[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008203245A - X-ray analysis apparatus and x-ray analysis method - Google Patents

X-ray analysis apparatus and x-ray analysis method Download PDF

Info

Publication number
JP2008203245A
JP2008203245A JP2007331546A JP2007331546A JP2008203245A JP 2008203245 A JP2008203245 A JP 2008203245A JP 2007331546 A JP2007331546 A JP 2007331546A JP 2007331546 A JP2007331546 A JP 2007331546A JP 2008203245 A JP2008203245 A JP 2008203245A
Authority
JP
Japan
Prior art keywords
ray
rays
incident
intensity
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007331546A
Other languages
Japanese (ja)
Inventor
Takayuki Fukai
隆行 深井
Yoshitake Matoba
吉毅 的場
Kiyoshi Hasegawa
清 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007331546A priority Critical patent/JP2008203245A/en
Priority to US11/972,337 priority patent/US7587025B2/en
Priority to TW97101234A priority patent/TW200846657A/en
Priority to CN2008100037960A priority patent/CN101231256B/en
Publication of JP2008203245A publication Critical patent/JP2008203245A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a stable behavior of an X-ray source, and stably implement quantitative analysis in an X-ray analysis apparatus, and to provide an X-ray analysis method. <P>SOLUTION: The X-ray analysis apparatus comprises an X-ray lamp 3 for irradiating a sample 1 with a primary X rays; a primary X-ray adjustment mechanism 4 for adjusting the intensity of the primary X rays; an X-ray detector 5 for detecting the characteristic X rays emitted from the sample 1, and outputting a signal that contains energy information on the characteristic X rays and scattered X rays; an analyzer 6 for analyzing the signal; and an incident X-ray adjusting mechanism 7, disposed in between the sample 1 and the X-ray detector 5 and can adjust the total intensity of the characteristic X rays and the scattered X rays that enter the X-ray detector 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばエネルギー分散型の蛍光X線分析等に好適なX線分析装置及びX線分析方法に関する。   The present invention relates to an X-ray analysis apparatus and an X-ray analysis method suitable for, for example, energy dispersive fluorescent X-ray analysis.

蛍光X線分析は、X線源から出射されたX線を試料に照射し、試料から放出される特性X線である蛍光X線をX線検出器で検出することで、そのエネルギーからスペクトルを取得し、試料の定性分析又は定量分析を行うものである。この蛍光X線分析は、試料を非破壊で迅速に分析可能なため、工程・品質管理などで広く用いられている。近年では、高精度化・高感度化が図られて微量測定が可能になり、特に材料や土壌などに含まれる有害物質の検出を行う分析手法として普及が期待されている。   X-ray fluorescence analysis irradiates a sample with X-rays emitted from an X-ray source, and detects the fluorescent X-rays, which are characteristic X-rays emitted from the sample, with an X-ray detector. Acquire and perform qualitative analysis or quantitative analysis of the sample. This fluorescent X-ray analysis is widely used in processes and quality control because samples can be analyzed quickly and non-destructively. In recent years, high precision and high sensitivity have been achieved, and trace measurement has become possible. In particular, it is expected to be widely used as an analytical method for detecting harmful substances contained in materials and soil.

この蛍光X線分析の分析手法としては、蛍光X線を分光結晶により分光し、X線の波長と強度を測定する波長分散方式や、分光せずに半導体検出素子で検出し、波高分析器でX線のエネルギーと強度とを測定するエネルギー分散方式などがある。
従来、例えば特許文献1には、X線源から1次フィルタを介して測定試料に1次X線を照射し、該1次X線を受けた測定試料から放出される蛍光X線をX線検出器で検出することにより、測定試料の元素分析を行う蛍光X線分析装置が開示されている。
この蛍光X線分析装置では、X線管球の管電流と複数種類の1次フィルタの中から一つを選択してX線源からの1次X線の強度を1次フィルタによって調整することで、バックグラウンドの減少を図ると共にX線検出器へ入射する蛍光X線の強度調整を行っている。
This fluorescent X-ray analysis can be performed using a wavelength dispersion method in which fluorescent X-rays are dispersed with a spectroscopic crystal and the wavelength and intensity of the X-rays are measured. There are energy dispersion methods for measuring the energy and intensity of X-rays.
Conventionally, for example, Patent Document 1 discloses that an X-ray source emits primary X-rays through a primary filter and irradiates the measurement sample with X-rays emitted from the measurement sample that has received the primary X-ray. A fluorescent X-ray analyzer that performs elemental analysis of a measurement sample by detecting with a detector is disclosed.
In this fluorescent X-ray analyzer, one of the tube current of the X-ray tube and a plurality of types of primary filters is selected, and the intensity of the primary X-rays from the X-ray source is adjusted by the primary filter. Thus, the background is reduced and the intensity of fluorescent X-rays incident on the X-ray detector is adjusted.

特開2004−150990号公報JP 2004-150990 A

上記従来の技術には、以下の課題が残されている。
従来のX線分析装置では、X線検出器において正常動作範囲(取得可能な最大X線強度:最大X線取得強度)の制限があるため、X線源として用いられるX線管球の管電流調整や上述したように1次フィルタによってX線検出器へ入射する蛍光X線及び散乱X線の強度調整を行っている。ここで、X線分析装置における検出下限はX線検出器に入射される蛍光X線の強度が高いほど向上させることができるため、ほぼ最大X線取得強度で検出できるように照射する1次X線強度の調整で設定している。しかしながら、測定試料によっては、X線検出器へ入射する蛍光X線及び散乱X線が大きすぎる場合があり、さらに場合によってはX線管球の管電流をX線管球における正常動作範囲を超える程度まで落とす必要があり、これによりX線管球から発生するX線強度が不安定となり、検量線法などによる定量分析が難しくなる問題があった。
例えば、従来、X線検出器の最大X線取得強度が20万cps(Counts Per Second)であり、X線管球の正常動作範囲が最大管電流値の1000μAから最小管電流値の200μAの範囲であった場合、粗測定において管電流20μAで10万cpsが得られたとすると、X線管球の最大X線取得強度に合わせるため、本測定では、管電流を2倍の40μAに設定し、X線管球において最大X線取得強度の20万cpsが得られるように設定している。この場合、X線管球の正常動作範囲に管電流が達しておらず、これによりX線管球から発生するX線強度が不安定となり、それに伴い、検出されるX線強度が不安定になることから定量分析を困難にするという不都合があった。
The following problems remain in the conventional technology.
In the conventional X-ray analyzer, since there is a limitation on the normal operation range (maximum obtainable X-ray intensity: maximum X-ray acquisition intensity) in the X-ray detector, the tube current of the X-ray tube used as the X-ray source As described above, the intensity of fluorescent X-rays and scattered X-rays incident on the X-ray detector is adjusted by the primary filter as described above. Here, since the lower detection limit in the X-ray analyzer can be improved as the intensity of the fluorescent X-rays incident on the X-ray detector is higher, the primary X is irradiated so that the detection can be performed with almost the maximum X-ray acquisition intensity. It is set by adjusting the line strength. However, depending on the measurement sample, fluorescent X-rays and scattered X-rays incident on the X-ray detector may be too large, and in some cases, the tube current of the X-ray tube exceeds the normal operating range of the X-ray tube. There is a problem that the X-ray intensity generated from the X-ray tube becomes unstable, and quantitative analysis by the calibration curve method becomes difficult.
For example, conventionally, the maximum X-ray acquisition intensity of an X-ray detector is 200,000 cps (Counts Per Second), and the normal operating range of an X-ray tube is a range from a maximum tube current value of 1000 μA to a minimum tube current value of 200 μA. , If 100,000 cps is obtained at a tube current of 20 μA in the coarse measurement, the tube current is set to double 40 μA in this measurement to match the maximum X-ray acquisition intensity of the X-ray tube. The X-ray tube is set to obtain a maximum X-ray acquisition intensity of 200,000 cps. In this case, the tube current does not reach the normal operating range of the X-ray tube, and thus the X-ray intensity generated from the X-ray tube becomes unstable, and accordingly, the detected X-ray intensity becomes unstable. Therefore, there has been a disadvantage that quantitative analysis is difficult.

本発明は、前述の課題に鑑みてなされたもので、X線源等の放射線源を正常動作させて安定に挙動させ、定量分析を安定して行なえるX線分析装置及びX線分析方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems. An X-ray analysis apparatus and an X-ray analysis method capable of stably performing quantitative analysis by causing a radiation source such as an X-ray source to operate normally and stably operate. The purpose is to provide.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明のX線分析装置は、放射線を試料に照射する放射線源と、前記放射線の強度を調整可能な放射線調整機構と、前記試料から放出される特性X線及び散乱X線を検出し該特性X線及び散乱X線のエネルギー情報を含む信号を出力するX線検出器と、前記信号を分析する分析器と、前記試料と前記X線検出器との間に配設され前記X線検出器に入射される前記特性X線及び散乱X線の合計強度を調整する入射X線調整機構とを備えていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the X-ray analyzer of the present invention detects a radiation source that irradiates a sample with radiation, a radiation adjustment mechanism that can adjust the intensity of the radiation, and characteristic X-rays and scattered X-rays emitted from the sample. An X-ray detector that outputs a signal including energy information of the characteristic X-rays and scattered X-rays, an analyzer that analyzes the signal, and the X-ray disposed between the sample and the X-ray detector. And an incident X-ray adjusting mechanism that adjusts the total intensity of the characteristic X-rays and scattered X-rays incident on the detector.

このX線分析装置では、放射線の強度を調整可能な放射線調整機構と、試料とX線検出器との間に配設されX線検出器に入射される特性X線及び散乱X線の合計強度を調整可能な入射X線調整機構とを備えているので、照射する放射線の強度と入射される特性X線及び散乱X線の合計強度との両方を調整することで、X線検出器の最大X線取得強度を考慮しつつ放射線源の放射線照射能力を最大限に活かして測定可能になる。   In this X-ray analyzer, the radiation intensity adjusting mechanism capable of adjusting the intensity of radiation and the total intensity of characteristic X-rays and scattered X-rays that are arranged between the sample and the X-ray detector and are incident on the X-ray detector. The incident X-ray adjustment mechanism can be adjusted so that the maximum intensity of the X-ray detector can be adjusted by adjusting both the intensity of irradiated radiation and the total intensity of incident characteristic X-rays and scattered X-rays. Measurement can be performed by taking full advantage of the radiation irradiation ability of the radiation source while taking into account the X-ray acquisition intensity.

また、本発明のX線分析装置は、前記X線検出器で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ前記放射線の強度が前記放射線源の放射線照射能力の正常動作範囲内となるように、前記入射X線調整機構及び前記放射線調整機構を制御する制御部を備えていることを特徴とする。すなわち、このX線分析装置では、制御部が入射X線調整機構及び放射線調整機構を制御し、X線検出器で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ放射線の強度が放射線源の放射線照射能力の正常動作範囲内となるように設定することで、安定した放射線照射とX線検出器での高い特性X線強度を容易に得ることができ、定量分析を安定して行うことができるようになる。   In the X-ray analyzer of the present invention, the total intensity of characteristic X-rays and scattered X-rays detected by the X-ray detector is substantially the maximum X-ray acquisition intensity, and the radiation intensity is the radiation irradiation capability of the radiation source. And a control unit for controlling the incident X-ray adjustment mechanism and the radiation adjustment mechanism so as to be within the normal operating range. That is, in this X-ray analyzer, the control unit controls the incident X-ray adjustment mechanism and the radiation adjustment mechanism, and the total intensity of characteristic X-rays and scattered X-rays detected by the X-ray detector is almost the maximum X-ray acquisition intensity. In addition, by setting the intensity of the radiation to be within the normal operating range of the radiation irradiation capability of the radiation source, stable radiation irradiation and high characteristic X-ray intensity at the X-ray detector can be easily obtained and quantitatively determined. Analysis can be performed stably.

また、本発明のX線分析装置は、前記X線検出器が、前記特性X線及び散乱X線を入射させる検出面を有し、前記入射X線調整機構が、前記検出面に対する前記特性X線及び散乱X線の入射立体角を調整可能なコリメータであることを特徴とする。ここで、立体角とは、一般的に、空間上の同一の点(角の頂点)から出る半直線が動いてつくる錐面によって区切られた部分のことをいい、この錐面の開き具合を示す。具体的には、半径が1の球に対する表面上に占める面積と定義される。実際には、放射線源と検出器は点ではなく、有限の広がりを持つ。図5に示すように、円板状放射線源と円板状検出器が両方の中心を貫く共通軸に対してともに垂直に置かれた場合の立体角は、以下のような計算式により算出される。

Figure 2008203245
また、立体角の計算は乱数を使用したモンテカルロ・シミュレーションによって求めることも可能である。
このX線分析装置では、入射X線調整機構として、試料から発生する特性X線及び散乱X線が検出面を見込む入射立体角を調整可能なコリメータを採用するので、特性X線及び散乱X線の入射立体角に応じてX線検出器の検出面に入射される特性X線及び散乱X線が制限されてその強度を容易に調整することができる。 In the X-ray analyzer of the present invention, the X-ray detector has a detection surface on which the characteristic X-rays and scattered X-rays are incident, and the incident X-ray adjustment mechanism has the characteristic X with respect to the detection surface. It is a collimator that can adjust the solid angle of incidence of X-rays and scattered X-rays. Here, the solid angle generally refers to the part delimited by a conical surface created by the movement of a half line coming out from the same point in space (vertex of the corner). Show. Specifically, it is defined as the area occupied on the surface for a sphere having a radius of 1. In practice, radiation sources and detectors are not points but have a finite extent. As shown in FIG. 5, the solid angle when the disk-shaped radiation source and the disk-shaped detector are both placed perpendicular to the common axis passing through both centers is calculated by the following calculation formula. The
Figure 2008203245
The solid angle can also be calculated by Monte Carlo simulation using random numbers.
In this X-ray analyzer, as the incident X-ray adjustment mechanism, a collimator capable of adjusting the incident solid angle at which the characteristic X-rays and scattered X-rays generated from the sample look into the detection surface is adopted. The characteristic X-rays and scattered X-rays incident on the detection surface of the X-ray detector are limited according to the incident solid angle, and the intensity thereof can be easily adjusted.

さらに、本発明のX線分析装置は、前記入射X線調整機構が、前記特性X線及び散乱X線を通過させ前記検出面に入射させるX線入射孔を有し、異なる開口径の前記X線入射孔に変更可能な開口径変更機構であることを特徴とする。すなわち、このX線分析装置では、異なる開口径のX線入射孔に変更可能な開口径変更機構を採用するので、X線入射孔の開口径を変えることで特性X線及び散乱X線の入射立体角を容易に変更することができる。   Furthermore, in the X-ray analysis apparatus of the present invention, the incident X-ray adjusting mechanism has an X-ray incident hole through which the characteristic X-ray and scattered X-ray pass and enter the detection surface, and the X-rays having different aperture diameters. It is an opening diameter changing mechanism that can be changed to a line incident hole. That is, since this X-ray analyzer employs an aperture diameter changing mechanism that can be changed to an X-ray incident hole having a different aperture diameter, the characteristic X-rays and scattered X-rays can be incident by changing the aperture diameter of the X-ray incident hole. The solid angle can be easily changed.

そして、本発明のX線分析装置は、前記開口径変更機構が、互いに異なる開口径の複数の前記X線入射孔を有し、これらの前記X線入射孔のうちいずれか一つを前記検出面と前記試料との間に任意に配置可能であることを特徴とする。すなわち、このX線分析装置では、開口径変更機構が、複数用意された異なる開口径のX線入射孔のうち一つを任意に選択して設置するので、予め複数の入射立体角が用意されていることで、簡易に入射立体角の切替が可能になる。   In the X-ray analysis apparatus of the present invention, the opening diameter changing mechanism has a plurality of the X-ray incident holes having different opening diameters, and any one of the X-ray incident holes is detected. It can be arbitrarily arranged between a surface and the sample. That is, in this X-ray analyzer, since the aperture diameter changing mechanism arbitrarily selects and installs one of a plurality of X-ray incident holes having different aperture diameters, a plurality of incident solid angles are prepared in advance. Therefore, the incident solid angle can be easily switched.

また、本発明のX線分析装置は、前記入射X線調整機構が、前記X線入射孔と前記検出面との間隔を調整可能な位置調整機構を有していることを特徴とする。すなわち、このX線分析装置では、位置調整機構によりX線入射孔と検出面との間隔を変更するので、当該間隔に応じて1つのX線入射孔だけであっても連続的に特性X線及び散乱X線の入射立体角を変更することができ、入射する特性X線及び散乱X線の合計強度を高精度に調整することが可能になる。なお、開口径の異なる複数のX線入射孔を任意に選択可能であれば、位置調整機構による上記間隔の調整により、より広い範囲で入射立体角の高い変更自由度を得ることができる。   Moreover, the X-ray analyzer of the present invention is characterized in that the incident X-ray adjusting mechanism has a position adjusting mechanism capable of adjusting an interval between the X-ray incident hole and the detection surface. That is, in this X-ray analyzer, the position adjustment mechanism changes the distance between the X-ray incident hole and the detection surface, and therefore, even if there is only one X-ray incident hole according to the distance, the characteristic X-ray is continuously obtained. The incident solid angle of scattered X-rays can be changed, and the total intensity of incident characteristic X-rays and scattered X-rays can be adjusted with high accuracy. If a plurality of X-ray incident holes having different opening diameters can be arbitrarily selected, a high degree of freedom in changing the incident solid angle can be obtained in a wider range by adjusting the interval by the position adjusting mechanism.

本発明のX線分析方法は、予め設定した粗測定用の放射線の強度で放射線源から放射線を試料に照射するステップと、前記試料から放出される特性X線及び散乱X線の合計強度である粗測定値をX線検出器で検出するステップと、前記粗測定用の放射線の強度及び前記粗測定値に基づいて、前記X線検出器で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ前記放射線の強度が前記放射線源の放射線照射能力の正常動作範囲内となるように、放射線調整機構で前記放射線の強度を調整すると共に前記試料と前記X線検出器との間に配設された入射X線調整機構で前記X線検出器に入射される前記特性X線及び散乱Xの合計強度を調整し、本測定を行うステップと、前記本測定で前記X線検出器が得た特性X線及び散乱X線のエネルギー情報を含む信号を出力するステップと、前記信号を分析器で分析するステップと、を有していることを特徴とする。   The X-ray analysis method of the present invention includes a step of irradiating a sample with radiation from a radiation source at a preset intensity of radiation for rough measurement, and a total intensity of characteristic X-rays and scattered X-rays emitted from the sample. A step of detecting a coarse measurement value with an X-ray detector, and a total intensity of characteristic X-rays and scattered X-rays detected by the X-ray detector based on the intensity of the radiation for coarse measurement and the coarse measurement value The intensity of the radiation is adjusted by a radiation adjustment mechanism so that the intensity of the X-ray acquisition is approximately the maximum and the intensity of the radiation is within a normal operating range of the radiation irradiation capability of the radiation source, and the sample and the X-ray detector are adjusted. Adjusting the total intensity of the characteristic X-rays and scattered X incident on the X-ray detector by an incident X-ray adjusting mechanism disposed between the X-ray detector and the X-ray in the main measurement. Characteristic X-ray and scattering obtained by a ray detector And outputting a signal containing energy information about the line, characterized in that it has the steps of: analyzing said signal in analyzer.

このX線分析方法では、上記粗測定を行うことで、試料における照射放射線の強度と特性X線及び散乱X線の合計強度とのレベルについてデフォルト条件における関係を予め求めることで、本測定においては、放射線調整機構及び入射X線調整機構により、X線検出器で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ前記放射線の強度が前記放射線源の放射線照射能力の正常動作範囲内となるように、照射する放射線の強度とX線検出器に入射される特性X線及び散乱X線の合計強度との両方を調整する。したがって、本測定では、放射線照射能力が正常動作範囲内であるので、放射線源の安定した放射線照射を得ることができ、定量分析を安定して行うことができるようになる。   In this X-ray analysis method, by performing the above-described rough measurement, the relationship in the default condition is obtained in advance for the level of the intensity of irradiation radiation in the sample and the total intensity of characteristic X-rays and scattered X-rays. The total intensity of the characteristic X-rays and scattered X-rays detected by the X-ray detector by the radiation adjustment mechanism and the incident X-ray adjustment mechanism is almost the maximum X-ray acquisition intensity, and the radiation intensity is the radiation irradiation ability of the radiation source. Both the intensity of radiation to be irradiated and the total intensity of characteristic X-rays and scattered X-rays incident on the X-ray detector are adjusted so as to be within the normal operating range. Therefore, in this measurement, since the radiation irradiation capability is within the normal operating range, stable radiation irradiation of the radiation source can be obtained, and quantitative analysis can be performed stably.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係るX線分析装置及びX線分析方法によれば、放射線調整機構により照射する放射線の強度を調整すると共に、入射X線調整機構によりX線検出器に入射される特性X線及び散乱X線の合計強度を調整するので、X線検出器の最大X線取得強度を考慮しつつ放射線源の放射線照射能力を最大限に活かして測定可能になり、定量分析を安定して行うことができるようになる。
The present invention has the following effects.
That is, according to the X-ray analysis apparatus and the X-ray analysis method of the present invention, the intensity of radiation irradiated by the radiation adjustment mechanism is adjusted, and the characteristic X-ray incident on the X-ray detector by the incident X-ray adjustment mechanism In addition, the total intensity of the scattered X-rays is adjusted, so that the maximum X-ray acquisition intensity of the X-ray detector can be taken into account, making it possible to make the best use of the radiation irradiation capability of the radiation source, and the quantitative analysis can be performed stably. Will be able to.

以下、本発明に係るX線分析装置及びX線分析方法の第1実施形態を、図1から図3を参照しながら説明する。   Hereinafter, a first embodiment of an X-ray analysis apparatus and an X-ray analysis method according to the present invention will be described with reference to FIGS. 1 to 3.

本実施形態のX線分析装置は、エネルギー分散型の蛍光X線分析装置であって、図1から図3に示すように、試料1を固定する試料ステージ2と、1次X線(放射線)を試料1に照射するX線管球(放射線源)3と、1次X線の強度を調整可能な1次X線調整機構(放射線調整機構)4と、試料1から放出される特性X線及び散乱X線を検出し該特性X線及び散乱X線のエネルギー情報を含む信号を出力するX線検出器5と、X線検出器5に接続され上記信号を分析する分析器6と、試料1とX線検出器5との間に配設されX線検出器5に入射される特性X線及び散乱X線の合計強度を調整可能な入射X線調整機構7と、1次X線調整機構4と入射X線調整機構7とを制御する制御部Cと、分析器6及び制御部Cに接続された解析処理装置8とを備えている。   The X-ray analyzer of this embodiment is an energy dispersive fluorescent X-ray analyzer, and as shown in FIGS. 1 to 3, a sample stage 2 for fixing a sample 1 and primary X-rays (radiation). X-ray tube (radiation source) 3 that irradiates sample 1 with light, primary X-ray adjustment mechanism (radiation adjustment mechanism) 4 that can adjust the intensity of primary X-rays, and characteristic X-rays emitted from sample 1 An X-ray detector 5 that detects scattered X-rays and outputs a signal including energy information of the characteristic X-rays and scattered X-rays, an analyzer 6 that is connected to the X-ray detector 5 and analyzes the signals, and a sample 1 and an X-ray detector 5, an incident X-ray adjustment mechanism 7 capable of adjusting the total intensity of characteristic X-rays and scattered X-rays incident on the X-ray detector 5 and primary X-ray adjustment A control unit C that controls the mechanism 4 and the incident X-ray adjustment mechanism 7, and an analysis processor 8 that is connected to the analyzer 6 and the control unit C It is equipped with a.

上記試料ステージ2は、試料1を固定した状態で水平移動可能にするステッピングモータ(図示略)等を備えている。
上記X線管球3は、管球内のフィラメント(陽極)から発生した熱電子がフィラメント(陽極)とターゲット(陰極)との間に印加された電圧により加速されターゲットのW(タングステン)、Mo(モリブデン)、Cr(クロム)などに衝突して発生したX線を1次X線としてベリリウム箔などの窓から出射するものである。
The sample stage 2 includes a stepping motor (not shown) or the like that enables horizontal movement while the sample 1 is fixed.
In the X-ray tube 3, thermoelectrons generated from a filament (anode) in the tube are accelerated by a voltage applied between the filament (anode) and a target (cathode), and the target W (tungsten), Mo X-rays generated by colliding with (molybdenum), Cr (chromium), etc. are emitted as primary X-rays from a window such as beryllium foil.

上記1次X線調整機構4は、X線管球3の管電圧および管電流を調整可能であると共に、図2に示すように、X線管球3のX線出射面に取り付けられた1次フィルタ9と、該1次フィルタ9の手前、すなわち1次フィルタ9と試料1との間に設置され複数の開口径の異なるX線出射孔10を有する出射側コリメータ11と、X線管球3に対して出射側コリメータ11をスライド的に移動させて複数のX線出射孔10のうちいずれか一つを1次フィルタ9の手前に位置させる出射側コリメータ移動機構(図示略)とを備えている。なお、この出射側コリメータ11は、ステッピングモータ等の駆動手段で構成されている。また、1次フィルタ9は、試料に応じて選択されたCu(銅)、Zr(ジルコニウム)、Mo等の金属薄膜又は金属薄板である。尚、1次フィルタ9はX線管球3のX線出射面に取り付けられたものに限定されるものではなく、X線管球3と試料1の間にあればよい。
また、本実施形態では、正常動作範囲が1000μAから200μAであるX線管球3を用いたが、それに限定されるものではない。
The primary X-ray adjustment mechanism 4 is capable of adjusting the tube voltage and tube current of the X-ray tube 3 and is attached to the X-ray emission surface of the X-ray tube 3 as shown in FIG. A secondary filter 9, an output side collimator 11 having a plurality of X-ray emission holes 10 having different opening diameters, which is installed before the primary filter 9, that is, between the primary filter 9 and the sample 1, and an X-ray tube And an emission side collimator moving mechanism (not shown) that slides the emission side collimator 11 with respect to 3 and positions any one of the plurality of X-ray emission holes 10 in front of the primary filter 9. ing. In addition, this output side collimator 11 is comprised by drive means, such as a stepping motor. The primary filter 9 is a metal thin film or a metal thin plate such as Cu (copper), Zr (zirconium), or Mo selected according to the sample. The primary filter 9 is not limited to the one attached to the X-ray emission surface of the X-ray tube 3, and may be between the X-ray tube 3 and the sample 1.
In the present embodiment, the X-ray tube 3 having a normal operating range of 1000 μA to 200 μA is used, but the present invention is not limited to this.

上記X線検出器5は、X線の入射窓に検出面12aを向けて設置されている半導体検出素子12を備えている。この半導体検出素子12は、pin構造ダイオードであるSi(シリコン)素子であり、X線光子1個が入射するとこのX線光子1個に対応する電流パルスが発生するものである。この電流パルスの瞬間的な電流値が、入射した特性X線のエネルギーに比例している。また、X線検出器5は、半導体検出素子12で発生した電流パルスを電圧パルスに変換、増幅し、信号として出力するように設定されている。
尚、本実施形態では、最大X線取得強度が20万cps(Counts Per Second)のX線検出器5を用いたが、それに限定されるものではない。
The X-ray detector 5 includes a semiconductor detection element 12 installed with a detection surface 12a facing an X-ray incident window. The semiconductor detection element 12 is an Si (silicon) element that is a pin structure diode, and when one X-ray photon is incident, a current pulse corresponding to the one X-ray photon is generated. The instantaneous current value of this current pulse is proportional to the energy of the incident characteristic X-ray. The X-ray detector 5 is set to convert the current pulse generated in the semiconductor detection element 12 into a voltage pulse, amplify it, and output it as a signal.
In the present embodiment, the X-ray detector 5 having a maximum X-ray acquisition intensity of 200,000 cps (Counts Per Second) is used. However, the present invention is not limited to this.

上記分析器6は、上記信号から電圧パルスの波高を得てエネルギースペクトルを生成する波高分析器(マルチチャンネルパルスハイトアナライザー)である。
上記入射X線調整機構7は、図3に示すように、X線を通過させ検出面12aに入射させる複数のX線入射孔13を有し、異なる開口径のX線入射孔13に変更可能な開口径変更機構である。
The analyzer 6 is a wave height analyzer (multi-channel pulse height analyzer) that generates a voltage pulse wave height from the signal and generates an energy spectrum.
As shown in FIG. 3, the incident X-ray adjusting mechanism 7 has a plurality of X-ray incident holes 13 that allow X-rays to pass through and enter the detection surface 12a, and can be changed to X-ray incident holes 13 having different opening diameters. It is a simple opening diameter changing mechanism.

すなわち、入射X線調整機構7は、X線検出器5における半導体検出素子12の検出面12aの手前、すなわち検出面12aと試料1との間に設置され複数の開口径の異なるX線入射孔13を有する入射側コリメータ14と、X線検出器5に対して入射側コリメータ14をスライド的に移動させて複数のX線入射孔13のうちいずれか一つを検出面12aの手前、すなわち検出面12aと試料との間に任意に位置させる入射側コリメータ移動機構15とを備えている。このように入射X線調整機構7は、検出面12aに対する特性X線及び散乱X線の入射立体角を複数の開口径の異なるX線入射孔13のうちから一つを選択することで調整可能なコリメータである。なお、この入射側コリメータ移動機構15は、ステッピングモータ等の駆動手段で構成されている。さらに、試料1と検出面12aの間には、試料1から発生した散乱X線を低減する目的で2次フィルタ16が取り付けられているものもある。2次フィルタ16は、試料に応じて選択されたNi(ニッケル)等の金属薄膜又は金属薄板である。   That is, the incident X-ray adjusting mechanism 7 is installed in front of the detection surface 12a of the semiconductor detection element 12 in the X-ray detector 5, that is, between the detection surface 12a and the sample 1, and has a plurality of X-ray incident holes having different opening diameters. The incident-side collimator 14 having 13 and the incident-side collimator 14 are slidably moved with respect to the X-ray detector 5 so that any one of the plurality of X-ray incident holes 13 is in front of the detection surface 12a, that is, detected. An incident-side collimator moving mechanism 15 that is arbitrarily positioned between the surface 12a and the sample is provided. Thus, the incident X-ray adjusting mechanism 7 can adjust the incident solid angle of the characteristic X-ray and scattered X-ray with respect to the detection surface 12a by selecting one of the X-ray incident holes 13 having different aperture diameters. This is a collimator. In addition, this incident side collimator moving mechanism 15 is comprised by drive means, such as a stepping motor. Furthermore, between the sample 1 and the detection surface 12a, a secondary filter 16 is attached for the purpose of reducing scattered X-rays generated from the sample 1. The secondary filter 16 is a metal thin film or metal thin plate such as Ni (nickel) selected according to the sample.

上記制御部Cは、X線検出器5で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ1次X線の強度がX線管球3の1次X線照射能力の正常動作範囲内となるように、入射X線調整機構7及び1次X線調整機構4を制御する処理回路を有している。また、制御部Cは、X線管球3の管電流を制御している。   The control unit C is configured such that the total intensity of characteristic X-rays and scattered X-rays detected by the X-ray detector 5 is approximately the maximum X-ray acquisition intensity, and the intensity of the primary X-ray is the primary X-ray of the X-ray tube 3. A processing circuit for controlling the incident X-ray adjusting mechanism 7 and the primary X-ray adjusting mechanism 4 is provided so that the irradiation capability is within a normal operating range. Further, the control unit C controls the tube current of the X-ray tube 3.

上記解析処理装置8は、CPU等で構成されたコンピュータであり、分析器6から送られるエネルギースペクトルをディスプレイに表示すると共に、上記制御部Cに対して上記最大X線取得強度、X線管球3の管電流及びX線照射能力の正常動作範囲などを入力、設定可能となっている。なお、解析処理装置8内の処理回路に上記制御部Cを設けても構わない。
試料ステージ2、X線管球3、1次X線調整機構4、X線検出器5及び入射X線調整機構7は、減圧可能な試料室16に収納され、X線が大気中の雰囲気に吸収されないように測定時には、試料室16内が減圧されるようになっている。
The analysis processing device 8 is a computer composed of a CPU or the like, displays an energy spectrum sent from the analyzer 6 on a display, and gives the maximum X-ray acquisition intensity, X-ray tube to the control unit C. The normal operating range of the tube current 3 and the X-ray irradiation capability 3 can be input and set. Note that the control unit C may be provided in a processing circuit in the analysis processing apparatus 8.
The sample stage 2, the X-ray tube 3, the primary X-ray adjusting mechanism 4, the X-ray detector 5, and the incident X-ray adjusting mechanism 7 are housed in a sample chamber 16 that can be depressurized, and the X-rays are brought into an atmosphere in the atmosphere. During measurement, the inside of the sample chamber 16 is depressurized so as not to be absorbed.

次に、本実施形態のX線分析装置を用いたX線分析方法について説明する。   Next, an X-ray analysis method using the X-ray analysis apparatus of this embodiment will be described.

まず、予め設定した粗測定用のデフォルト条件でX線管球3から1次X線を試料1に照射する。すなわち、予め設定した開口径のX線出射孔10及びX線入射孔13、X線管球3から1次X線を粗測定用の管電流(例えば20μA)で試料1に照射する。そして、試料1から放出される特性X線及び散乱X線をX線検出器5により短時間(例えば2秒間)で検出して、半導体検出素子12で発生した電流パルスを電圧パルスに変換、増幅し、信号として出力する。
次に、X線検出器5からの信号を分析器6でエネルギーごとのX線強度に選別して粗測定でのエネルギースペクトルを生成する。
First, the sample 1 is irradiated with primary X-rays from the X-ray tube 3 under preset default conditions for rough measurement. That is, the primary X-ray is irradiated to the sample 1 with a tube current for rough measurement (for example, 20 μA) from the X-ray emission hole 10, the X-ray incident hole 13, and the X-ray tube 3 having a preset opening diameter. Then, characteristic X-rays and scattered X-rays emitted from the sample 1 are detected by the X-ray detector 5 in a short time (for example, 2 seconds), and a current pulse generated in the semiconductor detection element 12 is converted into a voltage pulse and amplified. And output as a signal.
Next, the signal from the X-ray detector 5 is sorted into X-ray intensity for each energy by the analyzer 6 to generate an energy spectrum in rough measurement.

次に、解析処理装置8を介して得た粗測定のデフォルト条件及び分析器6で得られた粗測定での特性X線及び散乱X線の合計強度に基づいて、制御部Cが、X線検出器5で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ1次X線の強度がX線管球3の1次X線照射能力の正常動作範囲内となる条件を満たすように、1次X線調整機構4により1次X線の強度を調整すると共に、入射X線調整機構7によりX線検出器5に入射される特性X線及び散乱X線の合計強度を調整する。   Next, based on the rough measurement default conditions obtained through the analysis processing device 8 and the total intensity of the characteristic X-rays and scattered X-rays in the rough measurement obtained by the analyzer 6, the control unit C The total intensity of characteristic X-rays and scattered X-rays detected by the detector 5 is almost the maximum X-ray acquisition intensity and the intensity of the primary X-ray is within the normal operating range of the primary X-ray irradiation ability of the X-ray tube 3. The primary X-ray adjusting mechanism 4 adjusts the intensity of the primary X-ray so that the following condition is satisfied, and the incident X-ray adjusting mechanism 7 adjusts the characteristic X-rays and scattered X-rays incident on the X-ray detector 5. Adjust the total strength.

すなわち、粗測定での特性X線及び散乱X線の合計強度に基づいて、上記条件を満たすX線出射孔10の開口径、X線管球3の管電流及びX線入射孔13の開口径の最適条件を算出する。さらに、1次X線調整機構4及び入射X線調整機構7により、出射側コリメータ11及び入射側コリメータ14を移動させ最適条件に該当し選択されたX線出射孔10及びX線入射孔13をそれぞれ所定位置に設置する。さらに、制御部Cにより、算出した管電流にX線管球3を設定する。そして、この最適条件に従って本測定を行う。   That is, based on the total intensity of characteristic X-rays and scattered X-rays in rough measurement, the opening diameter of the X-ray exit hole 10 satisfying the above conditions, the tube current of the X-ray tube 3 and the opening diameter of the X-ray incident hole 13 The optimal condition of is calculated. Furthermore, the primary X-ray adjusting mechanism 4 and the incident X-ray adjusting mechanism 7 are used to move the exit-side collimator 11 and the incident-side collimator 14 so that the X-ray exit hole 10 and the X-ray entrance hole 13 selected according to the optimum conditions are moved. Each is installed at a predetermined position. Further, the control unit C sets the X-ray tube 3 to the calculated tube current. And this measurement is performed according to this optimal condition.

上記最適条件は、粗測定の情報に基づいて、X線検出器5の最大X線取得強度と同等の入射X線強度をできるだけ開口径の小さいX線入射孔13で実現するように算出される。この算出方法は、まず上記デフォルト条件でのX線入射孔13の開口径における入射立体角と、それ以外のX線入射孔13の開口径における入射立体角との比率と粗測定での特性X線及び散乱X線の合計強度から、粗測定用の管電流におけるX線入射孔13毎の入射する特性X線及び散乱X線の合計強度の理論値が以下のように算出される。
×(Ω/Ω
(I:デフォルト条件での特性X線及び散乱X線の合計強度)
(Ω:デフォルト条件での開口径φのX線入射孔13における入射立体角)
(Ω:本測定での開口径φのX線入射孔13における入射立体角)
The optimum condition is calculated based on rough measurement information so as to realize an incident X-ray intensity equivalent to the maximum X-ray acquisition intensity of the X-ray detector 5 with the X-ray incident hole 13 having the smallest possible aperture diameter. . In this calculation method, first, the ratio of the incident solid angle at the aperture diameter of the X-ray incident hole 13 under the default condition to the incident solid angle at the other aperture diameters of the X-ray incident hole 13 and the characteristic X in the rough measurement are used. From the total intensity of the X-rays and scattered X-rays, the theoretical value of the total intensity of the characteristic X-rays and scattered X-rays incident for each X-ray incident hole 13 in the tube current for rough measurement is calculated as follows.
I 0 × (Ω k / Ω 0 )
(I 0 : Total intensity of characteristic X-rays and scattered X-rays under default conditions)
0 : solid angle of incidence at the X-ray incident hole 13 with an aperture diameter of φ 0 under default conditions)
k : solid angle of incidence at the X-ray incident hole 13 having an aperture diameter φ k in this measurement)

さらに、X線管球3の管電流を最大定格で使用したときのX線検出器5に入射される特性X線及び散乱X線の合計強度を算出する。ここで特性X線及び散乱X線の合計強度は管電流に正比例するものとする。この値がX線検出器5の最大X線取得強度を超えている中で、一番開口径の小さいX線入射孔13を本測定用として選択とする。
なお、このX線分析装置における入射立体角Ωは、試料と検出面12aとの距離を一定とすると、X線入射孔13の開口径φ、X線入射孔の厚みh、X線入射孔13と検出面12aとの間隔d及び検出面12aの半径Sを関数として求められる。ここで、X線入射孔13と検出面12aとの間隔d、X線入射孔の厚みh及び検出面12aの半径Sが一定ならば、入射立体角ΩはX線入射孔13の開口径φの関数となる。
Further, the total intensity of characteristic X-rays and scattered X-rays incident on the X-ray detector 5 when the tube current of the X-ray tube 3 is used at the maximum rating is calculated. Here, the total intensity of characteristic X-rays and scattered X-rays is directly proportional to the tube current. While this value exceeds the maximum X-ray acquisition intensity of the X-ray detector 5, the X-ray incident hole 13 having the smallest aperture diameter is selected for the main measurement.
The solid angle of incidence Ω in this X-ray analyzer is, when the distance between the sample and the detection surface 12a is constant, the diameter φ of the X-ray incident hole 13, the thickness h of the X-ray incident hole, the X-ray incident hole 13 The distance d between the detection surface 12a and the radius S of the detection surface 12a are obtained as a function. Here, if the distance d between the X-ray incident hole 13 and the detection surface 12a, the thickness h of the X-ray incident hole, and the radius S of the detection surface 12a are constant, the incident solid angle Ω is the opening diameter φ of the X-ray incident hole 13. Is a function of

各X線入射孔13の開口径がφ〜φ(φ>φ>φ>…>φ)まで設定されている場合、
max≦I×(Ω/Ω)×(imax/i
(Imax:最大X線取得強度)
(I:デフォルト条件での特性X線及び散乱X線の合計強度)
(Ω:デフォルト条件での開口径φのX線入射孔13における入射立体角)
(Ω:本測定での開口径φのX線入射孔13における入射立体角)
(i:デフォルト条件での管電流)
(imax:管電流の最大定格)
を満たす最小開口径φを求める。ここで、入射立体角比率Ω/Ωは、予め計算値が定数で組み込まれている。管電流iは、
max=I×(Ω/Ω)×(i/i
となるように調整される。ここで、X線入射孔13の開口径のうち最大のものでも、開口径を最適化するための上記の条件を満たさない場合は、X線入射孔13は最大口径のものを、管電流は最大定格を使用する。
When the aperture diameter of each X-ray incident hole 13 is set to φ 0 to φ k0 > φ 1 > φ 2 >...> Φ k ),
I max ≦ I 0 × (Ω k / Ω 0 ) × (i max / i 0 )
(I max : Maximum X-ray acquisition intensity)
(I 0 : Total intensity of characteristic X-rays and scattered X-rays under default conditions)
0 : solid angle of incidence at the X-ray incident hole 13 with an aperture diameter of φ 0 under default conditions)
k : solid angle of incidence at the X-ray incident hole 13 having an aperture diameter φ k in this measurement)
(I 0 : tube current under default conditions)
(I max : Maximum rating of tube current)
The minimum opening diameter φ k that satisfies the above is obtained . Here, the calculated value of the incident solid angle ratio Ω k / Ω 0 is previously incorporated as a constant. The tube current i is
I max = I 0 × (Ω k / Ω 0 ) × (i / i 0 )
It is adjusted to become. Here, even if the maximum aperture diameter of the X-ray incident hole 13 does not satisfy the above conditions for optimizing the aperture diameter, the X-ray incident hole 13 is the maximum aperture diameter, and the tube current is Use the maximum rating.

なお、X線検出器5がシリコン・ドリフト検出器(SSD)などの場合、入射する特性X線及び散乱X線の合計強度が同一のとき、X線入射孔13の開口径が小さいほど、特性X線による対象検出元素のピーク強度と散乱X線によるバックグランド強度との割合であるピークバック比が良くなるために、検出下限の向上を図ることができるので、さらに高精度な測定することが可能となる。   When the X-ray detector 5 is a silicon drift detector (SSD) or the like, when the total intensity of the incident characteristic X-ray and the scattered X-ray is the same, the smaller the opening diameter of the X-ray incident hole 13 is, the more the characteristic becomes. Since the peak back ratio, which is the ratio between the peak intensity of the target detection element by X-rays and the background intensity by scattered X-rays, is improved, the detection lower limit can be improved, so that more accurate measurement can be performed. It becomes possible.

具体的には、例えば、X線検出器5の最大X線取得強度が20万cpsであり、X線管球3の正常動作範囲が200〜1000μAであった場合、粗測定のデフォルト条件として一番開口径の大きいX線入射孔13を用いてX線管球3の管電流20μAで10万cpsが得られたとすると、最適なX線入射孔13の開口径は、
20万≦10万×Ω/Ω)×(1000μA/20μA)
を満たすもののうちで最小の開口径のものが選択される。そして、例えば、最小の開口径φとデフォルト条件での開口径φとの入射立体角の比率(Ω/Ω)が0.05だった場合、管電流は、
20万=10万×0.05×(i/20)
から800μAと決定される。
Specifically, for example, when the maximum X-ray acquisition intensity of the X-ray detector 5 is 200,000 cps and the normal operation range of the X-ray tube 3 is 200 to 1000 μA, the default condition for rough measurement is one. Assuming that 100,000 cps is obtained at a tube current of 20 μA of the X-ray tube 3 using the X-ray incident hole 13 having the largest aperture diameter, the optimal aperture diameter of the X-ray incident hole 13 is
200,000 ≦ 100,000 × Ω k / Ω 0 ) × (1000 μA / 20 μA)
Among those satisfying the requirements, the one having the smallest opening diameter is selected. For example, when the ratio of the solid angle of incidence (Ω k / Ω 0 ) between the minimum opening diameter φ k and the opening diameter φ 0 under the default condition is 0.05, the tube current is
200,000 = 100,000 × 0.05 × (i / 20)
To 800 μA.

これにより、本測定では、X線検出器5において最大X線取得強度の20万cpsを得ることができる。なお、最大X線取得強度に一致するように条件を設定することが好ましいが、ほぼ最大X線取得強度と言える最大X線取得強度近傍の値であっても構わない。   Thereby, in this measurement, the maximum X-ray acquisition intensity of 200,000 cps can be obtained in the X-ray detector 5. The condition is preferably set so as to match the maximum X-ray acquisition intensity, but may be a value near the maximum X-ray acquisition intensity that can be said to be approximately the maximum X-ray acquisition intensity.

このように最適条件に設定された本測定において、X線検出器5が得た特性X線及び散乱X線のエネルギー情報を含む信号を分析器6に出力し、さらにこの信号を分析器6で分析され得られたエネルギースペクトルを解析処理装置8に送ることで、エネルギースペクトルが解析処理装置8で表示される。
尚、本測定では所定の測定時間として、十分なエネルギー情報を得るために例えば100秒で測定した。
In this measurement set to the optimum conditions in this way, a signal including characteristic X-ray and scattered X-ray energy information obtained by the X-ray detector 5 is output to the analyzer 6, and this signal is further output by the analyzer 6. By sending the energy spectrum obtained by the analysis to the analysis processing device 8, the energy spectrum is displayed on the analysis processing device 8.
In this measurement, a predetermined measurement time was measured in, for example, 100 seconds in order to obtain sufficient energy information.

本実施形態では、1次X線の強度を調整可能な1次X線調整機構4と、試料1とX線検出器5との間に配設されX線検出器5に入射される特性X線及び散乱X線の合計強度を調整可能な入射X線調整機構7とを備えているので、照射する1次X線の強度と入射される特性X線及び散乱X線の合計強度との両方を調整することで、X線検出器5の最大X線取得強度を考慮しつつX線管球3のX線照射能力を最大限に活かして測定可能になる。したがって、本測定では、放射線照射能力が正常動作範囲内であるので、放射線源の安定した放射線照射を得ることができ、定量分析を安定して行なうことができる。   In the present embodiment, the primary X-ray adjusting mechanism 4 that can adjust the intensity of the primary X-ray and the characteristic X that is disposed between the sample 1 and the X-ray detector 5 and is incident on the X-ray detector 5. Since the incident X-ray adjustment mechanism 7 capable of adjusting the total intensity of the rays and scattered X-rays is provided, both the intensity of primary X-rays to be irradiated and the total intensity of incident characteristic X-rays and scattered X-rays are provided. By adjusting the X, the X-ray irradiation ability of the X-ray tube 3 can be utilized to the maximum while taking into account the maximum X-ray acquisition intensity of the X-ray detector 5. Therefore, in this measurement, since the radiation irradiation capability is within the normal operating range, stable radiation irradiation of the radiation source can be obtained, and quantitative analysis can be performed stably.

具体的には、制御部Cが入射X線調整機構7と管電流調整を含む1次X線調整機構4とを制御し、X線検出器5で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ1次X線の強度がX線管球3の1次X線照射能力の正常動作範囲内となるように設定することで、安定した1次X線照射とX線検出器5での高い特性X線強度とを容易に得ることができる。
特に、入射X線調整機構7として、X線検出器5の検出面12aに対する特性X線及び散乱X線の入射立体角を異なる開口径のX線入射孔13に変更して調整可能な入射側コリメータ14を採用するので、特性X線及び散乱X線の入射立体角に応じてX線検出器5の検出面12aに入射される特性X線が制限されてその強度を容易に調整することができる。
Specifically, the control unit C controls the incident X-ray adjustment mechanism 7 and the primary X-ray adjustment mechanism 4 including tube current adjustment, and the total of characteristic X-rays and scattered X-rays detected by the X-ray detector 5. Stable primary X-ray irradiation by setting the intensity to be the maximum X-ray acquisition intensity and the primary X-ray intensity to be within the normal operating range of the primary X-ray irradiation ability of the X-ray tube 3 And a high characteristic X-ray intensity at the X-ray detector 5 can be easily obtained.
In particular, the incident X-ray adjusting mechanism 7 can be adjusted by changing the incident solid angles of characteristic X-rays and scattered X-rays to the detection surface 12a of the X-ray detector 5 to X-ray incident holes 13 having different aperture diameters. Since the collimator 14 is employed, the characteristic X-rays incident on the detection surface 12a of the X-ray detector 5 are limited according to the solid angle of incidence of the characteristic X-rays and scattered X-rays, and the intensity thereof can be easily adjusted. it can.

次に、本発明に係るX線分析装置及びX線分析方法における第2実施形態について、図4を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, a second embodiment of the X-ray analysis apparatus and the X-ray analysis method according to the present invention will be described below with reference to FIG. Note that, in the following description of the embodiment, the same components described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、入射X線調整機構7が異なる開口径の複数のX線入射孔13のうち条件に合致したものを選択して本測定で使用するのに対し第2実施形態のX線分析装置では、図4に示すように、入射X線調整機構7が、X線入射孔13とX線検出器5の検出面12aとの間隔dを調整可能な位置調整機構21を有している点である。   The difference between the second embodiment and the first embodiment is that, in the first embodiment, the incident X-ray adjusting mechanism 7 selects a plurality of X-ray incident holes 13 having different aperture diameters that meet the conditions. In the X-ray analyzer according to the second embodiment, which is used in this measurement, as shown in FIG. 4, the incident X-ray adjusting mechanism 7 includes an X-ray incident hole 13, a detection surface 12 a of the X-ray detector 5, and the like. It is the point which has the position adjustment mechanism 21 which can adjust the space | interval d.

すなわち、第2実施形態のX線分析装置は、X線入射孔13が形成された入射側コリメータ14をX線検出器5の検出面12aに対して近接又は離間可能に移動させる位置調整機構21を有している。上述したように、このX線分析装置における入射立体角Ωは、試料と検出面12aとの距離を一定とすると、X線入射孔13の開口径φ、X線入射孔13と検出面12aとの間隔d、X線入射孔の厚みh及び検出面12aの半径Sを関数として求められる。したがって、X線入射孔13の開口径φ、X線入射孔の厚みh及び検出面12aの半径Sが一定であれば、入射立体角Ωは、OLE_LINK1X線入射孔13と検出面12aとの間隔dOLE_LINK1の関数となる。   That is, the X-ray analysis apparatus of the second embodiment includes a position adjustment mechanism 21 that moves the incident-side collimator 14 in which the X-ray incident hole 13 is formed so as to be close to or away from the detection surface 12 a of the X-ray detector 5. have. As described above, the incident solid angle Ω in this X-ray analyzer is such that the distance between the sample and the detection surface 12a is constant, the opening diameter φ of the X-ray incident hole 13, the X-ray incident hole 13 and the detection surface 12a. The distance d, the thickness h of the X-ray incident hole, and the radius S of the detection surface 12a are obtained as functions. Therefore, if the aperture diameter φ of the X-ray incident hole 13, the thickness h of the X-ray incident hole, and the radius S of the detection surface 12a are constant, the incident solid angle Ω is the distance between the OLE_LINK1 X-ray incident hole 13 and the detection surface 12a. This is a function of dOLE_LINK1.

この第2実施形態では、第1実施形態と同様にして粗測定により最適条件の入射立体角Ωを求め、この入射立体角Ωに対応するX線入射孔13と検出面12aとの間隔dを算出する。算出した間隔dとなるように制御部Cが位置調整機構21によって入射側コリメータ14を移動させて検出面12aに対するX線入射孔13の位置を設定する。   In this second embodiment, the incident solid angle Ω of the optimum condition is obtained by rough measurement in the same manner as in the first embodiment, and the distance d between the X-ray incident hole 13 and the detection surface 12a corresponding to this incident solid angle Ω is set. calculate. The control unit C moves the incident side collimator 14 by the position adjusting mechanism 21 so as to obtain the calculated interval d, and sets the position of the X-ray incident hole 13 with respect to the detection surface 12a.

このように第2実施形態では、位置調整機構21によりX線入射孔13と検出面12aとの間隔dを変更するので、当該間隔dに応じて1つのX線入射孔13だけであっても連続的に特性X線及び散乱X線の入射立体角Ωを変更することができ、入射する特性X線及び散乱X線の合計強度を高精度に調整することが可能になる。なお、第1実施形態と同様に、開口径の異なる複数のX線入射孔13を任意に選択すれば、位置調整機構21による上記間隔dの調整により、より広い範囲で入射立体角Ωの変更が可能になる。   As described above, in the second embodiment, since the distance d between the X-ray incident hole 13 and the detection surface 12a is changed by the position adjusting mechanism 21, only one X-ray incident hole 13 is provided according to the distance d. The incident solid angle Ω of the characteristic X-rays and scattered X-rays can be changed continuously, and the total intensity of the incident characteristic X-rays and scattered X-rays can be adjusted with high accuracy. As in the first embodiment, if a plurality of X-ray incident holes 13 having different opening diameters are arbitrarily selected, the incident solid angle Ω can be changed in a wider range by adjusting the distance d by the position adjusting mechanism 21. Is possible.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記各実施形態は、エネルギー分散型の蛍光X線分析装置であるが、他の分析方式、例えば波長分散型の蛍光X線分析装置に適用しても構わない。
また、上記各実施形態では、X線源であるX線管球3からのX線を試料に照射する放射線として用いているが、他の放射線、例えば電子線などを照射する放射線として採用しても構わない。
For example, each of the above embodiments is an energy dispersive X-ray fluorescence analyzer, but may be applied to other analysis methods, for example, a wavelength dispersive X-ray fluorescence analyzer.
In each of the above embodiments, X-rays from the X-ray tube 3 as an X-ray source are used as radiation for irradiating the sample, but other radiation, for example, radiation for irradiating an electron beam or the like is used. It doesn't matter.

また、開口径変更機構である入射X線調整機構7として、異なる開口径のX線入射孔13のいずれか一つを選択して変更可能な機構を採用しているが、他の開口径変更機構として、例えば、カメラの絞り機構のように一つのX線入射孔を有し、このX線入射孔の開口径が任意の大きさに変更可能にしたものでも構わない。   Further, as the incident X-ray adjusting mechanism 7 which is an aperture diameter changing mechanism, a mechanism which can select and change any one of the X-ray incident holes 13 having different aperture diameters is adopted. As the mechanism, for example, a single X-ray incident hole such as a diaphragm mechanism of a camera may be used, and the opening diameter of the X-ray incident hole can be changed to an arbitrary size.

本発明に係るX線分析装置及びX線分析方法の第1実施形態において、X線分析装置を示す概略的な全体構成図である。1 is a schematic overall configuration diagram showing an X-ray analyzer in a first embodiment of an X-ray analyzer and an X-ray analysis method according to the present invention. 第1実施形態において、出射側コリメータとX線管球との位置関係を示す説明図である。In 1st Embodiment, it is explanatory drawing which shows the positional relationship of an output side collimator and an X-ray tube. 第1実施形態において、入射側コリメータとX線検出器との位置関係を示す説明図である。In 1st Embodiment, it is explanatory drawing which shows the positional relationship of an incident side collimator and an X-ray detector. 本発明に係るX線分析装置及びX線分析方法の第2実施形態において、X線検出器と入射側コリメータとの位置関係を示す説明図である。In 2nd Embodiment of the X-ray-analysis apparatus and X-ray-analysis method which concern on this invention, it is explanatory drawing which shows the positional relationship of an X-ray detector and an incident side collimator. 立体角についての説明図である。It is explanatory drawing about a solid angle.

符号の説明Explanation of symbols

1…試料、3…X線管球(放射線源)、4…1次X線調整機構(放射線調整機構)、5…X線検出器、6…分析器、7…入射X線調整機構、11…出射側コリメータ、12…半導体検出素子、12a…検出面、13…X線入射孔、14…入射側コリメータ、21…位置調整機構、C…制御部   DESCRIPTION OF SYMBOLS 1 ... Sample, 3 ... X-ray tube (radiation source), 4 ... Primary X-ray adjustment mechanism (radiation adjustment mechanism), 5 ... X-ray detector, 6 ... Analyzer, 7 ... Incident X-ray adjustment mechanism, 11 DESCRIPTION OF SYMBOLS ... Output side collimator, 12 ... Semiconductor detection element, 12a ... Detection surface, 13 ... X-ray entrance hole, 14 ... Incident side collimator, 21 ... Position adjustment mechanism, C ... Control part

Claims (7)

放射線を試料に照射する放射線源と、
前記放射線の強度を調整可能な放射線調整機構と、
前記試料から放出される特性X線及び散乱X線を検出し該特性X線及び散乱X線のエネルギー情報を含む信号を出力するX線検出器と、
前記信号を分析する分析器と、
前記試料と前記X線検出器との間に配設され前記X線検出器に入射される前記特性X線及び散乱X線の合計強度を調整する入射X線調整機構とを備えていることを特徴とするX線分析装置。
A radiation source for irradiating the sample with radiation;
A radiation adjustment mechanism capable of adjusting the intensity of the radiation;
An X-ray detector that detects characteristic X-rays and scattered X-rays emitted from the sample and outputs a signal including energy information of the characteristic X-rays and scattered X-rays;
An analyzer for analyzing the signal;
An incident X-ray adjustment mechanism that is disposed between the sample and the X-ray detector and adjusts the total intensity of the characteristic X-rays and scattered X-rays incident on the X-ray detector; A featured X-ray analyzer.
請求項1に記載のX線分析装置において、
前記X線検出器で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ前記放射線の強度が前記放射線源の放射線照射能力の正常動作範囲内となるように、前記入射X線調整機構及び前記放射線調整機構を制御する制御部を備えていることを特徴とするX線分析装置。
The X-ray analyzer according to claim 1,
The total intensity of characteristic X-rays and scattered X-rays detected by the X-ray detector is approximately the maximum X-ray acquisition intensity, and the intensity of the radiation is within a normal operating range of the radiation irradiation capability of the radiation source. An X-ray analysis apparatus comprising an incident X-ray adjustment mechanism and a control unit that controls the radiation adjustment mechanism.
請求項1又は2に記載のX線分析装置において、
前記X線検出器が、前記特性X線及び散乱X線を入射させる検出面を有し、
前記入射X線調整機構が、前記検出面に対する前記特性X線及び散乱X線の入射立体角を調整可能なコリメータであることを特徴とするX線分析装置。
In the X-ray analyzer according to claim 1 or 2,
The X-ray detector has a detection surface on which the characteristic X-rays and scattered X-rays are incident;
The X-ray analyzer according to claim 1, wherein the incident X-ray adjusting mechanism is a collimator capable of adjusting an incident solid angle of the characteristic X-ray and scattered X-ray with respect to the detection surface.
請求項3に記載のX線分析装置において、
前記入射X線調整機構が、前記特性X線及び散乱X線を通過させ前記検出面に入射させるX線入射孔を有し、異なる開口径の前記X線入射孔に変更可能な開口径変更機構であることを特徴とするX線分析装置。
In the X-ray analyzer according to claim 3,
The incident X-ray adjusting mechanism has an X-ray incident hole that allows the characteristic X-ray and scattered X-ray to pass through and enter the detection surface, and can be changed to the X-ray incident hole having a different opening diameter. An X-ray analyzer characterized by the above.
請求項4に記載のX線分析装置において、
前記開口径変更機構が、互いに異なる開口径の複数の前記X線入射孔を有し、これらの前記X線入射孔のうちいずれか一つを前記検出面と前記試料との間に任意に配置可能であることを特徴とするX線分析装置。
The X-ray analyzer according to claim 4,
The opening diameter changing mechanism has a plurality of the X-ray incident holes having different opening diameters, and any one of the X-ray incident holes is arbitrarily disposed between the detection surface and the sample. An X-ray analyzer characterized by being capable.
請求項3から5のいずれか一項に記載のX線分析装置において、
前記入射X線調整機構が、前記X線入射孔と前記検出面との間隔を調整可能な位置調整機構を有していることを特徴とするX線分析装置。
In the X-ray analyzer according to any one of claims 3 to 5,
The X-ray analyzer according to claim 1, wherein the incident X-ray adjusting mechanism has a position adjusting mechanism capable of adjusting a distance between the X-ray incident hole and the detection surface.
予め設定した粗測定用の放射線の強度で放射線源から放射線を試料に照射するステップと、
前記試料から放出される特性X線及び散乱X線の合計強度である粗測定値をX線検出器で検出するステップと、
前記粗測定用の放射線の強度及び前記粗測定値に基づいて、前記X線検出器で検出する特性X線及び散乱X線の合計強度がほぼ最大X線取得強度でかつ前記放射線の強度が前記放射線源の放射線照射能力の正常動作範囲内となるように、放射線調整機構で前記放射線の強度を調整すると共に前記試料と前記X線検出器との間に配設された入射X線調整機構で前記X線検出器に入射される前記特性X線及び散乱Xの合計強度を調整し、本測定を行うステップと、
前記本測定で前記X線検出器が得た特性X線及び散乱X線のエネルギー情報を含む信号を出力するステップと、
前記信号を分析器で分析するステップと、を有していることを特徴とするX線分析方法。
Irradiating the sample with radiation from a radiation source at a predetermined intensity of radiation for coarse measurement;
Detecting a coarse measurement value, which is a total intensity of characteristic X-rays and scattered X-rays emitted from the sample, with an X-ray detector;
Based on the intensity of the radiation for coarse measurement and the coarse measurement value, the total intensity of characteristic X-rays and scattered X-rays detected by the X-ray detector is almost the maximum X-ray acquisition intensity, and the intensity of the radiation is An incident X-ray adjustment mechanism disposed between the sample and the X-ray detector and adjusting the intensity of the radiation with a radiation adjustment mechanism so that the radiation irradiation capability of the radiation source is within a normal operating range. Adjusting the total intensity of the characteristic X-rays and scattered X incident on the X-ray detector, and performing this measurement;
Outputting a signal including energy information of characteristic X-rays and scattered X-rays obtained by the X-ray detector in the main measurement;
And analyzing the signal with an analyzer.
JP2007331546A 2007-01-23 2007-12-25 X-ray analysis apparatus and x-ray analysis method Pending JP2008203245A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007331546A JP2008203245A (en) 2007-01-23 2007-12-25 X-ray analysis apparatus and x-ray analysis method
US11/972,337 US7587025B2 (en) 2007-01-23 2008-01-10 X-ray analysis apparatus and X-ray analysis method
TW97101234A TW200846657A (en) 2007-01-23 2008-01-11 X-ray analysis apparatus and X-ray analysis method
CN2008100037960A CN101231256B (en) 2007-01-23 2008-01-23 X-ray analysis apparatus and x-ray analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007012620 2007-01-23
JP2007331546A JP2008203245A (en) 2007-01-23 2007-12-25 X-ray analysis apparatus and x-ray analysis method

Publications (1)

Publication Number Publication Date
JP2008203245A true JP2008203245A (en) 2008-09-04

Family

ID=39780895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331546A Pending JP2008203245A (en) 2007-01-23 2007-12-25 X-ray analysis apparatus and x-ray analysis method

Country Status (3)

Country Link
JP (1) JP2008203245A (en)
CN (1) CN101231256B (en)
TW (1) TW200846657A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110023730A (en) * 2009-08-28 2011-03-08 에스아이아이 나노 테크놀로지 가부시키가이샤 X-ray analysis apparatus and x-ray analysis method
JP2014085267A (en) * 2012-10-25 2014-05-12 Shimadzu Corp X-ray analyzer
JP2017173145A (en) * 2016-03-24 2017-09-28 株式会社日立ハイテクサイエンス Device and method for analyzing radiation
JP2019027795A (en) * 2017-07-25 2019-02-21 株式会社日立ハイテクサイエンス Radiation analyzer
JP2019128204A (en) * 2018-01-23 2019-08-01 株式会社日立ビルシステム Non-destructive inspection equipment and non-destructive inspection method
JP2019184609A (en) * 2018-04-13 2019-10-24 マルバーン パナリティカル ビー ヴィ X-ray analysis apparatus and method
JP2021071401A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device
JP2021071400A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device
WO2021256054A1 (en) * 2020-06-19 2021-12-23 株式会社リガク Fluorescent x-ray analysis device, determination method, and determination program
CN114113173A (en) * 2021-11-18 2022-03-01 上海联影医疗科技股份有限公司 X-ray equipment and scattering correction method applied to X-ray equipment

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008048916A1 (en) * 2008-09-26 2010-04-29 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Fast scanning of a target area
DE102011075804B4 (en) * 2011-05-13 2013-09-26 Siemens Aktiengesellschaft Error identification in a computer tomograph
CN103868941A (en) * 2012-12-18 2014-06-18 南京第四分析仪器有限公司 Energy dispersive X-ray fluorescence analysis rapidly judging method
EP3206585B1 (en) * 2014-10-13 2022-09-28 Koninklijke Philips N.V. Detector rotation controlled by x-ray collimation
KR20220116471A (en) * 2016-09-19 2022-08-23 소레크 뉴클리어 리서치 센터 X-ray fluorescence system and method for identifying samples
CN106872502A (en) * 2016-12-28 2017-06-20 中国科学院长春光学精密机械与物理研究所 A kind of EDXRF detection means with light beam adjustment
CN107271463B (en) * 2017-06-16 2020-09-01 重庆大学 CT detection device of nuclear fuel element under radiation state
JP6994755B2 (en) * 2017-09-06 2022-01-14 株式会社日立ハイテクサイエンス Fluorescent X-ray analyzer and fluorescent X-ray analysis method
EP3553507A1 (en) * 2018-04-13 2019-10-16 Malvern Panalytical B.V. X-ray analysis apparatus
CN108593694A (en) * 2018-05-10 2018-09-28 深圳市西凡谨顿科技有限公司 The x-ray fluorescence online test method of increasing material manufacturing

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138656U (en) * 1978-03-20 1979-09-26
JPS58182543A (en) * 1982-03-31 1983-10-25 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Roentgen-ray analyzer
JPS63140950A (en) * 1986-12-03 1988-06-13 Sumitomo Metal Ind Ltd X-ray measuring instrument for plating film
JPH0373834A (en) * 1989-05-16 1991-03-28 Mitsubishi Materials Corp Method and device for analyzing metal
JPH05126998A (en) * 1991-11-01 1993-05-25 Shimadzu Corp Fluorescence x-ray analyzer
JPH0665809U (en) * 1993-02-24 1994-09-16 セイコー電子工業株式会社 X-ray fluorescence film thickness meter
JPH06331575A (en) * 1993-05-26 1994-12-02 Shimadzu Corp Fluorescent x-ray analysis method
JPH08510062A (en) * 1994-03-02 1996-10-22 フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ X-ray analyzer for grazing angle
JPH10239257A (en) * 1997-02-25 1998-09-11 Rigaku Ind Co X-ray analysis device
JP2001343339A (en) * 2000-06-02 2001-12-14 Rigaku Industrial Co X-ray fluorescence analysis method provided with analysis position setting means and device therefor
JP2002214167A (en) * 1998-10-30 2002-07-31 Rigaku Industrial Co Fluorescent x-ray analyzer
JP2004150990A (en) * 2002-10-31 2004-05-27 Ours Tex Kk Fluorescent x-ray analyzer
JP2005195364A (en) * 2003-12-26 2005-07-21 Horiba Ltd X-ray analysis method, x-ray analysis apparatus, and computer program
JP2006132945A (en) * 2004-11-02 2006-05-25 Sii Nanotechnology Inc Detection lower limit monitor of fluorescent x-ray analyzer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87214943U (en) * 1987-11-04 1988-06-08 核工业部大连应用技术研究所 Target changeable type thickness gauge by isotope
JPH05240808A (en) * 1992-02-29 1993-09-21 Horiba Ltd Method for determining fluorescent x rays
CN1707251B (en) * 2005-05-25 2010-09-22 华南理工大学 Detecting apparatus capable of adaptive regulating X-ray source and detecting method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138656U (en) * 1978-03-20 1979-09-26
JPS58182543A (en) * 1982-03-31 1983-10-25 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Roentgen-ray analyzer
JPS63140950A (en) * 1986-12-03 1988-06-13 Sumitomo Metal Ind Ltd X-ray measuring instrument for plating film
JPH0373834A (en) * 1989-05-16 1991-03-28 Mitsubishi Materials Corp Method and device for analyzing metal
JPH05126998A (en) * 1991-11-01 1993-05-25 Shimadzu Corp Fluorescence x-ray analyzer
JPH0665809U (en) * 1993-02-24 1994-09-16 セイコー電子工業株式会社 X-ray fluorescence film thickness meter
JPH06331575A (en) * 1993-05-26 1994-12-02 Shimadzu Corp Fluorescent x-ray analysis method
JPH08510062A (en) * 1994-03-02 1996-10-22 フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ X-ray analyzer for grazing angle
JPH10239257A (en) * 1997-02-25 1998-09-11 Rigaku Ind Co X-ray analysis device
JP2002214167A (en) * 1998-10-30 2002-07-31 Rigaku Industrial Co Fluorescent x-ray analyzer
JP2001343339A (en) * 2000-06-02 2001-12-14 Rigaku Industrial Co X-ray fluorescence analysis method provided with analysis position setting means and device therefor
JP2004150990A (en) * 2002-10-31 2004-05-27 Ours Tex Kk Fluorescent x-ray analyzer
JP2005195364A (en) * 2003-12-26 2005-07-21 Horiba Ltd X-ray analysis method, x-ray analysis apparatus, and computer program
JP2006132945A (en) * 2004-11-02 2006-05-25 Sii Nanotechnology Inc Detection lower limit monitor of fluorescent x-ray analyzer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047898A (en) * 2009-08-28 2011-03-10 Sii Nanotechnology Inc X-ray analysis apparatus and x-ray analysis method
KR101667053B1 (en) 2009-08-28 2016-10-17 가부시키가이샤 히타치 하이테크 사이언스 X-ray analysis apparatus and x-ray analysis method
KR20110023730A (en) * 2009-08-28 2011-03-08 에스아이아이 나노 테크놀로지 가부시키가이샤 X-ray analysis apparatus and x-ray analysis method
JP2014085267A (en) * 2012-10-25 2014-05-12 Shimadzu Corp X-ray analyzer
US10801977B2 (en) 2016-03-24 2020-10-13 Hitachi High-Tech Science Corporation Radiation analyzing apparatus and radiation analyzing method
JP2017173145A (en) * 2016-03-24 2017-09-28 株式会社日立ハイテクサイエンス Device and method for analyzing radiation
JP2019027795A (en) * 2017-07-25 2019-02-21 株式会社日立ハイテクサイエンス Radiation analyzer
JP6998034B2 (en) 2017-07-25 2022-01-18 株式会社日立ハイテクサイエンス Radiation analyzer
JP7009230B2 (en) 2018-01-23 2022-01-25 株式会社日立ビルシステム Non-destructive inspection equipment and non-destructive inspection method
JP2019128204A (en) * 2018-01-23 2019-08-01 株式会社日立ビルシステム Non-destructive inspection equipment and non-destructive inspection method
JP2019184609A (en) * 2018-04-13 2019-10-24 マルバーン パナリティカル ビー ヴィ X-ray analysis apparatus and method
JP7398875B2 (en) 2018-04-13 2023-12-15 マルバーン パナリティカル ビー ヴィ X-ray analyzer and method
JP2021071401A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device
JP2021071400A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device
WO2021256054A1 (en) * 2020-06-19 2021-12-23 株式会社リガク Fluorescent x-ray analysis device, determination method, and determination program
JP2022000616A (en) * 2020-06-19 2022-01-04 株式会社リガク X-ray fluorescence spectrometer, determination method, and determination program
JP6990460B2 (en) 2020-06-19 2022-01-12 株式会社リガク X-ray fluorescence analyzer, judgment method and judgment program
CN115038959A (en) * 2020-06-19 2022-09-09 株式会社理学 Fluorescent X-ray analysis device, determination method, and determination program
CN115038959B (en) * 2020-06-19 2023-09-26 株式会社理学 Fluorescent X-ray analysis device, determination method, and determination program
CN114113173A (en) * 2021-11-18 2022-03-01 上海联影医疗科技股份有限公司 X-ray equipment and scattering correction method applied to X-ray equipment

Also Published As

Publication number Publication date
TW200846657A (en) 2008-12-01
CN101231256A (en) 2008-07-30
CN101231256B (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP2008203245A (en) X-ray analysis apparatus and x-ray analysis method
US7587025B2 (en) X-ray analysis apparatus and X-ray analysis method
JP5269521B2 (en) X-ray analyzer and X-ray analysis method
US7634054B2 (en) X-ray tube and X-ray analysis apparatus
JP6155123B2 (en) Spectroscopy using synthesized spectral data
US9791392B2 (en) X-ray fluorescence analyzer and measurement position adjusting method therefore
JP2013096750A (en) X-ray spectral detection device
JP5159068B2 (en) Total reflection X-ray fluorescence analyzer
US10948436B2 (en) Wavelength dispersive X-ray fluorescence spectrometer
WO2018020565A1 (en) Substitution site measuring device and substitution site measuring method
JP2002189004A (en) X-ray analyzer
CN109459458A (en) Fluorescent x-ray analyzer and fluorescent x-ray analysis method
JP2019109201A (en) Fluorescent x-ray analysis device and analysis method
US20240044821A1 (en) Combined xrf analysis device
JP5135601B2 (en) X-ray tube and X-ray analyzer
JP2009002795A (en) Fluorescent x-ray analyzer
JP2014196925A (en) Fluorescent x-ray analyzer, and depth direction analysis method used for the same
JP4349146B2 (en) X-ray analyzer
WO2015079535A1 (en) X-ray analysis device and x-ray analysis method
CN115038959B (en) Fluorescent X-ray analysis device, determination method, and determination program
JP5646147B2 (en) Method and apparatus for measuring a two-dimensional distribution
JP7126928B2 (en) Surface analysis device and surface analysis method
JP2003004676A (en) Electronic spectroscope and method for adjusting position lens axis in electronic spectroscope
JPH03148089A (en) Detector of total-reflection fluorescence x-ray analyzing apparatus
JP2005127731A (en) X-ray analysis apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402