JP2008286812A - Differential flow meter - Google Patents
Differential flow meter Download PDFInfo
- Publication number
- JP2008286812A JP2008286812A JP2008228485A JP2008228485A JP2008286812A JP 2008286812 A JP2008286812 A JP 2008286812A JP 2008228485 A JP2008228485 A JP 2008228485A JP 2008228485 A JP2008228485 A JP 2008228485A JP 2008286812 A JP2008286812 A JP 2008286812A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- orifice
- fluid
- detector
- differential pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、半導体製造設備や化学プラント、食品製造プラント等で使用される差圧式流量計及び差圧式流量制御装置(以下、差圧式流量計等と呼ぶ)の改良に関するものであり、所謂インライン状態で使用することができ、しかも臨界状態や非臨界状態にある流体の流量を、真空下の小流量域であっても高精度でリアルタイムに計測又は制御することが出来るようにした、安価で且つ構造の簡単な差圧式流量計等に関するものである。 The present invention relates to an improvement of a differential pressure type flow meter and a differential pressure type flow control device (hereinafter referred to as a differential pressure type flow meter, etc.) used in semiconductor manufacturing equipment, chemical plants, food manufacturing plants, etc., so-called in-line state. In addition, the flow rate of fluid in a critical state or non-critical state can be measured or controlled in real time with high accuracy even in a small flow rate region under vacuum. The present invention relates to a differential pressure type flow meter having a simple structure.
従前から、半導体製造設備や化学プラントでは、プロセスガスや原料ガス等の流量測定又は流量制御にマスフロー型流量計(熱式質量流量計)等やビルドアップ式流量計等、差圧式流量計等が多く使用されて来た。 Traditionally, semiconductor manufacturing facilities and chemical plants have used mass flow type flowmeters (thermal mass flowmeters), build-up type flowmeters, differential pressure type flowmeters, etc. for flow measurement and control of process gases and raw material gases. Has been used a lot.
しかし、熱式質量流量計等には応答性が低いこと、低流量域での測定精度が低いこと、作動時のトラブルが多いこと、被制御ガスの種類に制約があること及び圧力変動の影響を受け易いこと等の多くの難点がある。 However, thermal mass flowmeters, etc. have low responsiveness, low measurement accuracy at low flow rates, many troubles during operation, limited types of controlled gas, and pressure fluctuation effects There are many disadvantages such as being easily affected.
同様に、ビルドアップ式流量計等には、リアルタイムの流量測定又は流量制御が困難なこと、インライン状態で使用できないこと、被制御ガスの圧力に制約があること及び測定用に別ラインを必要とすること等の問題がある。 Similarly, build-up type flow meters, etc. have difficulty in real-time flow measurement or flow control, cannot be used in-line, have restrictions on the pressure of the controlled gas, and require a separate line for measurement. There are problems such as to do.
これに対して、オリフィスと圧力計を用いる差圧式流量計等は、被制御ガスの種類による制約が殆どないうえ、インライン状態で使用することができ、しかもリアルタイムの流量計測又は流量制御が行えると云う優れた効用を有するものである。
また、上記差圧式流量計等の難点を解決するものとして、オリフィスを通過する流体を臨界条件、即ち流体流速が音速領域になるようにオリフィス上流側圧力P1とオリフィス下流側圧力P2を強制的に設定し、この臨界条件下で流体の流量QをQ=KP1なる理論式で演算するようにした圧力式流量計等が開発され、公開されている(特開平10−55218号等)。 Furthermore, forced as to solve the difficulties such as the difference pressure flowmeter, critical conditions the fluid passing through the orifice, i.e. such that the fluid velocity is sonic orifice upstream side pressure P 1 and the orifice downstream side pressure P 2 Pressure type flowmeters and the like that calculate the flow rate Q of the fluid with the theoretical formula Q = KP 1 under this critical condition have been developed and disclosed (JP-A-10-55218, etc.) .
しかし、当該圧力流量計等でも、流体が小流量域(即ち、オリフィス上流側圧力P1と下流側圧力P2とが接近した状態)になると非臨界条件が出現することになり、結果として流量測定値Q又は流量制御値Qに大きな誤差が含まれることになる。 However, even in the pressure-flow meter or the like, results in the fluid small flow rate region and becomes (i.e., an orifice upstream side pressure P 1 and downstream pressure P 2 and a state in which close) non-critical condition appears, the flow rate as a result A large error is included in the measured value Q or the flow control value Q.
即ち、従前の差圧式流量計(又は圧力式流量計)等では、ベルヌーイの定理から流体が非圧縮性であると仮定して導出した流量演算式を用い、流体が音速に達する前の非臨界条件下(非音速領域)では、下流側流量QをQc=SC(P2(P1−P2))1/2/T1/2により求め、また音速に達した後の臨界条件下(音速領域)では、Qc=SCP1/T1/2により演算するようにしている。尚、Tはオリフィス通過時の流体の絶対温度、Sはオリフィス孔断面積、Cは比例係数である。 That is, a conventional differential pressure type flow meter (or pressure type flow meter), etc. uses a flow rate calculation formula derived from Bernoulli's theorem assuming that the fluid is incompressible, and is non-critical before the fluid reaches the speed of sound. Under the condition (non-sonic region), the downstream flow rate Q is obtained by Qc = SC (P 2 (P 1 -P 2 )) 1/2 / T 1/2 and the critical condition after reaching the sound velocity ( In the sound velocity region), the calculation is performed by Qc = SCP 1 / T 1/2 . Here, T is the absolute temperature of the fluid when passing through the orifice, S is the sectional area of the orifice hole, and C is a proportional coefficient.
また、流体速度が音速に達する臨界条件は、圧力比P2/P1の臨界値rcで与えられ、この臨界値rcは、ガスの比熱比nを用いて、P2/P1=rc=(2/(n+1))n/(n−1)により求められている。
The critical condition for fluid velocity reaches the speed of sound is given by the critical value r c of the
更に、比熱比nはn=Cp/Cvで与えられ、Cpは定圧比熱、Cvは定積比熱である。2原子分子ガスでは、n=7/5=1.4であり、rc=0.53となる。また、非直線型3原子分子ガスでは、n=8/6=1.33であり、rc=0.54となる。 Further, the specific heat ratio n is given by n = Cp / Cv, where Cp is a constant pressure specific heat and Cv is a constant volume specific heat. In the diatomic molecular gas, n = 7/5 = 1.4 and r c = 0.53. Further, in the case of the non-linear triatomic molecular gas, n = 8/6 = 1.33, and r c = 0.54.
ところで、先に本願発明者等は、上記従前の差圧式流量計(又は圧力式流量計)の問題点を改良するため、非臨界条件下で使用する流体を非圧縮性として導出した従前の理論流量式Qによる演算流量値と実際の流量測定値とを対比し、従前の理論流量式Qc=SC/T1/2(P2(P1−P2))1/2から複数のパラメータを有する実験流量式Qc’=SC/T1/2・P2 m(P1−P2)n=KP2 m(P1−P2)nを導出し、この実験流量式Qc’による演算流量値が実測値と合致するように前記パラメータm、nを決定することにより、圧縮性流体によりうまく適合できるようにした実験流量式Qc’を提案し、特願2001−399433号としてこれを公開している。 By the way, in order to improve the problems of the above-mentioned conventional differential pressure type flow meter (or pressure type flow meter), the inventors of the present application previously derived a conventional theory in which a fluid used under non-critical conditions was derived as incompressible. Comparing the calculated flow rate value by the flow rate equation Q with the actual flow rate measurement value, and calculating a plurality of parameters from the previous theoretical flow rate equation Qc = SC / T 1/2 (P 2 (P 1 −P 2 )) 1/2 The experimental flow rate equation Qc ′ = SC / T 1/2 · P 2 m (P 1 −P 2 ) n = KP 2 m (P 1 −P 2 ) n is derived, and the calculated flow rate by this experimental flow rate equation Qc ′ By determining the parameters m and n so that the values match the measured values, we proposed an experimental flow rate equation Qc ′ that can be better adapted to a compressible fluid, and published this as Japanese Patent Application No. 2001-399433. ing.
尚、上記実験流量式Qc’に於いては、比例定数KはSC/T1/2で与えられ、ガス流の物質条件と絶対温度Tから計算される。また、P1はオリフィス上流側圧力、P2はオリフィス下流側圧力を表し、単位はkPaA(キロパスカル絶対圧)である。更に、計測流量範囲が10〜30sccm(標準状態におけるcc/min単位の流量)の領域に於いては、前記パラメータm、nがm=0.47152、n=0.59492の値になることを見出している。 In the experimental flow rate equation Qc ′, the proportionality constant K is given by SC / T 1/2 and is calculated from the material conditions of the gas flow and the absolute temperature T. Also, P 1 is an orifice upstream side pressure, P 2 represents an orifice downstream side pressure, the unit is kPaA (kilopascal absolute pressure). Furthermore, in the region where the measurement flow rate range is 10 to 30 sccm (flow rate in cc / min in the standard state), the parameters m and n are set to m = 0.47152 and n = 0.49492. Heading.
前記二つのパラメータm、nの値は、計測すべき流量範囲、ガス種に依存するものであり、前記したm=0.47152及びn=0.59492の値は、流量が10〜30sccmの領域において成立する値であるが、流量範囲が10〜100sccmや100〜1000sccmになると、mとnの値はこれらの値からずれてくる。 The values of the two parameters m and n depend on the flow rate range to be measured and the gas type. The values of m = 0.47152 and n = 0.49492 are in the region where the flow rate is 10 to 30 sccm. However, when the flow rate range is 10 to 100 sccm or 100 to 1000 sccm, the values of m and n deviate from these values.
図13は、上記実験流量式Qc’を用いた改良型圧力式流量制御装置の構成図であり、本願発明者等が特願2001−399433号として先に公開しているものである。尚、当該図13の装置は流量制御装置として構成されているが、コントロール弁21やバルブ駆動部22、流量比較部23eを省略すれば、差圧式流量計となることは容易に理解できることである。
FIG. 13 is a configuration diagram of an improved pressure type flow rate control device using the experimental flow rate type Qc ′, which was previously disclosed as Japanese Patent Application No. 2001-399433 by the inventors of the present application. Although the apparatus of FIG. 13 is configured as a flow rate control device, it can be easily understood that a differential pressure type flow meter can be obtained by omitting the
図13に於いて、20はオリフィス、21はコントロール弁、22はバルブ駆動部、23は制御回路、23aは圧力比演算部、23bは圧力比演算部、23cは流量演算部、23dは流量演算部、23eは流量比較部、P1はオリフィス上流側流体圧力検出器、P2はオリフィス下流側流体圧力検出器、Tは流体温度検出器、Qsは流量設定値信号、ΔQは流量差信号、Qc’は流量演算値である。 In FIG. 13, 20 is an orifice, 21 is a control valve, 22 is a valve drive unit, 23 is a control circuit, 23a is a pressure ratio calculation unit, 23b is a pressure ratio calculation unit, 23c is a flow rate calculation unit, and 23d is a flow rate calculation. parts, 23e are flow comparison section, P 1 is an orifice upstream side fluid pressure detector, P 2 is an orifice downstream fluid pressure detector, T is the fluid temperature detector, Qs is a flow rate set value signal, Delta] Q is the flow rate difference signal, Qc ′ is a flow rate calculation value.
当該装置では、先ず検出した上流側圧力P1と下流側圧力P2から圧力比P2/P1を算出し(23a)、流体が臨界条件にあるか非臨界条件にあるかを常時判断し(23b)、臨界条件では流量式Qc=KP1を用い(23c)、また、非臨界条件では実験流量式Qc’=KP2 m(P1−P2)nを用いて流量演算が行われる。 In this apparatus, first, the pressure ratio P 2 / P 1 is calculated from the detected upstream pressure P 1 and downstream pressure P 2 (23a), and it is always determined whether the fluid is in a critical condition or a non-critical condition. (23b) The flow rate calculation is performed using the flow rate equation Qc = KP 1 in the critical condition (23c), and the non-critical condition using the experimental flow rate equation Qc ′ = KP 2 m (P 1 −P 2 ) n. .
尚、前述したように、臨界値rcは(2/(n+1)))n/(n−1)により与えられ(但し、nはガスの比熱比である)、2原子分子ガスではrc=0.53、非直線型3原子分子ガスではrc=0.54であり、rc=約0.5と表記される。 As described above, the critical value rc is given by (2 / (n + 1))) n / (n-1) (where n is the specific heat ratio of the gas), and in the diatomic molecular gas, rc = 0. .53, for a non-linear triatomic molecular gas, r c = 0.54 and r c = approx. 0.5.
また、流量比較部23aでは、設定流量Qsと演算流量Qcとの流量差ΔQが計算され、流量差ΔQがゼロになるようにバルブ駆動部22を動作させ、コントロールバルブ21を開閉制御するようにしているが、流量計として使用する場合には、前述の通り流量比較部23eやコントロールバルブ21、バルブ駆動部22は不要である。
Further, in the flow
図14の曲線Aは、前記図11の改良した圧力式流量計等による流量測定又は流量制御特性を、また、曲線Bは、従前臨界条件下でQc=KP1を用いる圧力式流量計等による流量測定又は流量制御特性を、夫々示すものである。図14からも明らかなように、図13の改良した圧力式流量計等では、臨界条件下では臨界条件の流量式Qc=KP1を用い、また非臨界条件下では非臨界条件の実験流量式Qc’=KP2 m(P1−P2)nを用いるから、設定流量に比例した正確な流量Qが算出でき、流量Qの設定%に対する直線性が、図14の曲線Aに示すように保持されていることになり、流量が少ない領域に於いても、比較的高精度な流量測定や流量制御を行うことが出来る。 Curve A in FIG. 14 shows the flow measurement or flow control characteristics using the improved pressure flow meter of FIG. 11, and curve B shows the pressure flow meter using Qc = KP 1 under the previous critical conditions. Flow measurement or flow control characteristics are shown respectively. As is apparent from FIG. 14, the improved pressure type flow meter of FIG. 13 uses the critical condition flow rate equation Qc = KP 1 under the critical condition and the non-critical condition experimental flow equation under the non-critical condition. Since Qc ′ = KP 2 m (P 1 −P 2 ) n is used, an accurate flow rate Q proportional to the set flow rate can be calculated, and the linearity of the flow rate Q with respect to the set% is as shown by a curve A in FIG. Therefore, even in a region where the flow rate is low, it is possible to perform flow rate measurement and flow rate control with relatively high accuracy.
前記図13に示した改良型圧力式流量計等は、図14の曲線Aに示されているよういに最大流量の約10%位の小流量域までであれば、比較的高精度な流量測定又は流量制御を行うことが出来、優れた実用的効用を奏するものである。 The improved pressure type flow meter and the like shown in FIG. 13 has a relatively high precision flow rate as long as it is up to about 10% of the maximum flow rate as shown by the curve A in FIG. Measurement or flow rate control can be performed, and excellent practical utility is achieved.
しかし、流量領域が最大流量の約10%以下の小流量域になると、現実には実用的な流量測定や流量制御精度が得られないと云う問題がある。 However, if the flow rate region is a small flow rate region of about 10% or less of the maximum flow rate, there is a problem that practical flow measurement and flow control accuracy cannot be obtained in practice.
また、当該改良型圧力式流量計等では、オリフィス下流側の圧力P2が約200Torr以下の真空になると、基準設定流量に対する測定誤差Error(%SP又は%FS)が比較的大きくなり、実用上様々な問題が生じると云う難点がある。 Further, in the improved pressure-type flow meter, etc., the pressure P 2 downstream side of an orifice is about 200Torr following vacuum, measured relative to the reference set flow rate error Error (% SP or% FS) is relatively large, practical There is a difficulty that various problems occur.
本発明は、先に本願発明者等が開発をした改良型圧力式流量計等に於ける上述の如き問題を解決せんとするものであり、最大流量(100%)から最大流量の約1%程度の広い流量範囲に亘って高精度な流量測定又は流量制御が出来ると共に、オリフィス下流側の圧力P2が真空であって且つこれが変動するような場合に於いても、予め実測により求めた誤差データを記憶装置に記憶しておき、この補正データを参照して流量演算値を補正することにより、高精度な流量測定又は流量制御を行うことができ、しかも構造が簡単で安価に製造できるようにした差圧式流量計等を提供するものである。 The present invention is intended to solve the above-mentioned problems in the improved pressure type flow meter and the like previously developed by the present inventors. From the maximum flow rate (100%) to about 1% of the maximum flow rate. over a wide flow rate range of the degree with high precision flow measurement or flow control can, even in a case where the pressure P 2 downstream side of the orifice is such that variations thereto and a vacuum error obtained in advance by actual measurement By storing data in a storage device and correcting the flow rate calculation value with reference to this correction data, highly accurate flow rate measurement or flow rate control can be performed, and the structure is simple and can be manufactured at low cost. A differential pressure type flow meter or the like is provided.
請求項1の発明は、最大流量の100〜10%までの流量域を測定する差圧式流量計と最大流量の10%〜1%までの流量域を測定する差圧流量計とを組み合せ、測定すべき流体を前記各流量域に応じて切換弁により前記各差圧流量計へ切換え供給することにより、広流量域に亘って高精度な流量測定を行うことを発明の基本構成とするものである。
The invention of
請求項2の発明は、請求項1の発明に於いて、各差圧式流量計を、オリフィスと、オリフィス上流側の流体圧力P1の検出器と、オリフィス下流側の流体圧力P2の検出器と、オリフィス上流側の流体温度Tの検出器と、前記各検出器からの検出圧力P1、P2及び検出温度Tを用いて流体流量Qを演算する制御演算回路とから成る差圧式流量計とし、且つ前記流体流量QをQ=C1・P1/√T・((P2/P1)m−(P2/P1)n)1/2(但しC1は比例定数、m及びnは定数)により演算するようにしたものである。
According to a second aspect of the invention, in the invention of
請求項3の発明は、請求項1の発明に於いて、各差圧式流量計を、オリフィスと、オリフィス上流側の流体圧力P1の検出器と、オリフィス下流側の流体圧力P2の検出器と、オリフィス上流側の流体温度Tの検出器と、前記各検出器からの検出圧力P1、P2及び検出温度Tを用いて流体流量Qを演算する制御演算回路とから成る差圧式流量計であって、且つ前記制御演算回路に、流体流量QをQ=C1・P1/√T・((P2/P1)m−(P2/P1)n)1/2(但しC1は比例定数、m及びnは定数)により演算する流量演算回路と、予め実測により求めたオリフィス下流側圧力P2の変動と前記流体流量Qの流量誤差Errorとの関係を記憶した補正データ記憶回路と、前記演算した流体流量Qを補正データ記憶回路からの補正用データにより補正する流量補正演算回路とを設け、オリフィス下流側圧力P2の変動に応じて演算した流体流量Qを補正し、補正後の流量値Q’を出力する構成としたことを発明の基本構成とするものである。
The invention according to
請求項4の発明は、流体入口aと流体出口bと第1切換弁10の取付孔17aと第2切換弁11の取付孔17bとオリフィス上流側の流体圧力検出器2の取付孔18aとオリフィス下流側の流体圧力検出器3の取付孔18bとオリフィス上流側の流体温度検出器4の取付孔を夫々設けたバルブボデイ12と、前記バルブボデイ12の内部に穿設した流体入口aと第1切換弁10の取付孔17aの底面とオリフィス上流側の流体圧力検出器2の取付孔18aと第2切換弁11の取付孔17bの底面とを直通する流体通路16a、16b、16eと、第1切換弁取付孔17aの底面と第2切換弁11の取付孔17bの底面とを連通する流体通路16fと、第2切換弁11の取付孔17bの底面とオリフィス下流側の流体圧力検出器3の取付孔18bの底面とを連通する流体通路16cと、オリフィス下流側の流体圧力検出器3の取付孔18bの底面と流体出口bとを連通する流体通路16dと、前記各取付孔18a、18bへ固着したオリフィス上流側の流体圧力検出器2及びオリフィス下流側の流体圧力検出器3と、オリフィス上流側の流体温度検出器4と、前記流体通路16eと流体通路16f間を開閉する第1切換弁10と、前記流体通路16bと流体通路16c間を開閉する第2切換弁11と、前記流体通路16fの途中に介設した小流量用のオリフィス1’と、前記流体通路16a又は流体通路16bに介設した大流量用のオリフィス1’’と、前記両圧力検出器2,3の検出圧力P1・P2及び温度検出器4の検出温度Tにより小流量用オリフィス1’及び大流量用オリフィス1’’を流通する流体流量QをQ=C1・P1/√T・((P2/P1)m−(P2/P1)n)1/2により演算する制御演算回路とから構成され、最大流量の100〜10%までの流量域を前記第1切換弁10を閉に第2切換弁11を開にして、また最大流量の10%〜1%までの流量域を前記第1切換弁10を開に第2切換弁11を閉にして夫々測定することを発明の基本構成とするものである。
The invention of
請求項5の発明は、請求項4の発明に於いて、オリフィス上流側の圧力検出器2とオリフィス下流側の圧力検出器3とオリフィス上流側の温度検出器4とを、両差圧流量計で共用するようにしたものである。
According to a fifth aspect of the present invention, in the invention of the fourth aspect, the
以下、図面に基づいて本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明に係る差圧式流量計の第1実施形態の基本構成を示すものであり、当該差圧式流量計はオリフィス1、オリフィス上流側の絶対圧式圧力検出器2,オリフィス下流側の絶対圧式圧力検出器3、オリフィス上流側のガスの絶対温度検出器4、制御演算回路5、出力端子6,入力端子7、等から構成されている。尚、8はガス供給装置、9はガス使用装置(チャンバー)である。
FIG. 1 shows a basic configuration of a first embodiment of a differential pressure type flow meter according to the present invention. The differential pressure type flow meter includes an
本発明の差圧式流量計に於いては、差圧条件下(即ち、非臨界条件下)でオリフィス1を通過するガスの流量Qが、前記制御演算回路5に於いて、下記の(1)式の実験流量式を用いて演算され、その演算値は出力端子6より外部へ出力される。Q=C1・P1/√T・((P2/P1)m−(P2/P1)n)1/2・・(1)
尚、上記の実験流量式Qは、従前の連続方程式を基礎とする下記流量演算式(2)をベースにして本願発明者によって新規に提案されたものである。
In the differential pressure type flow meter of the present invention, the flow rate Q of the gas passing through the
The above experimental flow rate equation Q is newly proposed by the present inventor based on the following flow rate calculation equation (2) based on the conventional continuity equation.
本発明に係る前記(1)式に於いて、Qは標準状態に換算した体積流量(SCCM)、C1はオリフィス1の断面積Sを含んだ係数、P1はオリフィス上流側の絶対圧力(Pa)、P2はオリフィス下流の絶対圧力(Pa)、Tはオリフィス上流側のガスの絶対温度(K)である。
In the equation (1) according to the present invention, Q is a volume flow rate (SCCM) converted to a standard state, C 1 is a coefficient including the cross-sectional area S of the
また、m及びnは、(2)式よりN2ガスのκ=1.40を演算して定められた定数であり、オリフィス径φが2.0mmφ、最大流量が2000sccmの流量計に於いては、前記(1)式のC1=2680、m=1.4286、n=1.7143となる。 Further, m and n are constants determined by calculating κ = 1.40 of N 2 gas from the equation (2), and in a flow meter having an orifice diameter φ of 2.0 mmφ and a maximum flow rate of 2000 sccm. In the formula (1), C 1 = 2680, m = 1.4286, and n = 1.143.
尚、当該常数C1、m及びnが測定可能なガス種に応じて変化することは勿論であるが、N2ガスに於いては、m=1.4286及びn=1.7143となることが判っている。 Of course, the constants C 1 , m, and n vary depending on the type of gas that can be measured, but in N 2 gas, m = 1.4286 and n = 1.7143. Is known.
図2は、図1の差圧式流量計(100%設定値2000sccm)の設定流量値(%)と圧力P1、P2(Torr)と誤差Error(%SP)の関係を示す実測値であり、ガス圧力P1、P2が50Torr以下の真空であっても、設定流量が10(%)(最大流量の10%=200sccm)位までであれば、流量誤差Errorは設定流量値(%)に対して極く小さな値(1%SP以下)となる。 FIG. 2 is an actual measurement value showing the relationship between the set flow rate value (%) of the differential pressure type flow meter (100% set value 2000 sccm) of FIG. 1, the pressures P 1 and P 2 (Torr), and the error Error (% SP). Even if the gas pressures P 1 and P 2 are vacuums of 50 Torr or less, if the set flow rate is up to 10% (10% of maximum flow rate = 200 sccm), the flow rate error Error is the set flow rate value (%). Is extremely small (1% SP or less).
しかし、設定流量値が10(%)以下になると、流量誤差Errorは−1(%SP)以上となり、流量測定値の実用上に問題が生じることになる。 However, when the set flow rate value is 10 (%) or less, the flow rate error Error is -1 (% SP) or more, which causes a problem in practical use of the flow rate measurement value.
図3は、本発明に係る差圧式流量計のオリフィス2次側圧力P2(Torr)と設定流量(%)と誤差Error(%SP)と2次側配管条件の関係を示す線図であり、9aは設定流量(%)が100sccmの場合を、9bは200sccmの場合、9cは400sccmの場合、9dは600sccmの場合、9gは1200sccmの場合、9jは1800sccmの場合、9kは2000sccm(100%)の場合を夫々示すものである。尚、使用した差圧式流量計の最大流量(100%)は2000sccmである。 FIG. 3 is a diagram showing the relationship between the orifice secondary side pressure P 2 (Torr), the set flow rate (%), the error Error (% SP), and the secondary side piping conditions of the differential pressure type flow meter according to the present invention. 9a is when the set flow rate (%) is 100 sccm, 9b is 200 sccm, 9c is 400 sccm, 9d is 600 sccm, 9g is 1200 sccm, 9j is 1800 sccm, 9k is 2000 sccm (100% ) In each case. The maximum flow rate (100%) of the differential pressure type flow meter used is 2000 sccm.
また、各設定流量値(%)の中で、四角印は図3の中に示すように差圧式流量計の出口側が配管路(4.35mmφ・100mm)のままでバルブ等が介設されていない場合の誤差Error(%SP)を、菱形印は差圧式流量計の出口側にCv値が0.3の制御弁を介設したときの誤差Error(%SP)を、三角印はCv値が0.2の制御弁を介設したときの及び丸印はCv値が0.1の制御弁を介設したときの誤差Error(%SP)を夫々示すものである。 Also, in each set flow rate value (%), the square mark indicates that the outlet side of the differential pressure type flow meter remains on the piping (4.35 mmφ • 100 mm) as shown in FIG. The error error (% SP) when there is not, the diamond mark indicates the error Error (% SP) when a control valve with a Cv value of 0.3 is installed on the outlet side of the differential pressure flow meter, and the triangle mark indicates the Cv value The circles indicate error Error (% SP) when a control valve having a Cv value of 0.1 is provided and when a control valve having a Cv value of 0.1 is provided.
即ち、図3からも明らかなように、使用圧力条件が真空(50Torr以下)になると、2次側(オリフィス下流側)の配管条件によって、圧力P2と流量Qの関係が大きく変動することになり、結果として誤差Error(%SP)が変化する。 That is, as is clear from FIG. 3, when the working pressure is a vacuum (50 Torr or less), the piping conditions on the secondary side (downstream side of an orifice), that relationship of the pressure P 2 and the flow rate Q greatly varies As a result, the error Error (% SP) changes.
そのため、差圧式流量計の調整時に、予め2次側管路抵抗(コンダクタンス)を変化させた場合の流量誤差Error(%SP)を測定しておき(図3の場合は4条件×11点)、この誤差Errorを打消すための補正係数を予め求めておく。そして、当該補正係数によって流量演算回路5に於いて実験流量式(1)により演算した流量値Qを修正することにより、真空の条件下に於いて差圧式流量計の2次側圧力P2が変化した場合においても、より高精度な流量演算を行うことが可能となる。
Therefore, when adjusting the differential pressure flow meter, the flow rate error Error (% SP) when the secondary pipe resistance (conductance) is changed in advance is measured (4 conditions × 11 points in the case of FIG. 3). A correction coefficient for canceling out the error Error is obtained in advance. Then, by correcting the flow rate value Q calculated by the experimental flow rate equation (1) in the flow
図4は、図3の誤差補正係数を得るための測定回路を示すものであり、標準流量制御器SFとして圧力式流量制御装置を使用すると共に、2次側配管条件を変えるために制御弁V2を取付自在に設け、当該標準流量制御器SFによって100sccm〜2000sccmの流量域の間を200sccmの間隔をもって、供給ガス流量(N2を調整(計11点)し、その都度差圧式流量計AのP1、P2、Q及びその時のオリフィス下流側の圧力P2を測定した。 FIG. 4 shows a measurement circuit for obtaining the error correction coefficient shown in FIG. 3. A pressure type flow rate control device is used as the standard flow rate controller SF, and a control valve V is used to change the secondary side piping conditions. 2 can be mounted freely, and the standard flow rate controller SF adjusts the supply gas flow rate (N 2 (11 points in total) between the flow rate ranges of 100 sccm to 2000 sccm with a gap of 200 sccm. P 1 , P 2 , Q, and the pressure P 2 downstream of the orifice at that time were measured.
尚、2次側管路抵抗は、制御弁V2が無い場合(差圧式流量計Aを直接に真空ポンプへ内径4.35mmφの管路(長さ約100mm)で接続したとき)、制御弁V2をCv値が0.3のものとしたとき、Cv値を0.2のものとしたとき、Cv値を0.1のものとしたときの4種のケースにより調整した。 Incidentally, the secondary conduit resistance (when connected by conduits differential pressure type flowmeter A direct internal diameter to a vacuum pump 4.35mmφ (about 100mm long)) If there is no control valve V 2, the control valve when the V 2 Cv value were of 0.3, when the Cv value and that of 0.2 was adjusted by the four cases when the Cv value and that of 0.1.
また、測定流量は、前述の通り100sccm〜2000sccmの間で合計11点を設定した。 Moreover, the measurement flow volume set 11 points in total between 100 sccm-2000 sccm as above-mentioned.
更に誤差Error(%SP)は(SFの流量値−Aの流量値)/SFの流量値×100%により算出した。 Further, the error Error (% SP) was calculated by (SF flow rate value−A flow rate value) / SF flow rate value × 100%.
尚、圧力式流量制御装置への供給圧力P1は約300kPaG、差圧式流量計Aのオリフィス2次側は真空排気ポンプVp(300l/min、最高到達圧力1.2×10−2Torr)により連続的に真空引きした。 The supply pressure P 1 to the pressure type flow control device is about 300 kPaG, and the secondary side of the orifice of the differential pressure type flow meter A is evacuated by a vacuum exhaust pump Vp (300 l / min, maximum ultimate pressure 1.2 × 10 −2 Torr). A vacuum was drawn continuously.
例えば、先ず、2次側配管路から制御弁V2を取り外して内径φ=4.35mm・L=100mmの直線状のステンレス鋼管のみで2次側管路を形成し、圧力式流量制御装置SFにより供給流量を1000sccmとしたとき、差圧式流量計Aの測定値は約1000sccmで誤差Eは零となり、その時の2次側圧力P2は約18Torrであった。同様にSFからの供給流量を2000sccmとすると、差圧式流量計Aの読みは1920sccm(誤差Eは−4%SP)となり、その時の2次側圧力P2は約29Torrとなった。 For example, first, the control valve V 2 is removed from the secondary side pipe line, and the secondary side pipe line is formed only with a straight stainless steel pipe having an inner diameter φ = 4.35 mm · L = 100 mm, and the pressure type flow control device SF When the supply flow rate was 1000 sccm, the measured value of the differential pressure type flow meter A was about 1000 sccm, the error E was zero, and the secondary pressure P 2 at that time was about 18 Torr. Similarly, when the supply flow rate from the SF is 2000 sccm, the differential pressure type flow meter A reads 1920 sccm (error E is −4% SP), and the secondary pressure P 2 at that time is about 29 Torr.
同様にして2次側管路の条件を変えると、SFからの供給流量が2000sccm(100%)の条件下でもCv=0.3の時には誤差E=−1%SP及びP2=34.5Torrとなり、Cv=0.2の時には誤差E=−0.05%SP及びP2=40.5Torrとなる。またCv=0.1の時には誤差E=+2%SP及びP2=59.5Torrとなった。 Similarly, if the conditions of the secondary side pipe are changed, the error E = −1% SP and P 2 = 34.5 Torr when Cv = 0.3 even when the supply flow rate from SF is 2000 sccm (100%). When Cv = 0.2, the error E = −0.05% SP and P 2 = 40.5 Torr. When Cv = 0.1, the error E = + 2% SP and P 2 = 59.5 Torr.
上記図3の結果を整理することにより、各設定流量値(%SP)に対して、下表のようなオリフィス下流側圧力P2の変動と発生誤差Error(%SP)との関連を示すテーブルを得ることが出来る。 By organizing the results of FIG. 3, a table indicating the association of the set flow rate value relative to (% SP), and variable orifice downstream side pressure P 2 such as shown in the following table and the generated error Error (% SP) Can be obtained.
例えば、2000sccm(100%)で使用中の差圧式流量計が、測定値として2000sccmを表示しており且つその時のオリフィス下流側の圧力P2が60Torrであれば、測定値(2000sccm)には+2%の誤差Error(%SP)を含んでいることになるので、+2%分の修正を施して2000sccmの測定値を1960sccmに補正する。 For example, if a differential pressure type flow meter in use at 2000 sccm (100%) displays 2000 sccm as a measured value and the pressure P 2 downstream of the orifice at that time is 60 Torr, the measured value (2000 sccm) is +2 % Error Error (% SP) is included, and correction of + 2% is performed to correct the measured value of 2000 sccm to 1960 sccm.
図5は、上記補正手段を採用した本発明の基本構成を示すものであり、第1実施形態を示す図1の差圧式流量計の制御演算回路5に補正データの記憶回路5bと流量値の補正演算回路5cとを設けたものである。
FIG. 5 shows a basic configuration of the present invention in which the above correction means is adopted, and a correction
即ち、前記流量演算回路5aで流量実験式Qを用いて演算した流量値Qに、その時のオリフィス下流側圧力P2を参照して補正データ記憶回路5bから圧力P2に於ける誤差Error(%SP)を引出し、当該誤差Error(%SP)分を前記流量演算値Qから除く補正をし、補正演算回路5cで補正後の直値に近い流量値Q’を出力端子6より外部へ出力する。
That is, the flow
図6は本発明の第3実施形態を示すものであり、図5の差圧式流量計に於いて、臨界条件下にあるときはQ=KP1の流量式でもって流量の演算を行い、また非臨界条件下にあるときには、図5の制御演算回路5でもって流量演算を行うようにしたものである。
FIG. 6 shows a third embodiment of the present invention. In the differential pressure type flow meter of FIG. 5, when under a critical condition, the flow rate is calculated by the flow rate formula of Q = KP 1 , and In the non-critical condition, the flow rate calculation is performed by the
即ち、図6に示すように、第3実施形態の差圧式流量計に於いては、図5の制御演算回路5に、圧力比演算回路5dと臨界条件判定回路5eと臨界条件下の流量演算回路5fとが追加されており、先ず、オリフィス上流側圧力P1と下流側圧力P2の比(γ)を求め、圧力比γと臨界圧力比γcの大小を比較し、臨界条件下にあるときにはQ=KP1により流量演算を行って演算値を出力する。
That is, as shown in FIG. 6, in the differential pressure type flow meter of the third embodiment, the
また、非臨界条件下にあるときには、流量式Q=C1・P1/√T・((P2/P1)m−(P2/P1)n)1/2により流量を演算し、流量補正演算回路5cで演算値Qを補正したあと、出力端子6より補正後の流量値Q’を出力するものである。
When the flow rate is in a non-critical condition, the flow rate is calculated by the flow rate equation Q = C 1 · P 1 / √T · ((P 2 / P 1 ) m − (P 2 / P 1 ) n ) 1/2. After the calculation value Q is corrected by the flow rate
一方、前記第1乃至第3実施形態に於いては、実験流量演算式Qを用いたり、或いは流量演算値Qの補正Q’を行っても、流量測定値の誤差Errorを実用に耐え得る範囲内(例えば1(%SP)以下)に抑えることが出来るのは、流量範囲が100〜10(%)までであり、流量が10(%)以下になると、補正を施しても誤差Errorを1(%SP)以下に保持することが困難である。 On the other hand, in the first to third embodiments, even if the experimental flow rate calculation formula Q is used or the flow rate calculation value Q is corrected Q ′, the error error of the flow rate measurement value can be practically used. The flow rate range is 100 to 10 (%), and the error error can be reduced to 1 even if correction is performed. It is difficult to keep it below (% SP).
そこで、本願発明の第4実施形態に於いては、流量範囲の異なる2組の前記第1乃至第3実施形態に係る差圧式流量計を組み合せ、上記2組の差圧式流量計を切換作動させることにより、全体として流量が100(%)〜1(%)の広い流量範囲に亘って、常に誤差Errorを1(%SP)以下の高精度な流量測定を行える構成としている。 Therefore, in the fourth embodiment of the present invention, two sets of differential pressure type flow meters according to the first to third embodiments having different flow ranges are combined, and the two sets of differential pressure type flow meters are switched. As a result, the entire flow rate can be measured with a high accuracy with an error Error of 1 (% SP) or less over a wide flow rate range of 100 (%) to 1 (%).
図7は、第4実施形態に係る差圧式流量計の全体構成図を示すものであり、図7に於いて10は第1切換弁(NC型)、11は第2切換弁(NC型)、aはガス入口側、bはガス出口側、1’は第1オリフィス(小流量用)、1’’は第2オリフィス(大流量側)、5’は第1制御演算回路、5’’は第2制御演算回路である。 FIG. 7 is an overall configuration diagram of the differential pressure type flow meter according to the fourth embodiment. In FIG. 7, 10 is a first switching valve (NC type), and 11 is a second switching valve (NC type). , A is a gas inlet side, b is a gas outlet side, 1 ′ is a first orifice (for small flow rate), 1 ″ is a second orifice (large flow rate side), 5 ′ is a first control arithmetic circuit, 5 ″. Is a second control arithmetic circuit.
即ち、第1オリフィス1’、第1制御演算回路5’等によって小流量側の差圧式流量計(例えば10〜100sccmの流量範囲)が、また第2オリフィス1’’及び第2制御演算回路5’’等によって大流量側の差圧式流量制御装置(例えば100〜1000sccmの流量範囲)が夫々構成されており、両差圧式流量制御装置によって流量範囲1000sccm(100%)〜10sccm(1%)の広範囲に亘って誤差Errorが1(%SP)以下の高精度でもって流量計測が行える構成となっている。
That is, a differential pressure type flow meter on the small flow rate side (for example, a flow rate range of 10 to 100 sccm) by the
図8は、本発明の第4実施形態に係る差圧式流量計の主要部の断面概要図であり、両差圧式流量計を形成する第1及び第2制御演算回路5’、5’’等は省略されている。
FIG. 8 is a schematic cross-sectional view of the main part of a differential pressure type flow meter according to a fourth embodiment of the present invention. First and second
図8に於いて、12はボディ、13a、13bはシール、14aはオリフィス上流側絶対式圧力検出器2の取付用ボルト、14bはオリフィス下流側絶対式圧力検出器3の取付用ボルト、15a、15bはダイヤフラム弁機構、10a、11a駆動用シリンダである。
In FIG. 8, 12 is a body, 13a and 13b are seals, 14a is a mounting bolt for the upstream upstream
ボディ12はガス入口部材12a、ガス出口部材12b、第1ボディ部材12c及び第2ボディ部材12dを気密状に組付けすることにより形成されており、ステンレス鋼により製作されている。
The body 12 is formed by assembling the
また、ブロック状の第1ボディ部材12c及び第2ボディ部材12dの上面側には、第1切換弁10及び第2切換弁11の取付孔17a、17bが、更に、その下面側にはオリフィス上流側圧力検出器2及びオリフィス下流側圧力検出器3の取付孔18a、18bが夫々穿設されている。
Further, mounting
尚、図8には、図示されていないが、第1ボディ部材12cにはオリフィス上流側のガス温度検出器4の取付孔が形成されている。
Although not shown in FIG. 8, a mounting hole for the
また、各ボディ部材12c、12d等には、流体入口aと第1切換弁10の取付孔17aの底面とオリフィス上流側圧力検出器2の取付孔18aの底面と第2切換弁11の取付孔17bの底面とを夫々連通する流体通路16a、16b、16eと、取付孔17aと取付孔17bの各底面間を連通する流体通路16fと、取付孔17bの底面と取付孔18bの底面とを連通する流体通路16cと取付孔18bの底面と流体出口bとを連通する流体通路16dとが、夫々穿設されている。
Further, each
更に、流体通路16には小流量用のオリフィス1’が、また流体通路16a(又は16b)には、大流量用のオリフィス1’’が夫々介設されており、図8の実施形態では両ボディ部材12c、12dの接合面に各オリフィス1’、1’’が配置されている。
Further, the
前記各取付孔17a、17bの底面に形成された流体通路16e、16bに連通する弁座は、第1切換弁10及び第2切換弁11の弁機構15a、15bにより開閉され、各弁座が開閉されることにより、通路16eと通路16fとの間及び通路16cと通路16bとの間が開閉される。
The valve seats communicating with the
尚、通路16cは両取付孔17b、18b間を常時連通するようになっている。
The
図7及び図8を参照して、先ず測定流量が大流量域の場合には、第1切換弁10を閉、第2切換弁11を開にし、ガス入口aから流入したガスを通路16a、オリフィス1’’、通路16b、通路16c、通路16dを通してガス出口bより流出させる。そして、第2制御演算回路5’’(図示省略)により流量演算を行い、必要箇所へ出力する。
7 and 8, first, when the measured flow rate is in a large flow rate range, the
また、測定流量域が減少して定格流量の10%以下になれば、第1切換弁10を開にすると共に第2切換弁11を閉にする。これにより、ガスの流れは通路16a、通路16e、小流量用オリフィス1’、通路16f、通路16c、通路16dを通してガス出口bより流出する。その間に第1制御演算回路5’により流量演算が行われ、必要箇所へ出力されることは大流量域の計測の場合と同じである。
When the measured flow rate region decreases to 10% or less of the rated flow rate, the
尚、ボディ12の材質、ガス通路内面の処理加工、ダイヤフラム弁機構15a、15b、圧力検出2、3及び温度検出器等は公知であるため、ここではその説明を省略する。
Since the material of the body 12, the processing of the inner surface of the gas passage, the
図9は本発明に係る差圧式流量制御装置の第1実施形態を示すものであり、前記図1に示した差圧式流量計にコントロールバルブ21及びバルブ駆動部22を設けると共に、制御演算回路5に流量比較回路5gを設け、ここで外部から入力した設定流量Qsと流量演算回路5aで演算した演算流量Qとの流量差ΔQを演算して、当該流量差ΔQをバルブ駆動部22へその制御信号として入力する。これにより、コントロールバルブ21は前記流量差ΔQが零になる方向に作動され、オリフィス1を流通するガス流量Qが設定流量Qsに制御されることになる。
FIG. 9 shows a first embodiment of a differential pressure type flow rate control apparatus according to the present invention. A
図10は差圧式流量制御装置の第2実施形態を示すものであり、前記図5に示した差圧式流量計にコントロールバルブ21及びバルブ駆動部22を設けると共に、制御演算回路5に流量比較回路5gを設けたものである。
FIG. 10 shows a second embodiment of the differential pressure type flow rate control device. The
尚、流量比較回路5gでは、補正演算回路5cで演算流量Qに誤差補正をした補正後の流量Q‘を用いて流量差ΔQが演算され、当該流量差ΔQが零となる方向にコントロールバルブ21が開閉制御される。
In the flow
図11は差圧式流量制御装置の第3実施形態を示すものであり、前記図6に示した差圧式流量計にコントロールバルブ21及びバルブ駆動部22を設けると共に、制御演算回路5から補正データ記憶回路5b及び補正演算回路5cを除き、これに代えて流量比較回路5gを設ける構成としたものである。
FIG. 11 shows a third embodiment of the differential pressure type flow rate control device. The differential pressure type flow meter shown in FIG. 6 is provided with a
即ち、ガス流が臨界条件下にある時には、第2流量演算回路5fからの演算流量Qを用いて、また、ガス流が非臨界条件下にある時には、流量演算回路5aからの演算流量Qを用いて、夫々流量差ΔQが演算され、当該流量差ΔQを零にする方向にコントロールバルブ21が開閉制御される。
That is, when the gas flow is under a critical condition, the calculated flow rate Q from the second flow
図12は差圧式流量制御装置の第4実施形態を示すものであり、前記図6に示した差圧式流量計にコントロールバルブ21及びバルブ駆動部22を設けると共に、制御演算回路5に流量比較回路5gを設ける構成としたものである。
FIG. 12 shows a fourth embodiment of the differential pressure type flow rate control device. The
即ち、ガス流が臨界条件下にある時には、第2流量演算回路5fからの演算流量Qを用いて、また、ガス流が非臨界条件下にある時には、流量演算回路5aからの演算流量Qに補正を加えた補正演算回路5cからの流量Q‘を用いて、夫々流量差ΔQが演算され、当該流量差ΔQを零にする方向にコントロールバルブ21の開閉制御が行なわれる。
That is, when the gas flow is under a critical condition, the calculated flow rate Q from the second flow
本発明では、差圧式流量計等の構造そのものを大幅に簡素化すると共に、実測値に極めて高精度で合致する演算流量値を得ることが出来る新規な実験流量演算式を用いて流量演算を行う構成としているため、安価に製造でき、しかもインラインの形態で且つ取り付け姿勢に制約を受けることもなく使用でき、そのうえ圧力の変動に対しても制御流量が殆ど影響されることなしに、高精度な流量計測又は流量制御をリアルタイムで行うことが出来る。 The present invention greatly simplifies the structure of a differential pressure type flow meter and the like, and performs flow rate calculation using a new experimental flow rate calculation formula that can obtain a calculated flow rate value that matches the measured value with extremely high accuracy. Since it is configured, it can be manufactured at low cost, and can be used in an in-line form without being restricted by the mounting posture. In addition, the control flow rate is hardly affected by fluctuations in pressure, and it is highly accurate. Flow measurement or flow control can be performed in real time.
また、本発明に於いては、制御演算回路に圧力変動に対する補正データの記憶回路と、これによる演算流量の補正回路を設けるようにしているため、オリフィス2次側に圧力変動が生じてもその影響を簡単に補正することが出来、オリフィス2次側の圧力P2が真空(50Torr以下の低圧)に近い状態の条件下に於いても、圧力変動に殆ど影響を受けることなしに高精度な流量計測又は流量制御が行える。 Further, in the present invention, since the control arithmetic circuit is provided with a correction data storage circuit for pressure fluctuation and a calculation flow correction circuit by this, even if pressure fluctuation occurs on the secondary side of the orifice, effect can be easily corrected, even in a condition of state pressure P 2 is closer to the vacuum (50 Torr or less low pressure) of the orifice secondary side, a high precision without undergoing little effect on the pressure fluctuations Flow measurement or flow control can be performed.
更に、本発明に於いては、小流量用の差圧式流量計と大流量用の差圧式流量計とを有機的に一体的に組み付けするようにしているため、両差圧流量計を切換作動させることにより、定格流量(100%)から定格流量の1%位の小流量(1%)の広い流量範囲に亘って、誤差Error(%SP)が1(%SP)以下の高精度な流量計測を連続的に行うことができる。 Further, in the present invention, the differential pressure type flow meter for small flow rate and the differential pressure type flow meter for large flow rate are organically integrated, so that both differential pressure flow meters are switched. By doing so, the error Error (% SP) is 1 (% SP) or less over a wide flow range from the rated flow rate (100%) to a small flow rate (1%) about 1% of the rated flow rate. Measurement can be performed continuously.
本発明は上述の通り、簡単な構造の安価な差圧式流量計等であるにも拘わらず、あらゆる種類のガスの流量を、100Torr以下のガス使用条件下であっても広範囲の流量域に亘って高精度で計測又は流量制御することができると云う優れた実用的効用を有するものである。 Although the present invention is an inexpensive differential pressure type flow meter having a simple structure as described above, the flow rate of all kinds of gas can be measured over a wide range of flow rate even under a gas use condition of 100 Torr or less. Therefore, it has an excellent practical utility that it can measure or control the flow rate with high accuracy.
Qは実験流量演算式、Q’は補正済流量、Qsは設定流量、SFは標準流量制御器(圧力式流量制御装置)、Aは差圧式流量計、V21〜V23は2次側制御弁、VPは真空排気ポンプ、aはガス入口、bはガス出口、1はオリフィス、1’は小流量用オリフィス、1’’は大流量用オリフィス、2はオリフィス上流側の絶対圧式圧力検出器、3はオリフィス下流側の絶対圧式圧力検出器、4はオリフィス上流側のガス絶対温度検出器、5は制御演算回路、5aは流量演算回路、5bは補正データ記憶回路、5cは流量補正演算回路、5dは圧力比演算回路、5eは臨界条件判定回路、5fは臨界条件下の流量を演算する第2流量演算回路、5gは設定流量と演算流量の比較回路、5’は第1制御演算回路、5’’は第2制御演算回路、6は流量出力端子、7は電源入力端子、8はガス供給装置、9はガス使用装置(チャンバー)、10は第1切換弁、10a駆動用シリンダ、11は第2切換弁、11a駆動用シリンダ、12はボディ、12aはガス入口部材、12bはガス出口部材、12cは第1ボディ部材、12dは第2ボディ部材、13a・13bはシール、14a・14bは圧力検出器の取付ボルト、15a・15bはダイヤフラム弁機構、16a〜16fは通路、17aは第1切換弁の取付孔、17bは第2切換弁の取付孔、18aはオリフィス上流側圧力検出器の取付孔、18bはオリフィス下流側圧力検出器の取付孔、21はコントロールバルブ、22はバルブ駆動部。
Q is an experimental flow rate calculation formula, Q ′ is a corrected flow rate, Qs is a set flow rate, SF is a standard flow rate controller (pressure type flow rate control device), A is a differential pressure type flow meter, and V 21 to V 23 are secondary side controls. Valve, VP is an evacuation pump, a is a gas inlet, b is a gas outlet, 1 is an orifice, 1 'is a small flow orifice, 1''is a large flow orifice, 2 is an absolute pressure type pressure detector upstream of the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008228485A JP4977669B2 (en) | 2008-09-05 | 2008-09-05 | Differential pressure type flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008228485A JP4977669B2 (en) | 2008-09-05 | 2008-09-05 | Differential pressure type flow meter |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003190988A Division JP4204400B2 (en) | 2003-07-03 | 2003-07-03 | Differential pressure type flow meter and differential pressure type flow control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008286812A true JP2008286812A (en) | 2008-11-27 |
JP4977669B2 JP4977669B2 (en) | 2012-07-18 |
Family
ID=40146636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008228485A Expired - Lifetime JP4977669B2 (en) | 2008-09-05 | 2008-09-05 | Differential pressure type flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4977669B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103542915A (en) * | 2013-10-31 | 2014-01-29 | 湖南省计量检测研究院 | Gas small flow standard device |
JP2015109022A (en) * | 2013-12-05 | 2015-06-11 | 株式会社フジキン | Pressure type flow rate control device |
KR101606497B1 (en) | 2015-02-26 | 2016-03-25 | 충남대학교산학협력단 | Calibration Method for Mass Flow Meter with Imbedded Flow Function |
WO2019065048A1 (en) * | 2017-09-30 | 2019-04-04 | 株式会社フジキン | Valve and fluid supply line |
WO2019065047A1 (en) * | 2017-09-30 | 2019-04-04 | 株式会社フジキン | Fluid supply line and operation analysis system |
CN109724659A (en) * | 2017-10-31 | 2019-05-07 | 宁波方太厨具有限公司 | A kind of kitchen range gas flow test macro and test method |
CN111868433A (en) * | 2018-03-16 | 2020-10-30 | 引能仕株式会社 | Filling system and filling method for hydrogen fuel |
KR20230049268A (en) * | 2021-10-06 | 2023-04-13 | 엠케이피 주식회사 | Apparatus for controling fluid and method for controling fluid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06137914A (en) * | 1992-10-27 | 1994-05-20 | Yazaki Corp | Flow rate measuring apparatus |
JP2000507357A (en) * | 1996-07-12 | 2000-06-13 | エムケイエス・インストゥルメンツ・インコーポレーテッド | Pressure type mass flow controller according to improvement |
JP2002122449A (en) * | 2000-10-17 | 2002-04-26 | Aichi Tokei Denki Co Ltd | Gas flowmeter |
US6510746B1 (en) * | 1999-07-12 | 2003-01-28 | Ford Global Technologies, Inc. | Gas flow measurement |
-
2008
- 2008-09-05 JP JP2008228485A patent/JP4977669B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06137914A (en) * | 1992-10-27 | 1994-05-20 | Yazaki Corp | Flow rate measuring apparatus |
JP2000507357A (en) * | 1996-07-12 | 2000-06-13 | エムケイエス・インストゥルメンツ・インコーポレーテッド | Pressure type mass flow controller according to improvement |
US6510746B1 (en) * | 1999-07-12 | 2003-01-28 | Ford Global Technologies, Inc. | Gas flow measurement |
JP2002122449A (en) * | 2000-10-17 | 2002-04-26 | Aichi Tokei Denki Co Ltd | Gas flowmeter |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103542915A (en) * | 2013-10-31 | 2014-01-29 | 湖南省计量检测研究院 | Gas small flow standard device |
CN103542915B (en) * | 2013-10-31 | 2016-09-14 | 湖南省计量检测研究院 | A kind of gas small flow standard device |
JP2015109022A (en) * | 2013-12-05 | 2015-06-11 | 株式会社フジキン | Pressure type flow rate control device |
KR101606497B1 (en) | 2015-02-26 | 2016-03-25 | 충남대학교산학협력단 | Calibration Method for Mass Flow Meter with Imbedded Flow Function |
CN111033430A (en) * | 2017-09-30 | 2020-04-17 | 株式会社富士金 | Fluid supply line and operation analysis system |
JPWO2019065047A1 (en) * | 2017-09-30 | 2020-11-05 | 株式会社フジキン | Fluid supply line and motion analysis system |
JP7216422B2 (en) | 2017-09-30 | 2023-02-01 | 株式会社フジキン | fluid supply line |
TWI676759B (en) * | 2017-09-30 | 2019-11-11 | 日商富士金股份有限公司 | Fluid supply line and operation analysis system |
TWI678489B (en) * | 2017-09-30 | 2019-12-01 | 日商富士金股份有限公司 | Fluid supply line |
KR20200026275A (en) * | 2017-09-30 | 2020-03-10 | 가부시키가이샤 후지킨 | Fluid Supply Line and Motion Analysis System |
WO2019065048A1 (en) * | 2017-09-30 | 2019-04-04 | 株式会社フジキン | Valve and fluid supply line |
JPWO2019065048A1 (en) * | 2017-09-30 | 2020-10-22 | 株式会社フジキン | Valves and fluid supply lines |
US11243549B2 (en) | 2017-09-30 | 2022-02-08 | Fujikin Inc. | Valve and fluid supply line |
WO2019065047A1 (en) * | 2017-09-30 | 2019-04-04 | 株式会社フジキン | Fluid supply line and operation analysis system |
KR102285972B1 (en) | 2017-09-30 | 2021-08-04 | 가부시키가이샤 후지킨 | Fluid supply line and motion analysis system |
CN109724659A (en) * | 2017-10-31 | 2019-05-07 | 宁波方太厨具有限公司 | A kind of kitchen range gas flow test macro and test method |
CN109724659B (en) * | 2017-10-31 | 2024-01-16 | 宁波方太厨具有限公司 | Gas flow testing system and testing method for kitchen range |
CN111868433A (en) * | 2018-03-16 | 2020-10-30 | 引能仕株式会社 | Filling system and filling method for hydrogen fuel |
CN111868433B (en) * | 2018-03-16 | 2023-11-14 | 引能仕株式会社 | Hydrogen fuel filling system and hydrogen fuel filling method |
KR20230049268A (en) * | 2021-10-06 | 2023-04-13 | 엠케이피 주식회사 | Apparatus for controling fluid and method for controling fluid |
KR102584401B1 (en) * | 2021-10-06 | 2023-10-05 | 엠케이피 주식회사 | Apparatus for controling fluid and method for controling fluid |
Also Published As
Publication number | Publication date |
---|---|
JP4977669B2 (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4204400B2 (en) | Differential pressure type flow meter and differential pressure type flow control device | |
JP4977669B2 (en) | Differential pressure type flow meter | |
KR101930304B1 (en) | Flow meter | |
KR101707877B1 (en) | Flow volume control device equipped with flow rate monitor | |
KR101737373B1 (en) | Flow volume control device equipped with build-down system flow volume monitor | |
TWI796417B (en) | Mass flow controller with absolute and differential pressure transducer and its related method | |
CN102640070A (en) | Pressure-type flow rate control device | |
JP2015087110A5 (en) | ||
US20240160230A1 (en) | Flow rate control device | |
WO2017122714A1 (en) | Gas supply device capable of measuring flow rate, flowmeter, and flow rate measuring method | |
JP4669193B2 (en) | Temperature measuring device for pressure flow control device | |
TW202032098A (en) | Flow rate control system and flow rate measurement method | |
JP2004280689A (en) | Mass flow controller | |
TWI470388B (en) | Mass flow controller | |
JP4852654B2 (en) | Pressure flow control device | |
JP4852619B2 (en) | Pressure flow control device | |
KR101668483B1 (en) | Mass flow controller | |
JP7249030B2 (en) | Volume measuring method in flow measuring device and flow measuring device | |
JP2899590B1 (en) | Drift detection method of pressure gauge incorporated in piping system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4977669 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150420 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |