JP2008203045A - Method for estimating drying rate of coating layer on base material, and method for acquiring drying rate distribution of coating layer on base material - Google Patents
Method for estimating drying rate of coating layer on base material, and method for acquiring drying rate distribution of coating layer on base material Download PDFInfo
- Publication number
- JP2008203045A JP2008203045A JP2007038495A JP2007038495A JP2008203045A JP 2008203045 A JP2008203045 A JP 2008203045A JP 2007038495 A JP2007038495 A JP 2007038495A JP 2007038495 A JP2007038495 A JP 2007038495A JP 2008203045 A JP2008203045 A JP 2008203045A
- Authority
- JP
- Japan
- Prior art keywords
- coating layer
- substrate
- drying
- temperature
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- NMDFDIKHTANODA-BQBZGAKWSA-N CC[C@H](C)C[C@H](C)N=O Chemical compound CC[C@H](C)C[C@H](C)N=O NMDFDIKHTANODA-BQBZGAKWSA-N 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
本発明は、基材上の塗布層の乾燥速度推定方法、及び、基材上の塗布層の乾燥速度分布を得る方法に関するものである。 The present invention relates to a method for estimating the drying rate of a coating layer on a substrate and a method for obtaining a drying rate distribution of a coating layer on a substrate.
従来から、基材上の塗布層の乾燥速度測定法として、質量変化を用いる方法(例えば、下記非特許文献1)と、塗布層(膜)の組成を分析する方法(例えば、下記非特許文献2)とが公知となっている。しかし、非特許文献1のものは、湿り厚み400μm以下,熱風風速3m以上に対する適用例はなく、現在の実用的な乾燥条件から大きく隔たっている場合がある。また、非特許文献2のものは、測定精度に著しく劣る場合があった。これらの欠点を克服する目的で最近、基板及び塗布層の表面温度変化を利用する技術が提案された(例えば、下記非特許文献3)。
基板及び塗布層の表面温度変化を利用した上記非特許文献3のものは、塗布層内の湿り成分の蒸発エンタルピーの温度依存性と、塗布層内の蒸発蒸気の顕熱とを考慮しておらず、湿り成分が単独でも有機溶剤の場合や熱風温度が373Kを大きく超える場合に対して適用することは不適当だと考えられる。
The
そこで、本発明の目的は、塗布層内の湿り成分が単独でも有機溶剤の場合や熱風温度が373Kを大きく超える場合に対して適用できる基材上の塗布層の乾燥速度推定方法と、この推定方法から得られたデータを用いて乾燥速度分布を得る方法とを提供することである。 Therefore, an object of the present invention is to provide a method for estimating the drying rate of a coating layer on a substrate, which can be applied to a case where the wet component in the coating layer alone is an organic solvent or a case where the hot air temperature greatly exceeds 373 K, and this estimation. A method for obtaining a drying rate distribution using data obtained from the method.
[1] 本発明における基材上の塗布層の乾燥速度推定方法は、基材と、前記基材の表面に塗布した塗布層と、前記基材の裏面に設けられた断熱材とを備えている部材における前記塗布層の表面に、下記(a1)又は下記(a2)を行った場合に、下記式(1)〜(3)のパラメータにそれぞれ対応した値を代入する工程と、下記式(1)で得た塗布層表面の境膜伝熱係数hsを下記式(2)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、下記式(1)で得た塗布層表面の境膜伝熱係数hsを下記式(3)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、前記ww1及び前記Δwwを下記式(4)に適用して、前記塗布層の乾燥速度を推定する工程とを有している。
(a1)熱風加熱
(a2)放射加熱、誘導加熱、又は通電加熱のいずれか1つ以上と、熱風加熱
(A 1 ) Hot air heating (a 2 ) One or more of radiant heating, induction heating, or current heating, and hot air heating
上記構成によれば、塗布層内の湿り成分が単独でも有機溶剤の場合や熱風温度が373Kを大きく超える場合においても、基材と、前記基材の表面に塗布した塗布層と、前記基材の裏面に設けられた断熱材とを備えている部材における前記塗布層の表面に、上記(a1)又は上記(a2)を行った際の、基材上の塗布層の乾燥速度を推定できる。 According to the above configuration, even when the wet component in the coating layer is an organic solvent alone or when the hot air temperature greatly exceeds 373K, the substrate, the coating layer coated on the surface of the substrate, and the substrate The drying rate of the coating layer on the base material when the above (a 1 ) or (a 2 ) is performed on the surface of the coating layer in a member provided with a heat insulating material provided on the back surface of the substrate is estimated. it can.
[2] 本発明における基材上の塗布層の乾燥速度推定方法は、基材と、前記基材の表面に塗布した塗布層と、前記基材の裏面に設けられた伝熱材とを備えている部材における前記塗布層の表面に、下記(b1)又は下記(b2)を行った場合に、下記式(5)〜(7)のパラメータにそれぞれ対応した値を代入する工程と、下記式(5)で得た塗布層表面の境膜伝熱係数hsを下記式(6)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、下記式(5)で得た塗布層表面の境膜伝熱係数hsを下記式(7)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、前記ww1及び前記Δwwを下記式(8)に適用して、前記塗布層の乾燥速度を推定する工程とを有している。
(b1)熱風加熱
(b2)放射加熱、誘導加熱、又は通電加熱のいずれか1つ以上と、熱風加熱
(B 1 ) Hot air heating (b 2 ) Any one or more of radiant heating, induction heating, or current heating, and hot air heating
上記構成によれば、塗布層内の湿り成分が単独でも有機溶剤の場合や熱風温度が373Kを大きく超える場合においても、基材と、前記基材の表面に塗布した塗布層と、前記基材の裏面に設けられた伝熱材とを備えている部材における前記塗布層の表面に、上記(b1)又は上記(b2)を行った際の、基材上の塗布層の乾燥速度を推定できる。 According to the above configuration, even when the wet component in the coating layer is an organic solvent alone or when the hot air temperature greatly exceeds 373K, the substrate, the coating layer coated on the surface of the substrate, and the substrate The drying speed of the coating layer on the substrate when the above (b 1 ) or (b 2 ) is performed on the surface of the coating layer in the member provided with the heat transfer material provided on the back surface of Can be estimated.
[3] 本発明における基材上の塗布層の乾燥速度推定方法は、基材と、前記基材の表面に塗布した塗布層とを備え、前記基材の裏面が大気と接触している部材における前記塗布層の表面及び前記基材の裏面に熱風加熱を行った場合に、下記式(9)〜(11)のパラメータにそれぞれ対応した値を代入する工程と、下記式(9)で得た塗布層表面の境膜伝熱係数hsを下記式(10)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、下記式(9)で得た塗布層表面の境膜伝熱係数hsを下記式(11)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、前記ww1及び前記Δwwを下記式(12)に適用して、前記塗布層の乾燥速度を推定する工程とを有している。
上記構成によれば、塗布層内の湿り成分が単独でも有機溶剤の場合や熱風温度が373Kを大きく超える場合においても、基材と、前記基材の表面に塗布した塗布層とを備え、前記基材の裏面が大気と接触している部材における前記塗布層の表面及び前記基材の裏面に熱風加熱を行った際の、基材上の塗布層の乾燥速度を推定できる。 According to the above configuration, even when the wet component in the coating layer is an organic solvent alone or when the hot air temperature greatly exceeds 373K, the substrate and the coating layer coated on the surface of the substrate are provided, It is possible to estimate the drying rate of the coating layer on the substrate when hot air heating is performed on the surface of the coating layer and the back surface of the substrate in the member whose back surface of the substrate is in contact with the atmosphere.
[4] 本発明における基材上の塗布層の乾燥速度推定方法は、基材と、前記基材の表面に塗布した塗布層とを備え、前記基材の裏面が大気と接触している部材における前記塗布層の表面及び前記基材の裏面に、下記(c1)又は下記(c2)を行った場合に、下記式(13)〜(15)のパラメータにそれぞれ対応した値を代入する工程と、下記式(13)で得た塗布層表面の境膜伝熱係数hsを下記式(14)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、下記式(13)で得た塗布層表面の境膜伝熱係数hsを下記式(15)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、前記ww1及び前記Δwwを下記式(16)に適用して、前記塗布層の乾燥速度を推定する工程とを有している。
(c1)熱風加熱
(c2)放射加熱、誘導加熱、又は通電加熱のいずれか1つ以上と、熱風加熱
(C 1 ) Hot air heating (c 2 ) Any one or more of radiant heating, induction heating, or current heating, and hot air heating
上記構成によれば、塗布層内の湿り成分が単独でも有機溶剤の場合や熱風温度が373Kを大きく超える場合において、基材と、前記基材の表面に塗布した塗布層とを備え、前記基材の裏面が大気と接触している部材における前記塗布層の表面及び前記基材の裏面に、下記(c1)又は下記(c2)を行った際の、基材上の塗布層の乾燥速度を推定できる。 According to the above configuration, when the wet component in the coating layer is an organic solvent alone or when the hot air temperature greatly exceeds 373 K, the substrate includes a coating layer coated on the surface of the substrate, and the base Drying of the coating layer on the substrate when the following (c 1 ) or the following (c 2 ) is performed on the surface of the coating layer and the back surface of the substrate in the member whose back surface of the material is in contact with the atmosphere Speed can be estimated.
また、上記[1]〜[4]の基材上の塗布層の乾燥速度推定方法においては、(i)塗布層内の湿り成分が複数の場合、(ii)熱風温度などの外部乾燥条件が一定又はステップ的に複数回変化する場合、(iii)回分式(塗布層を表面に形成した基材が静止しているような場合)又は連続方式(例えば、塗布層を表面に形成した複数の基材が、順次、製造工程で流れるように搬送されているような場合)でも、各式におけるパラメータを測定又は計算などより求め、各式に適用することで、基材上の塗布層の乾燥速度を従来と同様若しくはより高い精度で推定することができる。また、厚さが薄い基材を用いていても厚い基材を用いていても、上記[1]〜[4]の基材上の塗布層の乾燥速度推定方法は適用可能である。また、上記非特許文献1〜3では、乾燥所要時間20分以上の系に対する検討に限られていたが、上記[1]〜[4]の基材上の塗布層の乾燥速度推定方法によると、5分以下の短い乾燥所要時間を有する場合に対して適用できるので、有用である。
Further, in the method for estimating the drying rate of the coating layer on the substrate of [1] to [4] above, (ii) when there are a plurality of wet components in the coating layer, (ii) external drying conditions such as hot air temperature are When changing a plurality of times in a constant or stepwise manner, (iii) batch type (when the substrate having the coating layer formed on the surface is stationary) or continuous method (for example, a plurality of coating layers having the coating layer formed on the surface) Even when the base material is sequentially conveyed so as to flow in the manufacturing process), the parameters in each formula are obtained by measurement or calculation, and applied to each formula, thereby drying the coating layer on the base material. The speed can be estimated with the same or higher accuracy as before. Moreover, even if it uses the thin base material or the thick base material, the drying rate estimation method of the coating layer on the base material of said [1]-[4] is applicable. Moreover, in the said nonpatent literature 1-3, although it was limited to examination with respect to the system of drying required
なお、本明細書中においては、R:乾燥速度(kg−water/(m2−material・s)、A:塗布層の表面積(m2)、tF:乾燥終了時間(s)、ww:塗布層内の水分の質量(kg)、ww0:塗布層内の初期の水分の質量(kg)、wwF:塗布層内の乾燥終了後の水分の質量(kg)、wd:乾き塗布層の質量(kg)、wb:基材の質量(kg)、Tas:塗布層表面における熱風の温度(K)、Ts:塗布層の表面温度(K)、Ts0:塗布層の初期表面温度(K)、TsF:塗布層の乾燥終了後の表面温度(K)、Tr:伝熱材の上面温度(K)、TrF:乾燥終了後の伝熱材の上面温度(K)、Tab:基材裏面における熱風の温度(K)、Tb:基材の裏面温度(K)、TbF:乾燥終了後の基材の裏面温度(K)、Tm=(Ts+Tb)/2:基材と塗布層との平均温度(K)、Tm0:基材と塗布層との初期平均温度(K)、TmF:基材と塗布層との乾燥終了後の平均温度(K)、cw:水(液)の定圧比熱容量(J/(kg・K))、cGw:水(蒸気)の定圧比熱容量(J/(kg・K))、cd:乾いた塗布層の比熱容量(J/(kg・K))、cb:基材の比熱容量(J/(kg・K))、hs:塗布層表面の境膜伝熱係数、hb:基材裏面の境膜伝熱係数、hr:基材と伝熱材との接触抵抗に由来する伝熱係数、Δhw0:Ts0での水(液)の蒸発エンタルピー、Q:放射加熱、誘導加熱、又は通電加熱による発生エネルギー、である。 In the present specification, R: drying rate (kg-water / (m 2 -material · s), A: surface area of coating layer (m 2 ), t F : drying end time (s), w w : Mass of moisture in the coating layer (kg), w w0 : mass of initial moisture in the coating layer (kg), w wF : mass of moisture after completion of drying in the coating layer (kg), w d : dry Mass of coating layer (kg), w b : Mass of base material (kg), T as : Temperature of hot air on coating layer surface (K), T s : Surface temperature of coating layer (K), T s0 : Coating layer Initial surface temperature (K), T sF : surface temperature after completion of drying of coating layer (K), T r : upper surface temperature of heat transfer material (K), T rF : upper surface temperature of heat transfer material after completion of drying (K), T ab: temperature of hot air in the substrate rear surface (K), T b: the back surface temperature of the substrate (K), T bF: behind the drying after the end of the substrate Temperature (K), T m = ( T s + T b) / 2: average temperature of the substrate and the coating layer (K), T m0: initial average temperature of the substrate and the coating layer (K), T mF: Average temperature (K) after completion of drying of substrate and coating layer, c w : constant pressure specific heat capacity of water (liquid) (J / (kg · K)), c Gw : constant pressure specific heat capacity of water (steam) ( J / (kg · K)), c d : specific heat capacity of dried coating layer (J / (kg · K)), c b : specific heat capacity of substrate (J / (kg · K)), h s : The film heat transfer coefficient on the surface of the coating layer, h b : the film heat transfer coefficient on the back surface of the base material, h r : the heat transfer coefficient derived from the contact resistance between the base material and the heat transfer material, Δh w0 : at T s0 Evaporation enthalpy of water (liquid), Q: Energy generated by radiant heating, induction heating, or current heating.
[5] 本発明の基材上の塗布層の乾燥速度分布を得る方法は、前記塗布層の表面全体において、請求項1〜4のいずれか1項に記載の塗布層の乾燥速度推定方法を用いて乾燥速度を推定する乾燥速度推定工程と、前記乾燥速度推定工程で得られた乾燥速度から前記塗布層の乾燥速度分布を得る工程とを有している。
[5] The method for obtaining the drying rate distribution of the coating layer on the substrate of the present invention is the method for estimating the drying rate of the coating layer according to any one of
上記構成によれば、従来に比べ精度が高く且つ容易に、基材上の塗布層の乾燥速度分布を得ることができる。 According to the above configuration, it is possible to obtain the drying rate distribution of the coating layer on the substrate with higher accuracy and more easily than in the past.
また、本発明のプログラムは、上記[1]〜[4]の方法又は上記[5]の方法をコンピュータに実行させることができるものである。また、本発明の記録媒体は、この本発明のプログラムのいずれかを記憶しているものである。 In addition, the program of the present invention can cause a computer to execute the methods [1] to [4] or the method [5]. The recording medium of the present invention stores any of the programs of the present invention.
<第1実施形態>
次に、本発明の第1実施形態について説明する。
<First Embodiment>
Next, a first embodiment of the present invention will be described.
図1は、基材1と、基材1の表面に塗布した塗布層2と、基材1の裏面に設けられた断熱材3とを備えている部材における塗布層2の表面に、熱風加熱を行い、放射温度計4で塗布層2の表面の温度を計測している状態を示す概念図である。なお、熱風に赤外線やマイクロ波や高周波などの放射伝熱や金属基材に対する誘導加熱や通電加熱が併用される場合も多いので、これら内部加熱を併用した片面熱風乾燥において基材裏面が完全断熱されている場合を考える。
FIG. 1 shows hot air heating on the surface of a
基材1は、厚さが薄い高分子フィルム、紙、ガラス板、金属板等であり、塗布層2は、1種以上の成分を含む水溶液である。塗布層2を表面に有する基材1を湿り材料と呼ぶこともある。断熱材3は、基材1の裏面を断熱しているが、完全に断熱することはできない。しかし、本実施形態では、完全断熱しているものとして扱う。
The
(本実施形態に係る基材上の塗布層の乾燥速度推定方法における原理)
薄い基材や熱伝導度の大きな基材上の塗布層では内部加熱が併用されても、厚み数mmの薄層においては内部加熱を併用しないときに限って材料温度一様の仮定が近似的に成立する(上記非特許文献3)。図1の塗布層2におけるエネルギー収支を下記式(17)に示す。塗布層の初期表面温度TS0における液状水と固体のもつエンタルピーとを基準として示し、蒸発エンタルピーの温度依存性を考慮した。また、蒸発水蒸気が熱風温度まで上昇する場合を考えた。湿り物質が水の場合、蒸発水蒸気の温度上昇に要するエネルギーは無視されることが多いが、有機溶剤の蒸発エンタルピーは、水の約1/3である。このことから、水の場合でも熱風温度が373Kを大きく越える場合や、湿り物質が有機溶剤の場合、蒸発蒸気の温度上昇に要するエネルギーを考慮すべきである。
(Principle in the method for estimating the drying rate of the coating layer on the substrate according to this embodiment)
Even if internal heating is used in combination with a thin substrate or a substrate with high thermal conductivity, the assumption of uniform material temperature is approximated only when internal heating is not used in a thin layer with a thickness of several millimeters. (Non-Patent Document 3). The energy balance in the
ここで、cw、cGwは液状水、水蒸気の定圧比熱容量であり、273K−373K間の平均値はそれぞれ4.18×103(J/(kg・K))、1.88×103(J/(kg・K))である(後述の変形例や他の実施形態などでも同様。)。Tasは熱風温度であり一定値とする。Tsは塗布層表面温度であり、塗布層の表面温度と基材の裏面温度との平均温度Tm=Tsと近似している。Δhw0はTs0での水の蒸発エンタルピーであり、Δhw0=3.177×106−2.47×103Ts0(J/kg−water)で表わされる(後述の第1実施形態の変形例でも同様。)。乾き材料質量基準平均含水率xm=ww/wdである。そして、塗布層2の乾燥終了後には、上記式(17)は、下記式(18)となる。
Here, c w and c Gw are constant-pressure specific heat capacities of liquid water and water vapor, and the average values between 273K and 373K are 4.18 × 10 3 (J / (kg · K)) and 1.88 × 10 respectively. 3 (J / (kg · K)) (the same applies to modifications and other embodiments described later). T as is the hot air temperature and is a constant value. T s is the surface temperature of the coating layer, and approximates the average temperature T m = T s between the surface temperature of the coating layer and the back surface temperature of the substrate. Δh w0 is the enthalpy of water evaporation at T s0 , and is represented by Δh w0 = 3.177 × 10 6 −2.47 × 10 3 T s0 (J / kg-water) (in the first embodiment described later) The same applies to the modified example.) A dry material mass average moisture content x m = w w / w d . Then, after the drying of the
ここで、QF、TsFは乾燥終了後の発生エネルギー、塗布層表面温度である。しかし、特に厚い基材や熱伝導度の悪い基材を使用した場合には、実験開始からしばらくの間は基材内での温度分布が一様ではない。t=0からt1までを一様ではない期間、それ以後を一様の期間とした場合、前者の期間のエンタルピー収支を表す下記式(19)は、上記式(17)をt=0からt1まで積分して得られる。 Here, Q F and T sF are the generated energy after the completion of drying and the coating layer surface temperature. However, when a thick substrate or a substrate with poor thermal conductivity is used, the temperature distribution in the substrate is not uniform for a while from the start of the experiment. t = 0 from the period not uniform up to t 1, when the subsequent it uniform period, the following formula representing the enthalpy balance of the former period (19), the above equation (17) from t = 0 obtained by integrating up to t 1.
ここでww0とww1はそれぞれ乾燥開始時とt=t1での水分質量である。一方、t=t1以降の期間のエンタルピー収支は、上記式(17)をt=t1からtFまで積分して得られた下記式(20)で与えられる。 Here, w w0 and w w1 are the moisture masses at the start of drying and at t = t 1 , respectively. On the other hand, the enthalpy balance of t = t 1 after the time period is given by the formula (17) was obtained by the integration from t = t 1 to t F the following formula (20).
ここでwwFは乾燥終了時の水分質量である。全乾燥期間のエンタルピー収支は上記式(18)と上記式(19)との和で与えられる。そして、上記式(18)を変形して得た下記式(2)および上記式(17)を変形して得た下記式(3)と、下記式(4)と、0≧t≧tFのデータとを用いて、t1≧t≧tFの乾燥速度が得られる。ただし、後述するが、hsを求める必要がある。なお、0≧t≧tFのデータとは、具体的には、以下のようにして求めたデータである。すなわち、ww1にΔwwを加えて、t+Δt秒後のww及びRを得る。そして、この得られたwwを用いてさらに次のΔt秒間のΔwwを得る。これをt+Δtのwwに加えることによって、t+2Δt秒後のww及びRを得る。これを繰り返して、0≧t≧tFのデータは求められる。以下の実施形態や変形例においても同様である。 Here, w wF is the moisture mass at the end of drying. The enthalpy balance of the entire drying period is given by the sum of the above formula (18) and the above formula (19). The following equation (2) obtained by modifying the above equation (18), the following equation (3) obtained by modifying the above equation (17), the following equation (4), and 0 ≧ t ≧ t F And a drying rate of t 1 ≧ t ≧ t F is obtained. However, as will be described later, h s needs to be obtained. Note that the data of 0 ≧ t ≧ t F is specifically data obtained as follows. That is, Δw w is added to w w1 to obtain w w and R after t + Δt seconds. Then, using this obtained w w , Δw w for the next Δt seconds is obtained. By adding this to the w w of t + Δt, w w and R after t + 2Δt seconds are obtained. By repeating this, data of 0 ≧ t ≧ t F is obtained. The same applies to the following embodiments and modifications.
なお、基材1と塗布層2との平均温度が熱風条件の湿球温度以下になる高湿度条件下以外では、Δw<0でなければならない。上記式(1)〜(4)及び(17)〜(20)は、上記非特許文献3の技術に、内部加熱効果と蒸発エンタルピーの温度依存性と蒸発蒸気の顕熱の効果とを加えた場合に対応している。また、熱風温度Tasには、乾燥実験終了後にQF=0として定常材料温度T*sFを実測し、この値を充てる。これは、乾燥実験終了後の熱風温度と乾き材料温度の測定誤差とが熱風から材料への伝熱速度となり、乾燥速度の測定精度低下の原因となるため、それを防止するための工夫である。この点を考慮して、上記式(18)〜(20)からhsを求める下記式(1)が得られる。そして、hs、ww1、Δwwを適用して、上記式(4)から乾燥速度Rを得る。
Note that Δw <0 must be satisfied except in a high humidity condition where the average temperature of the
なお、初期温度分布が一様で厚みがLの平板の片面表面温度を、t=0でステップ的に上昇させ一定値を保った場合、平板平均温度が上昇温度分の95%にまで上昇するに要する時間t’1は、内部加熱がないとき、1.21L2/αで与えられる(Crank、 J; The Mathematics of Diffusion、 p.59、 Oxford University Press、 England 1975)。ここで、αは平板の熱拡散率である。したがって、塗布層と基材との温度一様の仮定が成立しない乾燥期間t1=t’1として近似する。内部加熱効果は一様温度化を促進させるので、この近似は安全側である。 In addition, when the initial temperature distribution is uniform and the single-sided surface temperature of a flat plate having a thickness L is increased stepwise at t = 0 and kept constant, the flat plate average temperature increases to 95% of the rising temperature. The time t ′ 1 required for is given by 1.21 L 2 / α in the absence of internal heating (Crank, J; The Mathematics of Diffusion, p. 59, Oxford University Press, England 1975). Here, α is the thermal diffusivity of the flat plate. Therefore, it is approximated as a drying period t 1 = t ′ 1 where the assumption of uniform temperature between the coating layer and the substrate is not established. This approximation is safe because the internal heating effect promotes uniform temperature.
(本実施形態における装置の構成)
次に、本発明の第1実施形態に係る基材上の塗布層の乾燥速度推定及び基材上の塗布層の乾燥速度分布を得る方法を実行する装置の構成について説明する。図2は、本発明の第1実施形態に係る基材上の塗布層の乾燥速度推定及び基材上の塗布層の乾燥速度分布を得る方法を実行する装置(コンピュータ)のハードウェアの構成を示すブロック図である。図3は、本実施形態に係る基材上の塗布層の乾燥速度推定処理のフローチャートである。
(Configuration of apparatus in this embodiment)
Next, the configuration of an apparatus for executing the method for obtaining the drying rate estimation of the coating layer on the substrate and the drying rate distribution of the coating layer on the substrate according to the first embodiment of the present invention will be described. FIG. 2 shows the hardware configuration of an apparatus (computer) that executes the method for estimating the drying rate of the coating layer on the substrate and obtaining the drying rate distribution of the coating layer on the substrate according to the first embodiment of the present invention. FIG. FIG. 3 is a flowchart of the drying rate estimation process for the coating layer on the substrate according to the present embodiment.
図1に示すように、コンピュータ100は、本体110と、入力装置であるキーボード111と、モニターなどの表示部112とを有しており、ネットワーク109と接続されている。
As shown in FIG. 1, the
本体110は、予め設定されたプログラムに従って制御動作を行うCPU101と、各部などへ送信するための各種制御指令(コマンド)等が格納されているROM102と、CPU101によってROM102又は後述する記憶及び読取部107から呼び出されて各種コマンドなどがセットされるRAM103と、各部を通信可能に接続するシステムバス104と、キーボード111のインターフェースを制御するキーボードコントローラ(KBC)105と、表示部112のインターフェースを制御する表示部112のコントローラ106と、データを記憶できるとともに、記憶したデータを読取れる記憶及び読取部107と、ネットワーク109との接続のためのネットワークインターフェースコントローラ(NIC)108とを有している。
The
ネットワーク109には、図1の放射温度計4の計測値を送信できる制御装置(図示せず)などが接続されており、放射温度計の計測値を記憶及び読取部107に記憶させたり、表示部112に表示したりすることができるようになっている。
A control device (not shown) that can transmit the measurement value of the
記憶及び読取部107は、例えば、ハードディスクドライブであり、図3に示すフローチャートの処理を実行するプログラムなどがインストールされている。実行時には、RAM103にロードされ、CPU101の制御によって実行される。なお、記憶及び読取部107には、図示していないが、さらに、磁気式ドライブや光学式ドライブなどの他のデバイスが接続されていてもよく、図3に示すフローチャートの処理を実行するプログラムなどが記憶された記録媒体(フロッピー(登録商標)ディスクやCD−ROMなど)からデータを読み取って、記憶及び読取部107にインストールするような構成であってもよい。
The storage and
次に、図3に示すフローチャートの処理について説明する。まず、上記式(1)〜(3)において必要なパラメータの値を入力する(ステップS1)。なお、予め記憶及び読取部107に記録されていた値や、直前に測定された値が自動的に入力されるものであるが、これはキーボード111からの手動入力であってもよい。また、必要なパラメータの値は、上記各非特許文献に記載されている方法や、すでに公知の方法で得ることができる。
Next, the process of the flowchart shown in FIG. 3 will be described. First, necessary parameter values in the above formulas (1) to (3) are input (step S1). Note that the values recorded in advance in the storage and
次に、上記式(1)で得たhsを上記式(2)に代入し、ww1を得る計算を行う(ステップS2)。続いて、上記式(1)で得たhsを上記式(3)に代入し、Δwwを得る計算を行う(ステップS3)。 Next, the calculation of obtaining w w1 is performed by substituting h s obtained by the above equation (1) into the above equation (2) (step S2). Subsequently, h s obtained by the above equation (1) is substituted into the above equation (3), and calculation for obtaining Δw w is performed (step S3).
このようにして得たww1及びΔwwを適用して、上記式(4)から塗布層2の乾燥速度を推定する計算を行う(ステップS4)。
By applying the w w1 and Δw w obtained in this way, calculation for estimating the drying rate of the
さらに、塗布層2の他の位置における乾燥速度を推定するかどうかを入力する(ステップS5)。さらに推定する場合には(ステップS5:YES)、ステップS1に戻る。推定しない場合には(ステップS5:NO)、表示部112へ結果(データ)を出力する処理を行い(ステップS6)、終了する。なお、ステップS6においては、結果(データ)を記憶及び読取部107に記憶させて、得られた結果から乾燥速度分布を得る処理を行ってもよい。
Further, whether to estimate the drying speed at other positions of the
なお、ステップ5の代わりに、最初から塗布層2の所定箇所を指定しておいて、その部分全てについて、乾燥速度を推定することとしてもよい。また、連続方式で、基材1が搬送されているなら、ステップ5の代わりに、最初から、搬送方向の同じ複数位置について一定時間間隔で計測し、塗布層2の搬送方向についての乾燥速度を連続して推定するように処理することとしてもよい。ただし、この場合、乾燥速度が変われば、最終含水率wwFも変化するので、wwF≒0のときのみ実用的である。
Instead of
上記構成の本実施形態によれば、塗布層内の湿り成分が単独でも有機溶剤の場合や熱風温度が373Kを大きく超える場合においても、基材1と、基材1の表面に塗布した塗布層2と、前記基材の裏面に設けられた断熱材3とを備えている部材における塗布層2の表面に、(a1)熱風加熱や、(a2)放射加熱、誘導加熱、又は通電加熱のいずれか1つ以上と、熱風加熱を行った際の、基材1上の塗布層2の乾燥速度を推定できる。
According to this embodiment having the above-described configuration, even when the wet component in the coating layer is an organic solvent alone or when the hot air temperature greatly exceeds 373K, the coating layer applied to the surface of the
また、(i)塗布層2内の湿り成分が複数の場合、(ii)熱風温度などの外部乾燥条件が一定又はステップ的に複数回変化する場合、(iii)回分式(塗布層2を表面に形成した基材1が静止しているような場合)又は連続方式(例えば、塗布層1を表面に形成した複数の基材1が、順次、製造工程で流れるように搬送されているような場合)でも、各式におけるパラメータを測定又は計算などより求め、各式に適用することで、基材1上の塗布層の乾燥速度を従来と同様若しくはより高い精度で推定することができる。また、厚さが薄い基材を用いていても厚い基材を用いていても、本実施形態に係る基材1上の塗布層2の乾燥速度推定方法は適用可能である。また、上記非特許文献1〜3では、乾燥所要時間20分以上の系に対する検討に限られていたが、本実施形態に係る基材上の塗布層の乾燥速度推定方法によると、5分以下の短い乾燥所要時間を有する場合に対して適用できるので、有用である。
Also, (i) when there are a plurality of wet components in the
<第1実施形態の変形例>
次に、本発明の第1実施形態の変形例について説明する。本変形例は、第1実施形態のように、完全断熱ではなく、熱が基材裏面から伝熱する(不完全断熱を含む)場合を考えたものである。
<Modification of First Embodiment>
Next, a modification of the first embodiment of the present invention will be described. This modification considers the case where heat is transferred from the back surface of the substrate (including incomplete heat insulation) instead of complete heat insulation as in the first embodiment.
(本変形例に係る基材上の塗布層の乾燥速度推定方法における原理)
熱が基材裏面から伝熱する(不完全断熱を含む)こと(図1の断熱材が伝熱すること、若しくは、図1の断熱材が伝熱材であることを想定していること)を除いては、基本的に第1実施形態と同様である。したがって、第1実施形態と同様に部分について、説明を省略することがある。
(Principle in the method for estimating the drying rate of the coating layer on the substrate according to this modification)
Heat is transferred from the back surface of the substrate (including incomplete heat insulation) (assuming that the heat insulating material in FIG. 1 transfers heat or that the heat insulating material in FIG. 1 is a heat transfer material) Except for, basically the same as the first embodiment. Therefore, the description of the portions may be omitted as in the first embodiment.
第1実施形態と同様に、塗布層におけるエネルギー収支を考えると、下記式(21)となる。そして、乾燥終了後には下記式(21)から下記式(22)が成立する。 Similarly to the first embodiment, when the energy balance in the coating layer is considered, the following equation (21) is obtained. And after completion | finish of drying, following formula (22) is materialized from the following formula (21).
次に、第1実施形態と同様に、厚い基材や熱伝導度の悪い基材を使用した場合を考慮すると、実験開始からしばらくの間は基材内での温度分布が一様ではない。そこで、第1実施形態と同様に、上記式(21)をt=0からt1まで積分して、t=0からt1までのエンタルピー収支を求めると、下記式(23)のように表される。また、t=t1以降の期間のエンタルピー収支は、上記式(21)をt=t1からtFまで積分して得られた下記式(24)で与えられる。 Next, similarly to the first embodiment, when considering a case where a thick base material or a base material with poor thermal conductivity is used, the temperature distribution in the base material is not uniform for a while from the start of the experiment. Therefore, as in the first embodiment, the above equation (21) is integrated from t = 0 to t 1, when obtaining the enthalpy balance from t = 0 to t 1, the table as the following equation (23) Is done. Further, the enthalpy balance of t = t 1 after the time period is given by the formula (21) was obtained by the integration from t = t 1 to t F the following formula (24).
そして、上記式(23)を変形して得た下記式(6)、及び、上記式(21)を変形して得た下記式(7)と、下記式(8)と、0≧t≧tFのデータとを用いて、t1≧t≧tFの乾燥速度が得られる。ただし、後述するが、hsを求める必要がある。 The following equation (6) obtained by modifying the above equation (23), the following equation (7) obtained by modifying the above equation (21), the following equation (8), and 0 ≧ t ≧ by using the t F data, drying rate of t 1 ≧ t ≧ t F is obtained. However, as will be described later, h s needs to be obtained.
ここでも第1実施形態と同様、基材1と塗布層2との平均温度が熱風条件の湿球温度以下になる高湿度条件下以外では、Δw<0でなければならない。熱風温度Tasは乾燥実験終了後に基材底面を完全断熱しQF=0として定常材料温度T*sFを実測してこの値を充てる.伝熱板上面温度Trには実測値を充てる。なお、上記式(22)、(23)、(24)から、hsを求めるための下記式(5)が得られる.hrはhsを上記式(22)に代入して得る。そして、hr、hs、ww1、Δwwを適用して、上記式(8)から乾燥速度Rを得る。
Here, similarly to the first embodiment, Δw <0 must be satisfied except in a high humidity condition where the average temperature of the
なお、ここでも、第1実施形態と同様、初期温度分布が一様で厚みがLの平板の片面表面温度を、t=0でステップ的に上昇させ一定値を保った場合、平板平均温度が上昇温度分の95%にまで上昇するに要する時間t’1は、内部加熱がないとき、1.21L2/αで与えられる。ここで、αは平板の熱拡散率である。したがって、塗布層と基材との温度一様の仮定が成立しない乾燥期間t1=t’1として近似する。内部加熱効果は一様温度化を促進させるので、この近似は安全側である。さらに、初期温度分布が一様で厚みがLの平板の両面表面温度をt=0でステップ的に上昇させた場合はt’1=1.21(L/2)2/αとなるため、伝導伝熱でもこの近似は安全側である。 Also here, as in the first embodiment, when the single-sided surface temperature of a flat plate having a uniform initial temperature distribution and a thickness of L is increased stepwise at t = 0 to maintain a constant value, the flat plate average temperature is The time t ′ 1 required to rise to 95% of the rising temperature is given by 1.21 L 2 / α when there is no internal heating. Here, α is the thermal diffusivity of the flat plate. Therefore, it is approximated as a drying period t 1 = t ′ 1 where the assumption of uniform temperature between the coating layer and the substrate is not established. This approximation is safe because the internal heating effect promotes uniform temperature. Furthermore, when the surface temperature of both surfaces of a flat plate having a uniform initial temperature distribution and a thickness L is increased stepwise at t = 0, t ′ 1 = 1.21 (L / 2) 2 / α, This approximation is also safe for conduction heat transfer.
(本変形例における装置の構成)
第1実施形態とほぼ同様であるが、図3の乾燥速度推定の処理ルーチンにおいて、式(1)、(2)、(3)に代えて、式(5)、(6)、(7)を順に用いる点が異なっている。
(Configuration of apparatus in this modification)
Although it is substantially the same as 1st Embodiment, it replaces with Formula (1), (2), (3), and in Formula (5), (6), (7) in the processing routine of the drying rate estimation of FIG. Are different in that they are used in order.
上記構成の本変形例によれば、伝熱材或いは不完全な断熱しかできない断熱材が基材1の裏面に設けられていても、第1実施形態と同様の効果を得ることができる。
According to this modification of the above configuration, even if a heat transfer material or a heat insulating material that can only be incompletely insulated is provided on the back surface of the
<第2実施形態>
次に、本発明の第2実施形態について説明する。図4は、基材21と、基材21の表面に載置された合成ゴム製のリング25と、基材21の表面のリング25内部に塗布した塗布層22と、基材21及びリング25を支持し、基材21及びリング25の側周面にリング状に設けられた断熱材23と、断熱材23を支持する支持板26とを備えている部材における塗布層22の表面及び基材21の裏面に、熱風加熱を行い、放射温度計24a、24bで塗布層22の表面及び基材21の裏面の温度を計測している状態を示す概念図である。したがって、本実施形態は、第1実施形態のように、塗布層表面側のみを熱風加熱するものではなく、基材裏面からも熱風加熱する場合について考えるものである。なお、第1実施形態と同様の部分においては、その説明を省略することがある。
Second Embodiment
Next, a second embodiment of the present invention will be described. FIG. 4 shows a
基材21は、高分子フィルム、紙、ガラス板、金属板等であり、塗布層22は、1種以上の成分を含む水溶液である。なお、ここでは、塗布層22は、基材21の厚さよりも十分厚いものとなっているが、第1実施形態のように基材と同程度の厚さであってもよい。
The
(本実施形態に係る基材上の塗布層の乾燥速度推定方法における原理)
本実施形態のような塗布層22の表面及び基材21の裏面の両面を熱風で乾燥する場合は、対流伝熱面積が乾燥面積の2倍となる。両面熱風乾燥におけるエネルギー収支を下記(25)に示す。塗布層表面温度をTs、基材底面温度をTbとし、基材21及び塗布層22の平均温度をTm=(Ts+Tb)/2、蒸発はTsで生じていると近似した。エネルギー収支は、基材21及び塗布層22の初期平均温度Tm0(=Ts0)における液状水と固体のもつエンタルピーを基準として示し、蒸発水蒸気は熱風温度まで上昇する場合を考えた。基材21と塗布層22とは平面を水平に静止しているとする。ここで、Δhw0は、Ts0での水の蒸発エンタルピーであり、Δhw0=3.177×106−2.47×103Tm0(J/kg−water)で表される(後述する変形例でも同様である。)。また、乾燥終了後には、下記式(25)から下記式(26)が成立している。
(Principle in the method for estimating the drying rate of the coating layer on the substrate according to this embodiment)
In the case where both the front surface of the
次に、第1実施形態と同様に、厚い基材や熱伝導度の悪い基材を使用した場合を考慮すると、実験開始からしばらくの間は基材内での温度分布が一様ではない。そこで、第1実施形態と同様に、上記式(25)をt=0からt1まで積分して、t=0からt1までのエンタルピー収支を求めると、下記式(27)のように表される。また、t=t1以降の期間のエンタルピー収支は、上記式(25)をt=t1からtFまで積分して得られた下記式(28)で与えられる。 Next, similarly to the first embodiment, when considering a case where a thick base material or a base material with poor thermal conductivity is used, the temperature distribution in the base material is not uniform for a while from the start of the experiment. Therefore, as in the first embodiment, the above equation (25) is integrated from t = 0 to t 1, when obtaining the enthalpy balance from t = 0 to t 1, the table as the following equation (27) Is done. Further, the enthalpy balance of t = t 1 after the time period is given by the formula (25) was obtained by the integration from t = t 1 to t F the following formula (28).
そして、第1実施形態と同様に、上記式(27)を変形して得た下記式(10)と、上記式(28)を変形して得た下記式(11)と、下記式(12)と、0≧t≧tFのデータとを用いて、t1≧t≧tFの乾燥速度が得られる。ただし、後述するが、hsを求める必要がある。 Similarly to the first embodiment, the following formula (10) obtained by modifying the above formula (27), the following formula (11) obtained by modifying the above formula (28), and the following formula (12) ) And 0 ≧ t ≧ t F data, a drying rate of t 1 ≧ t ≧ t F is obtained. However, as will be described later, h s needs to be obtained.
ここでも第1実施形態と同様、基材21と塗布層22との平均温度が熱風条件の湿球温度以下になる高湿度条件下以外では、Δw<0でなければならない。乾燥実験終了後の乾き基材21の底面を断熱して測定した定常材料温度を上方の熱風温度Tas、塗布層22表面を断熱して測定した定常材料温度を下方の熱風温度Tabとみなす。これは乾燥実験終了後の熱風温度と基材21と塗布層22との平均温度の測定誤差とが、熱風から基材21及び塗布層22への伝熱速度となり、乾燥速度の測定精度低下の原因となるため、それを防止するための工夫である。なお、上記式(26)、(27)、(28)から、hsを求めるための下記式(9)が得られる.hbはhsを上記式(26)に代入して得る。そして、hb、hs、ww1、Δwwを適用して、上記式(12)から乾燥速度Rを得る。
Here, similarly to the first embodiment, Δw <0 must be satisfied except in a high humidity condition where the average temperature of the
なお、長い乾燥所要時間を有する塗布層を有する基材や薄層の乾燥実験においても、層厚みが大きく有効熱伝導度の小さな材料を対象とする場合には、短い乾燥所要時間を有する厚みの小さな塗布層を有する基材の場合と同様、乾燥開始直後の塗布層及び基材内の非定常伝熱に伴う塗布層と基材との温度一様の仮定が成立しない乾燥期間に関する検討が必要である。初期温度分布が一様で厚みが2Lの平板の両面表面温度をt=0でステップ的に上昇させ一定値を保った場合、平板平均温度が上昇温度分の95%にまで上昇するに要する時間t’1は、第1実施形態と同様、1.21L2/αで与えられる。したがって、第1実施形態と同様、基材21と塗布層22との平均温度一様の仮定が成立しない乾燥期間t1≒t’1で近似できる。
In the drying experiment of a substrate having a coating layer having a long drying time or a thin layer, when a material having a large layer thickness and a small effective thermal conductivity is targeted, a thickness having a short drying time is required. As in the case of a substrate with a small coating layer, it is necessary to study the coating layer immediately after the start of drying and the drying period during which the assumption of uniform temperature between the coating layer and the substrate due to unsteady heat transfer in the substrate is not valid. It is. The time required for the average temperature of the flat plate to rise to 95% of the rising temperature when the surface temperature of both surfaces of the flat plate having a uniform initial temperature distribution and a thickness of 2 L is increased stepwise at t = 0 and kept constant. t ′ 1 is given by 1.21 L 2 / α, as in the first embodiment. Therefore, as in the first embodiment, the drying period t 1 ≈t ′ 1 in which the assumption that the average temperature of the
(本変形例における装置の構成)
第1実施形態とほぼ同様であるが、図3の乾燥速度推定の処理ルーチンにおいて、式(1)、(2)、(3)に代えて、式(9)、(10)、(11)を順に用いる点が異なっている。
(Configuration of apparatus in this modification)
Although it is substantially the same as 1st Embodiment, it replaces with Formula (1), (2), (3) in the processing routine of drying speed estimation of FIG. 3, Formula (9), (10), (11) Are different in that they are used in order.
上記構成の本実施形態によれば、塗布層22の表面及び基材21の裏面が同時に熱風で加熱されている場合においても、第1実施形態と同様の効果を得ることができる。
According to this embodiment having the above-described configuration, even when the front surface of the
<第2実施形態の変形例>
次に、第2実施形態の変形例について説明する。第2実施形態においては、熱風加熱のみを考慮したものであったが、本変形例では、熱風加熱に、赤外線やマイクロ波や高周波などの放射伝熱や金属基材に対する誘導加熱や通電加熱を併用する場合を考える。なお、第1実施形態と同様の部分においては、その説明を省略することがある。
<Modification of Second Embodiment>
Next, a modification of the second embodiment will be described. In the second embodiment, only hot air heating is considered. However, in this modification, radiant heat transfer such as infrared rays, microwaves, and high frequencies, induction heating and electric current heating for a metal substrate are used for hot air heating. Consider a combination. Note that description of the same parts as in the first embodiment may be omitted.
(本変形例に係る基材上の塗布層の乾燥速度推定方法における原理)
第2実施形態と同様に、エネルギー収支を示すと、下記式(29)のように表される。ここで、Qは放射または誘導・通電による発生エネルギーである。なお、基板と塗布層との平均一様温度を仮定し、塗布層表面温度Tsで近似した。エネルギー収支は、Ts0における液状水と固体のもつエンタルピーを基準として示し、蒸発水蒸気は熱風温度まで上昇する場合を考えた。また、乾燥終了後には、下記式(29)から下記式(30)が成立する。
(Principle in the method for estimating the drying rate of the coating layer on the substrate according to this modification)
Similarly to the second embodiment, the energy balance is represented by the following formula (29). Here, Q is energy generated by radiation or induction / energization. Incidentally, assuming an average uniform temperature of the substrate and the coating layer was approximated by the coating layer surface temperature T s. Energy balance, shown as reference enthalpy possessed by the liquid water and solids in T s0, evaporated water vapor is considered a case in which rises to the hot air temperature. Further, after the drying, the following formula (30) is established from the following formula (29).
次に、第1実施形態と同様に、厚い基材や熱伝導度の悪い基材を使用した場合を考慮すると、実験開始からしばらくの間は基材内での温度分布が一様ではない。そこで、第1実施形態と同様に、上記式(29)をt=0からt1まで積分して、t=0からt1までのエンタルピー収支を求めると、下記式(31)のように表される。また、t=t1以降の期間のエンタルピー収支は、上記式(29)をt=t1からtFまで積分して得られた下記式(232)で与えられる。 Next, similarly to the first embodiment, when considering a case where a thick base material or a base material with poor thermal conductivity is used, the temperature distribution in the base material is not uniform for a while from the start of the experiment. Therefore, as in the first embodiment, the above equation (29) is integrated from t = 0 to t 1, when obtaining the enthalpy balance from t = 0 to t 1, the table as the following equation (31) Is done. Further, the enthalpy balance of t = t 1 after the time period is given by the formula (29) was obtained by the integration from t = t 1 to t F the following formula (232).
そして、上記式(31)を変形して得た下記式(14)、及び、上記式(32)を変形して得た下記式(15)と、下記式(16)と、0≧t≧tFのデータとを用いて、t1≧t≧tFの乾燥速度が得られる。ただし、後述するが、hsを求める必要がある。 The following equation (14) obtained by modifying the above equation (31), the following equation (15) obtained by modifying the above equation (32), the following equation (16), and 0 ≧ t ≧ by using the t F data, drying rate of t 1 ≧ t ≧ t F is obtained. However, as will be described later, h s needs to be obtained.
ここでも第1実施形態と同様、基材と塗布層との平均温度が熱風条件の湿球温度以下になる高湿度条件下以外では、Δw<0でなければならない。乾燥実験終了後の乾いた基材と塗布層との底面(基材の裏面)を完全断熱しQF=0として測定した定常材料温度を上方の熱風温度Tas、塗布層の表面を断熱しQF=0として測定した定常材料温度を下方の熱風温度Tabとみなす。これは乾燥実験終了後の熱風温度と塗布層及び基材との温度の測定誤差とが熱風から基材と塗布層とへの伝熱速度となり、乾燥速度の測定精度低下の原因となるため、それを防止するための工夫である。なお、上記式(30)、(31)、(32)から、hsを求めるための下記式(5)が得られる.hbはhsを上記式(30)に代入して得る。そして、hb、hs、ww1、Δwwを適用して、上記式(16)から乾燥速度Rを得る。 Here, similarly to the first embodiment, Δw <0 must be satisfied except in a high humidity condition where the average temperature of the base material and the coating layer is equal to or lower than the wet bulb temperature of the hot air condition. After the drying experiment is completed, the bottom surface (back surface of the base material) of the dry base material and the coating layer is completely insulated, and the steady material temperature measured with Q F = 0 is the hot air temperature T as above, and the coating layer surface is insulated. The steady material temperature measured with Q F = 0 is considered as the lower hot air temperature Tab . This is because the hot air temperature after the drying experiment and the measurement error of the temperature of the coating layer and the base material become the heat transfer rate from the hot air to the base material and the coating layer, which causes a decrease in the measurement accuracy of the drying speed. It is a device to prevent it. From the above equations (30), (31), (32), the following equation (5) for obtaining h s can be obtained. h b is obtained by substituting h s into the above equation (30). Then, h b, h s, w w1, by applying the [Delta] w w, to obtain the drying rate R from the above equation (16).
なお、長い乾燥所要時間を要する塗布層を有する基材や薄層の乾燥実験においても、層厚みが大きく有効熱伝導度の小さな材料を対象とする場合には、短い乾燥所要時間を有する厚みの小さな塗布層及び基材の場合と同様、乾燥開始直後の塗布層及び基材内の非定常伝熱に伴う塗布層及び基材の温度一様の仮定が成立しない乾燥期間に関する検討が必要である。初期温度分布が一様で厚みが2Lの平板の両面表面温度をt=0でステップ的に上昇させ一定値を保った場合、平板平均温度が上昇温度分の95%にまで上昇するに要する時間t’1は、第1実施形態と同様、1.21L2/αで与えられる。したがって、第1実施形態と同様、基材と塗布層との平均温度一様の仮定が成立しない乾燥期間t1≒t’1で近似できる。内部加熱効果は一様温度化を促進させるのでこの近似は安全側である。 In addition, even in a drying experiment of a substrate having a coating layer that requires a long drying time or a thin layer, when a material having a large layer thickness and a small effective thermal conductivity is targeted, a thickness having a short drying time is required. As in the case of small coating layers and substrates, it is necessary to examine the coating layer immediately after the start of drying and the drying period during which the assumption of uniform temperature of the coating layer and substrate due to unsteady heat transfer in the substrate does not hold. . The time required for the average temperature of the flat plate to rise to 95% of the rising temperature when the surface temperature of both surfaces of the flat plate having a uniform initial temperature distribution and a thickness of 2 L is increased stepwise at t = 0 and kept constant. t ′ 1 is given by 1.21 L 2 / α, as in the first embodiment. Therefore, as in the first embodiment, the drying period t 1 ≈t ′ 1 in which the assumption of uniform average temperature between the base material and the coating layer is not valid can be approximated. This approximation is safe because the internal heating effect promotes uniform temperature.
(本変形例における装置の構成)
第1実施形態とほぼ同様であるが、図3の乾燥速度推定の処理ルーチンにおいて、式(1)、(2)、(3)に代えて、式(13)、(14)、(15)を順に用いる点が異なっている。
(Configuration of apparatus in this modification)
Although it is substantially the same as 1st Embodiment, it replaces with Formula (1), (2), (3) in the process routine of drying speed estimation of FIG. 3, Formula (13), (14), (15) Are different in that they are used in order.
上記構成の本実施形態によれば、塗布層の表面及び基材の裏面が同時に熱風で加熱されている場合だけでなく、内部加熱を行っている場合においても、第1実施形態と同様の効果を得ることができる。 According to this embodiment having the above-described configuration, the same effect as that of the first embodiment is obtained not only when the front surface of the coating layer and the back surface of the base material are heated simultaneously with hot air, but also when internal heating is performed. Can be obtained.
(実施例1)
第1実施形態の方法を用いて、図1と同状態の実験設備を用意し、基材上の塗布層の乾燥速度推定実験を行った。以下に、具体的に説明する。
(Example 1)
Using the method of the first embodiment, experimental equipment in the same state as in FIG. 1 was prepared, and an experiment for estimating the drying rate of the coating layer on the substrate was performed. This will be specifically described below.
基材としてのポリエステル製フィルム(厚さ100μm)の表面に、塗布層としてポリビニルアルコール(PVA)水溶液を主成分とした市販合成のり液(初期含水率約7kg−water/kg−PVA)を、直径80mmの円形となるようにプレードコートし(厚さ156μm、246μm、377μmの3種類を用意)、実験試料を3種類用意した。そして、それぞれの試料について、ポリエステル製フィルムの裏面を発泡スチロールで断熱して上面にのみ熱風を流す下記のような対流乾燥実験を実施した。 On the surface of a polyester film (thickness: 100 μm) as a base material, a commercial synthetic paste (initial water content of about 7 kg-water / kg-PVA) mainly composed of an aqueous polyvinyl alcohol (PVA) solution as a coating layer has a diameter of Plate coating was performed so as to form a circle of 80 mm (three types of thicknesses of 156 μm, 246 μm, and 377 μm were prepared), and three types of experimental samples were prepared. And about each sample, the back surface of the polyester film was heat-insulated with polystyrene foam, and the following convection drying experiment was conducted in which hot air was allowed to flow only on the top surface.
試料表面の温度変化データは、1s毎に放射温度計((株)堀場製作所製 放射温度計IT−550F、分解能0.1K)により自動測定した。電気式熱風発生機((株)竹綱製作所製 TSK−10)で発生させた熱風を金網で整流した後試料上方向から供給した。試料付近での熱風温度は60〜65℃、熱風速度は約2.4m/sだった。乾燥実験終了後の乾き塗布層を有する基材下に1mmφのシース熱電対(Kタイプ)を入れデジタル温度計で測定した温度と放射温度計の測定温度とを比較したところ、放射率を0.99としたときにほぼ一致したので、本実施例の全実験を通してこの値を用いて温度を測定した。 The temperature change data on the sample surface was automatically measured with a radiation thermometer (radiation thermometer IT-550F, manufactured by HORIBA, Ltd., resolution 0.1K) every 1 s. Hot air generated by an electric hot air generator (TSK-10 manufactured by Takezuna Seisakusho Co., Ltd.) was rectified by a wire mesh and then supplied from above the sample. The hot air temperature in the vicinity of the sample was 60 to 65 ° C., and the hot air speed was about 2.4 m / s. When a 1 mmφ sheathed thermocouple (K type) was placed under the substrate having a dry coating layer after the drying experiment was completed and the temperature measured with a digital thermometer was compared with the measured temperature of the radiation thermometer, the emissivity was set to 0. Since the values almost coincided with 99, the temperature was measured using this value throughout the entire experiment of this example.
このように実験して得られた結果を、図5の各点として示す。図5からわかるように、150〜320s付近までの表面温度が湿球温度、その後の熱風温度に至るまでの昇温期間が240〜550sまで見られた。このときの蒸発水分量は0.13〜0.31gだった。これらのデータおよび既知のパラメータの値を上記式(1)〜(3)に適用して得られた乾燥曲線を図5の各線として示す。そして、乾燥速度曲線を図6に示す。 The results obtained by experiments are shown as points in FIG. As can be seen from FIG. 5, the temperature rising period until the surface temperature from 150 to 320 s reached the wet bulb temperature and then the hot air temperature was observed from 240 to 550 s. The amount of evaporated water at this time was 0.13 to 0.31 g. The drying curves obtained by applying these data and the values of known parameters to the above formulas (1) to (3) are shown as lines in FIG. The drying rate curve is shown in FIG.
なお、上記乾燥曲線及び乾燥速度曲線を算出するにあたって、水の比熱容量cw=4180J/(kg・K)、PVAの比熱容量cd=1500J/(kg・K)、ポリエステルフィルムの比熱容量cb=1680J/(kg・K)で定数と近似した。また、前述のように熱風温度Tasは最終材料表面温度TsFと等しいとみなし、基材裏面を完全断熱と近似した。得られた境膜伝熱係数はhs=61〜65W/(m2・K)だった。またこのときの最終材料温度TsF=熱風温度Tas=60.4〜62.5℃だった。得られたhsは風速2.4m/sの垂直流に対して不適当な値ではない。 In calculating the drying curve and the drying rate curve, the specific heat capacity of water c w = 4180 J / (kg · K), the specific heat capacity of PVA c d = 1500 J / (kg · K), and the specific heat capacity c of the polyester film b = 1680 J / (kg · K) and approximated to a constant. Further, as described above, the hot air temperature T as was regarded as being equal to the final material surface temperature T sF, and the back surface of the base material was approximated to complete thermal insulation. The obtained film heat transfer coefficient was h s = 61 to 65 W / (m 2 · K). Further, the final material temperature T sF = hot air temperature T as = 60.4 to 62.5 ° C. at this time. The obtained h s is not an inappropriate value for a vertical flow with a wind speed of 2.4 m / s.
したがって、本実施例の結果から、第1実施形態の効果を実証できたことがわかる。 Therefore, it can be seen from the results of this example that the effects of the first embodiment have been verified.
なお、本実施例では厚み100μmポリエステルフィルム基材上に157μm、246μm、377μmの合成のり膜をそれぞれ形成させ乾燥実験を行ったが、ポリエステルフィルム基材及び合成のり膜全体を合成樹脂、水の中で最小のαを示す樹脂で近似すれば、t1≒1.21L2/α=0.7〜2.5sを得る。このときの平均含水率xmは初期含水率とほぼ等しく、この値以後の時刻で乾燥速度曲線が有効である。先行技術では考慮されなかった点のひとつである。ここでα=λ/(cpρ)で定義され、代表物質に対する概略値を以下に示す。なお、後述する実施例においても、同様である。 In this example, a synthetic film having a thickness of 157 μm, 246 μm, and 377 μm was formed on a polyester film substrate having a thickness of 100 μm, and a drying experiment was performed. The polyester film substrate and the entire synthetic film were made of synthetic resin and water. When approximated with a resin having a minimum α, t 1 ≈1.21 L 2 /α=0.7 to 2.5 s is obtained. Approximately equal to the average moisture content x m is the initial moisture content of this time, the drying rate curve at time of this value since it is effective. This is one of the points that were not considered in the prior art. Here, α = λ / (c p ρ) is defined, and approximate values for representative substances are shown below. The same applies to the embodiments described later.
水(α=1.4×10−7m2/s、λ=0.6W/(m・K)、cp=4200J/(kg・K)、ρ=1000kg/m3)、アクリル樹脂(α=1.1×10−7m2/s、λ=0.2W/(m・K)、cp=1500J/(kg・K)、ρ=1200kg/m3)、ガラス(α=3.4×10−7m2/s、λ=0.6W/(m・K)、cp=700J/(kg・K)、ρ=2500kg/m3)、ガラス微粒子充填層(α=4.4×10−7m2/s、λ=0.2W/(m・K)、cp=350J/(kg・K)、ρ=1300kg/m3)、鉄(α=2.5×10−5m2/s、λ=80W/(m・K)、cp=400J/(kg・K)、ρ=7900kg/m3)、紙(α=5.6×10−8m2/s、λ=0.06W/(m・K)、cp=1200J/(kg・K)、ρ=900kg/m3) Water (α = 1.4 × 10 −7 m 2 / s, λ = 0.6 W / (m · K), c p = 4200 J / (kg · K), ρ = 1000 kg / m 3 ), acrylic resin ( α = 1.1 × 10 −7 m 2 / s, λ = 0.2 W / (m · K), c p = 1500 J / (kg · K), ρ = 1200 kg / m 3 ), glass (α = 3 .4 × 10 −7 m 2 / s, λ = 0.6 W / (m · K), c p = 700 J / (kg · K), ρ = 2500 kg / m 3 ), glass fine particle packed bed (α = 4) .4 × 10 −7 m 2 / s, λ = 0.2 W / (m · K), c p = 350 J / (kg · K), ρ = 1300 kg / m 3 ), iron (α = 2.5 × 10 −5 m 2 / s, λ = 80 W / (m · K), c p = 400 J / (kg · K), ρ = 7900 kg / m 3 ), paper (α = 5.6 × 10 −8 m 2) / S, λ = 0 06W / (m · K), c p = 1200J / (kg · K), ρ = 900kg / m 3)
(実施例2)
次に、第2実施形態の方法を用いて、図4と同状態の実験設備を用意し、基材上の塗布層の乾燥速度推定実験を行った。以下に、具体的に説明する。
(Example 2)
Next, using the method of the second embodiment, experimental equipment in the same state as in FIG. 4 was prepared, and an experiment for estimating the drying rate of the coating layer on the substrate was performed. This will be specifically described below.
ガラス微粒子(粒子径37〜63μm、東京硝子器械(株)製 No.0.05)を蒸留水と混合し、これを塗布層として、基材としてのガラス板(厚さ1.8mm)上に接着した内径66mmの合成ゴム製リング(高さ3.0mm、5.0mmのもの2種類を用意)に、それぞれ所定の初期液相率φ0=0.50(m3−water/m3−void)、空隙率ε=0.39〜0.42(m3−void/m3−layer)となるように充填し、実験試料を2種類用意した。そして、図4と同様、各試料の側面のみを発泡スチロールで断熱して、塗布層表面及び基材裏面に同温熱風を流す両面乾燥実験を実施した。このとき、図4と同様、上述のようにして作製した試料をそれぞれ、直径66mmの円形穴を開けた厚さ3mmの積層木製支持板上に設置して、下記実験を実施した。 Glass fine particles (particle size 37-63 μm, Tokyo Glass Instrument Co., Ltd. No. 0.05) were mixed with distilled water, and this was used as a coating layer on a glass plate (thickness 1.8 mm) as a substrate. A predetermined initial liquid phase ratio φ 0 = 0.50 (m 3 −water / m 3 −) was applied to a synthetic rubber ring having an inner diameter of 66 mm bonded (two types having a height of 3.0 mm and 5.0 mm). void), porosity ε = 0.39 to 0.42 (m 3 -void / m 3 -layer), and two types of experimental samples were prepared. And like FIG. 4, only the side surface of each sample was heat-insulated with the polystyrene foam, and the double-sided drying experiment which flows the same hot air on the coating layer surface and a base material back surface was implemented. At this time, similarly to FIG. 4, the samples prepared as described above were placed on a laminated wooden support plate having a thickness of 3 mm with a circular hole having a diameter of 66 mm, and the following experiment was performed.
なお、本実施例では、塗布層の表面側熱風温度Tas=321K(塗布層厚さ5mmの場合)、321K(塗布層厚さ3mmの場合)、基材の裏面側熱風温度Tab=319K(塗布層厚さ5mmの場合)、318K(塗布層厚さ3mmの場合)として実験した。また、上記式(7)で求めたhsは51W/(m2・K)(塗布層厚さ5mmの場合)、51W/(m2・K)(塗布層厚さ3mmの場合)であった。なお、得られたhsは風速2.5m/sの垂直流に対して不適当な値ではない。 In this example, the surface side hot air temperature T as = 321K (when the coating layer thickness is 5 mm), 321K (when the coating layer thickness is 3 mm), and the back surface side hot air temperature T ab = 319K of the base material. The experiment was conducted as 318K (when the coating layer thickness was 3 mm) (when the coating layer thickness was 5 mm). Further, h s obtained by the above formula (7) was 51 W / (m 2 · K) (when the coating layer thickness was 5 mm) and 51 W / (m 2 · K) (when the coating layer thickness was 3 mm). It was. The obtained h s is not an inappropriate value for a vertical flow having a wind speed of 2.5 m / s.
試料表面の温度変化データとガラス板裏面の温度変化データを1分毎に放射温度計((株)コス製 CT−30、分解能0.1K)により手動測定した。電気式熱風発生機((株)竹綱製作所製 TSK−10)で発生させた熱風を金網で整流した後、試料上下方向から供給した。試料付近での熱風温度は319K〜323K、熱風速度は約2.5m/sであり、上下方向で別個の熱風発生器を用いた。この際、温度変化法で測定した乾燥速度の妥当性を検証する目的で、平均含水率の経時変化データを10分毎に質量変化法で測定した。 The sample surface temperature change data and the glass plate back surface temperature change data were manually measured with a radiation thermometer (CT-30 manufactured by Kos Co., Ltd., resolution 0.1 K) every minute. Hot air generated by an electric hot air generator (TSK-10 manufactured by Takezuna Seisakusho Co., Ltd.) was rectified by a wire mesh, and then supplied from the vertical direction of the sample. The hot air temperature in the vicinity of the sample was 319K to 323K, the hot air speed was about 2.5 m / s, and a separate hot air generator was used in the vertical direction. Under the present circumstances, in order to verify the validity of the drying rate measured by the temperature change method, the time-dependent change data of the average moisture content were measured by the mass change method every 10 minutes.
なお、別途、塗布層の側面と基材の裏面とを断熱した乾き材料層内に1mmφのサーミスタセンサー(佐藤計量器製作所(株)製 MC−T100)を埋め込み、乾燥実験と同条件の熱風下で定常伝熱実験を行い、デジタル温度計(佐藤計量器製作所(株)製 SK−1250MC)で測定した温度と放射温度計の測定温度を比較したところ、放射率を0.91としたときにほぼ一致したので、本実施例の全実験を通してこの値を用いて温度を測定した。 Separately, a 1 mmφ thermistor sensor (MC-T100, manufactured by Sato Keiki Seisakusyo Co., Ltd.) is embedded in a dry material layer in which the side surface of the coating layer and the back surface of the substrate are thermally insulated, and under the same conditions as in the drying experiment. The temperature measured with a digital thermometer (SK-1250MC manufactured by Sato Keiki Seisakusho Co., Ltd.) was compared with the measured temperature of the radiation thermometer, and the emissivity was 0.91. Since the values agreed with each other, the temperature was measured using this value throughout the entire experiment of this example.
まず、上述のように実験して得られた塗布層(厚さ5mm)の表面及び基材の裏面の2種類の温度データの結果を、図7に示す。図7からわかるように、両温度にはかなりの差が見られ一様材料温度の近似は成立せず、また両温度は1500s付近で交差している。蒸発面積<伝熱面積なので、定率乾燥期間であっても表面温度は湿球温度より高い。そして、材料温度が熱風温度に漸近途中の2500s付近で材料は絶乾となり、その後3000sまで乾き材料の昇温期間が見られ、典型的な非親水性多孔平板の乾燥挙動が得られた。なお、蒸発水分量は3.4gだった。
First, FIG. 7 shows the results of two types of temperature data on the front surface of the coating layer (
次に、上述のように実験して得られた塗布層(厚さ3mm)の表面及び基材の裏面の2種類の温度データの結果を、図8に示す。図8からわかるように、5mmの場合と同様の結果が得られた。なお、蒸発水分量は2.0gだった。
Next, FIG. 8 shows the results of two types of temperature data on the front surface of the coating layer (
また、上記式(5)、(6)を用いて求めた塗布層厚さ5mmの場合と塗布層厚さ3mmの場合との乾燥曲線を、図7及び図8に実線で示す。なお、上記式(5)、(6)の計算においては、水比熱容量cw=4200J/(kg・K)、乾き材料比熱容量cd=480J/(kg・K)、容器比熱容量cb=800J/(kg・K)で定数と近似した。乾き材料昇温期間のデータを含めない場合の結果である。この扱いは非親水性材料に限定されたものであり、塗布層を有する基材においては一般に乾燥終了まで水分蒸発が継続する。基材裏面側の境膜伝熱係数はhb=32W/(m2・K)(塗布層厚さ5mm)、29W/(m2・K)(塗布層厚さ3mm)となった。また、このときの塗布層の最終表面温度TsF=321K(塗布層厚さ5mm)、320K(塗布層厚さ3mm)、基材の最終裏面温度TbF=320K(塗布層厚さ5mm)、320K(塗布層厚さ3mm)となった。上下面でほぼ同じ風速だったにもかかわらずhbがhsよりも小さな値となったのは、試料を支持するための板厚の影響で境膜厚さが大きくなった結果と考えられる。結果は質量変化法による実測含水率変化を精度良く再現できた。
Moreover, the drying curve in the case of the coating layer thickness 5mm calculated | required using said Formula (5) and (6) and the case of a coating layer thickness 3mm is shown as a continuous line in FIG.7 and FIG.8. In the calculations of the above formulas (5) and (6), the water specific heat capacity c w = 4200 J / (kg · K), the dry material specific heat capacity c d = 480 J / (kg · K), and the container specific heat capacity c b = 800 J / (kg · K) and approximated to a constant. It is a result when the data of a dry material temperature rising period are not included. This handling is limited to non-hydrophilic materials, and in a substrate having a coating layer, water evaporation generally continues until the end of drying. The film heat transfer coefficient on the back side of the substrate was h b = 32 W / (m 2 · K) (
したがって、本実施例の結果から、第2実施形態の効果を実証できたことがわかる。 Therefore, it can be seen from the results of this example that the effects of the second embodiment have been verified.
また、本実施例での塗布層厚さ5mmの場合と塗布層厚さ3mmの場合との乾燥速度曲線を、図9、図10に示す。薄い塗布層が塗布された薄い基材に比べて、遥かに厚い材料に対して有効である本実施例が、薄い塗布層が塗布された薄い基材に対しても有効なことは自明である。 In addition, FIGS. 9 and 10 show drying rate curves in the case where the coating layer thickness is 5 mm and the coating layer thickness is 3 mm in this example. It is obvious that this embodiment, which is effective for a much thicker material compared to a thin substrate coated with a thin coating layer, is also effective for a thin substrate coated with a thin coating layer. .
本実施例では、厚み1.8mmのガラス板上に5mmまたは3mmのガラス粒子スラリー層を形成させ、両面乾燥実験を行ったが、湿り材料全体をガラス、ガラス微粒子充填、水の中で最小のαを示す水で近似すれば、t1≒1.21L2/α=99s(塗布層厚さ5mm)または49s(塗布層厚さ3mm)を得る。このときの平均含水率xmは=0.13(塗布層厚さ5mm、3mm両方)である。したがって、図7及び図8の乾燥速度曲線は、0.13以下のxmで有効である。
In this example, a glass particle slurry layer having a thickness of 5 mm or 3 mm was formed on a glass plate having a thickness of 1.8 mm, and a double-sided drying experiment was performed. The entire wet material was filled with glass, glass fine particles, and the smallest in water. If approximated by water indicating α, t 1 ≈1.21 L 2 / α = 99 s (
(実施例3)
次に、第2実施形態の変形例の方法を用いて、図11に示す実験設備を用意し、基材上の塗布層の乾燥速度推定実験を行った。以下に、具体的に説明する。
(Example 3)
Next, using the method of the modification of the second embodiment, the experimental equipment shown in FIG. 11 was prepared, and an experiment for estimating the drying rate of the coating layer on the substrate was performed. This will be specifically described below.
図11に示すように、ガラス板(厚さ1.8mm)の基材31の表面上に、市販のアクリルエマルジョン水系塗料を厚み約120〜130μmで塗布し、塗布層32を形成し、試料を作製した。なお、厚み約5mmの断熱材36(発泡スチロール板)を試料の支持板とし、これを基材31のサイズにくり貫き、基材31の塗布面が断熱材36上面と一致するよう試料を設置し、上下面に同温熱風を流す両面熱風乾燥実験を下記のように実施した。
As shown in FIG. 11, a commercially available acrylic emulsion water-based paint is applied at a thickness of about 120 to 130 μm on the surface of a
塗布面とガラス板底面の温度変化データを10〜30s毎に放射温度計((株)堀場製作所製 放射温度計IT−550F、分解能0.1K)により手動測定した。電気式熱風発生機((株)竹綱製作所製 TSK−10)で発生させた熱風を金網で整流した後、試料上下方向から供給した。上下方向で別個の熱風発生器を用いることで、塗布面と基材裏面付近での熱風温度をそれぞれ60℃と40℃または40℃と60℃に設定した。熱風速度は両方向とも約2m/sとした。乾燥実験終了後、基材裏面を断熱材で覆って得た試料表面温度を上面方向熱風温度として、試料表面を覆って得た試料底面温度を下面方向熱風温度として採用した。別途、表面に1mmφの熱電対(Kタイプ)を埋め込んだ断熱材上に乾き試料を置き、乾燥実験と同条件の熱風下で定常伝熱実験を行った。デジタル温度計(佐藤計量器製作所(株)製 SK−1250MC)で測定した温度と放射温度計の測定温度を比較したところ、塗布面では放射率を0.85、ガラス面では0.70としたときにほぼ一致したので、本実施例の全実験を通してこの値を用いて温度を測定した。なお、このときの塗布層の表面側熱風温度Tas=331K(塗布層の表面への所望熱風温度60℃−基材裏面への所望熱風温度40℃の場合(以下、60℃−40℃とする))、313K(塗布層の表面への所望熱風温度40℃−基材裏面への所望熱風温度60℃の場合(以下、40℃−60℃とする))、底面側熱風温度Tab=312K(60℃−40℃)、333K(40℃−60℃)であった。また、最終塗布層厚みは、塗布層の表面への所望熱風温度60℃−基材裏面への所望熱風温度40℃の場合、塗布層の表面への所望熱風温度40℃−基材裏面への所望熱風温度60℃の場合のどちらも約50μmだった。
The temperature change data on the coated surface and the bottom surface of the glass plate were manually measured every 10 to 30 seconds with a radiation thermometer (Radio Thermometer IT-550F, manufactured by Horiba, Ltd., resolution 0.1K). Hot air generated by an electric hot air generator (TSK-10 manufactured by Takezuna Seisakusho Co., Ltd.) was rectified by a wire mesh, and then supplied from the vertical direction of the sample. By using separate hot air generators in the vertical direction, the hot air temperatures near the coated surface and the back surface of the substrate were set to 60 ° C. and 40 ° C. or 40 ° C. and 60 ° C., respectively. The hot air velocity was about 2 m / s in both directions. After completion of the drying experiment, the sample surface temperature obtained by covering the back surface of the substrate with a heat insulating material was adopted as the upper surface direction hot air temperature, and the sample bottom surface temperature obtained by covering the sample surface was adopted as the lower surface direction hot air temperature. Separately, a dry sample was placed on a heat insulating material with a 1 mmφ thermocouple (K type) embedded in the surface, and a steady heat transfer experiment was performed under hot air under the same conditions as the drying experiment. When the temperature measured with a digital thermometer (SK-1250MC manufactured by Sato Keiki Seisakusho Co., Ltd.) and the measurement temperature of the radiation thermometer were compared, the emissivity was 0.85 on the coated surface and 0.70 on the glass surface. Since the values sometimes coincided with each other, the temperature was measured using this value throughout the experiment of this example. Incidentally, the desired hot air temperature of 60 ° C. to the surface side hot air temperature T as = 331K (the surface of the coating layer of the coated layer in this case - if desired hot air temperature of 40 ° C. to the substrate back surface (hereinafter, a 60 ° C. -40 ° C. )) 313K (desired
このように実験して得られた、60℃−40℃の場合の結果を、図12に各点で示す。図12からわかるように、材料予熱期間と定率乾燥期間では塗布面温度>底面温度となったが、減率乾燥期間では一様材料温度の近似が成立した。なお、蒸発水分量は0.24gだった。 The results in the case of 60 ° C. to 40 ° C. obtained as a result of the experiment are shown in FIG. As can be seen from FIG. 12, the coating surface temperature> the bottom surface temperature in the material preheating period and the constant rate drying period, but the uniform material temperature was approximated in the decreasing rate drying period. The amount of evaporated water was 0.24 g.
また、40℃−60℃の場合の結果を、図13に示す。材料予熱期間と定率乾燥期間では塗布面温度<底面温度となったが、減率乾燥期間では一様材料温度の近似が成立した。なお、蒸発水分量は0.27gだった。 Moreover, the result in the case of 40 to 60 degreeC is shown in FIG. The coating surface temperature was less than the bottom surface temperature during the material preheating period and the constant rate drying period, but the uniform material temperature was approximated during the reduced rate drying period. The amount of evaporated water was 0.27 g.
塗布層と基材とを平均一様温度と近似し、塗布層の表面温度変化のみを用いて、上記式(13)において、Q=0として求めた塗布層の表面側境膜伝熱係数hsは、41W/(m2・K)(60℃−40℃)、34W/(m2・K)(40℃−60℃)、底面側境膜伝熱係数hbは、46W/(m2・K)(60℃−40℃)、34W/(m2・K)(40℃−60℃)であった。 The coating layer and the base material are approximated to an average uniform temperature, and only the change in the surface temperature of the coating layer is used, and the surface side film heat transfer coefficient h of the coating layer determined as Q = 0 in the above equation (13). s is 41 W / (m 2 · K) (60 ° C. to 40 ° C.), 34 W / (m 2 · K) (40 ° C. to 60 ° C.), and the bottom side film heat transfer coefficient h b is 46 W / (m 2 · K) (60 ° C.-40 ° C.) and 34 W / (m 2 · K) (40 ° C.-60 ° C.).
次に、上記式(14)、(15)を用いて求めた乾燥曲線と乾燥速度曲線を図12、図13、図14(塗布層の表面についてのみのもの)、図15(塗布層の表面及び基材の裏面の両方についてのもの)に示す。この際、水の比熱容量cw=4180J/(kg・K)、乾き材料の比熱容量cd=1460J/(kg・K)、容器の比熱容量cb=800J/(kg・K)で定数と近似した。実際には、予熱期間と定率乾燥期間とで塗布層の表面温度と基材の裏面温度には差が存在する。そこで、両温度変化を用いて第2実施形態の式(9)で求めた塗布層の表面側境膜伝熱係数hsは41W/(m2・K)(60℃−40℃)、33W/(m2・K)(40℃−60℃)、底面側境膜伝熱係数hbは、47W/(m2・K)(60℃−40℃)、36W/(m2・K)(40℃−60℃)となった。これらからすると、実施例2と本実施例との結果は、良く一致していることがわかる。 Next, the drying curves and drying speed curves obtained using the above formulas (14) and (15) are shown in FIGS. 12, 13, 14 (only for the surface of the coating layer), and FIG. 15 (the surface of the coating layer). And for the back side of the substrate). In this case, the specific heat capacity of water c w = 4180 J / (kg · K), the specific heat capacity of dry material c d = 1460 J / (kg · K), and the specific heat capacity of the container c b = 800 J / (kg · K) are constants. And approximated. Actually, there is a difference between the surface temperature of the coating layer and the back surface temperature of the substrate between the preheating period and the constant rate drying period. Therefore, the surface side film heat transfer coefficient h s of the coating layer obtained by the equation (9) of the second embodiment using both temperature changes is 41 W / (m 2 · K) (60 ° C.-40 ° C.), 33 W. / (M 2 · K) (40 ° C-60 ° C), bottom side film heat transfer coefficient h b is 47 W / (m 2 · K) (60 ° C-40 ° C), 36 W / (m 2 · K) (40 ° C-60 ° C). From these, it can be seen that the results of Example 2 and this example are in good agreement.
なお、本実施例で用いた基材であるガラス板の伝熱係数(=熱伝導度/厚み)は約330W/(m2・K)だったが、100〜30μmの厚みのプラスチックフィルムでは2000〜7000W/(m2・K)、1mmの厚みの鉄板では80000W/(m2・K)にも及び、ガラス板と比べて遥かに小さな温度差が期待でき、基板の裏面の温度変化の実測が困難な場合において、本実施例における蒸発面の温度変化のみによる近似解析法が有効だと考えられる。 In addition, although the heat transfer coefficient (= thermal conductivity / thickness) of the glass plate which is a base material used in the present example was about 330 W / (m 2 · K), it was 2000 for a plastic film having a thickness of 100 to 30 μm. Up to 7000 W / (m 2 · K), an iron plate with a thickness of 1 mm reaches 80000 W / (m 2 · K), and a much smaller temperature difference can be expected compared to a glass plate, and the temperature change on the back side of the substrate is measured. When this is difficult, it is considered that the approximate analysis method based only on the temperature change of the evaporation surface in this embodiment is effective.
したがって、本実施例の結果から、第2実施形態の変形例の効果を実証できたことがわかる。 Therefore, it can be seen from the results of this example that the effects of the modification of the second embodiment have been verified.
なお、本実施例では、厚み1.8mmのガラス板上に120〜130μm 厚の水性塗料膜を形成させ両面乾燥実験を行った。湿り材料全体をガラス、アクリル樹脂、水の中で最小のαを示すアクリル樹脂で近似すれば、t1≒1.21L2/α=10sを得る。このときの平均含水率xmは=1.15である。したがって、図12〜図15の乾燥曲線・乾燥速度曲線は1.15以下のxmで有効である。 In this example, a double-sided drying experiment was performed by forming a 120-130 μm thick aqueous coating film on a 1.8 mm thick glass plate. If the entire wet material is approximated by an acrylic resin that exhibits the minimum α in glass, acrylic resin, and water, t 1 ≈1.21 L 2 / α = 10 s is obtained. The average moisture content x m at this time is = 1.15. Therefore, the drying curves and drying speed curves in FIGS. 12 to 15 are effective at x m of 1.15 or less.
なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。 The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.
本発明は、乾燥器の乾燥ムラを定量的に推定できることから、乾燥器の乾燥条件の最適化や、乾燥器の改良に適用することができる。 Since the present invention can quantitatively estimate the drying unevenness of the dryer, it can be applied to the optimization of the drying conditions of the dryer and the improvement of the dryer.
1、21、31 基材
2、22、32 塗布層
3、23、36 断熱材
4、24a、24b 放射温度計
25 リング
26 支持板
100 コンピュータ
104 システムバス
105 キーボードコントローラ
106 表示部のコントローラ
107 記録及び読取部
109 ネットワーク
110 本体
111 キーボード
112 表示部
1, 21, 31
Claims (9)
下記式(1)で得た塗布層表面の境膜伝熱係数hsを下記式(2)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、
下記式(1)で得た塗布層表面の境膜伝熱係数hsを下記式(3)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、
前記ww1及び前記Δwwを下記式(4)に適用して、前記塗布層の乾燥速度を推定する工程とを有していることを特徴とする基材上の塗布層の乾燥速度推定方法。
(a1)熱風加熱
(a2)放射加熱、誘導加熱、又は通電加熱のいずれか1つ以上と、熱風加熱
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (1) into the following formula (2), and obtaining the mass w w1 of the water in the coating layer after t 1 second;
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (1) into the following formula (3) to obtain a mass change Δw w of moisture in the coating layer in Δt seconds;
Applying the w w1 and the Δw w to the following equation (4) to estimate the drying rate of the coating layer, and a method for estimating the drying rate of the coating layer on the substrate .
(A 1 ) Hot air heating (a 2 ) One or more of radiant heating, induction heating, or current heating, and hot air heating
下記式(5)で得た塗布層表面の境膜伝熱係数hsを下記式(6)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、
下記式(5)で得た塗布層表面の境膜伝熱係数hsを下記式(7)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、
前記ww1及び前記Δwwを下記式(8)に適用して、前記塗布層の乾燥速度を推定する工程とを有していることを特徴とする基材上の塗布層の乾燥速度推定方法。
(b1)熱風加熱
(b2)放射加熱、誘導加熱、又は通電加熱のいずれか1つ以上と、熱風加熱
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (5) into the following formula (6) to obtain the mass w w1 of the water in the coating layer after t 1 second;
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (5) into the following formula (7) to obtain a mass change Δw w of moisture in the coating layer in Δt seconds;
Applying the w w1 and the Δw w to the following equation (8) to estimate the drying rate of the coating layer, and a method for estimating the drying rate of the coating layer on the substrate .
(B 1 ) Hot air heating (b 2 ) Any one or more of radiant heating, induction heating, or current heating, and hot air heating
下記式(9)で得た塗布層表面の境膜伝熱係数hsを下記式(10)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、
下記式(9)で得た塗布層表面の境膜伝熱係数hsを下記式(11)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、
前記ww1及び前記Δwwを下記式(12)に適用して、前記塗布層の乾燥速度を推定する工程とを有していることを特徴とする基材上の塗布層の乾燥速度推定方法。
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (9) into the following formula (10) to obtain a mass w w1 of water in the coating layer after t 1 second;
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (9) into the following formula (11) to obtain a mass change Δw w of moisture in the coating layer in Δt seconds;
Applying the w w1 and the Δw w to the following equation (12) to estimate the drying rate of the coating layer, and a method for estimating the drying rate of the coating layer on the substrate .
下記式(13)で得た塗布層表面の境膜伝熱係数hsを下記式(14)に代入して、t1秒後における塗布層内の水分の質量ww1を得る工程と、
下記式(13)で得た塗布層表面の境膜伝熱係数hsを下記式(15)に代入して、Δt秒間における塗布層内の水分の質量変化Δwwを得る工程と、
前記ww1及び前記Δwwを下記式(16)に適用して、前記塗布層の乾燥速度を推定する工程とを有していることを特徴とする基材上の塗布層の乾燥速度推定方法。
(c1)熱風加熱
(c2)放射加熱、誘導加熱、又は通電加熱のいずれか1つ以上と、熱風加熱
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (13) into the following formula (14) to obtain the mass w w1 of the water in the coating layer after t 1 second;
Substituting the film heat transfer coefficient h s of the coating layer surface obtained by the following formula (13) into the following formula (15) to obtain a mass change Δw w of moisture in the coating layer in Δt seconds;
Applying the w w1 and the Δw w to the following equation (16) to estimate the drying rate of the coating layer, and a method for estimating the drying rate of the coating layer on the substrate .
(C 1 ) Hot air heating (c 2 ) Any one or more of radiant heating, induction heating, or current heating, and hot air heating
前記乾燥速度推定工程で得られた乾燥速度から前記塗布層の乾燥速度分布を得る工程とを有していることを特徴とする基材上の塗布層の乾燥速度分布を得る方法。 A drying rate estimation step for estimating a drying rate using the drying rate estimation method for a coating layer according to any one of claims 1 to 4, over the entire surface of the coating layer,
And obtaining a drying rate distribution of the coating layer from the drying rate obtained in the drying rate estimating step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007038495A JP4967129B2 (en) | 2007-02-19 | 2007-02-19 | Method for estimating drying rate of coating layer on substrate and method for obtaining drying rate distribution of coating layer on substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007038495A JP4967129B2 (en) | 2007-02-19 | 2007-02-19 | Method for estimating drying rate of coating layer on substrate and method for obtaining drying rate distribution of coating layer on substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008203045A true JP2008203045A (en) | 2008-09-04 |
JP4967129B2 JP4967129B2 (en) | 2012-07-04 |
Family
ID=39780721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007038495A Active JP4967129B2 (en) | 2007-02-19 | 2007-02-19 | Method for estimating drying rate of coating layer on substrate and method for obtaining drying rate distribution of coating layer on substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4967129B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013148368A (en) * | 2012-01-17 | 2013-08-01 | Toyota Motor Corp | Method for estimating drying state of coating film |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6753989B1 (en) * | 2019-08-09 | 2020-09-09 | 株式会社神戸製鋼所 | Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model |
JP6753990B1 (en) * | 2019-08-09 | 2020-09-09 | 株式会社神戸製鋼所 | Laminate planning method of laminated model, manufacturing method and manufacturing equipment of laminated model |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6457135A (en) * | 1987-08-28 | 1989-03-03 | Nippon Kokan Kk | Photographing method with infrared-ray camera |
JP2002365253A (en) * | 2001-06-08 | 2002-12-18 | Toho Gas Co Ltd | Program for analyzing drying oven |
JP2006010636A (en) * | 2004-06-29 | 2006-01-12 | Canon Inc | Hot fluid analyzing method, program for executing above method, storage medium for storing above program, and hot fluid analyzing system |
-
2007
- 2007-02-19 JP JP2007038495A patent/JP4967129B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6457135A (en) * | 1987-08-28 | 1989-03-03 | Nippon Kokan Kk | Photographing method with infrared-ray camera |
JP2002365253A (en) * | 2001-06-08 | 2002-12-18 | Toho Gas Co Ltd | Program for analyzing drying oven |
JP2006010636A (en) * | 2004-06-29 | 2006-01-12 | Canon Inc | Hot fluid analyzing method, program for executing above method, storage medium for storing above program, and hot fluid analyzing system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013148368A (en) * | 2012-01-17 | 2013-08-01 | Toyota Motor Corp | Method for estimating drying state of coating film |
Also Published As
Publication number | Publication date |
---|---|
JP4967129B2 (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lopes et al. | Influence of the substrate thermal properties on sessile droplet evaporation: Effect of transient heat transport | |
Ni et al. | Moisture transport in intensive microwave heating of biomaterials: a multiphase porous media model | |
Hager et al. | Modelling steam drying of a single porous ceramic sphere: experiments and simulations | |
Qin et al. | An analytical method to calculate the coupled heat and moisture transfer in building materials | |
Sander et al. | Heat and mass transfer models in convection drying of clay slabs | |
Cogné et al. | Modeling heat and mass transfer during vacuum freezing of puree droplet | |
JP4967129B2 (en) | Method for estimating drying rate of coating layer on substrate and method for obtaining drying rate distribution of coating layer on substrate | |
Campanale et al. | Effect of moisture movement on tested thermal conductivity of moist aerated autoclaved concrete | |
Tang et al. | Selection of convective moisture transfer driving potential and its impacts upon porous plate air-drying characteristics | |
Le et al. | Superheated steam drying of single wood particles: A characteristic drying curve model deduced from continuum model simulations and assessed by experiments | |
Tang et al. | Water film coverage model and its application to the convective air-drying simulation of a wet porous medium | |
Log | Water droplets evaporating on horizontal semi-infinite solids at room temperature | |
Campanale et al. | Thermal conductivity of moist autoclaved aerated concrete: Experimental comparison between heat flow method (HFM) and transient plane source technique (TPS) | |
Zaknoune et al. | Identification of the liquid and vapour transport parameters of an ecological building material in its early stages | |
Putranto et al. | Drying of a system of multiple solvents: Modeling by the reaction engineering approach | |
Jannot et al. | Influence of mass transfer on the estimation of the thermal conductivity of a wet material by the hot wire and parallel hot wire methods | |
Kiriyama et al. | Size dependence of the drying characteristics of single lignite particles in superheated steam | |
Younsi et al. | CFD modeling and experimental validation of heat and mass transfer in wood poles subjected to high temperatures: a conjugate approach | |
Jannot et al. | Thermal properties measurement of dry bulk materials with a cylindrical three layers device | |
Witkiewicz et al. | Simulation strategies in mathematical modeling of microwave heating in freeze-drying process | |
Osséni et al. | Hot plate method with two simultaneous temperature measurements for thermal characterization of building materials | |
Nastaj et al. | Experimental and simulation studies of primary vacuum freeze-drying process of random solids at microwave heating | |
Fedoseev et al. | Numerical modelling of heat and moisture transfer in a clay-like porous material | |
Ciro-Velasquez et al. | Numerical simulation of thin layer coffee drying by control volumes | |
El Hallaoui et al. | Experimental investigation of thermal conductivity and specific heat of the calcium phosphate ore for a drying application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20090721 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110810 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110830 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120306 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |