[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008295288A - Magnet embedded motor - Google Patents

Magnet embedded motor Download PDF

Info

Publication number
JP2008295288A
JP2008295288A JP2008107515A JP2008107515A JP2008295288A JP 2008295288 A JP2008295288 A JP 2008295288A JP 2008107515 A JP2008107515 A JP 2008107515A JP 2008107515 A JP2008107515 A JP 2008107515A JP 2008295288 A JP2008295288 A JP 2008295288A
Authority
JP
Japan
Prior art keywords
radial
magnet
circumferential width
width angle
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008107515A
Other languages
Japanese (ja)
Other versions
JP5301868B2 (en
Inventor
Takahiro Nakayama
孝博 中山
Hirotaka Ito
博高 伊藤
義之 ▲高▼部
Yoshiyuki Takabe
Keisuke Koide
圭祐 小出
Yoshito Nishikawa
義人 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2008107515A priority Critical patent/JP5301868B2/en
Priority to DE102008020138A priority patent/DE102008020138A1/en
Priority to US12/108,135 priority patent/US7732965B2/en
Priority to CN2008100960551A priority patent/CN101295891B/en
Publication of JP2008295288A publication Critical patent/JP2008295288A/en
Application granted granted Critical
Publication of JP5301868B2 publication Critical patent/JP5301868B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet embedded motor for reducing the number of components and a leakage magnetic flux even if many magnets are used for increasing a torque. <P>SOLUTION: Accommodation holes in a rotor core having P magnetic poles are formed by P/2 radial accommodation holes 8a radially and linearly extended, and P/2 V-shaped accommodation holes 8b (a pair of magnet accommodation sections 8e) radially and outwardly protruded. They are circumferentially and alternately formed. The magnet 9 within the radial accommodation hole 8a and the magnet 10 within the magnet accommodation section 8e circumferentially adjacent to one side of the magnet 9 compose one magnetic pole. The magnet 9 within the radial accommodation hole 8a and the magnet 10 within the magnet accommodation section 8e circumferentially adjacent to the other side of the magnet 9 compose the other magnetic pole. A circumferential width angle θa in a radial air gap 8c at a radial outer end of the radial accommodation hole 8a is configured so as to be the same as a circumferential width angle θb in a V-shaped air gap 8f at a radial outer end of the V-shaped accommodation hole 8b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、埋込磁石型モータに関するものである。   The present invention relates to an interior magnet type motor.

従来、埋込磁石型モータは、ロータコアに軸方向に貫通する収容孔が周方向に複数形成されその各収容孔にそれぞれ磁石が配設されたロータを備える。
そして、このような埋込磁石型モータとしては、1つの磁極を径方向内側に凸の略V字形状となるように配設された一対の磁石にて構成したものがある(例えば、特許文献1参照)。このような埋込磁石型モータでは、単に周方向に沿って配設される曲線状や直線状の磁石とした場合に比べて、磁石を多く使用でき、高トルク化を図ることができる。
特開2005−51982号公報
2. Description of the Related Art Conventionally, an embedded magnet type motor includes a rotor in which a plurality of housing holes penetrating in the axial direction are formed in the rotor core in the circumferential direction, and a magnet is disposed in each housing hole.
As such an embedded magnet type motor, there is one in which one magnetic pole is constituted by a pair of magnets arranged in a substantially V-shape projecting radially inward (for example, Patent Documents). 1). In such an embedded magnet type motor, more magnets can be used and higher torque can be achieved as compared with a case where the magnet is simply a curved or linear magnet disposed along the circumferential direction.
Japanese Patent Laid-Open No. 2005-51982

しかしながら、上記したような埋込磁石型モータでは、直方体形状の磁石が1つの磁極につき2つ必要となり、磁極数がP極の場合、前記磁石は全体で2P個となるため、単に周方向に沿って配設される曲線状や直線状の磁石(1つの磁極につき1つ)とした場合に比べて、部品点数が増大するという問題がある。尚、このことは、部品管理コストや組み付けコストを増大させる原因となる。   However, in the embedded magnet type motor as described above, two magnets having a rectangular parallelepiped shape are required for one magnetic pole, and when the number of magnetic poles is P, the number of magnets is 2P as a whole. There is a problem that the number of parts is increased as compared with a case where the magnets are curved or linear (one per magnetic pole) disposed along. This causes an increase in parts management cost and assembly cost.

又、上記したような埋込磁石型モータでは、磁石を収容するための各収容孔の径方向外側でそれぞれロータコアの外周面との間に形成される外側ブリッジ部が1つの磁極につき2つ形成されてしまうため、該外側ブリッジ部を通過してしまう漏れ磁束が多いという問題がある。尚、このことは、埋込磁石型モータにおける有効磁束を減少させ高トルク化を阻害してしまう原因となる。又、外側ブリッジ部の数に関わらず、収容孔における径方向の各端部(その周り)には磁気抵抗の低い磁路(外側ブリッジ部含む)が形成されるため、更なる漏れ磁束の低減が望まれる。   Further, in the embedded magnet type motor as described above, two outer bridge portions formed between the outer peripheral surfaces of the rotor cores on the outer sides in the radial direction of the respective housing holes for housing the magnets are formed for each magnetic pole. Therefore, there is a problem that there is much leakage magnetic flux that passes through the outer bridge portion. This causes the effective magnetic flux in the embedded magnet type motor to be reduced and hinders the increase in torque. Further, regardless of the number of outer bridge portions, a magnetic path (including the outer bridge portion) having a low magnetic resistance is formed at each end portion (around the end portion) in the radial direction of the accommodation hole, thereby further reducing leakage magnetic flux. Is desired.

本発明は、上記問題点を解決するためになされたものであって、その目的は、磁石を多く使用して高トルク化を図りながらも、部品点数を低減することができるとともに漏れ磁束を低減することができる埋込磁石型モータを提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to reduce the number of parts and reduce the magnetic flux leakage while increasing the torque by using many magnets. An object of the present invention is to provide an embedded magnet type motor that can be used.

請求項1に記載の発明では、軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成され、前記径方向収容孔の径方向外側端部には、前記磁石が配置されない径方向側空隙が形成され、前記V字収容孔の径方向外側端部には、前記磁石が配置されないV字側空隙が形成され、前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、0.60<θa/θb<1.60を満たすように設定された。   According to the first aspect of the present invention, the rotor includes a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction, and a magnet is disposed in the housing hole so that the number of magnetic poles is P. The housing hole includes a radial housing hole extending in a substantially radial direction and a substantially V-shaped housing hole protruding outward in the radial direction. The two magnets are alternately formed in the circumferential direction, and the magnet is disposed in the radial accommodation hole and is formed on each straight line forming the V-shape of the V-shaped accommodation hole. One magnet is disposed in each corresponding magnet housing portion and disposed in the radial housing hole, and one magnet is disposed in the magnet housing portion adjacent to one of the circumferential directions. A magnetic pole, and the magnet disposed in the radial accommodation hole; A different magnetic pole is formed by the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction, and the radial direction in which the magnet is not disposed at the radially outer end of the radial housing hole A side gap is formed, and a V-shaped side gap in which the magnet is not disposed is formed at a radially outer end of the V-shaped receiving hole. A circumferential width angle θa of the radial side gap and the V-shaped side gap are formed. Was set to satisfy 0.60 <θa / θb <1.60.

同構成によれば、径方向収容孔内に配設される磁石は、周方向の一方に形成される磁極の一部を構成するとともに、周方向の他方に形成される磁極の一部をも構成する。即ち、径方向収容孔内に配設される磁石は、2つの磁極に対して共用のものとなる。よって、磁極数がP極の場合、前記磁石は全体で(3/2)P個となるため、従来(全体で2P個)に比べて磁石の数を低減することができる。又、同構成によれば、径方向収容孔が2つの磁極に対して共用のものとなるため、径方向収容孔の径方向外側とロータコアの外周面との間に形成される外側ブリッジ部においても2つの磁極に対して共用のものとなる。よって、ロータコアにおける外側ブリッジ部の数が低減され、該外側ブリッジ部を通過してしまう漏れ磁束を低減することができる。しかも、径方向収容孔の径方向外側端部の径方向側空隙の周方向幅角度θaと、V字収容孔の径方向外側端部のV字側空隙の周方向幅角度θbとは、0.60<θa/θb<1.60を満たすため、コギングトルクが定格トルクに達することがなく(図6参照)、モータの起動性を確保することができる。言い換えると、0.60<θa/θb<1.60を満たさない場合では、コギングトルクが定格トルクに達して、モータが起動しない虞が生じるが、これを回避することができる。   According to this configuration, the magnet disposed in the radial accommodation hole constitutes a part of the magnetic pole formed on one side in the circumferential direction and also has a part of the magnetic pole formed on the other side in the circumferential direction. Constitute. That is, the magnet disposed in the radial accommodation hole is shared by the two magnetic poles. Therefore, when the number of magnetic poles is P, the number of magnets is (3/2) P as a whole, and therefore the number of magnets can be reduced as compared with the conventional case (2P as a whole). Further, according to the same configuration, since the radial accommodation hole is shared by the two magnetic poles, in the outer bridge portion formed between the radial outer side of the radial accommodation hole and the outer peripheral surface of the rotor core. Are also common to the two magnetic poles. Therefore, the number of outer bridge portions in the rotor core is reduced, and the leakage magnetic flux that passes through the outer bridge portion can be reduced. Moreover, the circumferential width angle θa of the radial side gap at the radial outer end of the radial accommodation hole and the circumferential width angle θb of the V-shaped gap at the radial outer end of the V-shaped accommodation hole are 0 Since .60 <θa / θb <1.60 is satisfied, the cogging torque does not reach the rated torque (see FIG. 6), and the startability of the motor can be ensured. In other words, when 0.60 <θa / θb <1.60 is not satisfied, the cogging torque reaches the rated torque and the motor may not start, but this can be avoided.

請求項2に記載の発明では、請求項1に記載の埋込磁石型モータにおいて、前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、0.70≦θa/θb≦1.35を満たすように設定された。   According to a second aspect of the present invention, in the interior magnet type motor of the first aspect, a circumferential width angle θa of the radial side gap and a circumferential width angle θb of the V-shaped gap are: It was set to satisfy 70 ≦ θa / θb ≦ 1.35.

同構成によれば、径方向側空隙の周方向幅角度θaとV字側空隙の周方向幅角度θbとは、0.70≦θa/θb≦1.35を満たすため、コギングトルクが定格トルクの半分以下となり(図6参照)、モータの高い起動性と応答性を確保することができる。   According to this configuration, since the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap satisfy 0.70 ≦ θa / θb ≦ 1.35, the cogging torque is the rated torque. (See FIG. 6), high startability and responsiveness of the motor can be ensured.

請求項3に記載の発明では、請求項1に記載の埋込磁石型モータにおいて、前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、0.92≦θa/θb≦1.10を満たすように設定された。   According to a third aspect of the present invention, in the interior magnet type motor according to the first aspect, the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are: It was set to satisfy 92 ≦ θa / θb ≦ 1.10.

同構成によれば、径方向側空隙の周方向幅角度θaとV字側空隙の周方向幅角度θbとは、0.92≦θa/θb≦1.10を満たすため、コギングトルクが定格トルクの1割以下となり(図6参照)、モータの極めて高い起動性と応答性を確保することができる。   According to this configuration, since the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap satisfy 0.92 ≦ θa / θb ≦ 1.10. 10% or less (see FIG. 6), and extremely high startability and responsiveness of the motor can be secured.

請求項4に記載の発明では、請求項1に記載の埋込磁石型モータにおいて、前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、0.94≦θa/θb≦1.09を満たすように設定された。   According to a fourth aspect of the present invention, in the interior magnet type motor of the first aspect, the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are: 94 ≦ θa / θb ≦ 1.09 was set.

同構成によれば、径方向側空隙の周方向幅角度θaとV字側空隙の周方向幅角度θbとは、0.94≦θa/θb≦1.09を満たすため、コギングトルクが最下限値を含む範囲内の小さな値となる(図3〜図5参照)。   According to this configuration, since the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap satisfy 0.94 ≦ θa / θb ≦ 1.09, the cogging torque is the lowest limit. It becomes a small value within the range including the value (see FIGS. 3 to 5).

請求項5に記載の発明では、請求項1に記載の埋込磁石型モータにおいて、前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、0.98≦θa/θb≦1.03を満たすように設定された。   According to a fifth aspect of the present invention, in the interior magnet type motor according to the first aspect, the circumferential width angle θa of the radial-side gap and the circumferential width angle θb of the V-shaped gap are: It was set to satisfy 98 ≦ θa / θb ≦ 1.03.

同構成によれば、径方向側空隙の周方向幅角度θaとV字側空隙の周方向幅角度θbとは、0.98≦θa/θb≦1.03を満たすため、コギングトルクが最下限値を含む範囲内の更に小さな値となる(図3〜図5参照)。   According to this configuration, since the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap satisfy 0.98 ≦ θa / θb ≦ 1.03, the cogging torque is the lowest limit. It becomes a smaller value within the range including the value (see FIGS. 3 to 5).

請求項6に記載の発明では、請求項1に記載の埋込磁石型モータにおいて、前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、0.99≦θa/θb≦1.02を満たすように設定された。   According to a sixth aspect of the present invention, in the interior magnet type motor according to the first aspect, the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are: It was set to satisfy 99 ≦ θa / θb ≦ 1.02.

同構成によれば、径方向側空隙の周方向幅角度θaとV字側空隙の周方向幅角度θbとは、0.99≦θa/θb≦1.02を満たすため、コギングトルクが最下限値を含む範囲内の略最下限値となる(図3〜図5参照)。   According to this configuration, since the circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap satisfy 0.99 ≦ θa / θb ≦ 1.02, the cogging torque is the lowest limit. It becomes a substantially lower limit within a range including the value (see FIGS. 3 to 5).

本発明によれば、磁石を多く使用して高トルク化を図りながらも、部品点数を低減することができるとともに漏れ磁束を低減することができる埋込磁石型モータを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while using many magnets and achieving high torque, the number of components can be reduced and the embedded magnet type motor which can reduce a leakage magnetic flux can be provided.

以下、本発明を具体化した一実施の形態を図1及び図2に従って説明する。図1に示すように、埋込磁石型モータは、ステータ1とロータ2とを備える。
ステータ1は、全体的に略円筒状に形成され、外形を形成する円筒部3の内周面から周方向等角度間隔で軸中心に向かって(径方向内側に)延びるように形成された複数のティース4を有したステータコア5と、各ティース4にインシュレータ(図示略)を介して集中巻にて巻回された巻線6(図1中、一部のみ2点鎖線で図示)とを備える。尚、本実施の形態では、ティース4は、12個形成されている。そして、各ティース4の巻線6は、周方向に2つおきの4つずつが、図2に示すように、3相(U相、V相、W相)に分類されて直列に接続されるとともに、それらの一端が共通の中性点Zに接続され、各相における他端に位相差120度の交流電流が供給されることになる。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the embedded magnet type motor includes a stator 1 and a rotor 2.
The stator 1 is formed in a substantially cylindrical shape as a whole, and is formed so as to extend from the inner peripheral surface of the cylindrical portion 3 forming the outer shape toward the axial center (inward in the radial direction) at equal circumferential intervals. The stator core 5 having the teeth 4 and the windings 6 wound around the teeth 4 by concentrated winding via insulators (not shown) (partially shown by a two-dot chain line in FIG. 1). . In the present embodiment, twelve teeth 4 are formed. And every four windings 6 of each tooth 4 are classified into three phases (U phase, V phase, W phase) and connected in series as shown in FIG. In addition, one end thereof is connected to a common neutral point Z, and an alternating current having a phase difference of 120 degrees is supplied to the other end of each phase.

ロータ2は、回転軸7と、回転軸7に対して固定されるロータコア8と、ロータコア8に形成された収容孔(径方向収容孔8a及びV字収容孔8b)内に配設される磁石9,10とを備える。尚、ロータ2における磁極数はP極であって本実施の形態では8極に設定されている。   The rotor 2 includes a rotating shaft 7, a rotor core 8 fixed to the rotating shaft 7, and magnets disposed in accommodation holes (radial accommodation holes 8 a and V-shaped accommodation holes 8 b) formed in the rotor core 8. 9 and 10. Note that the number of magnetic poles in the rotor 2 is P poles and is set to 8 poles in the present embodiment.

ロータコア8は、コアシートが軸方向に積層されることで略円筒状に形成され、その中心孔に回転軸7が嵌着され、ステータ1の内側に回転可能に支持される。又、ロータコア8において磁石9,10を内部に収容すべく軸方向に貫通する収容孔は、径方向に延びる径方向収容孔8aと、径方向外側に凸となる略V字形状のV字収容孔8bとが、それぞれP/2個であって本実施の形態では(8/2=)4個ずつ形成されてなるとともにそれらが周方向に交互であって等角度間隔に形成されてなる。   The rotor core 8 is formed in a substantially cylindrical shape by stacking core sheets in the axial direction, and the rotation shaft 7 is fitted in the center hole thereof, and is supported rotatably inside the stator 1. In addition, the housing hole that penetrates in the axial direction to accommodate the magnets 9 and 10 in the rotor core 8 includes a radial housing hole 8a that extends in the radial direction and a substantially V-shaped V-shaped housing that protrudes radially outward. The number of the holes 8b is P / 2, and in the present embodiment, four (8/2 =) are formed, and they are alternately formed in the circumferential direction at equal angular intervals.

径方向収容孔8aの径方向外側端部には、前記磁石9が配置されない径方向側空隙8cが形成されている。詳しくは、本実施の形態の径方向側空隙8cは、軸方向から見た(径方向の直交方向の)幅が他の部分より大きく形成されている。又、本実施の形態の径方向側空隙8cは、略扇形状に形成され、その径方向外側端部がロータコア8の外周面と周方向に一定の距離を保つように、言い換えるとロータコア8の軸中心を中心とした円弧状に形成されている。又、径方向収容孔8aの径方向外側において径方向側空隙8cの径方向内側には、磁石9の径方向外側への移動を規制すべく軸方向から見た(径方向の直交方向の)幅が他の部分より小さくなるように径方向の直交方向に突出した突出部8dが形成されている。この突出部8dは、周方向両側から一対、同じ量だけ突出して形成されている。   A radial-side gap 8c in which the magnet 9 is not disposed is formed at the radially outer end of the radial accommodation hole 8a. Specifically, the radial-side gap 8c of the present embodiment is formed to have a width (in the direction orthogonal to the radial direction) that is larger than the other portions when viewed from the axial direction. In addition, the radial side gap 8c of the present embodiment is formed in a substantially fan shape, and the radial outer end thereof maintains a constant distance in the circumferential direction from the outer peripheral surface of the rotor core 8, in other words, the rotor core 8 It is formed in an arc shape centered on the axis center. Further, on the radially outer side of the radial accommodation hole 8a, the radially inner side of the radial space 8c is viewed from the axial direction (in the direction orthogonal to the radial direction) so as to restrict the movement of the magnet 9 to the radially outer side. A protruding portion 8d that protrudes in a direction perpendicular to the radial direction is formed so that the width is smaller than other portions. The protruding portions 8d are formed to protrude from the both sides in the circumferential direction by the same amount.

V字収容孔8bは、そのV字を形成する2つの直線に対応した一対の磁石収容部8eを備える。本実施の形態の一対の磁石収容部8eは、径方向外側ほど周方向の間隔が近くなるが径方向外側端部でも互いに連通しないようにそれぞれ独立した(軸方向に貫通する)孔として形成されている。又、V字収容孔8bの径方向外側端部、即ち各磁石収容部8eの径方向外側端部には、前記磁石10が配置されないV字側空隙8fが形成されている。本実施の形態のV字側空隙8fは、軸方向から見た幅が他の部分(磁石10を収容する部分)と略同じとなるように形成されている。又、本実施の形態のV字側空隙8fは、その径方向外側端部がロータコア8の外周面と周方向に一定の距離を保つように、言い換えるとロータコア8の軸中心を中心とした円弧状に形成されている。又、磁石収容部8eの径方向外側においてV字側空隙8fの径方向内側には、磁石10の径方向外側への移動を規制すべく軸方向から見た幅が他の部分より小さくなるように突出した突出部8gが形成されている。この突出部8gは、一対の磁石収容部8eの対向する側からそれぞれ離間する側へ同じ量だけ突出して形成されている。   The V-shaped accommodation hole 8b includes a pair of magnet housing portions 8e corresponding to two straight lines forming the V-shape. The pair of magnet housing portions 8e of the present embodiment are formed as independent holes (through in the axial direction) so that the distance in the circumferential direction is closer toward the outer side in the radial direction but the outer end portions in the radial direction are not communicated with each other. ing. A V-shaped air gap 8f in which the magnet 10 is not disposed is formed at the radially outer end of the V-shaped receiving hole 8b, that is, at the radially outer end of each magnet receiving portion 8e. The V-shaped side gap 8f of the present embodiment is formed so that the width viewed from the axial direction is substantially the same as other portions (portions that accommodate the magnet 10). In addition, the V-shaped side gap 8f of the present embodiment is a circle centered on the axial center of the rotor core 8 so that the radially outer end thereof maintains a constant distance from the outer peripheral surface of the rotor core 8 in the circumferential direction. It is formed in an arc shape. Further, on the radially inner side of the V-shaped gap 8f on the radially outer side of the magnet housing portion 8e, the width seen from the axial direction is smaller than other portions so as to restrict the movement of the magnet 10 to the radially outer side. A protruding portion 8g that protrudes in the shape is formed. The protruding portions 8g are formed so as to protrude by the same amount from the opposing sides of the pair of magnet housing portions 8e to the separated sides.

ここで、本実施の形態の前記径方向収容孔8aにおける前記径方向側空隙8cの周方向幅角度θaと、前記V字収容孔8bにおける(一対の)前記V字側空隙8fの周方向幅角度θb(図1参照)とは、0.99≦θa/θb≦1.02を満たす範囲内であって、θa/θbが1.00となるように(即ち同じに)設定されている。尚、この値(θa/θb)は、後述する実験結果より得たデータ(図3〜図5に示す角度比率−コギングトルク特性図参照)に基づいて設定している。   Here, the circumferential width angle θa of the radial side gap 8c in the radial accommodation hole 8a of the present embodiment and the circumferential width of the (a pair of) V-shaped gap 8f in the V-shaped accommodation hole 8b. The angle θb (see FIG. 1) is set within a range satisfying 0.99 ≦ θa / θb ≦ 1.02, and θa / θb is set to be 1.00 (that is, the same). This value (θa / θb) is set based on data obtained from experimental results described later (see the angle ratio-cogging torque characteristic diagrams shown in FIGS. 3 to 5).

又、周方向に隣り合う、径方向収容孔8aの径方向側空隙8cとV字収容孔8bのV字側空隙8fとの間の周方向幅角度θ1は、ティース4の径方向内側端部の周方向幅角度θ2より大きく設定されている。又、径方向収容孔8aの径方向側空隙8cの周方向幅角度θa、及びV字収容孔8bのV字側空隙8fの周方向幅角度θbは、ティース4の径方向内側端部の周方向幅角度θ2より小さく設定されている。又、本実施の形態におけるティース4の径方向内側端部の周方向幅角度θ2は、27.4°に設定されている。又、本実施の形態における径方向収容孔8aと、周方向に隣り合う磁石収容部8eとがなす角度θ3は、62.5°に設定されている。   Further, the circumferential width angle θ1 between the radial space 8c of the radial accommodation hole 8a and the V-shaped space 8f of the V-shaped accommodation hole 8b, which are adjacent to each other in the circumferential direction, is the radially inner end of the tooth 4. Is set to be larger than the circumferential width angle θ2. Further, the circumferential width angle θa of the radial side gap 8c of the radial direction receiving hole 8a and the circumferential width angle θb of the V-shaped side gap 8f of the V-shaped receiving hole 8b are the circumference of the radially inner end portion of the tooth 4. It is set smaller than the direction width angle θ2. Further, the circumferential width angle θ2 of the radially inner end of the tooth 4 in the present embodiment is set to 27.4 °. Further, the angle θ3 formed by the radial accommodation hole 8a and the magnet accommodation portion 8e adjacent in the circumferential direction in the present embodiment is set to 62.5 °.

又、本実施の形態における磁石収容部8eの径方向内側端部は、軸方向から見て、径方向収容孔8aの側部、詳しくは径方向収容孔8aの径方向内側において径方向の直交方向を向いた辺(内壁面)と対向するように形成されている。そして、磁石収容部8eの径方向内側と径方向収容孔8aとの間に形成される内側ブリッジ部8hの軸方向から見た幅は径方向に沿って一定となるように形成されている。尚、これは、磁石収容部8eの径方向内側端部に軸方向から見て略三角形状の(磁石10が配置されない)延設部8iが延設されることで実現されている。又、上記形状のロータコア8には、径方向収容孔8aの径方向側空隙8cとロータコア8の外周面との間に外側ブリッジ部8jが形成され、磁石収容部8eのV字側空隙8fとロータコア8の外周面との間に外側ブリッジ部8kが形成されることになる。又、外側ブリッジ部8j,8kの径方向厚さは、それぞれ(周方向に)一定に設定されるとともに、それらが同じに設定されている。又、ここで、前記径方向収容孔8aにおける前記径方向側空隙8cの周方向幅角度θaは、本実施の形態のように外側ブリッジ部8jの径方向厚さが一定のものでは、異なる磁極(S極とN極)間を繋ぐように延びる外側ブリッジ部8jの始端から終端までの周方向幅角度と一致する角度である。又、本実施の形態のように径方向側空隙8cが略扇形状に形成されたものでは、径方向側空隙8cの径方向位置に関わらず周方向幅角度が一定であることから、前記径方向側空隙8cの周方向幅角度θaは、径方向側空隙8cの径方向の各位置における周方向幅角度と一致する角度である。又、前記V字収容孔8bにおける(一対の)前記V字側空隙8fの周方向幅角度θb(図1参照)は、本実施の形態のように外側ブリッジ部8kの径方向厚さが一定のものでは、異なる磁極(S極とN極)間を繋ぐように延びる外側ブリッジ部8kの始端から終端までの周方向幅角度と一致する角度である。又、本実施の形態のように、(一対の)前記V字側空隙8fが径方向内側ほどその周方向幅角度が大きく形成されたものでは、(一対の)前記V字側空隙8fの周方向幅角度θbは、V字側空隙8fの最も径方向外側における周方向幅角度と一致する角度である。尚、この実施の形態では、一対の磁石収容部8eが互いに連通しないようにそれぞれ独立した孔として形成され、V字側空隙8f及び外側ブリッジ部8kがそれぞれ一対分離して配設されるが、それらは繋がっているものとして扱って前記周方向幅角度θbを決定している。そして、前記径方向収容孔8a内と前記磁石収容部8e内には、それぞれ磁石9,10が配設される。   In addition, the radially inner end of the magnet housing portion 8e in the present embodiment is orthogonal to the radial direction on the side portion of the radial housing hole 8a, more specifically on the radially inner side of the radial housing hole 8a, as viewed from the axial direction. It is formed to face the side (inner wall surface) that faces the direction. And the width | variety seen from the axial direction of the inner side bridge | bridging part 8h formed between the radial direction inner side of the magnet accommodating part 8e and the radial direction accommodating hole 8a is formed so that it may become constant along a radial direction. In addition, this is implement | achieved by extending substantially triangular-shaped extension part 8i (the magnet 10 is not arrange | positioned) seeing from an axial direction at the radial direction inner side edge part of the magnet accommodating part 8e. The rotor core 8 having the above-described shape has an outer bridge portion 8j formed between the radial side gap 8c of the radial accommodation hole 8a and the outer peripheral surface of the rotor core 8, and the V-shaped side gap 8f of the magnet accommodation portion 8e. The outer bridge portion 8k is formed between the outer peripheral surface of the rotor core 8. The radial thicknesses of the outer bridge portions 8j and 8k are set to be constant (in the circumferential direction) and set to be the same. Here, the circumferential width angle θa of the radial side gap 8c in the radial accommodation hole 8a is different when the radial thickness of the outer bridge portion 8j is constant as in the present embodiment. This is an angle that coincides with the circumferential width angle from the start end to the end of the outer bridge portion 8j extending so as to connect (S pole and N pole). In the case where the radial side gap 8c is formed in a substantially fan shape as in the present embodiment, the circumferential width angle is constant regardless of the radial position of the radial side gap 8c. The circumferential width angle θa of the direction side gap 8c is an angle that coincides with the circumferential width angle at each radial position of the radial side gap 8c. Further, the circumferential width angle θb (see FIG. 1) of the (a pair of) V-side gaps 8f in the V-shaped receiving hole 8b is constant in the radial thickness of the outer bridge portion 8k as in the present embodiment. In this case, the angle coincides with the circumferential width angle from the start end to the end of the outer bridge portion 8k extending so as to connect different magnetic poles (S pole and N pole). Further, as in the present embodiment, in the case where (a pair of) the V-shaped side gaps 8f are formed so that the circumferential width angle thereof becomes larger toward the inside in the radial direction, the circumference of the (a pair of) V-shaped side gaps 8f. The direction width angle θb is an angle that coincides with the circumferential width angle at the outermost radial direction of the V-shaped gap 8f. In this embodiment, the pair of magnet housing portions 8e are formed as independent holes so as not to communicate with each other, and the V-shaped side gap 8f and the outer bridge portion 8k are separately disposed, The circumferential width angle θb is determined by treating them as being connected. Magnets 9 and 10 are disposed in the radial accommodation hole 8a and the magnet accommodation portion 8e, respectively.

