[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008202896A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008202896A
JP2008202896A JP2007041400A JP2007041400A JP2008202896A JP 2008202896 A JP2008202896 A JP 2008202896A JP 2007041400 A JP2007041400 A JP 2007041400A JP 2007041400 A JP2007041400 A JP 2007041400A JP 2008202896 A JP2008202896 A JP 2008202896A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
heat exchanger
convex portion
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007041400A
Other languages
Japanese (ja)
Other versions
JP2008202896A5 (en
Inventor
Kazuhisa Mishiro
一寿 三代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007041400A priority Critical patent/JP2008202896A/en
Publication of JP2008202896A publication Critical patent/JP2008202896A/en
Publication of JP2008202896A5 publication Critical patent/JP2008202896A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger improved in efficiency in heat exchange, by preventing a residence of condensation water. <P>SOLUTION: This heat exchanger has: a cylindrical refrigerant inflow side header pipe 1; a refrigerant outflow side header pipe 2; and a plurality of heat transfer tubes 3 inserted and connected between the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2. The heat transfer tubes 3 are formed with a projection part 8 arranged in a zigzag shape in the wind flowing direction on its surface. Thus, since the condensation water smoothly flows down downward by going along the projection part 8, residence of the condensation water is prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒流入側のヘッダ管および冷媒流出側のヘッダ管の間に複数の伝熱管を備えた熱交換器に関する。   The present invention relates to a heat exchanger provided with a plurality of heat transfer tubes between a header tube on the refrigerant inflow side and a header tube on the refrigerant outflow side.

従来、冷蔵庫や空気調和機等の冷凍サイクルを構成する熱交換器としては、特許文献1に示すような、管軸方向が平行となるように配置された冷媒流入側のヘッダ管および冷媒流出側のヘッダ管と、2つの前記ヘッダ管と直交する方向に配置された複数の伝熱管とを備え、各伝熱管の両端がそれぞれヘッダ管に一列に挿入接続され、伝熱管の内部に冷媒が通過する細かく複数に区切られた冷媒流路が形成されたものが挙げられる。   Conventionally, as a heat exchanger constituting a refrigeration cycle such as a refrigerator or an air conditioner, as shown in Patent Document 1, a header pipe on a refrigerant inflow side and a refrigerant outflow side arranged so that the pipe axis directions are parallel to each other And a plurality of heat transfer tubes arranged in a direction orthogonal to the two header tubes, both ends of each heat transfer tube are inserted and connected in a row to the header tube, and the refrigerant passes through the heat transfer tubes And a refrigerant flow path that is finely divided into a plurality of parts is formed.

一方、特許文献1に示す熱交換器よりも熱交換効率を向上させたものとして、伝熱管を屈曲させて蛇行状にしたものや、その表面に風の流れる方向に沿う凸部を設けたりしたものが特許文献2に開示されている。
特許第3133897号公報 特開2006−284123号公報
On the other hand, as what improved heat exchange efficiency rather than the heat exchanger shown in patent document 1, what bent the heat exchanger tube and made it meander, and provided the convex part along the direction of a wind flow on the surface. This is disclosed in Patent Document 2.
Japanese Patent No. 3133897 JP 2006-284123 A

しかしながら、熱交換の効率を向上させるために、風の流れ方向に沿って凸部を設けてしまうと、熱交換器を蒸発器として使用した場合、結露水が凸部に滞留するため、風の流れる方向の風下側に滞留した結露水が飛水する問題がある。また、冬場に室外で熱交換器を蒸発器として使用した場合、凸部に滞留した結露水が凍りつくため、除霜運転を行なう回数が多くなる問題がある。   However, in order to improve the efficiency of heat exchange, if a convex part is provided along the flow direction of the wind, when the heat exchanger is used as an evaporator, condensed water stays in the convex part. There is a problem that the dew condensation water staying on the leeward side in the flowing direction flies. In addition, when a heat exchanger is used as an evaporator outdoors in winter, there is a problem that the number of times of defrosting operation is increased because the condensed water staying on the convex portion freezes.

そこで、本発明は、上記に鑑み、結露水の滞留を防止するとともに、熱交換の効率の向上を図った熱交換器を提供することを目的とする。   Then, in view of the above, an object of the present invention is to provide a heat exchanger that prevents the accumulation of condensed water and improves the efficiency of heat exchange.

上記目的を達成するために、本発明では、管軸方向が平行となるように配置された冷媒流入側のヘッダ管および冷媒流出側のヘッダ管と、2つの前記ヘッダ管と直交する方向に配置され、内部を冷媒が通過する複数の扁平形状の伝熱管とを備え、前記伝熱管は、前記ヘッダ管の管軸方向に沿って、風が通るように間隔を開けて一列に配列され、前記各伝熱管には、隣り合う伝熱管側に突出し、前記伝熱管の管軸方向に沿う凸部が形成され、前記凸部は、それぞれが向かい合う凸部とずれた位置に配置されたことを特徴とする。   In order to achieve the above object, in the present invention, a refrigerant inflow side header pipe and a refrigerant outflow side header pipe, which are arranged so that the pipe axis directions are parallel, are arranged in a direction perpendicular to the two header pipes. A plurality of flat heat transfer tubes through which the refrigerant passes, and the heat transfer tubes are arranged in a row at intervals so that air passes along the tube axis direction of the header tube, Each heat transfer tube protrudes to the adjacent heat transfer tube side, and a convex portion is formed along the tube axis direction of the heat transfer tube, and the convex portion is arranged at a position shifted from the convex portion facing each other. And

隣り合う伝熱管に向かって凸部が突出する。このとき、向かい合う凸部同士の位置を互いにずらして配置する。これにより、向かい合う位置に凸部を設けた伝熱管を平行に並べた場合と比べて、隣り合う伝熱管と伝熱管との距離を狭くすることができる。そのため、熱交換器全体の幅が同じであっても、向かい合う凸部同士をずれた位置に配置した伝熱管の方が多く配設することができる。したがって、全体的に風との接触面積が増大し、熱交換の効率を向上させることができる。また、凸部には、結露水が滞留しにくくなり、スムーズに下方に流すことができる。   A convex part protrudes toward the adjacent heat exchanger tube. At this time, the positions of the convex portions facing each other are shifted from each other. Thereby, compared with the case where the heat exchanger tube which provided the convex part in the position which faces is arranged in parallel, the distance of an adjacent heat exchanger tube and a heat exchanger tube can be narrowed. Therefore, even if the width | variety of the whole heat exchanger is the same, the direction of the heat exchanger tube which has arrange | positioned in the position which mutually shifted the convex parts can be arrange | positioned more. Therefore, the area of contact with the wind increases as a whole, and the efficiency of heat exchange can be improved. Moreover, it becomes difficult for dew condensation water to stay on a convex part, and it can flow smoothly below.

凸部は、前記伝熱管の管軸方向に連なって形成されることが好ましい。この構成によると、凸部は、伝熱管の一端側から他端側にかけて形成されているため、凸部に付着した結露水は、凸部を伝って下方に向かってスムーズに流れていく。したがって、凸部に結露水が滞留することがないので、熱交換器を周囲温度の低い場所、例えば、冬場の室外等で使用しても着霜を抑制することができる。そのため、熱交換器は、除霜運転の回数を少なくすることができる。また、結露水が滞留することがないので、伝熱管同士の間を流れる風によって、風下に向かって飛水することもない。   The convex portion is preferably formed continuously in the tube axis direction of the heat transfer tube. According to this configuration, since the convex portion is formed from one end side to the other end side of the heat transfer tube, the condensed water attached to the convex portion flows smoothly downward along the convex portion. Therefore, since dew condensation water does not stay on a convex part, even if it uses a heat exchanger in the place where ambient temperature is low, for example, the outdoor of a winter season etc., frost formation can be controlled. Therefore, the heat exchanger can reduce the number of defrosting operations. Moreover, since dew condensation water does not stay, it does not fly toward the leeward by the wind flowing between the heat transfer tubes.

凸部が向かい合う位置にある場合、風の流れる隙間が凸部のところで狭くなるため、風の流れ方向の幅の変化が激しくなる。そのため、風は、風路が狭くなる部分、すなわち、凸部の部分で風が滞留し、流れを阻害することとなる。そこで、向かい合う凸部同士を風の流れる方向に沿って千鳥状に配置することが好ましい。この構成により、常に風の流れる方向の幅を風の流れを阻害しない間隔、すなわち、ほぼ一定間隔とすることができる。これにより、風が凸部で滞留することなくスムーズに流れるので、熱交換の効率を向上させることができる。   When the convex portions are located at opposite positions, the gap through which the wind flows becomes narrow at the convex portions, so that the change in the width in the wind flow direction becomes severe. For this reason, the wind stays at the portion where the air passage becomes narrow, that is, the convex portion, and the flow is inhibited. Therefore, it is preferable to arrange the convex portions facing each other in a staggered manner along the direction in which the wind flows. With this configuration, the width in the wind flow direction can always be set to an interval that does not impede the wind flow, that is, a substantially constant interval. Thereby, since a wind flows smoothly, without staying in a convex part, the efficiency of heat exchange can be improved.

管軸方向が平行となるように配置された冷媒流入側のヘッダ管および冷媒流出側のヘッダ管と、2つの前記ヘッダ管と直交する方向に配置され、内部を冷媒が通過する複数の扁平形状の伝熱管とを備え、前記伝熱管は、前記ヘッダ管の管軸方向に沿って、風が通るように間隔を開けて一列に配列され、前記伝熱管には、風が通る方向の少なくとも一端部に風が通る方向へ突出し、前記伝熱管の管軸方向に沿うひれ状の凸部が形成されたことを特徴とする。   A header pipe on the refrigerant inflow side and a header pipe on the refrigerant outflow side arranged so that the pipe axis directions are parallel, and a plurality of flat shapes arranged in a direction orthogonal to the two header pipes and through which the refrigerant passes. The heat transfer tubes are arranged in a line at intervals along the tube axis direction of the header tube so as to allow wind to pass, and the heat transfer tubes have at least one end in the direction in which the wind passes. A fin-like convex portion is formed which protrudes in the direction in which wind passes through the portion and extends along the tube axis direction of the heat transfer tube.

凸部が風の流れる方向に沿って突出しているため、風は、凸部によってその流れを妨げない。そのため、例えば、凸部を空気の流れ方向と直交する方向に突出した場合と比べると、風が凸部に当たる面積が狭くなるので、凸部に当たって発生する騒音を抑えることができる。また、凸部には、結露水が滞留しにくくなり、スムーズに下方に流すことができる。   Since the convex part protrudes along the direction in which the wind flows, the wind does not disturb the flow by the convex part. Therefore, for example, compared with the case where the convex portion protrudes in a direction orthogonal to the air flow direction, the area where the wind hits the convex portion is narrowed, and therefore noise generated by hitting the convex portion can be suppressed. Moreover, it becomes difficult for dew condensation water to stay on a convex part, and it can flow smoothly below.

凸部は、伝熱管の管軸方向に連なって形成されることが好ましい。この構成によると、風が凸部に沿って流れるため、風の流れる方向に対して垂直に突出した凸部よりも当たる面積が大きくなる。そのため、熱交換の効率を向上させることができる。また、凸部は、伝熱管の一端側から他端側にかけて形成されているため、凸部に付着した結露水は、凸部を伝って下方に向かってスムーズに流れていく。したがって、凸部に結露水が滞留することがないので、熱交換器を周囲温度の低い場所、例えば、冬場の室外等で使用しても着霜を抑制することができる。そのため、熱交換器は、除霜運転の回数を少なくすることができる。また、結露水が滞留することがないので、伝熱管同士の間を流れる風によって、風下に向かって飛水することもない。   The convex portion is preferably formed continuously in the tube axis direction of the heat transfer tube. According to this configuration, since the wind flows along the convex portion, the area hit by the convex portion protruding perpendicularly to the direction of the wind flow becomes larger. Therefore, the efficiency of heat exchange can be improved. Moreover, since the convex part is formed from the one end side of a heat exchanger tube to the other end side, the dew condensation water adhering to a convex part flows along the convex part smoothly toward the downward direction. Therefore, since dew condensation water does not stay on a convex part, even if it uses a heat exchanger in the place where ambient temperature is low, for example, the outdoor of a winter season etc., frost formation can be controlled. Therefore, the heat exchanger can reduce the number of defrosting operations. Moreover, since dew condensation water does not stay, it does not fly toward the leeward by the wind flowing between the heat transfer tubes.

凸部は、風との接触面積を大きくするために、断面を波形状に形成されたことを特徴とする。この構成により、風が凸部を沿って流れる距離が長くなるので、熱交換の効率が向上する。   The convex portion is characterized in that the cross section is formed in a wave shape in order to increase the contact area with the wind. With this configuration, the distance that the wind flows along the convex portion is increased, so that the efficiency of heat exchange is improved.

伝熱管は、それぞれのヘッダ管に挿入接続され、凸部は、前記伝熱管の端部が所定の長さ前記2つのヘッダ管に挿入できるように、前記伝熱管の端部に近接するように形成することが好ましい。   The heat transfer tubes are inserted and connected to the respective header tubes, and the convex portions are arranged close to the end portions of the heat transfer tubes so that the end portions of the heat transfer tubes can be inserted into the two header tubes with a predetermined length. It is preferable to form.

伝熱管は、それぞれのヘッダ管に挿入される長さに応じて、差し込まれる側の端部から差し込まれる部分まで凸部を取り払う。端部側を取り払われた凸部は、伝熱管を挿入した際、両ヘッダ管に形成された挿入口に引っ掛かってストッパーとなる。これにより、伝熱管は、ヘッダ管に対して所定の長さだけ挿入することができる。また、ヘッダ管に挿入される伝熱管の表面から凸部が取り払われるため、伝熱管が挿入されるヘッダ管の挿入口の大きさを伝熱管の本体部の大きさに形成すればよいため、挿入口の形成が簡易になる。   The heat transfer tube removes the convex portion from the end portion on the insertion side to the inserted portion according to the length inserted into each header tube. When the heat transfer tube is inserted, the convex portion from which the end portion has been removed is caught by the insertion opening formed in both header tubes and becomes a stopper. Thereby, the heat transfer tube can be inserted into the header tube by a predetermined length. Further, since the convex portion is removed from the surface of the heat transfer tube inserted into the header tube, the size of the insertion port of the header tube into which the heat transfer tube is inserted may be formed to the size of the main body portion of the heat transfer tube, The insertion port can be easily formed.

以上のとおり、本発明では、伝熱管の管軸方向に沿って連なる凸部が設けられているため、凸部に結露水が溜まることなく、スムーズに下方に流れていく。また、各凸部は、向かい合う凸部同士でずれた位置に配置されるので、隣り合う伝熱管同士の間隔を狭めることができ、より多くの伝熱管を配設することが可能となり、熱交換の効率を向上させることができる。   As described above, in the present invention, since the convex portion that is continuous along the tube axis direction of the heat transfer tube is provided, the condensed water does not accumulate in the convex portion and flows smoothly downward. Moreover, since each convex part is arrange | positioned in the position shifted | deviated between the convex parts which face each other, the space | interval of adjacent heat exchanger tubes can be narrowed, it becomes possible to arrange | position more heat exchanger tubes, and heat exchange. Efficiency can be improved.

また、凸部を風の流れ方向に沿って突出しているので、風の流れを妨げない。そのため、風が凸部に当たる面積が小さくなるので、凸部を風の流れ方向に対して直交する方向に突出させた場合と比較して、騒音を静かにすることができる。   Moreover, since the convex part protrudes along the flow direction of the wind, the flow of the wind is not hindered. For this reason, since the area where the wind hits the convex portion is reduced, noise can be made quieter than in the case where the convex portion is protruded in a direction perpendicular to the flow direction of the wind.

〔第1実施形態〕
以下、本発明の第1実施形態を図1〜図5に基づいて説明する。本発明の熱交換器は、空気調和機や冷蔵庫等の冷凍サイクルを構成する熱交換器(蒸発器、凝縮器)に使用されるものである。熱交換器は、図1に示すように、長手方向を水平にして円筒状の中空体で形成された冷媒流入側のヘッダ管1および冷媒流出側のヘッダ管2と、冷媒流入側ヘッダ管1と冷媒流出側ヘッダ管2との間に垂直方向に挿入接続され、冷媒流入側ヘッダ管1と冷媒流出側ヘッダ管2の長手方向と直交する方向に風が通るように間隔を開けて一列に配列された複数の伝熱管3とを備える。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The heat exchanger of this invention is used for the heat exchanger (evaporator, condenser) which comprises refrigeration cycles, such as an air conditioner and a refrigerator. As shown in FIG. 1, the heat exchanger includes a refrigerant inflow side header pipe 1 and a refrigerant outflow side header pipe 2 formed of a cylindrical hollow body with the longitudinal direction horizontal, and a refrigerant inflow side header pipe 1. Are inserted and connected in the vertical direction between the refrigerant outlet header pipe 2 and the refrigerant outlet header pipe 2 so that the wind passes in a direction perpendicular to the longitudinal direction of the refrigerant inlet header pipe 1 and the refrigerant outlet header pipe 2 in a row. And a plurality of heat transfer tubes 3 arranged.

なお、冷房時と暖房時において、冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2では、冷媒の流れが逆になる場合がある。すなわち、冷媒が冷媒流出側ヘッダ管2から流入し、伝熱管3を通って冷媒流入側ヘッダ管1から流出する。本実施例では、説明をわかりやすくするため、凝縮器として機能する際に流入側ヘッダが上となるように構成し、上部に設けられたヘッダを冷媒流入側ヘッダ管1、下部に設けられたヘッダを冷媒流出側ヘッダ管2として説明する。   Note that the refrigerant flow may be reversed in the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2 during cooling and heating. That is, the refrigerant flows in from the refrigerant outflow side header pipe 2, passes through the heat transfer pipe 3, and flows out from the refrigerant inflow side header pipe 1. In this embodiment, in order to make the explanation easy to understand, the inflow header is configured to be on the upper side when functioning as a condenser, and the header provided at the upper portion is provided at the refrigerant inflow side header pipe 1 and the lower portion. The header will be described as the refrigerant outflow side header pipe 2.

冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2は、図2に示すように、アルミ製の板部材をロールして円筒状にし、接合面をシーム溶接して形成されたアルミパイプである。冷媒流入側ヘッダ管1と冷媒流出側ヘッダ管2は、互いの管軸が平行に位置し、冷媒流入側ヘッダ管1が上端側、冷媒流出側ヘッダ管2が下端側に配置される。冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2のそれぞれの一端側は閉塞されており、他端側はロウ付けやネジ嵌合等によって冷媒流入出管4が連結される。冷媒流入側ヘッダ管1と冷媒流出側ヘッダ管2の内径は、後述する扁平形状の伝熱管3の端部を挿入して冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2と伝熱管3との間で冷媒が流通できる大きさ、具達的には、伝熱管3の横幅(風の流れる方向)よりも大きく形成される。   As shown in FIG. 2, the refrigerant inflow header pipe 1 and the refrigerant outflow header pipe 2 are aluminum pipes formed by rolling an aluminum plate member into a cylindrical shape and seam welding the joint surfaces. The refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2 are arranged such that the pipe axes thereof are parallel to each other, the refrigerant inflow side header pipe 1 is arranged at the upper end side, and the refrigerant outflow side header pipe 2 is arranged at the lower end side. One end side of each of the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2 is closed, and the refrigerant inflow / outflow pipe 4 is connected to the other end side by brazing, screw fitting or the like. The inner diameters of the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2 are such that the end of a flat heat transfer pipe 3 described later is inserted into the refrigerant inflow side header pipe 1, the refrigerant outflow side header pipe 2, and the heat transfer pipe 3. The size in which the refrigerant can circulate between them, specifically, the width of the heat transfer tube 3 (the direction in which the wind flows) is formed larger.

冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2の表面には、伝熱管3を挿入する挿入口6が形成される。挿入口6は、両ヘッダ管1,2の管軸方向に沿って一列に形成される。伝熱管3は、挿入口6に挿入することで連結される。挿入口6には、冷媒漏れの発生を防ぐために、伝熱管3が挿入された後にロウ付けがされる。   On the surfaces of the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2, an insertion port 6 into which the heat transfer pipe 3 is inserted is formed. The insertion ports 6 are formed in a line along the tube axis direction of both header tubes 1 and 2. The heat transfer tubes 3 are connected by being inserted into the insertion port 6. The insertion port 6 is brazed after the heat transfer tube 3 is inserted in order to prevent the occurrence of refrigerant leakage.

伝熱管3は、図3に示すように、押し出し成形により形成される扁平形状のアルミ管であって、その内部に、一端から他端まで連通する複数の流通路7が形成される。各流通路7には、冷媒が流通する。   As shown in FIG. 3, the heat transfer tube 3 is a flat aluminum tube formed by extrusion, and a plurality of flow passages 7 communicating from one end to the other end are formed therein. A refrigerant flows through each flow passage 7.

伝熱管3の表面には、隣り合う伝熱管3側に向かって突出する断面が半円状の複数の凸部8が形成される。凸部8の断面を半円状とすることで、凸部8を空気の流れ方向に対して直交する方向に突出するように形成したとしても、風の流れを阻害しにくくすることができる。   On the surface of the heat transfer tube 3, a plurality of convex portions 8 having a semicircular cross section projecting toward the adjacent heat transfer tube 3 side are formed. By making the cross section of the convex portion 8 a semicircular shape, even if the convex portion 8 is formed so as to protrude in a direction orthogonal to the air flow direction, it is possible to make it difficult to inhibit the flow of wind.

各凸部8は、伝熱管3の管軸方向に沿って伝熱管3の一端側から他端側にかけて連なって形成される。凸部8は、図3に示すように、風の流れる方向に沿って千鳥状に配置される。これにより、例えば、図4に示すように、複数の伝熱管3を平行に並べたとき、向かい合う凸部8同士がずれた位置となる。具体的には、凸部Aと凸部Bの間に凸部Dが、凸部Bと凸部Cの間に凸部Eが位置するように凸部8を配置する。   Each convex portion 8 is formed continuously from one end side to the other end side of the heat transfer tube 3 along the tube axis direction of the heat transfer tube 3. As shown in FIG. 3, the convex portions 8 are arranged in a staggered manner along the direction in which the wind flows. Thereby, for example, as shown in FIG. 4, when the plurality of heat transfer tubes 3 are arranged in parallel, the convex portions 8 facing each other are displaced from each other. Specifically, the convex portion 8 is arranged such that the convex portion D is located between the convex portion A and the convex portion B, and the convex portion E is located between the convex portion B and the convex portion C.

上記構成によると、図5に示すような、向かい合う凸部9が同じ位置に配置された伝熱管10を平行に並べた場合と比べて、伝熱管3同士の間隔を狭くすることができる。そのため、熱交換器の幅hが同じであっても、向かい合う凸部9が同じ位置に配置された伝熱管10を平行に並べた場合よりも多くの伝熱管3を配設することができる。また、風が伝熱管3の間を千鳥状に通過するため、伝熱管3との接触効率がよくなり、熱交換効の効率が向上する。   According to the said structure, compared with the case where the heat exchanger tube 10 in which the convex part 9 which faces each other was arrange | positioned in the same position as shown in FIG. 5 was arranged in parallel, the space | interval between heat exchanger tubes 3 can be narrowed. Therefore, even if the width h of the heat exchanger is the same, more heat transfer tubes 3 can be provided than when the heat transfer tubes 10 having the convex portions 9 facing each other arranged at the same position are arranged in parallel. Further, since the wind passes between the heat transfer tubes 3 in a zigzag manner, the contact efficiency with the heat transfer tubes 3 is improved, and the efficiency of the heat exchange effect is improved.

また、凸部8は、伝熱管3の端部の近傍まで形成する。具体的には、伝熱管3の端部が冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2に挿入した際、その端部が冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2の内部に流通する冷媒に届くように、凸部8を伝熱管3の表面から切断研磨する。これにより、冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2に挿入すると、伝熱管3の端部側を切断研磨された凸部8の端面が挿入口6に引っ掛かってストッパーとなる。そのため、伝熱管3は、冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2に所定の長さだけ挿入することができる。   Further, the convex portion 8 is formed up to the vicinity of the end portion of the heat transfer tube 3. Specifically, when the end portion of the heat transfer tube 3 is inserted into the refrigerant inflow side header tube 1 and the refrigerant outflow side header tube 2, the end portion is placed inside the refrigerant inflow side header tube 1 and the refrigerant outflow side header tube 2. The convex portion 8 is cut and polished from the surface of the heat transfer tube 3 so as to reach the circulating refrigerant. As a result, when inserted into the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2, the end surface of the convex portion 8 cut and polished on the end portion side of the heat transfer tube 3 is hooked on the insertion port 6 and becomes a stopper. Therefore, the heat transfer pipe 3 can be inserted into the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2 by a predetermined length.

また、伝熱管3の端部の近傍の凸部8を伝熱管3の表面から切断研磨することで、伝熱管3の端部を冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2に挿入した際、凸部8が冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2に挿入することがない。そのため、挿入口6は、伝熱管3の本体部の大きさ、すなわち、扁平形状に挿入口6を形成すればよいので、挿入口6の形成が容易となる。   Further, the convex portion 8 near the end of the heat transfer tube 3 is cut and polished from the surface of the heat transfer tube 3 so that the end of the heat transfer tube 3 is inserted into the refrigerant inflow side header tube 1 and the refrigerant outflow side header tube 2. At this time, the convex portion 8 is not inserted into the refrigerant inflow side header pipe 1 and the refrigerant outflow side header pipe 2. Therefore, since the insertion port 6 should just form the insertion port 6 in the magnitude | size of the main-body part of the heat exchanger tube 3, ie, a flat shape, formation of the insertion port 6 becomes easy.

〔第2実施形態〕
次に、第2実施形態について、図6〜図8を用いて説明する。
[Second Embodiment]
Next, a second embodiment will be described with reference to FIGS.

第2実施形態の熱交換器は、第1実施形態と比べて、伝熱管11の凸部12が形成される位置が異なる。具体的には、凸部12は、扁平形状の伝熱管11の側面側で、伝熱管11の管軸方向に沿って連なって、ひれ状に形成される。その他の構成は、第1実施形態の熱交換器の構成と同じである。   The heat exchanger of 2nd Embodiment differs in the position in which the convex part 12 of the heat exchanger tube 11 is formed compared with 1st Embodiment. Specifically, the convex portion 12 is formed in a fin shape in the side surface side of the flat heat transfer tube 11 along the tube axis direction of the heat transfer tube 11. Other configurations are the same as the configuration of the heat exchanger of the first embodiment.

上記構成によると、凸部12が風の流れる方向へ突出することで、風と伝熱管11とが接触する面積が増大するため、熱交換の効率を向上させることができる。   According to the said structure, since the convex part 12 protrudes in the direction where a wind flows, the area which a wind and the heat exchanger tube 11 contact increases, Therefore The efficiency of heat exchange can be improved.

ところで、風と伝熱管3との接触面積を広げるには、伝熱管13の幅を広げる方法も考えられるが、伝熱管11にひれ状の凸部をつけたときの伝熱管11の幅と同じ幅になるように、伝熱管13の幅を広げた場合、図8(b)に示すように、伝熱管13を挿入する冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2の直径を、図8(a)に示すヘッダ管の直径から変更し、大きくする必要がある。しかし、本発明のように、伝熱管11の側面で、風の流れる方向へ突出するように凸部12を設けた場合、伝熱管11の端部の近傍の凸部12を伝熱管11の表面から切断研磨し、伝熱管13の凸部12を冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2に挿入しないようにすることで、伝熱管13を挿入する冷媒流入側ヘッダ管1および冷媒流出側ヘッダ管2の直径は、図8(a)に示すヘッダ管の直径を使用することができる。さらに、挿入口6の形成も容易である。   By the way, in order to expand the contact area between the wind and the heat transfer tube 3, a method of increasing the width of the heat transfer tube 13 is also conceivable. However, it is the same as the width of the heat transfer tube 11 when a fin-like convex portion is attached to the heat transfer tube 11. When the width of the heat transfer tube 13 is widened so as to be wide, the diameters of the refrigerant inflow side header tube 1 and the refrigerant outflow side header tube 2 into which the heat transfer tube 13 is inserted are shown in FIG. It is necessary to change the diameter of the header pipe shown in FIG. However, when the convex portion 12 is provided on the side surface of the heat transfer tube 11 so as to protrude in the wind flow direction as in the present invention, the convex portion 12 in the vicinity of the end portion of the heat transfer tube 11 is disposed on the surface of the heat transfer tube 11. Is cut and polished so that the convex portion 12 of the heat transfer tube 13 is not inserted into the refrigerant inflow side header tube 1 and the refrigerant outflow side header tube 2, so that the refrigerant inflow side header tube 1 and the refrigerant outflow are inserted. As the diameter of the side header pipe 2, the diameter of the header pipe shown in FIG. 8A can be used. Furthermore, the insertion port 6 can be easily formed.

また、凸部12は、風の流れる方向に沿って突出している。そのため、風の流れ方向に対して直交する方向に突出させた場合と比べて、風が凸部12を通る際に発声する風きり音を防止することができる。   Moreover, the convex part 12 protrudes along the direction through which a wind flows. Therefore, it is possible to prevent wind noise generated when the wind passes through the convex portion 12 as compared with the case where the wind projects in a direction orthogonal to the wind flow direction.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加え得ることは勿論である。例えば、凸部は、その断面形状が半円状に限らず、四角形状や、三角形状などであってもよい。   In addition, this invention is not limited to the said embodiment, Of course, many corrections and changes can be added to the said embodiment within the scope of the present invention. For example, the convex portion is not limited to a semicircular cross section, and may be a quadrangular shape or a triangular shape.

凸部は、伝熱管の管軸方向に沿って伝熱管の一端側から他端側にかけて連なって形成されているので、伝熱管に形成される流通路を凸部の内部に通るように形成してもよい。このようにすれば、凸部における肉厚が、凸部の内部に流通路を設けない場合に比べて薄くなるため、熱交換効率を向上させることができる。   Since the convex portion is formed continuously from one end side of the heat transfer tube to the other end side along the tube axis direction of the heat transfer tube, the flow passage formed in the heat transfer tube is formed so as to pass inside the convex portion. May be. In this way, the thickness of the convex portion becomes thinner than when no flow passage is provided inside the convex portion, so that the heat exchange efficiency can be improved.

本発明では、凸部は、伝熱管の一端から他端に連なって形成されるが、特にこの限りではない。連続する凸部を複数に分割してもよい。具体的には、凸部の一部を削り取る、あるいは、切り取る等して所定間隔で複数に分割する。この場合、伝熱管に形成される流通路は、凸部の内部には形成しない。これにより、伝熱管は、風と接触する面積が増えるため、熱交換効率がさらに向上できる。   In the present invention, the convex portion is formed continuously from one end of the heat transfer tube to the other end, but is not particularly limited thereto. You may divide | segment a continuous convex part into plurality. Specifically, a part of the convex portion is cut or cut to be divided into a plurality at predetermined intervals. In this case, the flow path formed in the heat transfer tube is not formed inside the convex portion. Thereby, since the area which a heat exchanger tube contacts with a wind increases, heat exchange efficiency can further improve.

半球状の凸部を複数備えても良い。この場合、向かい合う凸部同士が重なりあう位置にならないようにする必要がある。この半球状の凸部形状に代えて、凸部形状を四角形状や、三角形状などにしても良い。   A plurality of hemispherical convex portions may be provided. In this case, it is necessary to prevent the convex portions facing each other from overlapping each other. Instead of the hemispherical convex shape, the convex shape may be a square shape or a triangular shape.

伝熱管としては、伝熱管を一列に配列した際に、隣り合う伝熱管と向かい合う面が平らとなるように形成した伝熱管を用いることが好ましいが、小判形状、あるいは、楕円形状といった向かい合う面が多少のふくらみのある形状であってもよい。   As the heat transfer tube, it is preferable to use a heat transfer tube formed so that the surface facing the adjacent heat transfer tube is flat when the heat transfer tubes are arranged in a line, but the facing surface such as an oval shape or an elliptical shape is used. A shape with some swelling may be sufficient.

風の流れる方向に沿って凸部を突起させた場合、図9に示すように、当該凸部14を断面が波形状に形成してもよい。この構成によると、伝熱管15全体の幅が同じであっても、風が接触する面積を増大させることができる。しかも、この場合、風が波形状の凸部14に沿って流れるため、風の流れをほとんど妨げることがない。そのため、騒音を抑えつつ、熱交換の効率を向上させることができる。   When the convex portion is projected along the wind flow direction, the convex portion 14 may be formed in a wave shape in cross section as shown in FIG. According to this structure, even if the width | variety of the heat exchanger tube 15 whole is the same, the area which a wind contacts can be increased. In addition, in this case, since the wind flows along the wave-shaped convex portion 14, the flow of the wind is hardly hindered. Therefore, the efficiency of heat exchange can be improved while suppressing noise.

本発明の第1実施形態に係る熱交換器の全体正面図The whole front view of the heat exchanger concerning a 1st embodiment of the present invention. 第1実施形態に係る熱交換器の概略斜視図1 is a schematic perspective view of a heat exchanger according to a first embodiment. 第1実施形態に係る伝熱管の概略斜視図1 is a schematic perspective view of a heat transfer tube according to a first embodiment. 第1実施形態に係る伝熱管を複数平行に配置したときの平面断面図Plan sectional drawing when arranging a plurality of heat transfer tubes according to the first embodiment in parallel 図4に示す伝熱管の配置と比較するための他の伝熱管の配置の平面断面図Plan sectional drawing of arrangement of other heat exchanger tubes for comparison with the arrangement of heat exchanger tubes shown in FIG. 第2実施形態に係る熱交換器の概略斜視図Schematic perspective view of a heat exchanger according to the second embodiment 第2実施形態に係る伝熱管を複数平行に配置したときの平面断面図Plan sectional drawing when arranging a plurality of heat transfer tubes according to the second embodiment in parallel 第2実施形態に係る伝熱管の正面断面図であって、(a)は本発明の伝熱管とヘッダ管、(b)は長手面の幅を広げた伝熱管とヘッダ管を示す図It is front sectional drawing of the heat exchanger tube which concerns on 2nd Embodiment, (a) is the heat exchanger tube and header tube of this invention, (b) is a figure which shows the heat exchanger tube and header tube which extended the width | variety of the longitudinal surface. 他の形状の凸部を備えた伝熱管を複数平行に配置したときの平面断面図Plan sectional view when multiple heat transfer tubes with convex portions of other shapes are arranged in parallel

符号の説明Explanation of symbols

1 冷媒流入側ヘッダ管
2 冷媒流出側ヘッダ管
3 伝熱管
4 冷媒流入出管
6 挿入口
7 流通路
8 凸部
9 凸部
10 伝熱管
11 伝熱管
12 凸部
13 伝熱管
14 凸部
15 伝熱管
DESCRIPTION OF SYMBOLS 1 Refrigerant inflow side header pipe 2 Refrigerant outflow side header pipe 3 Heat transfer pipe 4 Refrigerant inflow / outlet pipe 6 Insertion port 7 Flow path 8 Convex part 9 Convex part 10 Heat transfer pipe 11 Heat transfer pipe 12 Convex part 13 Heat transfer pipe 14 Convex part 15 Heat transfer pipe

Claims (7)

管軸方向が平行となるように配置された冷媒流入側のヘッダ管および冷媒流出側のヘッダ管と、2つの前記ヘッダ管と直交する方向に配置され、内部を冷媒が通過する複数の扁平形状の伝熱管とを備え、
前記伝熱管は、前記ヘッダ管の管軸方向に沿って、風が通るように間隔を開けて一列に配列され、
前記各伝熱管には、隣り合う伝熱管側に突出し、前記伝熱管の管軸方向に沿う凸部が形成され、
前記凸部は、それぞれが向かい合う凸部とずれた位置に配置されたことを特徴とする熱交換器。
A header pipe on the refrigerant inflow side and a header pipe on the refrigerant outflow side arranged so that the pipe axis directions are parallel, and a plurality of flat shapes arranged in a direction orthogonal to the two header pipes and through which the refrigerant passes. With heat transfer tubes,
The heat transfer tubes are arranged in a row at intervals so that wind passes along the tube axis direction of the header tube,
Each of the heat transfer tubes protrudes toward the adjacent heat transfer tube, and a convex portion is formed along the tube axis direction of the heat transfer tube,
The said convex part is arrange | positioned in the position which shifted | deviated from the convex part which each faces, The heat exchanger characterized by the above-mentioned.
凸部は、前記伝熱管の管軸方向に連なって形成されたことを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the convex portion is formed continuously in the tube axis direction of the heat transfer tube. 向かい合う凸部同士は、風が通る方向で、千鳥状に配置されたことを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1, wherein the convex portions facing each other are arranged in a staggered manner in a direction in which the wind passes. 管軸方向が平行となるように配置された冷媒流入側のヘッダ管および冷媒流出側のヘッダ管と、2つの前記ヘッダ管と直交する方向に配置され、内部を冷媒が通過する複数の扁平形状の伝熱管とを備え、
前記伝熱管は、前記ヘッダ管の管軸方向に沿って、風が通るように間隔を開けて一列に配列され、
前記伝熱管には、風が通る方向の少なくとも一端部に風が通る方向へ突出し、前記伝熱管の管軸方向に沿うひれ状の凸部が形成されたことを特徴とする熱交換器。
A header pipe on the refrigerant inflow side and a header pipe on the refrigerant outflow side arranged so that the pipe axis directions are parallel, and a plurality of flat shapes arranged in a direction orthogonal to the two header pipes and through which the refrigerant passes. With heat transfer tubes,
The heat transfer tubes are arranged in a row at intervals so that wind passes along the tube axis direction of the header tube,
The heat exchanger is characterized in that a fin-like convex portion is formed along the tube axis direction of the heat transfer tube so as to protrude in at least one end portion in the direction in which the wind passes.
凸部は、伝熱管の管軸方向に連なって形成されたことを特徴とする請求項4に記載の熱交換器。 The heat exchanger according to claim 4, wherein the convex portion is formed continuously in the tube axis direction of the heat transfer tube. 凸部は、風との接触面積を大きくするために、断面が波形状に形成されたことを特徴とする請求項4および5に記載の熱交換器。 6. The heat exchanger according to claim 4, wherein the convex portion is formed in a wave shape in order to increase a contact area with the wind. 伝熱管は、それぞれのヘッダ管に形成された挿入口に挿入接続され、
凸部は、前記伝熱管の端部が所定の長さ前記2つのヘッダ管に挿入できるように、前記伝熱管の端部に近接するように形成されたことを特徴とする請求項1〜6のいずれかに記載の熱交換器。
The heat transfer tube is inserted and connected to the insertion port formed in each header tube,
The convex portion is formed so as to be close to the end portion of the heat transfer tube so that the end portion of the heat transfer tube can be inserted into the two header tubes with a predetermined length. The heat exchanger in any one of.
JP2007041400A 2007-02-21 2007-02-21 Heat exchanger Pending JP2008202896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041400A JP2008202896A (en) 2007-02-21 2007-02-21 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041400A JP2008202896A (en) 2007-02-21 2007-02-21 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2008202896A true JP2008202896A (en) 2008-09-04
JP2008202896A5 JP2008202896A5 (en) 2009-05-14

Family

ID=39780594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041400A Pending JP2008202896A (en) 2007-02-21 2007-02-21 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008202896A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026239A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2019026243A1 (en) 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2019026240A1 (en) 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2019152363A (en) * 2018-03-01 2019-09-12 ダイキン工業株式会社 Heat exchanger
JP2019152364A (en) * 2018-03-01 2019-09-12 ダイキン工業株式会社 Heat exchanger
WO2020012524A1 (en) * 2018-07-09 2020-01-16 三菱電機株式会社 Heat exchanger unit and refrigeration cycle device
WO2021001953A1 (en) 2019-07-03 2021-01-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2020230268A1 (en) * 2019-05-14 2021-11-11 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
WO2021241544A1 (en) * 2020-05-29 2021-12-02 三菱電機株式会社 Heat transfer tube, heat exchanger, heat source unit, and manufacturing method for heat transfer tube
WO2023105703A1 (en) * 2021-12-09 2023-06-15 三菱電機株式会社 Dehumidifying device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510072A (en) * 1978-07-08 1980-01-24 Citizen Watch Co Ltd Metered liquid feeding apparatus
JPS56122066A (en) * 1980-02-29 1981-09-25 Ricoh Co Ltd Unicomponent developing device for electrophotographic copier
JPH11287580A (en) * 1997-07-17 1999-10-19 Denso Corp Heat exchanger
JP2002181463A (en) * 2000-12-13 2002-06-26 Zexel Valeo Climate Control Corp Heat exchanger and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510072A (en) * 1978-07-08 1980-01-24 Citizen Watch Co Ltd Metered liquid feeding apparatus
JPS56122066A (en) * 1980-02-29 1981-09-25 Ricoh Co Ltd Unicomponent developing device for electrophotographic copier
JPH11287580A (en) * 1997-07-17 1999-10-19 Denso Corp Heat exchanger
JP2002181463A (en) * 2000-12-13 2002-06-26 Zexel Valeo Climate Control Corp Heat exchanger and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11262132B2 (en) 2017-08-03 2022-03-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2019026243A1 (en) 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2019026240A1 (en) 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
US11713926B2 (en) 2017-08-03 2023-08-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
US11662148B2 (en) 2017-08-03 2023-05-30 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JPWO2019026239A1 (en) * 2017-08-03 2019-11-07 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2019026239A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
CN110945308A (en) * 2017-08-03 2020-03-31 三菱电机株式会社 Heat exchanger and refrigeration cycle device
EP3663677A4 (en) * 2017-08-03 2020-07-22 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
EP3663692A4 (en) * 2017-08-03 2020-08-05 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
JP7100242B2 (en) 2018-03-01 2022-07-13 ダイキン工業株式会社 Heat exchanger
JP7164801B2 (en) 2018-03-01 2022-11-02 ダイキン工業株式会社 Heat exchanger
JP2019152364A (en) * 2018-03-01 2019-09-12 ダイキン工業株式会社 Heat exchanger
JP2019152363A (en) * 2018-03-01 2019-09-12 ダイキン工業株式会社 Heat exchanger
JPWO2020012524A1 (en) * 2018-07-09 2021-04-30 三菱電機株式会社 Heat exchanger unit and refrigeration cycle equipment
WO2020012524A1 (en) * 2018-07-09 2020-01-16 三菱電機株式会社 Heat exchanger unit and refrigeration cycle device
JPWO2020230268A1 (en) * 2019-05-14 2021-11-11 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
JP7209821B2 (en) 2019-05-14 2023-01-20 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
WO2021001953A1 (en) 2019-07-03 2021-01-07 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2021241544A1 (en) * 2020-05-29 2021-12-02 三菱電機株式会社 Heat transfer tube, heat exchanger, heat source unit, and manufacturing method for heat transfer tube
WO2023105703A1 (en) * 2021-12-09 2023-06-15 三菱電機株式会社 Dehumidifying device

Similar Documents

Publication Publication Date Title
JP2008202896A (en) Heat exchanger
CN103403487B (en) Heat exchanger and air conditioner
EP2908082B1 (en) Heat exchanger
WO2014207785A1 (en) Heat exchanger, heat exchanger structure, and fin for heat exchanger
WO2016027811A1 (en) Fin-and-tube heat exchanger
US10557652B2 (en) Heat exchanger and air conditioner
JP5020886B2 (en) Heat exchanger
JP6584636B2 (en) Heat exchanger and air conditioner
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP4426189B2 (en) Heat exchanger
JP6716021B2 (en) Heat exchanger and refrigeration cycle device
JP2009121708A (en) Heat exchanger
JPWO2019239520A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP2005201492A (en) Heat exchanger
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP2010091145A (en) Heat exchanger
JP5569409B2 (en) Heat exchanger and air conditioner
JP5736794B2 (en) Heat exchanger and air conditioner
JP4995308B2 (en) Air conditioner indoor unit
JP5404571B2 (en) Heat exchanger and equipment
JP2009092288A (en) Heat exchanger
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
CN117157500A (en) Heat exchanger
JP5664272B2 (en) Heat exchanger and air conditioner
WO2016031032A1 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214