として鉄鋼を例として説明する。   In the refining process of a metal material, monitoring the concentration of component elements in the molten metal during the refining reaction in real time is very important for refining process optimization control. Hereinafter, steel will be described as an example of the metal material.

鉄鋼の製造では、酸素吹錬によって脱炭を行なう転炉精錬の後、取鍋精錬において真空脱ガスにより溶鋼中炭素濃度をさらに低減させ、目的の鋼材特性を発現するために必要な濃度範囲に入るように厳密な制御が行われる。   In the manufacture of steel, after the converter refining that decarburizes by oxygen blowing, the concentration of carbon in the molten steel is further reduced by vacuum degassing in ladle refining, and the concentration range required to express the desired steel properties. Strict control is performed to enter.

このような溶鋼中成分、特に炭素や燐等の非金属元素の濃度測定を目的に、レーザを利用した発光分光分析法を適用した技術がこれまでに数多く報告されている。これらの殆どは、尖頭出力の高いパルスレーザを集光して溶鋼に照射することによってプラズマ状態を生成し、このプラズマからの発光を分光分析することにより溶鋼中元素濃度を測定するものであり、一般にレーザ発光分析法等と呼ばれている。例えば、特許文献1には、転炉の耐火物を貫通した羽口を通してレーザを溶鋼に照射し、発光を光ファイバーで分光器に伝送して分光分析する方法が開示されている。   Many techniques have been reported so far in which a laser-based emission spectroscopic analysis method is applied for the purpose of measuring the concentration of such components in molten steel, particularly nonmetallic elements such as carbon and phosphorus. Most of these measure the concentration of elements in molten steel by generating a plasma state by condensing a pulse laser with high peak power and irradiating the molten steel, and analyzing the emission from this plasma. Generally, it is called a laser emission analysis method or the like. For example, Patent Document 1 discloses a method for performing spectroscopic analysis by irradiating a molten steel with laser through a tuyere penetrating a refractory of a converter and transmitting light emission to a spectroscope through an optical fiber.

一方、目的元素の共鳴波長の一つに波長をチューニングしたレーザを蒸気原子に照射して、この原子の蛍光を誘起するレーザ誘起蛍光法は、高感度かつ選択性に優れた分析法として知られており、本発明者等は、この点に注目して、レーザ誘起蛍光法による溶鋼中CやPのモニタリング技術を開発した。これらの技術の詳細は、特許文献2に開示されているところである。レーザ誘起蛍光法を用いた分析では、先ず試料の一部を蒸発・原子化するためにアブレーションレーザを照射する。そして、アブレーションレーザパルスから適当な遅延時間経過後、選択励起レーザを照射する。このとき、目的元素の蛍光のみが選択的に放出されるので、大型の分光器を用いる必要は無く、光電子増倍管やフォトダイオード等の光量測定器によって直接目的元素から放出されたシグナル光量を測定することができる。   On the other hand, the laser-induced fluorescence method, which irradiates a vapor atom with a laser tuned to one of the resonance wavelengths of the target element and induces fluorescence of this atom, is known as an analytical method with high sensitivity and excellent selectivity. In view of this point, the present inventors have developed a monitoring technique for C and P in molten steel by a laser-induced fluorescence method. Details of these techniques are disclosed in Patent Document 2. In analysis using laser-induced fluorescence, an ablation laser is first irradiated to evaporate and atomize a part of the sample. Then, after an appropriate delay time has elapsed from the ablation laser pulse, the selective excitation laser is irradiated. At this time, since only the fluorescence of the target element is selectively emitted, there is no need to use a large spectroscope, and the amount of signal emitted directly from the target element by a light quantity measuring device such as a photomultiplier tube or a photodiode is calculated. Can be measured.

特開昭60−231141号公報Japanese Patent Laid-Open No. 60-231141 特開2001−356096号公報JP 2001-356096 A

しかし、上述のレーザ誘起蛍光法による溶鋼分析においては、選択励起レーザの迷光が蛍光シグナルに干渉し、分析精度、定量下限が劣化すると言う問題がある。特に、プローブの窓材の表面で反射した選択励起レーザがシグナル検出光学系に入り込み、この問題を引き起こす。このプローブの窓材の表面での反射そのものを低減し、反射光の検出を低減するためには、選択励起レーザの波長における反射率を低く抑えた防反射コーティングを窓材に施したり、光量測定器の手前に選択励起波長における透過率が低い光学フィルターを配すことが対策として取られる。しかしながら、選択励起レーザの強度は、蛍光シグナルに比較すると数桁大きいので、極一部の散乱光とはいえ、それが検出器に到達することを完全に抑えこむことは困難であった。   However, in the molten steel analysis by the laser induced fluorescence method described above, there is a problem that the stray light of the selective excitation laser interferes with the fluorescence signal, and the analysis accuracy and the lower limit of quantification are deteriorated. In particular, the selective excitation laser reflected by the surface of the window material of the probe enters the signal detection optical system and causes this problem. In order to reduce the reflection itself on the surface of the window material of this probe and reduce the detection of reflected light, an antireflection coating with a low reflectivity at the wavelength of the selective excitation laser is applied to the window material, or the light quantity is measured. As a countermeasure, an optical filter having a low transmittance at the selective excitation wavelength is arranged in front of the device. However, since the intensity of the selective excitation laser is several orders of magnitude larger than the fluorescence signal, it is difficult to completely prevent the light from reaching the detector even though it is a part of the scattered light.

そこで、本発明では、上記の選択励起レーザの迷光によるシグナル/バックグラウンド比の劣化を防止するレーザ誘起蛍光分析用プローブ及びこれを用いた分析装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a laser-induced fluorescence analysis probe that prevents deterioration of the signal / background ratio due to stray light of the selective excitation laser, and an analyzer using the same.

本発明は、上述の問題を解決するためになされたものであり、その主旨は、以下の通りである。   The present invention has been made to solve the above-described problems, and the gist thereof is as follows.

(1) 分析対象元素に共鳴する波長のレーザを照射して発生させた蛍光量を計測することで、試料中の分析対象元素の濃度を定量するレーザ誘起蛍光分析装置に用いるレーザ誘起蛍光分析用プローブであって、選択励起レーザを試料に照射するための選択励起レーザ反射ミラーと、選択励起レーザの照射により試料で発生したレーザ誘起蛍光の光量を検出する光量検出器と、前記レーザ誘起蛍光を前記光量検出器へ導くレーザ誘起蛍光反射ミラーと、前記選択励起レーザ反射ミラーと試料との間に設けられ、前記選択励起レーザが透過する窓材と、を少なくとも内部に備え、前記窓材が、選択励起レーザの前記窓材による反射レーザが前記レーザ誘起蛍光反射ミラーに入射しない所定の角度の傾斜をつけて設置してなることを特徴とする、レーザ誘起蛍光分析用プローブ。   (1) For laser-induced fluorescence analysis used in a laser-induced fluorescence analyzer that quantifies the concentration of an analysis target element in a sample by measuring the amount of fluorescence generated by irradiating a laser having a wavelength that resonates with the analysis target element A probe, a selective excitation laser reflecting mirror for irradiating the sample with the selective excitation laser, a light amount detector for detecting the amount of laser-induced fluorescence generated in the sample by the irradiation of the selective excitation laser, and the laser-induced fluorescence A laser-induced fluorescence reflection mirror that leads to the light amount detector, a window material that is provided between the selective excitation laser reflection mirror and the sample, and through which the selective excitation laser passes, includes at least an inside thereof, and the window material, The reflection laser by the window material of the selective excitation laser is installed with an inclination of a predetermined angle that does not enter the laser-induced fluorescence reflection mirror, Over The induced fluorescence analysis for the probe.

(2) 試料側の一端が開口し、ガス吹込み口を有し、前記選択励起レーザ及び前記レーザ誘起蛍光が通過する中空管を有し、該中空管の他端を前記窓材で気密に封止してなることを特徴とする、(1)に記載のレーザ誘起蛍光分析用プローブ。   (2) One end on the sample side is open, has a gas injection port, has a hollow tube through which the selective excitation laser and the laser-induced fluorescence pass, and the other end of the hollow tube is made of the window material. The probe for laser-induced fluorescence analysis according to (1), wherein the probe is hermetically sealed.

(3) 前記窓材の表面の法線の方向が、前記窓材に入射する選択励起レーザの伝播方向に対してブリュースター角度に設定されたことを特徴とする、(1)に記載のレーザ誘起蛍光分析用プローブ。   (3) The laser according to (1), wherein the normal direction of the surface of the window member is set to a Brewster angle with respect to the propagation direction of the selective excitation laser incident on the window member. Probe for induced fluorescence analysis.

(4) アブレーションレーザを試料に照射するためのアブレーションレーザ反射ミラーと、アブレーションレーザの照射により試料で発生したプラズマの発光を反射して発光受光光学系へ導くレーザ発光反射ミラーと、前記発光受光光学系により集光された光を受光するレーザ発光受光伝送端末と、を更に備えてなることを特徴とする、(1)に記載のレーザ誘起蛍光分析用プローブ。   (4) An ablation laser reflecting mirror for irradiating the sample with an ablation laser, a laser light emitting / reflecting mirror for reflecting light emitted from the sample generated by the irradiation of the ablation laser and guiding the light to a light emitting / receiving optical system, and the light emitting / receiving optical The probe for laser-induced fluorescence analysis according to (1), further comprising: a laser emission receiving and transmitting terminal that receives the light collected by the system.

(5) (1)〜(4)のいずれかに記載のレーザ誘起蛍光分析用プローブと、アブレーションレーザ発振器と、選択励起レーザ発振器と、分光器と、レーザ誘起蛍光シグナル処理装置と、前記アブレーションレーザ発振器、前記選択励起レーザ発振器、前記分光器及び前記レーザ誘起蛍光シグナル処理装置の動作を制御するためのパルス発生器と、前記光量検出器から前記レーザ誘起蛍光シグナル処理装置への電気シグナルの伝送手段と、レーザ発光受光伝送端末から前記分光器への光シグナルの伝送手段と、を少なくとも具備することを特徴とするレーザ誘起蛍光分析装置。   (5) The probe for laser-induced fluorescence analysis according to any one of (1) to (4), an ablation laser oscillator, a selective excitation laser oscillator, a spectrometer, a laser-induced fluorescence signal processing device, and the ablation laser An oscillator, the selective excitation laser oscillator, the spectroscope, a pulse generator for controlling the operation of the laser-induced fluorescence signal processing device, and means for transmitting an electrical signal from the light amount detector to the laser-induced fluorescence signal processing device And at least means for transmitting an optical signal from a laser light emitting / receiving terminal to the spectrometer.

本発明によれば、選択励起レーザの迷光検出強度を減少させ、レーザ誘起蛍光シグナルのシグナル/バックグラウンド比が向上し、迷光検出強度の変動に起因する測定値のバラツキが軽減されることから、分析精度を向上させることができる。従って、例えば、製鋼操業の制御性改善に寄与するところ大である。   According to the present invention, the stray light detection intensity of the selective excitation laser is reduced, the signal / background ratio of the laser-induced fluorescence signal is improved, and variation in the measurement value due to fluctuations in the stray light detection intensity is reduced. Analysis accuracy can be improved. Therefore, for example, it greatly contributes to improvement in controllability of steelmaking operations.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本発明に関わるレーザ誘起蛍光分析用プローブ19の構成の一例を、図1に示す。アブレーションレーザ発振器21から発振されるアブレーションレーザaは、レーザ誘起蛍光分析用プローブ19内のアブレーションレーザ集光レンズ20によって収束しながらアブレーションレーザ反射ミラー5によって反射され、反射ミラー2,3,4を透過し、さらに窓材1を透過して、中空管16内を伝播して、測定試料面17に照射される。窓材1は、中空管16と連通する風箱14の端部に装着されている。アブレーションレーザaの照射によって生成したプラズマからの発光dは、中空管16内をアブレーションレーザaとは逆向きに伝播し、レーザ発光反射ミラー3により反射され、レンズ6により光ファイバー8の受光端7に集光され、光ファイバー8によって分光器24に伝送されて分光測定される。   An example of the configuration of the probe 19 for laser-induced fluorescence analysis according to the present invention is shown in FIG. The ablation laser a oscillated from the ablation laser oscillator 21 is reflected by the ablation laser reflecting mirror 5 while being converged by the ablation laser condensing lens 20 in the laser-induced fluorescence analysis probe 19, and is transmitted through the reflecting mirrors 2, 3 and 4. Further, the light passes through the window material 1, propagates through the hollow tube 16, and is irradiated on the measurement sample surface 17. The window material 1 is attached to the end of the wind box 14 that communicates with the hollow tube 16. The light emission d from the plasma generated by irradiation of the ablation laser a propagates in the hollow tube 16 in the direction opposite to that of the ablation laser a, is reflected by the laser emission reflecting mirror 3, and is received by the lens 6 at the light receiving end 7 of the optical fiber 8. And transmitted to the spectroscope 24 by the optical fiber 8 for spectroscopic measurement.

アブレーションレーザaの照射から適当な時間間隔を取って、選択励起レーザ22から発振される選択励起レーザbは、レーザ誘起蛍光分析用プローブ19内の選択励起レーザ反射ミラー4によって反射され、ミラー3,2を透過し、さらに窓材1を透過して中空管16内を伝播して試料面17に照射される。そして、発生したレーザ誘起蛍光cは、中空管16内を選択励起レーザbとは逆向きに伝播して、レーザ誘起蛍光反射ミラー2によって反射され、レンズ9及び10によって集光、コーリメートされた後、光フィルター11を通って光量検出器12によって電気シグナルに変換され、電送線13によってレーザ誘起蛍光シグナル処理装置25へ伝送される。   The selective excitation laser b oscillated from the selective excitation laser 22 at an appropriate time interval from the irradiation of the ablation laser a is reflected by the selective excitation laser reflecting mirror 4 in the probe 19 for laser-induced fluorescence analysis, 2, further passing through the window material 1, propagating through the hollow tube 16, and irradiating the sample surface 17. The generated laser-induced fluorescence c propagates in the hollow tube 16 in the opposite direction to the selective excitation laser b, is reflected by the laser-induced fluorescence reflection mirror 2, and is condensed and collimated by the lenses 9 and 10. Thereafter, the light signal is converted into an electric signal by the light quantity detector 12 through the optical filter 11 and transmitted to the laser-induced fluorescence signal processing device 25 through the transmission line 13.

アブレーションレーザ発振器21と選択励起レーザ発振器22は、パルス発生器23から供給されるトリガーパルスにより、それぞれレーザa,bを発振する。レーザ誘起蛍光シグナル処理装置25は、光量検出器12にて電気シグナルに変換され、電送ケーブル13によって電送されたレーザ誘起蛍光シグナルを表示すると共に、デジタルデータに変換して、データ解析用コンピューター26に転送する。また、分光器24は、光ファイバー8によって伝送されたレーザ発光を波長分散して分光スペクトルを測定し、その結果をデータ解析用コンピューター26に転送する。レーザa,bのプローブ19への伝送は、例えばミラーやプリズム等を用いて空間を伝播させることによって行われる。   The ablation laser oscillator 21 and the selective excitation laser oscillator 22 oscillate lasers a and b, respectively, according to the trigger pulse supplied from the pulse generator 23. The laser-induced fluorescence signal processing device 25 displays the laser-induced fluorescence signal that is converted into an electrical signal by the light quantity detector 12 and transmitted by the power transmission cable 13, converts it into digital data, and sends it to the data analysis computer 26. Forward. The spectroscope 24 measures the spectral spectrum by wavelength-dispersing the laser emission transmitted by the optical fiber 8 and transfers the result to the data analysis computer 26. Transmission of the lasers a and b to the probe 19 is performed by propagating the space using, for example, a mirror or a prism.

以上のように、本実施形態によれば、分光器で検出された分光スペクトルの解析結果からレーザ発光分析法による元素の解析が可能であり、且つ、光量検出器12で検出されたレーザ誘起蛍光シグナルの解析結果からレーザ誘起蛍光法による元素の解析が可能である。炭素(C)や燐(P)は、レーザ誘起蛍光法によって分析され、また、その他の元素はレーザ発光分析法によってレーザ誘起蛍光法と同時に分析される。   As described above, according to the present embodiment, the element can be analyzed by the laser emission analysis method from the analysis result of the spectral spectrum detected by the spectroscope, and the laser-induced fluorescence detected by the light quantity detector 12 can be obtained. Analysis of elements by laser-induced fluorescence is possible from the signal analysis results. Carbon (C) and phosphorus (P) are analyzed by the laser-induced fluorescence method, and other elements are analyzed simultaneously with the laser-induced fluorescence method by the laser emission analysis method.

ミラー2,3,4,5、レンズ6,9,10、光フィルター11、光量検出器等12の光学部品は、溶融金属の試料面17からのダストやスプラッシュ、熱輻射から保護するために、保護ケース18内に収納されている。また、レーザや発光、蛍光の光路からのダスト、スプラッシュ、ヒューム等の排除、及び、中空管16の内壁や窓材1の汚染防止を目的として、ガス導入口15より、風箱14内にガスを流入させ、中空管16の試料側端面より、試料面17に向けてガスを吹き付ける。尚、ここでガスの種類としては、試料との反応が生じないAr,He,N等の不活性ガスが用いられる。 In order to protect the optical components such as mirrors 2, 3, 4, 5, lenses 6, 9, 10, optical filter 11, light quantity detector 12 from dust, splash, and heat radiation from the sample surface 17 of molten metal, Housed in the protective case 18. Further, for the purpose of eliminating dust, splash, fume and the like from the optical path of laser, light emission, and fluorescence, and preventing contamination of the inner wall of the hollow tube 16 and the window material 1, the gas inlet 15 enters the wind box 14. Gas is introduced, and gas is blown toward the sample surface 17 from the sample side end surface of the hollow tube 16. Here, as the type of gas, an inert gas such as Ar, He, or N 2 that does not react with the sample is used.

中空管16の試料側端面は、溶融金属中に浸漬されていても良い。また、溶融金属容器の底面又は側面の耐火物を貫通させて中空管16を設けた場合には、中空管16を通した溶融金属の流出を防ぐために必要なガス流量をガス導入口15から吹き込むようにする。   The sample side end surface of the hollow tube 16 may be immersed in the molten metal. Further, when the hollow tube 16 is provided by penetrating the refractory on the bottom surface or the side surface of the molten metal container, the gas flow rate required to prevent the molten metal from flowing out through the hollow tube 16 is set to the gas inlet 15. To blow from.

上記窓材1は、アブレーションレーザ、選択励起レーザ及び試料表面からの発光や蛍光の透過率が高い材質を選べばよい。原子の発光や蛍光は、通常、可視域から紫外域に亘るので、石英ガラスやMgF,CaF等が使用可能である。 As the window material 1, an ablation laser, a selective excitation laser, and a material having high transmittance of light emission and fluorescence from the sample surface may be selected. Since atomic emission and fluorescence usually range from the visible region to the ultraviolet region, quartz glass, MgF 2 , CaF 2 or the like can be used.

選択励起レーザbが窓材1を透過する際に、その一部が窓材1の表面で反射される。垂直入射、即ち、入射レーザと窓材1の法線とのなす角が0°の場合、一般に、反射率Rは、R=(n−n’)/(n+n’)となる。ここに、nは窓材1の屈折率であり、n’は窓材1が接している気体の屈折率である。例えば、空気中を伝播してきたレーザが石英ガラス製の窓材1に入射する場合、nとn’は、それぞれ1.5及び1.0であり、R=0.04となる。即ち、この場合入射レーザの4%が反射する。 When the selective excitation laser b passes through the window material 1, a part thereof is reflected by the surface of the window material 1. In the case of normal incidence, that is, when the angle formed between the incident laser and the normal of the window material 1 is 0 °, the reflectance R is generally R = (n−n ′) 2 / (n + n ′) 2 . Here, n is the refractive index of the window material 1, and n ′ is the refractive index of the gas with which the window material 1 is in contact. For example, when a laser propagating in the air enters the window material 1 made of quartz glass, n and n ′ are 1.5 and 1.0, respectively, and R = 0.04. That is, in this case, 4% of the incident laser is reflected.

ここで、図1の中から本発明の主要部を構成する部分を抜き出した図を、図2(A)に示し、また、本発明に定める構成要件を備えていない比較例を図2(B)に示す。   Here, FIG. 2 (A) shows a diagram in which the main part of the present invention is extracted from FIG. 1, and FIG. 2 (B) shows a comparative example that does not have the structural requirements defined in the present invention. ).

図2(B)に示すように、選択励起レーザbが窓材1の表面で反射され、その反射光b’がレーザ誘起蛍光反射ミラー2に入射する場合、反射光b’の一部は、光フィルター11をも透過し、最終的に光量検出器12にまで到達してしまう。この反射光b’は、窓材1の表面に選択励起レーザbの波長における反射率を低減する防反射コーティングを施すことで低減され、さらに、光フィルター11によっても減衰するのであるが、いずれの効果も反射光b’の強度を完全に抑え込むまでには至らない。特に、検出目的元素が低濃度となるに従い、光量検出器12で検出される蛍光強度と選択励起レーザbの窓材表面反射に起因する迷光強度はほぼ同程度となり、定量精度に大きな影響を与え、精度の良い定量を困難とする問題が起こるのである。   As shown in FIG. 2B, when the selective excitation laser b is reflected on the surface of the window material 1 and the reflected light b ′ is incident on the laser-induced fluorescence reflecting mirror 2, a part of the reflected light b ′ is The light passes through the optical filter 11 and finally reaches the light amount detector 12. The reflected light b ′ is reduced by applying an anti-reflection coating that reduces the reflectance at the wavelength of the selective excitation laser b on the surface of the window material 1, and further attenuated by the optical filter 11. The effect does not reach the point where the intensity of the reflected light b ′ is completely suppressed. In particular, as the concentration of the target element to be detected decreases, the fluorescence intensity detected by the light quantity detector 12 and the stray light intensity due to the reflection of the window surface of the selective excitation laser b become approximately the same, greatly affecting the quantitative accuracy. The problem of making accurate quantification difficult arises.

これに対し、図2(A)に示した本発明によれば、窓材1は選択励起レーザbの反射光b’がレーザ誘起蛍光反射ミラー2に入射しない角度の傾斜をつけて設置しており、窓材1による反射光b’は、レーザ誘起蛍光反射ミラー2の反射領域から反れるため、光量検出器12に到達しない。このため、選択励起レーザbの窓材1び表面反射に起因する迷光(反射光b’)は効果的に低減され、精度の良い定量が可能となる。   On the other hand, according to the present invention shown in FIG. 2A, the window material 1 is installed with an inclination of an angle at which the reflected light b ′ of the selective excitation laser b does not enter the laser-induced fluorescence reflecting mirror 2. In addition, the reflected light b ′ from the window material 1 does not reach the light amount detector 12 because it is deflected from the reflection region of the laser-induced fluorescence reflecting mirror 2. For this reason, the stray light (reflected light b ') resulting from the reflection of the window material 1 and the surface of the selective excitation laser b is effectively reduced, and accurate quantification is possible.

本発明において、窓材1の法線と選択励起レーザ入射方向とのなす角、即ち、入射角は、反射光b’がレーザ誘起蛍光反射ミラー2の反射領域から外れる角度であれば良い。しかし、後述するブリュースター角が存在する場合を除いて、入射角の増加と共に反射率は増大するので、必要以上に入射角を大きく取ることは好ましくない。   In the present invention, the angle formed between the normal of the window material 1 and the incident direction of the selective excitation laser, that is, the incident angle may be an angle at which the reflected light b ′ deviates from the reflection region of the laser-induced fluorescence reflection mirror 2. However, unless the Brewster angle described later is present, the reflectance increases as the incident angle increases, so it is not preferable to make the incident angle larger than necessary.

本発明のより好適な実施形態は、直線偏光の選択励起レーザbの伝播方向と窓材1の法線とのなす角がブリュースター角となるようにすることで実現される。これは、図3に示すように、選択励起レーザbの電気ベクトル103が、入射面と平行となるようにし、選択励起レーザbの窓材1への入射方向104及び、屈折光線の伝播方向105のそれぞれが、窓材の法線102となす角、θとθ(図3参照)とが、θ=90°の関係を満たすようにすることによって、実現される。このとき、フレネルの公式から反射率は0となる。そして、屈折の法則から、sin(θ)/sin(90°-θ)=n’/nが成り立つ。今、n,n’をそれぞれ、1(空気)、1.5(石英ガラス)とすれば、θ=56.3°となり、これがブリュースター角である。本発明では、このようにして定められるブリュースター角を含み、その近傍の反射率が十分に低くなる(例えば1%以下となる)角度に設定すれば、実用上より高い効果が得られる。上述のように、窓材1が石英ガラスであり、選択励起レーザbの電気ベクトル103が入射面と平行である場合について、入射角と反射率の関係を図4に示す。例えば、反射率を1%以下とすれば良い場合は、図4に示した範囲θi1≦θ≦θi2の入射角となるように窓材1の角度を設定すれば良い。 A more preferred embodiment of the present invention is realized by making the angle formed by the propagation direction of the linearly polarized selective excitation laser b and the normal of the window material 1 be a Brewster angle. As shown in FIG. 3, the electric vector 103 of the selective excitation laser b is made parallel to the incident surface, the incident direction 104 of the selective excitation laser b into the window material 1 and the propagation direction 105 of the refracted light beam. each is, the angle formed between the normal line 102 of the window material, theta i and theta r (see FIG. 3). However, by so as to satisfy the relation of θ i + θ r = 90 ° , is realized. At this time, the reflectance is 0 from the Fresnel formula. From the law of refraction, sin (θ i ) / sin (90 ° −θ i ) = n ′ / n holds. If n and n ′ are 1 (air) and 1.5 (quartz glass), respectively, θ i = 56.3 °, which is the Brewster angle. In the present invention, if a Brewster angle determined in this way is included and the reflectance in the vicinity thereof is set to an angle at which the reflectance is sufficiently low (for example, 1% or less), a higher effect than practical can be obtained. As described above, FIG. 4 shows the relationship between the incident angle and the reflectance when the window material 1 is quartz glass and the electric vector 103 of the selective excitation laser b is parallel to the incident surface. For example, when the reflectance should be 1% or less, the angle of the window material 1 may be set so that the incident angle is in the range θ i1 ≦ θ i ≦ θ i2 shown in FIG.

窓材1の傾きを上記の条件が満たされるように設定することにより、反射光b’がレーザ誘起蛍光反射ミラー2によって反射されて光量検出器12に入ることが防げるのみではなく、反射光b’が保護ケース18の壁面や保護ケース18内部の光学素子、ホルダー等に反射あるいは散乱されて廻りこんで光量検出器12に入る迷光をも極小化することが可能となる。   By setting the inclination of the window material 1 so that the above condition is satisfied, the reflected light b ′ is not only prevented from being reflected by the laser-induced fluorescence reflecting mirror 2 and entering the light amount detector 12, but also the reflected light b. It is also possible to minimize stray light that enters the light amount detector 12 by being reflected or scattered by the wall surface of the protective case 18, the optical element inside the protective case 18, a holder, or the like.

誘導溶解炉で溶融させた溶鋼表面に、図1に示したレーザ誘起蛍光分析用プローブ19を近づけてレーザ誘起蛍光法により溶鋼中の炭素、及び燐の蛍光シグナル強度を測定した。また、同時に光ファイバー8で伝送したレーザ発光を分光器24で分光分析した。アブレーションレーザ発振器21としてQスイッチパルスNd:YAGレーザを、選択励起レーザ発振器22としては、チタンサファイアレーザを用いた。アブレーションレーザと選択励起レーザとの遅延時間を100μsとし、ガス導入口15からArガスを導入し、中空管16の下端よりArガス溶鋼面(試料面17)に吹き付けながら分析した。   The laser-induced fluorescence analysis probe 19 shown in FIG. 1 was brought close to the molten steel surface melted in the induction melting furnace, and the fluorescence signal intensities of carbon and phosphorus in the molten steel were measured by a laser-induced fluorescence method. At the same time, the laser emission transmitted by the optical fiber 8 was spectrally analyzed by the spectroscope 24. A Q switch pulse Nd: YAG laser was used as the ablation laser oscillator 21, and a titanium sapphire laser was used as the selective excitation laser oscillator 22. The delay time between the ablation laser and the selective excitation laser was set to 100 μs, Ar gas was introduced from the gas inlet 15, and analysis was performed while spraying from the lower end of the hollow tube 16 onto the Ar gas molten steel surface (sample surface 17).

図5中の(実施例1)は、上述した実施形態に従い、図2(A)のように、選択励起レーザbの反射光b’がレーザ誘起蛍光反射ミラー2に入射しない角度に窓材1を傾けたプローブを用いて測定した結果であり、図5中の(比較例)は、図2(B)のように、窓材1を傾ける角度がより小さく、反射光b’がレーザ誘起蛍光反射ミラー2に入射するプローブを用いて測定した結果である。さらに、図6は、窓材1の法線と選択励起レーザbの入射方向とのなす角θiを、本試験条件におけるブリュースター角度である56°となるように傾けた、本実施形態によるプローブを用いて測定した(実施例2)の結果である。いずれも、一つの濃度水準において5回測定して得た信号強度の平均値であり、エラーバーは、標準偏差を示す。また、グラフの横軸の炭素濃度[C]は、各濃度水準において採取した試料を燃焼赤外線吸収法にて定量分析した値である。   In (Example 1) in FIG. 5, the window material 1 is formed at an angle at which the reflected light b ′ of the selective excitation laser b is not incident on the laser-induced fluorescence reflection mirror 2 as shown in FIG. 5 (Comparative Example) in FIG. 5 is a result of measurement using a tilted probe. As shown in FIG. 2B, the angle at which the window material 1 is tilted is smaller, and the reflected light b ′ is laser-induced fluorescence. It is the result measured using the probe which injects into the reflective mirror 2. FIG. Further, FIG. 6 shows the probe according to the present embodiment in which the angle θi formed by the normal line of the window material 1 and the incident direction of the selective excitation laser b is inclined to be a Brewster angle of 56 ° in the present test conditions. It is the result of (Example 2) measured using this. All are average values of signal intensities obtained by measuring five times at one concentration level, and error bars indicate standard deviation. Further, the carbon concentration [C] on the horizontal axis of the graph is a value obtained by quantitatively analyzing the sample collected at each concentration level by the combustion infrared absorption method.

図5中の(比較例)を参照すると、相関直線を濃度0ppmに外挿した場合の縦軸の切片の位置が、(実施例1)に比較して高い。この原因は、選択励起レーザbの迷光が比較的強く検出されていることを示している。また、図6に示した(実施例2)では、図5中の(実施例1)よりもさらに、上記切片の位置が更に低くなっている。   Referring to (Comparative Example) in FIG. 5, the position of the intercept on the vertical axis when the correlation line is extrapolated to a concentration of 0 ppm is higher than that of (Example 1). This cause indicates that the stray light of the selective excitation laser b is detected relatively strongly. Further, in (Example 2) shown in FIG. 6, the position of the section is further lower than (Example 1) in FIG. 5.

上記切片の位置は、バックグラウンドに相当する。一般に、バックグラウンドが高いほどバックグラウンドノイズも大きくなり、定量精度が劣化する。バックグラウンド高さの指標の一つとして、バックグラウンド等価濃度が挙げられる。これは、バックグラウンド高さを測定元素の濃度相当量として表したものであり、一般にバックグラウンド等価濃度が低いほど、低い定量下限が得られる。   The position of the section corresponds to the background. In general, the higher the background, the larger the background noise, and the quantitative accuracy deteriorates. One of the indicators of the background height is the background equivalent concentration. This represents the background height as a concentration equivalent amount of the measurement element. Generally, the lower the background equivalent concentration, the lower the lower limit of quantification.

従って、上記実施例によれば、比較例、実施例1、実施例2の順でバックグランウンドノイズが小さくなり、定量精度が向上することが判る。   Therefore, according to the said Example, it turns out that background noise becomes small in order of a comparative example, Example 1, and Example 2, and a fixed_quantity | quantitative_assay improves.

以上は、炭素のレーザ誘起蛍光強度について述べたものであるが、燐のレーザ誘起蛍光強度についても濃度範囲50ppm〜500ppmにおいて同様の結果が得られた。   The above is a description of the laser-induced fluorescence intensity of carbon. Similar results were obtained for the laser-induced fluorescence intensity of phosphorus in the concentration range of 50 ppm to 500 ppm.

表1に、上記(実施例1)、(実施例2)及び(比較例)の各場合において得られた炭素及び燐のそれぞれにおけるバックグラウンド等価濃度と相関直線の相関係数(R)とを示した。 Table 1 shows the background equivalent concentration and the correlation coefficient (R 2 ) of the correlation line in each of carbon and phosphorus obtained in each of the cases of (Example 1), (Example 2) and (Comparative Example). showed that.

Figure 2008215851
Figure 2008215851

表1から、本発明によれば、バックグラウンド濃度を大幅に低下させることができることが分かる。また、相関係数も向上しており、したがって、より低い定量下限が達成されることが示されている。   From Table 1, it can be seen that the background concentration can be greatly reduced according to the present invention. The correlation coefficient has also improved, thus indicating that a lower lower limit of quantification is achieved.

(実施例1)、(実施例2)では1台の波長可変な選択励起レーザ発振器22を用いて、炭素と燐を交互に測定したが、2台のレーザ発振器を用いる等の手段により、これら2元素のレーザ誘起蛍光を同時に測定することも可能である。   In (Example 1) and (Example 2), carbon and phosphorus were measured alternately using a single wavelength-variable selective excitation laser oscillator 22, but these were measured by means such as using two laser oscillators. It is also possible to measure laser-induced fluorescence of two elements simultaneously.

また、(実施例1)、(実施例2)では、レーザ誘起蛍光測定と併行してレーザ発光スペクトルも測定した。図7にその一例として、Alの分析結果を示す。その他に、MnやTiを始めとする分析線波長が概ね250nm以上にある元素は、レーザ誘起蛍光測定による炭素や燐等の元素と同時に分析可能であることは言うまでもない。   In (Example 1) and (Example 2), the laser emission spectrum was also measured in parallel with the laser-induced fluorescence measurement. FIG. 7 shows an analysis result of Al as an example. In addition, it goes without saying that elements having an analytical line wavelength of approximately 250 nm or more, such as Mn and Ti, can be analyzed simultaneously with elements such as carbon and phosphorus by laser-induced fluorescence measurement.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明のプローブ及び分析装置の構成を表す図である。It is a figure showing the structure of the probe and analyzer of this invention. プローブの要部を示す模式図であって、(A)本発明の窓材と(B)本発明によらない窓材を対比して示す図である。It is a schematic diagram which shows the principal part of a probe, Comprising: It is a figure which compares and shows the window material of (A) this invention and the window material which is not (B) this invention. 選択励起レーザの入射方向と屈折方向から成る入射面と電気ベクトルを示す模式図である。It is a schematic diagram which shows the entrance plane and electric vector which consist of the incident direction and the refraction | bending direction of a selective excitation laser. 選択励起レーザの窓材への入射角と反射率との関係を示す図である。It is a figure which shows the relationship between the incident angle to the window material of a selective excitation laser, and a reflectance. 本発明のプローブを用いた溶鋼中炭素のレーザ誘起蛍光測定結果(実施例1)と本発明によらないプローブを用いた溶鋼中炭素のレーザ誘起蛍光測定結果(比較例)を示す図である。It is a figure which shows the laser-induced fluorescence measurement result (Example 1) of carbon in molten steel using the probe of this invention, and the laser-induced fluorescence measurement result (comparative example) of carbon in molten steel using the probe which is not based on this invention. 本発明のプローブにおいて特に選択励起レーザの入射角がブリュースター角度となるように傾けたプローブを用いた溶鋼中炭素の測定結果(実施例2)を示す図である。It is a figure which shows the measurement result (Example 2) of carbon in molten steel using the probe inclined so that especially the incident angle of the selective excitation laser might become a Brewster angle in the probe of this invention. 本発明のプローブを用いて、レーザ誘起蛍光強度測定と同時に測定されたAlのレーザ発光強度測定結果を示す図である。It is a figure which shows the laser emission intensity | strength measurement result of Al measured simultaneously with the laser-induced fluorescence intensity measurement using the probe of this invention.

符号の説明Explanation of symbols

1 窓材
2 レーザ誘起蛍光反射ミラー
3 レーザ発光反射ミラー
4 選択励起レーザ反射ミラー
5 アブレーションレーザ反射ミラー
6,9,10 レンズ
7 光ファイバー受光端
8 光ファイバーケーブル
11 光学フィルター
12 光量検出器
13 シグナル電送ケーブル
14 風箱
15 ガス導入口
16 中空管
17 試料
18 保護ケース
19 レーザ誘起蛍光分析用プローブ
20 アブレーションレーザ集光レンズ
21 アブレーションレーザ発振器
22 選択励起レーザ発振器
23 パルス発生器
24 分光器
25 レーザ誘起蛍光シグナル処理装置
26 データ解析用コンピューター
a アブレーションレーザ
b 選択励起レーザ
b’ 選択励起レーザの窓材1による反射光
c レーザ誘起蛍光
d レーザ発光
DESCRIPTION OF SYMBOLS 1 Window material 2 Laser-induced fluorescence reflection mirror 3 Laser emission reflection mirror 4 Selective excitation laser reflection mirror 5 Ablation laser reflection mirror 6, 9, 10 Lens 7 Optical fiber receiving end 8 Optical fiber cable 11 Optical filter 12 Light quantity detector 13 Signal transmission cable 14 Wind box 15 Gas inlet 16 Hollow tube 17 Sample 18 Protective case 19 Probe for laser induced fluorescence analysis 20 Ablation laser condenser lens 21 Ablation laser oscillator 22 Selective excitation laser oscillator 23 Pulse generator 24 Spectrometer 25 Laser induced fluorescence signal processing Equipment 26 Computer for data analysis a Ablation laser b Selective excitation laser b ′ Reflected light of selective excitation laser by window material 1 c Laser induced fluorescence d Laser emission

Claims (5)

分析対象元素に共鳴する波長のレーザを照射して発生させた蛍光量を計測することで、試料中の分析対象元素の濃度を定量するレーザ誘起蛍光分析装置に用いるレーザ誘起蛍光分析用プローブであって、
選択励起レーザを試料に照射するための選択励起レーザ反射ミラーと、選択励起レーザの照射により試料で発生したレーザ誘起蛍光の光量を検出する光量検出器と、前記レーザ誘起蛍光を前記光量検出器へ導くレーザ誘起蛍光反射ミラーと、前記選択励起レーザ反射ミラーと試料との間に設けられ、前記選択励起レーザが透過する窓材と、を少なくとも内部に備え、
前記窓材が、選択励起レーザの前記窓材による反射レーザが前記レーザ誘起蛍光反射ミラーに入射しない所定の角度の傾斜をつけて設置してなることを特徴とする、レーザ誘起蛍光分析用プローブ。
A probe for laser-induced fluorescence analysis used in a laser-induced fluorescence analyzer that quantifies the concentration of an analyte in a sample by measuring the amount of fluorescence generated by irradiating a laser with a wavelength that resonates with the analyte. And
A selective excitation laser reflecting mirror for irradiating the sample with the selective excitation laser, a light amount detector for detecting the amount of laser-induced fluorescence generated in the sample by the irradiation of the selective excitation laser, and the laser-induced fluorescence to the light amount detector A laser-induced fluorescence reflection mirror for guiding, and a window material provided between the selective excitation laser reflection mirror and the sample, through which the selective excitation laser passes, are provided at least inside,
The probe for laser-induced fluorescence analysis, wherein the window material is installed with an inclination of a predetermined angle at which a reflected laser of the selective excitation laser from the window material does not enter the laser-induced fluorescence reflection mirror.
試料側の一端が開口し、ガス吹込み口を有し、前記選択励起レーザ及び前記レーザ誘起蛍光が通過する中空管を有し、
該中空管の他端を前記窓材で気密に封止してなることを特徴とする、請求項1に記載のレーザ誘起蛍光分析用プローブ。
One end of the sample side is opened, has a gas injection port, and has a hollow tube through which the selective excitation laser and the laser-induced fluorescence pass,
The probe for laser-induced fluorescence analysis according to claim 1, wherein the other end of the hollow tube is hermetically sealed with the window material.
前記窓材の表面の法線の方向が、前記窓材に入射する選択励起レーザの伝播方向に対してブリュースター角度に設定されたことを特徴とする、請求項1記載のレーザ誘起蛍光分析用プローブ。   2. The laser-induced fluorescence analysis according to claim 1, wherein the direction of the normal of the surface of the window material is set to a Brewster angle with respect to the propagation direction of the selective excitation laser incident on the window material. probe. アブレーションレーザを試料に照射するためのアブレーションレーザ反射ミラーと、
アブレーションレーザの照射により試料で発生したプラズマの発光を反射して発光受光光学系へ導くレーザ発光反射ミラーと、前記発光受光光学系により集光された光を受光するレーザ発光受光伝送端末と、を更に備えてなることを特徴とする、請求項1記載のレーザ誘起蛍光分析用プローブ。
An ablation laser reflecting mirror for irradiating the sample with an ablation laser;
A laser light emitting / reflecting mirror that reflects the light emitted from the plasma generated in the sample by irradiation of the ablation laser and guides it to the light emitting / receiving optical system; and a laser light emitting / receiving transmission terminal that receives the light collected by the light emitting / receiving optical system. The probe for laser-induced fluorescence analysis according to claim 1, further comprising:
請求項1〜4のいずれかに記載のレーザ誘起蛍光分析用プローブと、アブレーションレーザ発振器と、選択励起レーザ発振器と、分光器と、レーザ誘起蛍光シグナル処理装置と、前記アブレーションレーザ発振器、前記選択励起レーザ発振器、前記分光器及び前記レーザ誘起蛍光シグナル処理装置の動作を制御するためのパルス発生器と、前記光量検出器から前記レーザ誘起蛍光シグナル処理装置への電気シグナルの伝送手段と、レーザ発光受光伝送端末から前記分光器への光シグナルの伝送手段と、を少なくとも具備することを特徴とするレーザ誘起蛍光分析装置。   The probe for laser-induced fluorescence analysis according to any one of claims 1 to 4, an ablation laser oscillator, a selective excitation laser oscillator, a spectrometer, a laser-induced fluorescence signal processing device, the ablation laser oscillator, and the selective excitation A laser generator, a pulse generator for controlling the operation of the spectroscope, and the laser-induced fluorescence signal processing device; a means for transmitting an electrical signal from the light amount detector to the laser-induced fluorescence signal processing device; A laser-induced fluorescence analyzer comprising at least a means for transmitting an optical signal from a transmission terminal to the spectrometer.
JP2007049836A 2007-02-28 2007-02-28 Laser-induced fluorescence analyzer Active JP4734273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049836A JP4734273B2 (en) 2007-02-28 2007-02-28 Laser-induced fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049836A JP4734273B2 (en) 2007-02-28 2007-02-28 Laser-induced fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2008215851A true JP2008215851A (en) 2008-09-18
JP4734273B2 JP4734273B2 (en) 2011-07-27

Family

ID=39836076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049836A Active JP4734273B2 (en) 2007-02-28 2007-02-28 Laser-induced fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP4734273B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292169A (en) * 2007-05-22 2008-12-04 Nippon Steel Corp Apparatus and method for monitoring refining
JP2010216915A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
JP2010216913A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
JP2011102778A (en) * 2009-11-11 2011-05-26 Nippon Steel Corp Element analysis method and element analyzer using laser
WO2014021055A1 (en) 2012-08-02 2014-02-06 ウシオ電機株式会社 Light-induced fluorescent measuring device
JP2017535753A (en) * 2014-10-01 2017-11-30 ヴェリリー ライフ サイエンシズ エルエルシー System and method for fluorescence-based laser ablation
CN108459013A (en) * 2018-06-15 2018-08-28 北京协同创新研究院 Sample detection means based on laser induced breakdown spectroscopy
WO2023176939A1 (en) * 2022-03-16 2023-09-21 日本製鉄株式会社 Laser emission spectrophotometry optical device, laser emission spectrophotometer, laser emission spectrophotometry method, and molten metal plating facility
WO2023249048A1 (en) * 2022-06-21 2023-12-28 日本製鉄株式会社 Molten metal bath component analysis system, molten metal bath component analysis method, hot dip galvanizing bath management method, and hot dip galvanized steel sheet manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274743A (en) * 1991-03-01 1992-09-30 Sumitomo Metal Ind Ltd Laser emission analysis method
JPH05234999A (en) * 1992-02-26 1993-09-10 Hitachi Ltd Method and apparatus for correcting wiring of semiconductor device
JPH10142150A (en) * 1996-11-08 1998-05-29 Mitsubishi Heavy Ind Ltd Laser wavelength setting device
JPH10206330A (en) * 1997-01-24 1998-08-07 Sumitomo Metal Ind Ltd Laser emission spectral analysis method and device therefor
JP2006153845A (en) * 2004-11-02 2006-06-15 Nippon Steel Corp Refractory thickness measuring method and refractory thickness measuring apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602376A (en) * 1993-05-07 1997-02-11 Psc Inc. Hand-mounted optical scanner system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274743A (en) * 1991-03-01 1992-09-30 Sumitomo Metal Ind Ltd Laser emission analysis method
JPH05234999A (en) * 1992-02-26 1993-09-10 Hitachi Ltd Method and apparatus for correcting wiring of semiconductor device
JPH10142150A (en) * 1996-11-08 1998-05-29 Mitsubishi Heavy Ind Ltd Laser wavelength setting device
JPH10206330A (en) * 1997-01-24 1998-08-07 Sumitomo Metal Ind Ltd Laser emission spectral analysis method and device therefor
JP2006153845A (en) * 2004-11-02 2006-06-15 Nippon Steel Corp Refractory thickness measuring method and refractory thickness measuring apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292169A (en) * 2007-05-22 2008-12-04 Nippon Steel Corp Apparatus and method for monitoring refining
JP2010216915A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
JP2010216913A (en) * 2009-03-16 2010-09-30 Nippon Steel Corp Method and device for continuously monitoring molten steel
JP2011102778A (en) * 2009-11-11 2011-05-26 Nippon Steel Corp Element analysis method and element analyzer using laser
WO2014021055A1 (en) 2012-08-02 2014-02-06 ウシオ電機株式会社 Light-induced fluorescent measuring device
US9683936B2 (en) 2012-08-02 2017-06-20 Ushio Denki Kabushiki Kaisha Light-induced fluorescent measuring device
JP2017535753A (en) * 2014-10-01 2017-11-30 ヴェリリー ライフ サイエンシズ エルエルシー System and method for fluorescence-based laser ablation
CN108459013A (en) * 2018-06-15 2018-08-28 北京协同创新研究院 Sample detection means based on laser induced breakdown spectroscopy
WO2023176939A1 (en) * 2022-03-16 2023-09-21 日本製鉄株式会社 Laser emission spectrophotometry optical device, laser emission spectrophotometer, laser emission spectrophotometry method, and molten metal plating facility
WO2023249048A1 (en) * 2022-06-21 2023-12-28 日本製鉄株式会社 Molten metal bath component analysis system, molten metal bath component analysis method, hot dip galvanizing bath management method, and hot dip galvanized steel sheet manufacturing method
JP7440820B1 (en) 2022-06-21 2024-02-29 日本製鉄株式会社 Molten metal bath component analysis system, molten metal bath component analysis method, hot dip galvanizing bath management method, and hot dip galvanized steel sheet manufacturing method

Also Published As

Publication number Publication date
JP4734273B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4734273B2 (en) Laser-induced fluorescence analyzer
JP2891722B2 (en) Apparatus and method for analyzing elements of molten metal in a melting vessel
JP2013190411A (en) Concentration measurement method and device of metal surface adhesion component
JP2010038560A (en) Element analyzer and element analysis method
JP5840400B2 (en) Method and apparatus for measuring concentration of metal surface adhering component
JPS6146773B2 (en)
JP2010038557A (en) Element analyzer and element analysis method
US7218396B2 (en) Method and apparatus for spectroscopy of the optical emission of a liquid excited by a laser
JP5000379B2 (en) Laser-induced fluorescence analysis method and laser-induced fluorescence analysis probe
JP4430261B2 (en) Method and apparatus for remote monitoring of refining furnace
JP4625428B2 (en) Method and apparatus for analyzing component of molten metal in refining furnace
JP5552798B2 (en) Elemental analysis method and elemental analysis apparatus using laser
JP5085594B2 (en) Method and apparatus for continuous monitoring of molten steel
JPH0339631B2 (en)
JPH04274743A (en) Laser emission analysis method
JP2010019626A (en) Element analyzer and element analysis method
JP2000338039A (en) Method and apparatus for analyzing molten metal
JPH0875651A (en) Method for emission spectrochemical analysis by laser
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
JP3962362B2 (en) Method and apparatus for monitoring molten metal in refining furnace
JP2006300819A (en) Method and analyzer for laser emission spectrochemical analysis for molten metal
JP5152050B2 (en) Method and apparatus for continuous monitoring of molten steel
JP2002005833A (en) Analyzer
JPH10206330A (en) Laser emission spectral analysis method and device therefor
JP5195664B2 (en) Lance for continuous monitoring of molten steel, continuous monitoring device and continuous monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4734273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350