磁石9,10は、軸方向から見て短手方向に着磁された略直方体形状に形成されている。そして、径方向収容孔8a内に配設される磁石9と、その周方向の一方に隣り合う磁石収容部8e内に配設される磁石10とで1つの磁極(例えばS極)を構成するとともに、径方向収容孔8a内に配設される磁石9と、その周方向の他方に隣り合う磁石収容部8e内に配設される磁石10とで異なる1つの磁極(例えばN極)を構成している。尚、本実施の形態の各磁石9,10の残留磁束密度は1.26[T]に設定されている。又、本実施の形態の径方向収容孔8a内に配設される磁石9の軸方向から見た長手方向の長さは6.7[mm]に設定され、短手方向長さは2.4[mm]に設定されている。又、本実施の形態の磁石収容部8e内に配設される磁石10の軸方向から見た長手方向の長さは7.3[mm]に設定され、短手方向長さは1.8[mm]に設定されている。又、磁石収容部8e内に配設される磁石10の前記長手方向の長さ(7.3[mm])は、径方向収容孔8a内に配設される磁石9の前記長手方向の長さ(6.7[mm])から磁石収容部8e(前記延設部8i)が対向する長さを引いた軸方向の長さに対して、約1.5倍となるように設定されている。又、磁石9,10の軸方向長さは、前記ロータコア8の軸方向長さと同じに設定されている。   The magnets 9 and 10 are formed in a substantially rectangular parallelepiped shape magnetized in the short direction when viewed from the axial direction. And the magnet 9 arrange | positioned in the radial direction accommodation hole 8a and the magnet 10 arrange | positioned in the magnet accommodating part 8e adjacent to the one of the circumferential direction comprise one magnetic pole (for example, S pole). In addition, a different magnetic pole (for example, N pole) is configured by the magnet 9 disposed in the radial accommodation hole 8a and the magnet 10 disposed in the magnet accommodation portion 8e adjacent to the other in the circumferential direction. is doing. In addition, the residual magnetic flux density of each magnet 9 and 10 of this Embodiment is set to 1.26 [T]. Further, the length of the magnet 9 disposed in the radial accommodation hole 8a of the present embodiment as viewed from the axial direction is set to 6.7 [mm], and the length in the short direction is set to 2. It is set to 4 [mm]. Further, the length of the magnet 10 disposed in the magnet housing portion 8e of the present embodiment as viewed from the axial direction is set to 7.3 [mm], and the length in the short direction is 1.8. [Mm] is set. The length (7.3 [mm]) in the longitudinal direction of the magnet 10 disposed in the magnet housing portion 8e is the length in the longitudinal direction of the magnet 9 disposed in the radial housing hole 8a. Is set to be about 1.5 times the axial length obtained by subtracting the length (6.7 [mm]) from which the magnet accommodating portion 8e (the extending portion 8i) is opposed. Yes. The axial lengths of the magnets 9 and 10 are set to be the same as the axial length of the rotor core 8.

ここで、図3〜図5に示す角度比率−コギングトルク特性図は実験結果より得たデータである。詳しくは、図3〜図5に実線で示す特性X1は、上記実施の形態と同様にティース4の径方向内側端部の周方向幅角度θ2が27.4°に設定され、磁極数が(P=)8極で、各磁石9,10の残留磁束密度が1.26[T]に設定された場合のものである。そして、図3〜図5に示す他の特性X2〜X6は、特性X1のものから各値を変更した場合のものである。即ち、図3に破線で示す特性X2は、ティース4の径方向内側端部の周方向幅角度θ2が26°に設定された場合のものである。又、図4に破線で示す特性X3は、磁極数が(P=)6極に設定された場合のものである。又、図4に2点鎖線で示す特性X4は、磁極数が(P=)10極に設定された場合のものである。又、図5に破線で示す特性X5は、径方向収容孔8a内に配設される磁石9の残留磁束密度が1.42[T]に設定された場合(磁石10は1.26[T])のものである。又、図5に2点鎖線で示す特性X6は、V字収容孔8b(磁石収容部8e)内に配設される磁石10の残留磁束密度が1.42[T]に設定された場合(磁石9は1.26[T])のものである。   Here, the angle ratio-cogging torque characteristic diagrams shown in FIGS. 3 to 5 are data obtained from experimental results. Specifically, in the characteristic X1 indicated by the solid line in FIGS. 3 to 5, the circumferential width angle θ2 of the radially inner end of the tooth 4 is set to 27.4 °, and the number of magnetic poles is ( P =) 8 poles, and the residual magnetic flux density of each of the magnets 9 and 10 is set to 1.26 [T]. The other characteristics X2 to X6 shown in FIGS. 3 to 5 are obtained by changing the values from those of the characteristic X1. That is, the characteristic X2 indicated by a broken line in FIG. 3 is obtained when the circumferential width angle θ2 of the radially inner end of the tooth 4 is set to 26 °. A characteristic X3 indicated by a broken line in FIG. 4 is obtained when the number of magnetic poles is set to (P =) 6 poles. A characteristic X4 indicated by a two-dot chain line in FIG. 4 is obtained when the number of magnetic poles is set to (P =) 10 poles. Further, a characteristic X5 indicated by a broken line in FIG. 5 indicates that when the residual magnetic flux density of the magnet 9 disposed in the radial accommodation hole 8a is set to 1.42 [T] (the magnet 10 is 1.26 [T ])belongs to. Further, the characteristic X6 indicated by a two-dot chain line in FIG. 5 indicates that the residual magnetic flux density of the magnet 10 disposed in the V-shaped accommodation hole 8b (magnet accommodation portion 8e) is set to 1.42 [T] ( The magnet 9 is of 1.26 [T]).

そして、上記した特性X1〜X6(図3〜図5)では、各値を変更しても、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとが、0.94≦θa/θb≦1.09を満たすと、コギングトルクが最下限値を含む範囲内の小さな値(実験した範囲内では0.027[Nm]以下)となることがわかる。又、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとが、0.98≦θa/θb≦1.03を満たすと、コギングトルクが最下限値を含む範囲内の更に小さな値(実験した範囲内では0.016[Nm]以下)となることがわかる。更に、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとが、0.99≦θa/θb≦1.02を満たすと、コギングトルクが最下限値を含む範囲内の略最下限値(実験した範囲内では0.015[Nm]以下)となることがわかる。これに基づいて本実施の形態では、θa/θbを1.00に設定している。   In the above characteristics X1 to X6 (FIGS. 3 to 5), even if each value is changed, the circumferential width angle θa of the radial side gap 8c and the circumferential width angle θb of the V-shaped gap 8f are different. When 0.94 ≦ θa / θb ≦ 1.09 is satisfied, the cogging torque is a small value within the range including the lowest limit value (0.027 [Nm] or less within the experimental range). Further, when the circumferential width angle θa of the radial side gap 8c and the circumferential width angle θb of the V-shaped side gap 8f satisfy 0.98 ≦ θa / θb ≦ 1.03, the cogging torque reaches the lowest limit value. It can be seen that the value is even smaller within the range of inclusion (0.016 [Nm] or less within the experimental range). Further, when the circumferential width angle θa of the radial side gap 8c and the circumferential width angle θb of the V-shaped side gap 8f satisfy 0.99 ≦ θa / θb ≦ 1.02, the cogging torque reaches the lowest limit value. It can be seen that the lower limit value is approximately the lower limit within the range (0.015 [Nm] or less within the experimental range). Based on this, in the present embodiment, θa / θb is set to 1.00.

更に、図6に示す角度比率−コギングトルク特性図は実験結果より得たデータである。詳しくは、図6に示すデータは、θa/θbを1.00より小さくしていった場合にコギングトルクの上昇が最も激しい前記特性X2と、θa/θbを1.00より大きくしていった場合にコギングトルクの上昇が最も激しい前記特性X4について、θa/θbを0.60〜1.60の広い範囲で変更した場合のデータである。   Furthermore, the angle ratio-cogging torque characteristic diagram shown in FIG. 6 is data obtained from experimental results. Specifically, the data shown in FIG. 6 indicates that the characteristic X2 in which the cogging torque increases most rapidly when θa / θb is smaller than 1.00 and θa / θb is larger than 1.00. In this case, θa / θb is changed in a wide range of 0.60 to 1.60 with respect to the characteristic X4 in which the cogging torque rises most rapidly.

そして、上記した特性X2、X4(図6参照)では、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとが、0.60<θa/θb<1.60を満たすと、コギングトルクが定格トルク(この例では0.3[Nm])に達することがなく、モータの起動性を確保することができることがわかる。又、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとが、0.70≦θa/θb≦1.35を満たすと、コギングトルクが定格トルクの半分(この例では0.15[Nm])以下となり、モータの高い起動性と応答性を確保することができることがわかる。更に、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとが、0.92≦θa/θb≦1.10を満たすと、コギングトルクが定格トルクの1割(この例では0.03[Nm])以下となり、モータの極めて高い起動性と応答性を確保することができることがわかる。   In the above characteristics X2 and X4 (see FIG. 6), the circumferential width angle θa of the radial-side gap 8c and the circumferential width angle θb of the V-shaped gap 8f are 0.60 <θa / θb <1. When .60 is satisfied, the cogging torque does not reach the rated torque (0.3 [Nm] in this example), and it can be seen that the startability of the motor can be ensured. When the circumferential width angle θa of the radial side gap 8c and the circumferential width angle θb of the V-shaped gap 8f satisfy 0.70 ≦ θa / θb ≦ 1.35, the cogging torque is half of the rated torque. (0.15 [Nm] in this example) or less, it can be seen that high startability and responsiveness of the motor can be secured. Further, when the circumferential width angle θa of the radial side gap 8c and the circumferential width angle θb of the V-shaped side gap 8f satisfy 0.92 ≦ θa / θb ≦ 1.10, the cogging torque is 1 of the rated torque. It can be seen that the motor can be secured with extremely high startability and responsiveness (less than 0.03 [Nm] in this example).

次に、上記実施の形態の特徴的な作用効果を以下に記載する。
(1)径方向収容孔8a内に配設される磁石9は、周方向の一方に形成される磁極(ロータ2における一方の磁極であって例えばS極)の一部を構成するとともに、周方向の他方に形成される磁極(ロータ2における他方の磁極であって例えばN極)の一部をも構成する。即ち、径方向収容孔8a内に配設される磁石9は、2つの磁極に対して共用のものとなる。よって、磁極数がP極の場合、前記磁石9,10は全体で(3/2)P個となるため、従来(全体で2P個)に比べて磁石の数を低減することができる。尚、本実施の形態では、8極で磁石9,10が12個となる。その結果、部品点数を低減することができ、ひいては部品管理コストや組み付けコストを低減することができる。
Next, characteristic effects of the above embodiment will be described below.
(1) The magnet 9 disposed in the radial accommodation hole 8a constitutes a part of a magnetic pole (one magnetic pole in the rotor 2, for example, the S pole) formed on one side in the circumferential direction. It also constitutes a part of a magnetic pole (the other magnetic pole in the rotor 2, for example, N pole) formed on the other side in the direction. That is, the magnet 9 disposed in the radial accommodation hole 8a is shared by the two magnetic poles. Therefore, when the number of magnetic poles is P, the number of the magnets 9 and 10 is (3/2) P as a whole, so that the number of magnets can be reduced compared to the conventional (2P as a whole). In this embodiment, there are 12 magnets 9 and 10 with 8 poles. As a result, the number of parts can be reduced, and as a result, parts management costs and assembly costs can be reduced.

又、同構成によれば、径方向収容孔8aが2つの磁極に対して共用のものとなるため、径方向収容孔8aの径方向外側(径方向側空隙8c)とロータコア8の外周面との間に形成される外側ブリッジ部8jにおいても2つの磁極に対して共用のものとなる。よって、ロータコア8における外側ブリッジ部の数が低減され、該外側ブリッジ部を通過してしまう漏れ磁束を低減することができる。   Further, according to the same configuration, since the radial accommodation hole 8a is shared by the two magnetic poles, the radial outside (radial side gap 8c) of the radial accommodation hole 8a and the outer peripheral surface of the rotor core 8 are provided. The outer bridge portion 8j formed between the two magnetic poles is shared by the two magnetic poles. Therefore, the number of outer bridge portions in the rotor core 8 is reduced, and the leakage magnetic flux that passes through the outer bridge portion can be reduced.

しかも、径方向収容孔8aの径方向外側端部の径方向側空隙8cの周方向幅角度θaと、V字収容孔8bの径方向外側端部のV字側空隙8fの周方向幅角度θbとは、0.99≦θa/θb≦1.02を満たすため、コギングトルクが略最下限値となる(図3〜図5参照)。尚、本実施の形態のコギングトルクの値は、図3〜図5において実線で示す特性X1の角度比率(θa/θb)が1.0の場合の値であって、約0.010[Nm]である。   Moreover, the circumferential width angle θa of the radial side gap 8c at the radial outer end of the radial accommodation hole 8a and the circumferential width angle θb of the V-shaped gap 8f at the radial outer end of the V-shaped accommodation hole 8b. Means satisfying 0.99 ≦ θa / θb ≦ 1.02, and therefore the cogging torque is substantially the lower limit (see FIGS. 3 to 5). Note that the cogging torque value of the present embodiment is a value when the angle ratio (θa / θb) of the characteristic X1 shown by the solid line in FIGS. 3 to 5 is 1.0, and is about 0.010 [Nm ].

又、勿論、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとは、0.92≦θa/θb≦1.10を満たすため、コギングトルクが定格トルクの1割以下となり、モータの極めて高い起動性と応答性を確保することができる。   Of course, the circumferential width angle θa of the radial-side gap 8c and the circumferential width angle θb of the V-shaped gap 8f satisfy 0.92 ≦ θa / θb ≦ 1.10. Therefore, it is possible to ensure extremely high startability and responsiveness of the motor.

(2)周方向に隣り合う径方向側空隙8cとV字側空隙8fとの間であってステータ1に対向する実質的なロータ2の磁極となる周方向幅角度θ1がティース4の径方向内側端部の周方向幅角度θ2より大きく設定されるため、小さく設定されたものに比べてティース4がロータ2から受ける磁束の幅角度が広くなり、高効率化を図ることができる。   (2) The circumferential width angle θ1 between the radial-side gap 8c and the V-shaped gap 8f adjacent in the circumferential direction and the substantial magnetic pole of the rotor 2 facing the stator 1 is the radial direction of the teeth 4. Since it is set larger than the circumferential width angle θ2 of the inner end portion, the width angle of the magnetic flux received by the teeth 4 from the rotor 2 becomes wider than that set smaller, so that the efficiency can be improved.

(3)径方向側空隙8c及びV字側空隙8fの周方向幅角度θa,θbは、ティース4の径方向内側端部の周方向幅角度θ2より小さく設定されるため、ティース4の径方向内側端部を、常に実質的なロータ2の磁極(径方向側空隙8cとV字側空隙8fとの間)に対向させることができるので、高効率化を図ることができる。   (3) Since the circumferential width angles θa and θb of the radial side gap 8c and the V-shaped side gap 8f are set smaller than the circumferential width angle θ2 of the radially inner end of the tooth 4, the radial direction of the tooth 4 Since the inner end portion can always be opposed to the substantial magnetic pole of the rotor 2 (between the radial direction gap 8c and the V-shaped gap 8f), high efficiency can be achieved.

上記実施の形態は、以下のように変更してもよい。
・上記実施の形態では、径方向収容孔8aの径方向側空隙8cの周方向幅角度θaとV字収容孔8bのV字側空隙8fの周方向幅角度θbとが、0.99≦θa/θb≦1.02を満たすように(1.00に)設定されるとしたが、これに限定されず、0.94≦θa/θb≦1.09を満たす範囲内で(径方向側空隙8cやV字側空隙8fの形状を)変更してもよい。このように0.94≦θa/θb≦1.09を満たせば、コギングトルクが最下限値を含む範囲内の小さな値(実験した範囲内では0.027[Nm]以下)となる(図3〜図5参照)。又、0.98≦θa/θb≦1.03を満たす範囲内で(径方向側空隙8cやV字側空隙8fの形状を)変更してもよい。0.98≦θa/θb≦1.03を満たせば、コギングトルクが最下限値を含む範囲内の更に小さな値(実験した範囲内では0.016[Nm]以下)となる(図3〜図5参照)。
The above embodiment may be modified as follows.
In the above embodiment, the circumferential width angle θa of the radial-side gap 8c of the radial receiving hole 8a and the circumferential width angle θb of the V-shaped gap 8f of the V-shaped receiving hole 8b are 0.99 ≦ θa /Θb≦1.02 is set (to 1.00), but is not limited to this, and within a range satisfying 0.94 ≦ θa / θb ≦ 1.09 (radial side gap) 8c and the shape of the V-shaped side gap 8f) may be changed. Thus, if 0.94 ≦ θa / θb ≦ 1.09 is satisfied, the cogging torque becomes a small value within the range including the lowest limit value (0.027 [Nm] or less within the experimental range) (FIG. 3). To FIG. 5). Further, it may be changed within a range satisfying 0.98 ≦ θa / θb ≦ 1.03 (the shape of the radial side gap 8c or the V-shaped side gap 8f). When 0.98 ≦ θa / θb ≦ 1.03 is satisfied, the cogging torque becomes a smaller value within the range including the lowest limit (0.016 [Nm] or less within the experimental range) (FIGS. 3 to 3). 5).

又、径方向側空隙8cの周方向幅角度θaとV字側空隙8fの周方向幅角度θbとは、0.94≦θa/θb≦1.09を満たさなくても、0.60<θa/θb<1.60を満たす範囲内で(径方向側空隙8cやV字側空隙8fの形状を)変更してもよい。このように0.60<θa/θb<1.60を満たせば、コギングトルクが定格トルクに達することがなく(図6参照)、モータの起動性を確保することができる。言い換えると、0.60<θa/θb<1.60を満たさない場合では、コギングトルクが定格トルクに達してモータが起動しない(ロータ2が回転しない)虞が生じるが、これを回避することができる。又、0.70≦θa/θb≦1.35を満たす範囲内で(径方向側空隙8cやV字側空隙8fの形状を)変更してもよい。0.70≦θa/θb≦1.35を満たせば、コギングトルクが定格トルクの半分以下となり(図6参照)、モータの高い起動性と応答性を確保することができる。   Further, the circumferential width angle θa of the radial side gap 8c and the circumferential width angle θb of the V-shaped gap 8f do not satisfy 0.94 ≦ θa / θb ≦ 1.09, but 0.60 <θa You may change within the range which satisfy | fills /(theta)b<1.60 (The shape of the radial direction space | gap 8c and the V-shaped space | gap 8f). As described above, when 0.60 <θa / θb <1.60 is satisfied, the cogging torque does not reach the rated torque (see FIG. 6), and the startability of the motor can be ensured. In other words, when 0.60 <θa / θb <1.60 is not satisfied, there is a possibility that the cogging torque reaches the rated torque and the motor does not start (the rotor 2 does not rotate), but this can be avoided. it can. Further, it may be changed within a range satisfying 0.70 ≦ θa / θb ≦ 1.35 (the shape of the radial side gap 8c and the V-shaped side gap 8f). If 0.70 ≦ θa / θb ≦ 1.35 is satisfied, the cogging torque becomes half or less than the rated torque (see FIG. 6), and high startability and responsiveness of the motor can be ensured.

・上記実施の形態では、径方向側空隙8cは、その径方向外側端部がロータコア8の外周面と周方向に一定の距離を保つように、言い換えるとロータコア8の軸中心を中心とした円弧状に形成され、外側ブリッジ部8jの径方向厚さが、周方向に一定とされるとしたが、これに限定されず、他の形状のものに変更してもよい。   In the above embodiment, the radial side gap 8c is a circle centered on the axial center of the rotor core 8 so that the radially outer end thereof maintains a constant distance from the outer peripheral surface of the rotor core 8 in the circumferential direction. It is formed in an arc shape, and the radial thickness of the outer bridge portion 8j is constant in the circumferential direction, but is not limited to this, and may be changed to another shape.

例えば、図7(a)に示すように変更してもよい。この例(図7(a))の径方向側空隙8lには、その径方向外側端部における周方向両端部に、径方向内側に斜めに傾斜し、ロータコア8の外周面と周方向両端に向かうほど徐々に離間する直線状の傾斜部8mが形成されている。これにより、外側ブリッジ部8nの径方向厚さは、周方向両端部で変化する(端部に向かうほど徐々に大きくなる)ように形成されている。又、この例(図7(a))の径方向側空隙8lには、その径方向外側端部における前記傾斜部8mと周方向に離間した周方向中央部に、ロータコア8の外周面との距離が大きい小径部8oが形成されている。このように変更した場合、径方向側空隙8lの周方向幅角度θaは、実質的に上記実施の形態の形状と同等の特性となるように実験結果等から以下のように定義して決定する。即ち、径方向側空隙8lの最も周方向外側において最も径方向外側の点P1と径方向側空隙8lの最も径方向外側において最も周方向外側の点P2とを結ぶ直線(即ち前記傾斜部8m)と、前記点P2からロータコア8の外周面との距離が一定の仮想円弧と、前記点P1から径方向外側に延びる仮想径方向直線とによって囲まれた面積S1(図7(a)中、模式的にハッチングで図示した部分の面積)を周方向に2等分する線L1の角度を、径方向側空隙8lの周方向幅角度θaとする。このように決定すると、上記実施の形態で説明した実験結果(図3〜図6参照)と同様の特性となるため、上記実施の形態の効果と同様の効果を得ることができる。   For example, you may change as shown to Fig.7 (a). In this example (FIG. 7A), the radial gap 8l is inclined obliquely inward in the radial direction at both ends in the radial direction at the outer end in the radial direction. A linear inclined portion 8m that is gradually separated as it goes is formed. Accordingly, the radial thickness of the outer bridge portion 8n is formed so as to change at both ends in the circumferential direction (increase gradually toward the end portion). Further, in this example (FIG. 7 (a)), the radial gap 8l has a circumferential central portion that is spaced apart from the inclined portion 8m at the radially outer end thereof and the outer circumferential surface of the rotor core 8. A small diameter portion 8o having a large distance is formed. In such a change, the circumferential width angle θa of the radial-side gap 8l is defined and determined as follows from experimental results and the like so as to have substantially the same characteristics as the shape of the above-described embodiment. . That is, a straight line connecting the point P1 that is radially outermost on the outermost circumferential side of the radial gap 8l and the point P2 that is outermost circumferentially on the outermost radial side of the radial gap 8l (ie, the inclined portion 8m). And an area S1 surrounded by a virtual arc having a constant distance from the point P2 to the outer peripheral surface of the rotor core 8 and a virtual radial straight line extending radially outward from the point P1 (in FIG. 7A, schematically In particular, the angle of the line L1 that bisects the area of the hatched portion in the circumferential direction is defined as the circumferential width angle θa of the radial-side gap 8l. If determined in this manner, the same characteristics as the experimental results described in the above embodiment (see FIGS. 3 to 6) can be obtained, so that the same effects as in the above embodiment can be obtained.

又、例えば、図7(b)に示すように変更してもよい。この例(図7(b))の径方向側空隙8pには、その径方向外側端部における周方向両端部に、径方向内側に湾曲し、ロータコア8の外周面と周方向両端に向かうほど徐々に離間する湾曲状の湾曲部8qが形成されている。これにより、外側ブリッジ部8rの径方向厚さは、周方向両端部で変化する(端部に向かうほど徐々に大きくなる)ように形成されている。このように変更した場合、径方向側空隙8pの周方向幅角度θaは、実質的に上記実施の形態の形状と同等の特性となるように実験結果等から以下のように定義して決定する。即ち、径方向側空隙8pの最も周方向外側において最も径方向外側の点P1と径方向側空隙8pの最も径方向外側において最も周方向外側の点P2とを結ぶ曲線(即ち前記湾曲部8q)と、前記点P2からロータコア8の外周面との距離が一定の仮想円弧と、前記点P1から径方向外側に延びる仮想径方向直線とによって囲まれた面積S2(図7(b)中、模式的にハッチングで図示した部分の面積)を周方向に2等分する線L2の角度を、径方向側空隙8pの周方向幅角度θaとする。このように決定すると、上記実施の形態で説明した実験結果(図3〜図6参照)と同様の特性となるため、上記実施の形態の効果と同様の効果を得ることができる。   Further, for example, it may be changed as shown in FIG. In this example (FIG. 7B), the radial gap 8 p is curved radially inward at both ends in the radial direction at the radially outer end, and goes toward the outer peripheral surface of the rotor core 8 and both ends in the circumferential direction. A curved curved portion 8q that is gradually separated is formed. Thus, the radial thickness of the outer bridge portion 8r is formed so as to change at both ends in the circumferential direction (increase gradually toward the end portion). In such a change, the circumferential width angle θa of the radial side gap 8p is defined and determined as follows from experimental results and the like so as to have substantially the same characteristics as the shape of the above embodiment. . That is, a curve connecting the point P1 that is radially outermost on the outermost side in the radial direction of the radial gap 8p and the point P2 that is outermost in the radial direction of the radial side gap 8p (that is, the curved portion 8q). And an area S2 surrounded by a virtual arc having a constant distance from the point P2 to the outer peripheral surface of the rotor core 8 and a virtual radial straight line extending radially outward from the point P1 (in FIG. 7B, schematically In particular, the angle of the line L2 that bisects the area of the portion illustrated by hatching in the circumferential direction is defined as the circumferential width angle θa of the radial side gap 8p. If determined in this manner, the same characteristics as the experimental results described in the above embodiment (see FIGS. 3 to 6) can be obtained, so that the same effects as in the above embodiment can be obtained.

・上記実施の形態では、V字側空隙8fは、その径方向外側端部がロータコア8の外周面と周方向に一定の距離を保つように、言い換えるとロータコア8の軸中心を中心とした円弧状に形成され、外側ブリッジ部8kの径方向厚さが、周方向に一定とされるとしたが、これに限定されず、他の形状のものに変更してもよい。   In the above embodiment, the V-shaped air gap 8f is a circle centered on the axial center of the rotor core 8 so that the radially outer end thereof maintains a constant distance from the outer peripheral surface of the rotor core 8 in the circumferential direction. It is formed in an arc shape, and the radial thickness of the outer bridge portion 8k is assumed to be constant in the circumferential direction. However, the thickness is not limited to this and may be changed to another shape.

例えば、図7(c)に示すように変更してもよい。この例(図7(c))のV字側空隙8sには、その径方向外側端部における周方向両端部に、径方向内側に斜めに傾斜し、ロータコア8の外周面と周方向両端に向かうほど徐々に離間する直線状の傾斜部8tが形成されている。これにより、外側ブリッジ部8uの径方向厚さは、周方向両端部で変化する(端部に向かうほど徐々に大きくなる)ように形成されている。このように変更した場合、V字側空隙8sの周方向幅角度θbは、実質的に上記実施の形態の形状と同等の特性となるように実験結果等から以下のように定義して決定する。即ち、V字側空隙8sの最も周方向外側において最も径方向外側の点P3とV字側空隙8sの最も径方向外側において最も周方向外側の点P4とを結ぶ直線(即ち前記傾斜部8t)と、前記点P4からロータコア8の外周面との距離が一定の仮想円弧と、前記点P3から径方向外側に延びる仮想径方向直線とによって囲まれた面積S3(図7(c)中、模式的にハッチングで図示した部分の面積)を周方向に2等分する線L3の角度を、V字側空隙8sの周方向幅角度θbとする。このように決定すると、上記実施の形態で説明した実験結果(図3〜図6参照)と同様の特性となるため、上記実施の形態の効果と同様の効果を得ることができる。   For example, you may change as shown in FIG.7 (c). In this example (FIG. 7C), the V-shaped side gap 8s is inclined obliquely inward in the radial direction at both ends in the radial direction at the outer end in the radial direction, and on the outer peripheral surface of the rotor core 8 and both ends in the circumferential direction. A linear inclined portion 8t that is gradually separated as it goes is formed. Thereby, the radial thickness of the outer bridge portion 8u is formed so as to change at both circumferential end portions (increase gradually toward the end portion). When changed in this way, the circumferential width angle θb of the V-shaped gap 8s is defined and determined as follows based on experimental results and the like so as to have substantially the same characteristics as the shape of the above embodiment. . That is, a straight line connecting the point P3 that is radially outermost on the outermost side in the circumferential direction of the V-shaped gap 8s and the point P4 that is outermost in the radial direction on the outermost side in the radial direction of the V-shaped gap 8s (that is, the inclined portion 8t). And an area S3 surrounded by a virtual arc having a constant distance from the point P4 to the outer peripheral surface of the rotor core 8 and a virtual radial straight line extending radially outward from the point P3 (in FIG. 7C, schematically In particular, the angle of the line L3 that bisects the area of the hatched portion in the circumferential direction is defined as the circumferential width angle θb of the V-shaped gap 8s. If determined in this manner, the same characteristics as the experimental results described in the above embodiment (see FIGS. 3 to 6) can be obtained, so that the same effects as in the above embodiment can be obtained.

又、V字側空隙8fは、図7(d)に示すように、その径方向外側端部がロータコア8の外周面と周方向に一定の距離を保ったまま(V字側空隙8fより)周方向外側に突出した周方向延設部8vを備えたV字側空隙8wとしてもよい。尚、この場合は、単にV字側空隙8wの最も周方向外側を、V字側空隙8fの周方向幅角度θbとすればよい。   Further, as shown in FIG. 7 (d), the V-shaped side gap 8f is maintained at a constant distance from the outer circumferential surface of the rotor core 8 in the circumferential direction (from the V-shaped side gap 8f). It is good also as the V-shaped side space | gap 8w provided with the circumferential direction extension part 8v protruded to the circumferential direction outer side. In this case, the outermost circumferential direction outer side of the V-shaped side gap 8w may be simply set as the circumferential width angle θb of the V-shaped side gap 8f.

・上記実施の形態では、ティース4の径方向内側端部の周方向幅角度θ2が27.4°に設定されるとしたが、これに限定されず、他の周方向幅角度θ2(例えば、26°)に変更してもよい。   In the above embodiment, the circumferential width angle θ2 of the radially inner end of the tooth 4 is set to 27.4 °, but is not limited thereto, and other circumferential width angles θ2 (for example, 26 °).

・上記実施の形態では、磁極数が(P=)8極であるとしたが、これに限定されず、他の磁極数(例えば、6極や10極)に変更してもよい。尚、勿論、この場合等を含めてティース4の数を変更してもよい。   In the above embodiment, the number of magnetic poles is (P =) 8 poles, but is not limited to this, and may be changed to another number of magnetic poles (for example, 6 poles or 10 poles). Of course, the number of teeth 4 may be changed including this case.

・上記実施の形態では、各磁石9,10の残留磁束密度が1.26[T]に設定されるとしたが、これに限定されず、他の残留磁束密度(例えば、いずれか一方を1.42[T])の磁石に変更してもよい。   In the above embodiment, the residual magnetic flux density of each of the magnets 9 and 10 is set to 1.26 [T]. However, the present invention is not limited to this, and other residual magnetic flux densities (for example, either one is set to 1). .42 [T]) may be changed to a magnet.

・上記実施の形態では、径方向側空隙8cは、軸方向から見た(径方向の直交方向の)幅が他の部分(磁石9が配設される部分)より大きく形成されるとしたが、少なくとも上記した0.60<θa/θb<1.60を満たすことができれば、変更してもよい。例えば、磁石9の軸方向から見た短手方向長さを変更しつつ、径方向側空隙8cと他の部分(磁石9が配設される部分)との軸方向から見た(径方向の直交方向の)幅を同じとしてもよい。   In the above embodiment, the radial gap 8c is formed to have a larger width (in the direction perpendicular to the radial direction) than the other part (the part where the magnet 9 is disposed) as viewed from the axial direction. If at least the above 0.60 <θa / θb <1.60 can be satisfied, it may be changed. For example, while changing the length in the short direction viewed from the axial direction of the magnet 9, the radial gap 8 c and the other portion (portion where the magnet 9 is disposed) viewed from the axial direction (the radial direction The width (in the orthogonal direction) may be the same.

・上記実施の形態では、V字収容孔8bにおける一対の磁石収容部8eは、互いに連通しないようにそれぞれ独立した孔として形成されるとしたが、これに限定されず、径方向外側端部、即ちV字収容孔8bにおける一対のV字側空隙8fが連通されたものとしてもよい。   In the above embodiment, the pair of magnet accommodating portions 8e in the V-shaped accommodating hole 8b is formed as independent holes so as not to communicate with each other, but is not limited thereto, and the radially outer end portion, That is, the pair of V-shaped gaps 8f in the V-shaped receiving hole 8b may be communicated with each other.

・上記実施の形態では、磁石収容部8eの径方向内側と径方向収容孔8aとの間に形成される内側ブリッジ部8hの軸方向から見た幅が径方向に沿って一定とされるとしたが、これに限定されず、内側ブリッジ部8hの軸方向から見た幅が径方向に沿って変化するように変更してもよい。例えば、上記実施の形態の延設部8iを形成しなくてもよい。   In the above embodiment, when the width of the inner bridge portion 8h formed between the radially inner side of the magnet housing portion 8e and the radial housing hole 8a as viewed from the axial direction is constant along the radial direction. However, it is not limited to this, You may change so that the width | variety seen from the axial direction of the inner side bridge part 8h may change along a radial direction. For example, the extending portion 8i of the above embodiment may not be formed.

・上記実施の形態では、ロータコア8は、コアシートが軸方向に積層されてなるとしたが、これに限定されず、他の方法にて形成されるもの(例えば磁性粉体を焼結した焼結コア)としてもよい。   In the above embodiment, the rotor core 8 is formed by laminating the core sheets in the axial direction, but is not limited to this, and is formed by other methods (for example, sintered by sintering magnetic powder) Core).

上記各実施の形態から把握できる技術的思想について、以下にその効果とともに記載する。
(イ)請求項1乃至6のいずれか1項に記載の埋込磁石型モータにおいて、前記ロータの径方向外側に設けられ、径方向内側に延びる複数のティースに巻線が巻回されたステータを備え、周方向に隣り合う前記径方向側空隙と前記V字側空隙との間の周方向幅角度は、前記ティースの径方向内側端部の周方向幅角度より大きく設定されたことを特徴とする埋込磁石型モータ。
The technical idea that can be grasped from the above embodiments will be described below together with the effects thereof.
(A) In the embedded magnet type motor according to any one of claims 1 to 6, the stator is provided with windings around a plurality of teeth provided radially outward of the rotor and extending radially inward. The circumferential width angle between the radial side gap and the V-shaped side gap adjacent in the circumferential direction is set larger than the circumferential width angle of the radially inner end of the teeth. An embedded magnet type motor.

同構成によれば、周方向に隣り合う前記径方向側空隙と前記V字側空隙との間であってステータに対向する実質的なロータの磁極となる周方向幅角度がティースの径方向内側端部の周方向幅角度より大きく設定されるため、小さく設定されたものに比べてティースがロータから受ける磁束の幅角度が広くなり、高効率化を図ることができる。   According to this configuration, the circumferential width angle between the radial side gap and the V-shaped side gap adjacent in the circumferential direction and the substantial magnetic pole of the rotor facing the stator is radially inward of the teeth. Since the width is set larger than the circumferential width angle of the end portion, the width angle of the magnetic flux received from the rotor by the teeth is wider than that set smaller, and the efficiency can be improved.

(ロ)請求項1乃至6及び上記(イ)のいずれか1つに記載の埋込磁石型モータにおいて、前記ロータの径方向外側に設けられ、径方向内側に延びる複数のティースに巻線が巻回されたステータを備え、前記径方向側空隙及び前記V字側空隙の周方向幅角度は、前記ティースの径方向内側端部の周方向幅角度より小さく設定されたことを特徴とする埋込磁石型モータ。   (B) In the interior magnet type motor according to any one of claims 1 to 6 and (A), windings are provided on a plurality of teeth provided on the radially outer side of the rotor and extending radially inward. A buried stator having a wound stator, wherein the circumferential width angle of the radial side gap and the V-shaped side gap is set smaller than the circumferential width angle of the radially inner end portion of the teeth. Magnet type motor.

同構成によれば、ティースの径方向内側端部を、常に実質的なロータの磁極(径方向側空隙とV字側空隙との間)に対向させることができるので、高効率化を図ることができる。   According to this configuration, the radially inner end of the teeth can always be opposed to the substantial rotor magnetic pole (between the radial gap and the V-shaped gap), so that high efficiency can be achieved. Can do.

本実施の形態における埋込磁石型モータのステータ及びロータの平面図。The top view of the stator and rotor of an embedded magnet type motor in this Embodiment. 本実施の形態における巻線の結線図。The connection diagram of the coil | winding in this Embodiment. 角度比率−コギングトルク特性図。Angle ratio-cogging torque characteristic diagram. 角度比率−コギングトルク特性図。Angle ratio-cogging torque characteristic diagram. 角度比率−コギングトルク特性図。Angle ratio-cogging torque characteristic diagram. 角度比率−コギングトルク特性図。Angle ratio-cogging torque characteristic diagram. (a)〜(d)別例におけるロータの一部拡大平面図。(A)-(d) The partial enlarged plan view of the rotor in another example.

符号の説明Explanation of symbols

2…ロータ、8…ロータコア、8a…径方向収容孔、8b…V字収容孔、8c,8l,8p…径方向側空隙、8e…磁石収容部、8f,8s,8w…V字側空隙、9,10…磁石、θa…径方向側空隙の周方向幅角度、θb…V字側空隙の周方向幅角度。   2 ... rotor, 8 ... rotor core, 8a ... radial accommodation hole, 8b ... V-shaped accommodation hole, 8c, 8l, 8p ... radial direction gap, 8e ... magnet accommodation part, 8f, 8s, 8w ... V-shaped gap, 9, 10: Magnet, θa: Circumferential width angle of the radial side gap, θb: Circumferential width angle of the V-shaped gap.

Claims (6)

軸方向に貫通する収容孔が周方向に複数形成されたロータコアを有し、磁極数がP極となるように前記収容孔内に磁石が配設されたロータを備えた埋込磁石型モータであって、
前記収容孔は、略径方向に延びる径方向収容孔と、径方向外側に凸となる略V字形状のV字収容孔とが、それぞれP/2個形成されてなるとともにそれらが周方向に交互に形成されてなり、
前記磁石は、前記径方向収容孔内に配設されるとともに、前記V字収容孔のV字を形成する各直線に対応した各磁石収容部内にそれぞれ配設され、
前記径方向収容孔内に配設される前記磁石と、その周方向の一方に隣り合う前記磁石収容部内に配設される前記磁石とで1つの磁極が構成されるとともに、前記径方向収容孔内に配設される前記磁石と、その周方向の他方に隣り合う前記磁石収容部内に配設される前記磁石とで異なる1つの磁極が構成され、
前記径方向収容孔の径方向外側端部には、前記磁石が配置されない径方向側空隙が形成され、前記V字収容孔の径方向外側端部には、前記磁石が配置されないV字側空隙が形成され、前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、
0.60<θa/θb<1.60
を満たすように設定されたことを特徴とする埋込磁石型モータ。
An embedded magnet type motor having a rotor core in which a plurality of housing holes penetrating in the axial direction are formed in the circumferential direction and having a rotor in which magnets are disposed in the housing holes so that the number of magnetic poles is P. There,
The housing hole is formed by forming P / 2 radial housing holes extending in a substantially radial direction and substantially V-shaped housing holes protruding outward in the radial direction. Formed alternately,
The magnets are disposed in the radial accommodating holes and are disposed in the respective magnet accommodating portions corresponding to the respective straight lines forming the V shape of the V-shaped accommodating holes,
The magnet arranged in the radial accommodation hole and the magnet arranged in the magnet accommodation part adjacent to one of the circumferential directions constitute one magnetic pole, and the radial accommodation hole A different magnetic pole is constituted by the magnet disposed in the magnet and the magnet disposed in the magnet housing portion adjacent to the other in the circumferential direction,
A radial side gap in which the magnet is not disposed is formed at a radially outer end of the radial accommodation hole, and a V-shaped gap in which the magnet is not disposed at a radial outer end of the V-shaped accommodation hole. The circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are:
0.60 <θa / θb <1.60
An embedded magnet type motor characterized by being set to satisfy
請求項1に記載の埋込磁石型モータにおいて、
前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、
0.70≦θa/θb≦1.35
を満たすように設定されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1,
The circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are:
0.70 ≦ θa / θb ≦ 1.35
An embedded magnet type motor characterized by being set to satisfy
請求項1に記載の埋込磁石型モータにおいて、
前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、
0.92≦θa/θb≦1.10
を満たすように設定されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1,
The circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are:
0.92 ≦ θa / θb ≦ 1.10.
An embedded magnet type motor characterized by being set to satisfy
請求項1に記載の埋込磁石型モータにおいて、
前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、
0.94≦θa/θb≦1.09
を満たすように設定されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1,
The circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are:
0.94 ≦ θa / θb ≦ 1.09
An embedded magnet type motor characterized by being set to satisfy
請求項1に記載の埋込磁石型モータにおいて、
前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、
0.98≦θa/θb≦1.03
を満たすように設定されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1,
The circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are:
0.98 ≦ θa / θb ≦ 1.03
An embedded magnet type motor characterized by being set to satisfy
請求項1に記載の埋込磁石型モータにおいて、
前記径方向側空隙の周方向幅角度θaと前記V字側空隙の周方向幅角度θbとは、
0.99≦θa/θb≦1.02
を満たすように設定されたことを特徴とする埋込磁石型モータ。
The interior magnet type motor according to claim 1,
The circumferential width angle θa of the radial side gap and the circumferential width angle θb of the V-shaped gap are:
0.99 ≦ θa / θb ≦ 1.02
An embedded magnet type motor characterized by being set to satisfy
JP2008107515A 2007-04-27 2008-04-17 Embedded magnet type motor Expired - Fee Related JP5301868B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008107515A JP5301868B2 (en) 2007-04-27 2008-04-17 Embedded magnet type motor
DE102008020138A DE102008020138A1 (en) 2007-04-27 2008-04-22 Motor with embedded magnet
US12/108,135 US7732965B2 (en) 2007-04-27 2008-04-23 Embedded magnet type motor
CN2008100960551A CN101295891B (en) 2007-04-27 2008-04-25 Embedded magnet type motor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007119683 2007-04-27
JP2007119683 2007-04-27
JP2008107515A JP5301868B2 (en) 2007-04-27 2008-04-17 Embedded magnet type motor

Publications (2)

Publication Number Publication Date
JP2008295288A true JP2008295288A (en) 2008-12-04
JP5301868B2 JP5301868B2 (en) 2013-09-25

Family

ID=40065979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107515A Expired - Fee Related JP5301868B2 (en) 2007-04-27 2008-04-17 Embedded magnet type motor

Country Status (2)

Country Link
JP (1) JP5301868B2 (en)
CN (1) CN101295891B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026640A1 (en) * 2021-08-24 2023-03-02 川崎重工業株式会社 Rotor, motor, and rotor manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102504423B1 (en) * 2015-05-27 2023-02-28 엘지이노텍 주식회사 Rotor and Motor and using the same
CN105743252A (en) * 2016-05-12 2016-07-06 张学义 Production method of combined magnetic pole and invisible magnetic pole wheel hub driving motor rotor
CN105743247A (en) * 2016-05-12 2016-07-06 张学义 Electric automobile combined-type permanent magnet pole wheel hub driving motor
CN105896847A (en) * 2016-05-12 2016-08-24 张学义 Method for producing combined permanent magnetic pole hub driven motor rotor
CN105811686A (en) * 2016-05-12 2016-07-27 张学义 Production method of drive motor rotor with invisible magnetic poles and built-in combined magnetic poles
CN105846577A (en) * 2016-05-13 2016-08-10 山东理工大学 Electric automobile embedded tangential magnetic field permanent magnet steel driving motor
CN105914924A (en) * 2016-05-13 2016-08-31 山东理工大学 Embedded tangential magnetic field permanent magnet steel wheel hub driving motor
TWM576750U (en) 2017-07-25 2019-04-11 美商米沃奇電子工具公司 Electrical composition, electric device system, battery pack, electric motor, motor assembly and electric motor assembly
CN111095755B (en) * 2018-08-01 2021-12-03 加贺绿能科技股份有限公司 Hybrid variable magnetic energy-saving motor
CN216398138U (en) 2019-02-18 2022-04-29 米沃奇电动工具公司 Impact tool
TWI744860B (en) * 2020-04-13 2021-11-01 國立成功大學 Motor and its spoke type rotor structure having oblique matching dual magnetic parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256441A (en) * 1995-01-20 1996-10-01 Hitachi Metals Ltd Permanent magnet rotor
JP2002359941A (en) * 2001-05-30 2002-12-13 Isuzu Motors Ltd Dynamo-electric machine
JP2006254598A (en) * 2005-03-10 2006-09-21 Asmo Co Ltd Embedded magnet type motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063782A (en) * 1991-01-31 1992-08-19 株式会社精工技研 Be set up in parallel the reluctance machine of a plurality of stators
JP2003153508A (en) * 2001-08-29 2003-05-23 Matsushita Electric Ind Co Ltd Motor
JP3899885B2 (en) * 2001-10-05 2007-03-28 株式会社日立製作所 Permanent magnet rotating electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08256441A (en) * 1995-01-20 1996-10-01 Hitachi Metals Ltd Permanent magnet rotor
JP2002359941A (en) * 2001-05-30 2002-12-13 Isuzu Motors Ltd Dynamo-electric machine
JP2006254598A (en) * 2005-03-10 2006-09-21 Asmo Co Ltd Embedded magnet type motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026640A1 (en) * 2021-08-24 2023-03-02 川崎重工業株式会社 Rotor, motor, and rotor manufacturing method

Also Published As

Publication number Publication date
JP5301868B2 (en) 2013-09-25
CN101295891B (en) 2012-02-15
CN101295891A (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP5301868B2 (en) Embedded magnet type motor
US7732965B2 (en) Embedded magnet type motor
JP5930253B2 (en) Permanent magnet embedded rotary electric machine
JP5806073B2 (en) Brushless motor
US7528519B2 (en) Permanent magnet rotary motor
JP5791794B2 (en) Permanent magnet embedded rotary electric machine
US20150042194A1 (en) Single-phase brushless motor
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP2008199794A (en) Embedded magnet type motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP2009131140A (en) Magnet-embedded motor
JP5267521B2 (en) Stator for rotating electrical machine and method for manufacturing the same
JP2006087283A (en) Permanent magnet type rotation motor
JP2006109683A (en) Rotary electric machine
JP2009153365A (en) Magnet embedded motor
JP4718414B2 (en) Embedded magnet type motor
JP4313378B2 (en) Embedded magnet type rotating electric machine
JP5373370B2 (en) Embedded magnet type motor
JP2006050820A (en) Rotary electric machine
JP2007195393A (en) Embedded magnet type motor
JP2004343886A (en) Embedded magnet type motor
JP2005045986A (en) Permanent magnet dynamoelectric machine
JP7172979B2 (en) Rotating electric machine
JP2005218228A (en) Magnet-embedded motor
WO2020196609A1 (en) Rotor, and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5301868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees