JP2008297444A - Method for cracking hydrocarbon oil - Google Patents
Method for cracking hydrocarbon oil Download PDFInfo
- Publication number
- JP2008297444A JP2008297444A JP2007145292A JP2007145292A JP2008297444A JP 2008297444 A JP2008297444 A JP 2008297444A JP 2007145292 A JP2007145292 A JP 2007145292A JP 2007145292 A JP2007145292 A JP 2007145292A JP 2008297444 A JP2008297444 A JP 2008297444A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- reaction
- hydrocarbon oil
- extract
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
本発明は、炭化水素油の分解方法、特には軽質化の難しい重質熱分解油及びエキストラクトを、コークスを発生させること無く分解する方法に関するものである。 The present invention relates to a method for decomposing hydrocarbon oils, and more particularly, to a method for decomposing heavy pyrolysis oils and extracts that are difficult to be lightened without generating coke.
従来、原油に対して常圧蒸留、減圧蒸留等を施すことによって、原油から有用成分を回収しているが、この際、多量の残渣油成分が生成する。そして、更に該残渣油成分を熱分解して油分を回収して使用しているが、尚重質熱分解油の収率が高く、また、重合物であるコークスが大量に発生する。ここで、重質熱分解油(HFO)とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により得られた油であり、例えば、ディレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得られる留分をいう。該重質熱分解油は、一旦熱分解を受けた油であるため、分解反応に対して非常に安定であり、更に軽質化することが難しい。 Conventionally, useful components are recovered from crude oil by subjecting the crude oil to atmospheric distillation, vacuum distillation, or the like. At this time, a large amount of residual oil components are produced. Further, the residual oil component is further pyrolyzed to recover the oil component for use. However, the yield of heavy pyrolysis oil is still high, and a large amount of coke as a polymer is generated. Here, the heavy pyrolysis oil (HFO) is an oil obtained by a reaction in which a heavy oil fraction is heated to mainly perform a radical reaction. For example, a delayed coking method or a visbreaking method is used. Or the fraction obtained by the fluid coking method etc. Since the heavy pyrolysis oil is oil that has undergone thermal decomposition once, it is very stable against the decomposition reaction, and it is difficult to make it lighter.
一方、例えば、潤滑油原料製造用の減圧蒸留装置において原油の常圧蒸留残渣油を減圧蒸留して得られる留分を、フルフラール等で溶剤抽出して得られエキストラクト(EXT)は、芳香族分が多く溶解性が高いため、重油調合剤、ゴムの配合油等に使用されているものの、昨今、該エキストラクトを軽質化して他の用途に使用することが求められことがある。しかしながら、該エキストラクトは、芳香族分が多いため、分解反応に対して非常に安定であり、更に軽質化することが難しい。このため、重質油の軽質化には大量に水素を必要とする水素化分解が一般的である(非特許文献1)。 On the other hand, for example, an extract (EXT) obtained by subjecting a fraction obtained by subjecting an atmospheric distillation residue of crude oil to distillation under reduced pressure in a vacuum distillation apparatus for producing a lubricating oil raw material by solvent extraction with furfural or the like is aromatic. Although it is used in heavy oil preparations, rubber compounding oils and the like because of its large amount and high solubility, it has recently been demanded that the extract be lightened and used for other purposes. However, since the extract has a large aromatic content, it is very stable against the decomposition reaction, and it is difficult to further reduce the weight. For this reason, hydrocracking that requires a large amount of hydrogen is generally used to lighten heavy oil (Non-patent Document 1).
また、オイルサンド等の重質油の改質方法として、超臨界水を用いた改質方法(特許文献1)や、重質炭素質源と水を含む改質方法(特許文献2)が知られている。
上述のように重質熱分解油及びエキストラクトは、分解反応に対して非常に安定であり、更に軽質化することが難しい。これに対して、反応温度を上昇させる等して分解反応の条件を厳しくすると、コークスが発生してしまう。 As described above, the heavy pyrolysis oil and extract are very stable against the decomposition reaction, and it is difficult to further reduce the weight. On the other hand, coke is generated when the conditions for the decomposition reaction are made strict, for example, by raising the reaction temperature.
そこで、本発明の目的は、軽質化の難しい重質熱分解油及びエキストラクトをコークスを発生させること無く分解する方法を提供することにある。 Therefore, an object of the present invention is to provide a method for decomposing heavy pyrolysis oil and extract that are difficult to be lightened without generating coke.
本発明者は、上記目的を達成するために鋭意検討した結果、重質熱分解油又はエキストラクトを、酸素及び水素の非存在下において特定の温度及び圧力で分解反応させることにより、コークスを発生させること無く重質熱分解油又はエキストラクトを分解して軽質化できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above-mentioned object, the present inventor generates coke by decomposing heavy pyrolysis oil or extract at a specific temperature and pressure in the absence of oxygen and hydrogen. The present inventors have found that the heavy pyrolysis oil or extract can be decomposed and lightened without causing the present invention to be completed.
即ち、本発明の炭化水素油の分解方法は、重質熱分解油及びエキストラクトから選択される少なくとも一種の炭化水素油を、酸素及び水素の非存在下において、温度280〜580℃、圧力3.0〜20.0MPaの条件下で分解反応させることを特徴とする。 That is, in the method for cracking hydrocarbon oil of the present invention, at least one hydrocarbon oil selected from heavy pyrolysis oil and extract is treated at a temperature of 280 to 580 ° C. and a pressure of 3 in the absence of oxygen and hydrogen. The decomposition reaction is performed under a condition of 0.0 to 20.0 MPa.
本発明の炭化水素油の分解方法においては、前記炭化水素油を30秒〜60分間分解反応させることが好ましい。 In the hydrocarbon oil cracking method of the present invention, the hydrocarbon oil is preferably cracked for 30 seconds to 60 minutes.
本発明の炭化水素油の分解方法においては、分解反応の初期に発生する軽質炭化水素が上記反応条件下において超臨界状態にある。そして、該超臨界状態の軽質炭化水素がケージエフェクト(Cage Effect)により熱分解反応で発生した熱分解フラグメントをかご(Cage)のように取り囲んで安定化させることにより、熱分解フラグメントの再重合を抑制する。そのため、本発明の炭化水素油の分解方法によれば、コークスの発生を防止しつつ、重質熱分解油及び/又はエキストラクトを分解して軽質化することができる。 In the hydrocarbon oil cracking method of the present invention, light hydrocarbons generated at the initial stage of the cracking reaction are in a supercritical state under the above reaction conditions. Then, the supercritical light hydrocarbon surrounds and stabilizes the pyrolysis fragment generated in the pyrolysis reaction by the cage effect like a cage, thereby re-polymerizing the pyrolysis fragment. Suppress. Therefore, according to the hydrocarbon oil cracking method of the present invention, the heavy pyrolysis oil and / or the extract can be decomposed and lightened while preventing the generation of coke.
以下に、本発明を詳細に説明する。本発明で用いる原料の炭化水素油は、重質熱分解油(HFO)及び/又はエキストラクト(EXT)である。ここで、重質熱分解油とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により得られた油であり、例えば、常圧蒸留残渣、減圧蒸留残渣、タールサンド、オイルシェール、ビチューメン、シェールオイル、天然重油などを原料としたディレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得られる留分をいう。なお、本発明で用いる重質熱分解油は、硫黄分が0〜0.3質量%であることが好ましく、0.01〜0.2質量%であることがより好ましく、0.04〜0.15質量%であることが最も好ましい。密度(15℃)は0.90〜1.20g/cm3であることが好ましく、0.99〜1.10g/cm3であることがより好ましく、更には1.0〜1.06g/cm3であることが最も好ましい。50℃での動粘度が3.0〜10.5mm2/sであることが好ましく、3.5〜10.2mm2/sであることがより好ましく、更には3.9〜10.0mm2/sであることが最も好ましい。 The present invention is described in detail below. The raw material hydrocarbon oil used in the present invention is heavy pyrolysis oil (HFO) and / or extract (EXT). Here, the heavy pyrolysis oil is an oil obtained by applying heat to a heavy oil fraction and mainly performing a radical reaction. For example, atmospheric distillation residue, vacuum distillation residue, tar sand , A fraction obtained by a delayed coking method, a visbreaking method or a fluid coking method using oil shale, bitumen, shale oil, natural heavy oil or the like as a raw material. The heavy pyrolysis oil used in the present invention preferably has a sulfur content of 0 to 0.3% by mass, more preferably 0.01 to 0.2% by mass, and 0.04 to 0%. Most preferably, it is 15% by mass. Preferably the density (15 ° C.) is 0.90~1.20g / cm 3, more preferably 0.99~1.10g / cm 3, more 1.0~1.06g / cm 3 is most preferred. Preferably a kinematic viscosity at 50 ° C. is 3.0~10.5mm 2 / s, more preferably 3.5~10.2mm 2 / s, more 3.9~10.0Mm 2 Most preferred is / s.
一方、エキストラクトとは、一般に溶剤抽出法により、溶剤中に溶解分離された油を言い、石油精製では、特に潤滑油の溶剤精製装置で、例えばフルフラールによって抽出分離される油をエキストラクトと称している。該エキストラクトは、上述のように、芳香族分が多く、溶解性が高いため、主として重油調合剤、ゴムの配合油等に使用されている。なお、溶剤によって抽出されない油分をラフィネートといい、潤滑油基油等として使用されている。本発明で用いるエキストラクトは、密度(15℃)が0.95〜1.20g/cm3であることが好ましく、0.99〜1.10g/cm3であることがより好ましく、更には1.00〜1.06g/cm3であることが最も好ましい。75℃での動粘度が15.0〜20.0mm2/sであることが好ましく、16.0〜19.5mm2/sであることがより好ましく、更には17.5〜18.8mm2/sであることが最も好ましい。 On the other hand, an extract generally refers to an oil that is dissolved and separated in a solvent by a solvent extraction method. In petroleum refining, an oil that is extracted and separated by, for example, furfural in a solvent refining apparatus for lubricating oil is referred to as an extract. ing. As described above, the extract has a large aromatic content and high solubility, and is therefore mainly used in heavy oil preparations, rubber compounding oils, and the like. In addition, the oil component which is not extracted with a solvent is called raffinate, and is used as lubricating base oil. The extract used in the present invention preferably has a density (15 ° C.) of 0.95 to 1.20 g / cm 3 , more preferably 0.99 to 1.10 g / cm 3 , and further 1 Most preferably, it is from 0.00 to 1.06 g / cm 3 . Preferably the kinematic viscosity at 75 ° C. is 15.0~20.0mm 2 / s, more preferably 16.0~19.5mm 2 / s, more 17.5~18.8Mm 2 Most preferred is / s.
本発明の炭化水素油の分解方法では、上記炭化水素油を反応相に供給し、酸素及び水素の非存在下において、分解反応させる。該分解反応において、反応温度は、280〜580℃の範囲であり、330〜550℃の範囲が好ましく、380〜500℃の範囲が更に好ましく、430〜480℃の範囲が特に好ましい。また、反応圧力は、3.0〜20.0MPaの範囲であり、4.0〜20.0MPaの範囲が好ましく、4.0〜18.0MPaの範囲が更に好ましく、4.0〜16.0MPaの範囲が特に好ましい。反応温度が高過ぎると、超臨界状態の軽質炭化水素中での分解反応においても固形重合物(コークス)が発生し、一方、反応温度が低過ぎると、原料の炭化水素油を十分に軽質化することができない。また、反応圧力が高過ぎると、高圧の装置を設計することが必要となり、経済的でなく、一方、反応圧力が3.0MPa未満では、軽質炭化水素が超臨界状態にならない。 In the hydrocarbon oil cracking method of the present invention, the hydrocarbon oil is supplied to the reaction phase, and the cracking reaction is performed in the absence of oxygen and hydrogen. In the decomposition reaction, the reaction temperature is in the range of 280 to 580 ° C, preferably in the range of 330 to 550 ° C, more preferably in the range of 380 to 500 ° C, and particularly preferably in the range of 430 to 480 ° C. The reaction pressure is in the range of 3.0 to 20.0 MPa, preferably in the range of 4.0 to 20.0 MPa, more preferably in the range of 4.0 to 18.0 MPa, and 4.0 to 16.0 MPa. The range of is particularly preferable. If the reaction temperature is too high, solid polymer (coke) is generated even in the cracking reaction in supercritical light hydrocarbons. On the other hand, if the reaction temperature is too low, the raw hydrocarbon oil is sufficiently lightened. Can not do it. On the other hand, if the reaction pressure is too high, it is necessary to design a high-pressure apparatus, which is not economical. On the other hand, if the reaction pressure is less than 3.0 MPa, the light hydrocarbon does not enter a supercritical state.
本発明の炭化水素油の分解方法においては、上記炭化水素油を上記温度及び圧力下で30秒〜60分間分解反応させることが好ましい。ここで、反応時間とは、所定温度に達してからの保持時間をいう。反応時間が30秒未満では、原料の炭化水素油を十分に軽質化することができず、一方、反応時間が60分を超えると、超臨界流体のかご効果が低減し、コークスを大量に発生するため好ましくない。 In the hydrocarbon oil cracking method of the present invention, the hydrocarbon oil is preferably cracked for 30 seconds to 60 minutes under the temperature and pressure. Here, the reaction time means a holding time after reaching a predetermined temperature. If the reaction time is less than 30 seconds, the raw material hydrocarbon oil cannot be sufficiently lightened. On the other hand, if the reaction time exceeds 60 minutes, the cage effect of the supercritical fluid is reduced and a large amount of coke is generated. Therefore, it is not preferable.
なお、上記温度条件、圧力条件及び反応時間は、回収目的である生成物中に含まれる高付加価値成分の割合により適宜選択される。また、反応は、バッチ式で行っても、流通式で行ってもよい。 The temperature condition, pressure condition, and reaction time are appropriately selected depending on the ratio of the high value-added component contained in the product that is the object of recovery. In addition, the reaction may be performed in a batch system or a flow system.
上記温度及び圧力下では、熱分解反応及び水素添加反応が起こり、また、熱分解反応の初期には軽質炭化水素が生成するものと考えられる。熱分解反応では、原料の炭化水素油が単純に熱分解して低分子化し、軽質炭化水素が生成する。一方、水素添加反応では、原料炭化水素油の熱分解反応中に生成した熱分解フラグメント(ラジカル)にHが付加し、これにより熱分解種が安定化される。ここで、熱分解反応の初期に発生する軽質炭化水素が上記温度及び圧力下で超臨界状態にあるため、該超臨界状態の軽質炭化水素がケージエフェクトにより、熱分解フラグメントを取り囲み安定化する。そのため、熱分解フラグメントの再重合が抑制され、コークスの発生を防止することができる。 Under the above temperature and pressure, a pyrolysis reaction and a hydrogenation reaction occur, and it is considered that light hydrocarbons are generated at the initial stage of the pyrolysis reaction. In the pyrolysis reaction, the starting hydrocarbon oil is simply pyrolyzed to lower the molecular weight, and light hydrocarbons are produced. On the other hand, in the hydrogenation reaction, H is added to the pyrolysis fragments (radicals) generated during the pyrolysis reaction of the raw hydrocarbon oil, thereby stabilizing the pyrolysis species. Here, since the light hydrocarbon generated in the initial stage of the thermal decomposition reaction is in a supercritical state under the above temperature and pressure, the light hydrocarbon in the supercritical state surrounds and stabilizes the thermal decomposition fragment by the cage effect. Therefore, repolymerization of the pyrolysis fragment is suppressed, and generation of coke can be prevented.
なお、既存の技術(例えば、気相熱分解等)では、分解温度を上昇させて高温状態で転換した場合には、熱分解フラグメントが再結合(再重合)するためコークス生成量が増加するが、上記温度及び圧力下の分解反応では、分解反応の初期に生成する軽質炭化水素のケージエフェクトにより熱分解フラグメントが安定化されるため、高温状態で転換してもコークス生成量が増加することはない。但し、超臨界状態の軽質炭化水素中での分解反応においても、580℃を超える反応温度では固形重合物(コークス)が生成するため、本発明においては、580℃以下で分解反応を行う。 In the existing technology (for example, gas phase pyrolysis, etc.), when the decomposition temperature is raised and converted in a high temperature state, the pyrolysis fragments are recombined (repolymerized), but the amount of coke generated increases. In the cracking reaction under the above temperature and pressure, the pyrolysis fragment is stabilized by the cage effect of light hydrocarbons generated at the initial stage of the cracking reaction. Absent. However, in the decomposition reaction in light hydrocarbons in a supercritical state, a solid polymer (coke) is generated at a reaction temperature exceeding 580 ° C. Therefore, in the present invention, the decomposition reaction is performed at 580 ° C. or lower.
また、超臨界状態の水などを溶媒として用いる場合は、水の臨界圧力が22.1MPaと高いため、かかる高い臨界圧力に合わせて非常に高圧の装置を設計することが必要となり、経済的ではない。一方、本発明においては、分解反応の初期に発生する軽質炭化水素を超臨界状態の溶媒として利用し、該軽質炭化水素は臨界圧力が低いため、より低圧の装置を使用することができる。 In addition, when supercritical water or the like is used as a solvent, the critical pressure of water is as high as 22.1 MPa, so it is necessary to design a very high pressure apparatus in accordance with such a high critical pressure. Absent. On the other hand, in the present invention, light hydrocarbons generated at the initial stage of the decomposition reaction are used as a solvent in a supercritical state, and the light hydrocarbon has a low critical pressure, so that a lower pressure apparatus can be used.
上記のようにして得られた生成物は、一般的な常圧蒸留、減圧蒸留によって、ナフサ、灯油、軽油、A重油等の油分、ガス、残渣に分離することができ、油分及びガスは、有効成分として所望の用途に使用される。 The product obtained as described above can be separated into oil, gas, and residue such as naphtha, kerosene, light oil, and heavy oil A by general atmospheric distillation and vacuum distillation. Used as desired active ingredient.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
試料として、石油減圧蒸留残渣を熱分解して得られた重質熱分解油(硫黄分:2.5質量%、密度(15℃):0.9457g/cm3、50℃での動粘度:18.1mm2/s)を用意した。この重質熱分解油を反応器に供給して、温度450℃、圧力16.5MPaの高温高圧状態で10分間反応させて、ガス、油分、残渣に分解反応させた。なお、試験方法はバッチ式で行った。次いで、生成物の分子量、FD−MS分析における炭素数分布で、炭素数が31以上の成分の含有率、炭素数が14以上30以下の成分の含有率、U値分類でU値2及び−6のフラクションに属し且つ炭素数31以上の成分の含有率、U値分類でU値2及び−6のフラクションに属し且つ炭素数14〜30の成分の含有率、コークス生成量を測定した。
Example 1
As a sample, a heavy pyrolysis oil obtained by pyrolyzing a petroleum vacuum distillation residue (sulfur content: 2.5 mass%, density (15 ° C.): 0.9457 g / cm 3 , kinematic viscosity at 50 ° C .: 18.1 mm 2 / s) was prepared. This heavy pyrolysis oil was supplied to the reactor and reacted at a high temperature and high pressure of 450 ° C. and a pressure of 16.5 MPa for 10 minutes to cause decomposition reaction into gas, oil and residue. The test method was a batch method. Next, the molecular weight of the product, the carbon number distribution in FD-MS analysis, the content of components having 31 or more carbon atoms, the content of components having 14 to 30 carbon atoms, and U values of 2 and − The content of components belonging to the fraction of 6 and having 31 or more carbon atoms, the content of components belonging to the fraction of U values of 2 and -6 in the U value classification and having 14 to 30 carbon atoms, and the amount of coke produced were measured.
なお、炭化水素油の分子量は、FD−MSにより測定された平均分子量(Mn)と等しいものと定義する。また、炭素数分布もFD−MSにより測定された炭素数から算出したものと定義する。また、生成物のU値は、下記式:
MW=14n+U
[式中、MWは分子量であり、nは自然数であり、Uは2、0、−2、−4、−6、−8又は−10である]におけるUの値であり、U値分類によれば、生成物は7種類に分類される(上田等, 石油学会誌, 34(1), 62 (1991);青柳等, アロマティックス, vol.57, 春季号, 2005, p50-56参照)。処理前の重質熱分解油と処理後の重質熱分解油の比較を表1に示す。
The molecular weight of the hydrocarbon oil is defined as being equal to the average molecular weight (Mn) measured by FD-MS. Also, the carbon number distribution is defined as one calculated from the carbon number measured by FD-MS. Moreover, the U value of the product is represented by the following formula:
MW = 14n + U
[Wherein MW is a molecular weight, n is a natural number, U is 2, 0, −2, −4, −6, −8, or −10] According to Ueda et al., Petroleum Institute Journal, 34 (1), 62 (1991); Aoyagi et al., Aromatics, vol.57, Spring, 2005, p50-56 ). Table 1 shows a comparison between the heavy pyrolysis oil before treatment and the heavy pyrolysis oil after treatment.
(実施例2)
試料として、潤滑油の溶剤精製装置でフルフラールによって抽出分離してエキストラクト(密度(15℃):1.0117g/cm3、75℃での動粘度:18.2mm2/s)を用意した。このエキストラクトを反応器に供給して、温度450℃、圧力16.0MPaの高温高圧状態で10分間反応させて、ガス、油分、残渣に分解反応させた。なお、試験方法はバッチ式で行った。処理前のエキストラクトと処理後のエキストラクトの比較を表2に示す。
(Example 2)
Extracts (density (15 ° C.): 1.0117 g / cm 3 , kinematic viscosity at 75 ° C .: 18.2 mm 2 / s) were prepared as samples by extraction and separation with furfural using a solvent refiner for lubricating oil. This extract was supplied to a reactor and reacted at a high temperature and high pressure of 450 ° C. and a pressure of 16.0 MPa for 10 minutes to cause decomposition reaction into gas, oil and residue. The test method was a batch method. Table 2 shows a comparison between the extract before treatment and the extract after treatment.
実施例1〜2の結果から、分子量が低下すると共に、FD−MS分析における炭素数31以上の成分が減少して、炭素数14〜30の成分が増加しており、重質熱分解油及びエキストラクトが軽質化されていることが分かる。なお、U値2のフラクションにはアルカンが属し、また、U値−6のフラクションにはアルキルベンゼンが属しているため、これらアルカン及びアルキルベンゼンが分解されたものと考えられる。 From the result of Examples 1-2, while molecular weight fell, the component of carbon number 31 or more in FD-MS analysis decreased, the component of carbon number 14-30 increased, heavy pyrolysis oil and It can be seen that the extract is lighter. In addition, since alkane belongs to the fraction of U value 2, and alkylbenzene belongs to the fraction of U value -6, it is considered that these alkane and alkylbenzene were decomposed.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145292A JP2008297444A (en) | 2007-05-31 | 2007-05-31 | Method for cracking hydrocarbon oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007145292A JP2008297444A (en) | 2007-05-31 | 2007-05-31 | Method for cracking hydrocarbon oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008297444A true JP2008297444A (en) | 2008-12-11 |
Family
ID=40171249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007145292A Pending JP2008297444A (en) | 2007-05-31 | 2007-05-31 | Method for cracking hydrocarbon oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008297444A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008297468A (en) * | 2007-05-31 | 2008-12-11 | Japan Energy Corp | Method for cracking hydrocarbon oil |
JP2008297465A (en) * | 2007-05-31 | 2008-12-11 | Japan Energy Corp | Method for cracking hydrocarbon oil |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62246991A (en) * | 1985-12-20 | 1987-10-28 | Res Assoc Residual Oil Process<Rarop> | Thermal cracking treatment for cracked heavy fraction |
JPH0220593A (en) * | 1988-06-23 | 1990-01-24 | Seihyo Rin | Conversion of heavy hydrocarbon to lighter hydrocarbon |
JPH03179089A (en) * | 1989-09-19 | 1991-08-05 | Mobil Oil Corp | Heat treatment of heavy petroleum material |
JPH05117663A (en) * | 1990-02-20 | 1993-05-14 | Standard Oil Co:The | Reforming of hydrocarbon material |
JP2006022134A (en) * | 2004-07-06 | 2006-01-26 | Hitachi Ltd | Heavy oil reforming equipment and reforming method, gas turbine generating equipment, and oil refining equipment |
JP2008297450A (en) * | 2007-05-31 | 2008-12-11 | Japan Energy Corp | Method for cracking hydrocarbon oil |
-
2007
- 2007-05-31 JP JP2007145292A patent/JP2008297444A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62246991A (en) * | 1985-12-20 | 1987-10-28 | Res Assoc Residual Oil Process<Rarop> | Thermal cracking treatment for cracked heavy fraction |
JPH0220593A (en) * | 1988-06-23 | 1990-01-24 | Seihyo Rin | Conversion of heavy hydrocarbon to lighter hydrocarbon |
JPH03179089A (en) * | 1989-09-19 | 1991-08-05 | Mobil Oil Corp | Heat treatment of heavy petroleum material |
JPH05117663A (en) * | 1990-02-20 | 1993-05-14 | Standard Oil Co:The | Reforming of hydrocarbon material |
JP2006022134A (en) * | 2004-07-06 | 2006-01-26 | Hitachi Ltd | Heavy oil reforming equipment and reforming method, gas turbine generating equipment, and oil refining equipment |
JP2008297450A (en) * | 2007-05-31 | 2008-12-11 | Japan Energy Corp | Method for cracking hydrocarbon oil |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008297468A (en) * | 2007-05-31 | 2008-12-11 | Japan Energy Corp | Method for cracking hydrocarbon oil |
JP2008297465A (en) * | 2007-05-31 | 2008-12-11 | Japan Energy Corp | Method for cracking hydrocarbon oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Allawzi et al. | CO2 supercritical fluid extraction of Jordanian oil shale utilizing different co-solvents | |
US11130919B2 (en) | Conversion of crude oil into lower boiling point chemical feedstocks | |
JP5103059B2 (en) | Decomposition method of hydrocarbon oil | |
Sharma et al. | Py-GCMS studies of Indian coals and their solvent extracted products | |
JP2009242467A (en) | Method for cracking hydrocarbon oil | |
Canel et al. | Hydropyrolysis of a Turkish lignite (Tunçbilek) and effect of temperature and pressure on product distribution | |
JP2008297443A (en) | Method for cracking hydrocarbon oil | |
JP5425373B2 (en) | Decomposition method of hydrocarbon oil | |
WO2016094798A1 (en) | Process for depolymerizing coal to co-produce pitch and naphthalene | |
JP5378657B2 (en) | Decomposition method of hydrocarbon oil | |
JP2008297444A (en) | Method for cracking hydrocarbon oil | |
Tiikma et al. | FORMATION OF THERMOBITUMEN FROM OIL SHALE BY LOW-TEMPERATURE PYROLYSIS IN AN AUTOCLAVE. | |
US11359148B2 (en) | Methods and systems to produce needle coke from aromatic recovery complex bottoms | |
JP2008297450A (en) | Method for cracking hydrocarbon oil | |
JP2014505153A (en) | Process for improving aromaticity of high-boiling aromatic hydrocarbons | |
JP2011063632A (en) | Method for thermally cracking heavy oil | |
EP0469917A1 (en) | Process for converting heavy oil deposited on coal to distillable oil in a low severity process | |
JP2009215402A (en) | Method for producing ashless coal | |
JPS5924790A (en) | Manufacture of low asphaltene-content hydrocarbon mixture | |
RU2019102239A (en) | METHOD FOR PROCESSING HYDROCARBON RAW MATERIALS, INCLUDING THE STAGE OF DEASPHALTIZATION AND STAGE OF ASPHALT CONDITIONING | |
US9856421B2 (en) | Process for upgrading a heavy hydrocarbon feedstock | |
WO2013091451A1 (en) | Improver for visbreaking and process for co-visbreaking to coal tar or bio-oil containing the same and heavy oil | |
HU206514B (en) | Process for producing benzine, gas-oil and heating oil from metal- and sulfur-containing petrol-rests | |
Miura et al. | Quantitative Estimation of Metaplast in Heat-Treated Coal by Solvent Extraction | |
US20170321125A1 (en) | Direct coal liquefaction process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100224 |
|
A711 | Notification of change in applicant |
Effective date: 20100831 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120327 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120328 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120525 |
|
A02 | Decision of refusal |
Effective date: 20120619 Free format text: JAPANESE INTERMEDIATE CODE: A02 |