[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008285529A - 塗装部品製造用樹脂組成物及び塗装部品 - Google Patents

塗装部品製造用樹脂組成物及び塗装部品 Download PDF

Info

Publication number
JP2008285529A
JP2008285529A JP2007129785A JP2007129785A JP2008285529A JP 2008285529 A JP2008285529 A JP 2008285529A JP 2007129785 A JP2007129785 A JP 2007129785A JP 2007129785 A JP2007129785 A JP 2007129785A JP 2008285529 A JP2008285529 A JP 2008285529A
Authority
JP
Japan
Prior art keywords
component
weight
resin composition
parts
polybutylene terephthalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007129785A
Other languages
English (en)
Other versions
JP4946620B2 (ja
Inventor
Seiichi Takada
誠一 高田
Masayuki Akata
雅之 赤田
Mitsuru Nakamura
充 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007129785A priority Critical patent/JP4946620B2/ja
Publication of JP2008285529A publication Critical patent/JP2008285529A/ja
Application granted granted Critical
Publication of JP4946620B2 publication Critical patent/JP4946620B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性についてバランス良く優れた、芳香族ポリカーボネート樹脂組成物の提供。
【解決手段】芳香族ポリカーボネート樹脂(A成分)51〜99重量部、ポリブチレンテレフタレート樹脂(B成分)1〜49重量部を含む芳香族ポリカーボネート樹脂組成物であって、芳香族ポリカーボネート樹脂(A成分)とポリブチレンテレフタレート樹脂(B成分)の合計100重量部に対して、ゴム性重合体(C成分)を11〜25重量部、酸化チタン(D成分)を1〜5重量部、紫外線吸収剤を(E成分)0.01〜3重量部、及びリン系安定剤(F成分)を0.001〜1重量部含有し、かつ、ゴム性重合体(C成分)と酸化チタン(D成分)の重量比が5〜10である塗装部品製造用樹脂組成物。
【選択図】なし。

Description

本発明は、主として芳香族ポリカーボネート樹脂とポリブチレンテレフタレート樹脂とからなる、塗装部品製造用ポリカーボネート樹脂組成物(以下、単に「塗装部品製造用樹脂組成物」ということがある。)及び塗装部品に関する。更に詳しくは流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性についてバランス良く優れた塗装部品製造用樹脂組成物、及びこれを成形、塗装してなる塗装部品に関する。
芳香族ポリカーボネート樹脂は、汎用エンジニアリングプラスチックとして透明性、耐衝撃性、耐熱性、寸法安定性等に優れ、その優れた特性から、電気・電子・OA機器部品、機械部品、車輌用部品等の幅広い分野で使用されている。更に芳香族ポリカーボネート樹脂とポリブチレンテレフタレート樹脂からなるポリマーアロイは、芳香族ポリカーボネート樹脂の上記の優れた特長を活かしつつ、芳香族ポリカーボネート樹脂の欠点である耐薬品性や成形加工性(流動性)が改良された材料であり、車輌内装・外装部品、各種ハウジング部材やその他幅広い分野で使用されている。
主として芳香族ポリカーボネート(PC)樹脂とポリブチレンテレフタレート(PBT)樹脂からなる芳香族ポリカーボネート樹脂組成物(ポリマーアロイ)は、海−島構造のミクロ形態を有するポリマーアロイであり、何れの樹脂が海相(連続層)を構成するかによって、その特性も大きく異なる。芳香族ポリカーボネート樹脂が連続層を構成する(芳香族ポリカーボネート樹脂の含有量が、ポリブチレンテレフタレート樹脂に比べて多い)場合には、ポリブチレンテレフタレート樹脂の含有量の多いポリマーアロイと比較して、耐衝撃性や寸法特性に優れる反面、流動性や耐疲労性が低いという問題があった。そしてこの様な樹脂組成物を自動車用大型外装部品等に用いる際には、より流動性、耐衝撃性、耐疲労性についてバランス良く優れた材料が求められていた。
更に、樹脂製塗装部品の場合、顧客の多様化するニーズに対応するために出荷前にメーカーでは塗装せず、販売店にて顧客の要望に応じた塗装を施すことが多くなっている。例えば、トラック等の車輌の場合、車輌製造後、販売店で塗装するまでの間に未塗装部品が太陽光に曝されて変色することがあるので、車輌部品用樹脂組成物に対して塗装性と同時に耐候性にも優れた材料が求められていた。
上記問題点を解決する手段として、主として芳香族ポリカーボネート樹脂とポリブチレンテレフタレート樹脂からなるポリマーアロイに、ゴム性重合体を配合して耐衝撃性を向上させた、樹脂組成物が提案されている。(例えば特許文献1、2参照)。また、衝撃強度改良剤を含有し、機械的強度を向上する方法として、特定の末端カルボキシル基濃度を有するポリブチレンテレフタレート樹脂とポリカーボネート樹脂とからなる熱可塑性樹脂組成物が提案されている(例えば特許文献3参照)。しかしながら、これらの従来技術は、芳香族ポリカーボネート樹脂とポリブチレンテレフタレート樹脂からなるポリマーアロイにゴム性重合体を配合してなる耐衝撃性に優れた樹脂組成物を開示しているに過ぎず、流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性についてバランス良く優れた樹脂組成物を開示するものではなかった。
更に、チタン含有量がチタン原子として33ppm以下であるポリブチレンテレフタレート樹脂100重量部に対し、ポリカーボネート樹脂5〜100重量部及びその他成分を含有してなる、機械的特性、結晶化速度、耐加水分解性に優れた樹脂組成物も提案されている(例えば特許文献4参照)。しかしこれは、ポリブチレンテレフタレート樹脂の含有量が多い、いわばポリブチレンテレフタレート樹脂組成物に係る、機械的特性、結晶化速度、耐加水分解性の改良であって、ポリカーボネート樹脂含有量の多い、いわゆるポリカーボネート樹脂組成物の改良技術とは異なるものである。さらに上記特許文献は、流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性についてバランス良く優れた樹脂組成物を開示するものではなかった。
また、紫外線に暴露しても変色しない耐衝撃性改良樹脂組成物として、ポリエステル樹脂、ポリカーボネート樹脂、耐衝撃性改良剤、ヒンダードアミン光安定剤、UV吸収剤からなる組成物、及びその組成物からなる製品も提案されている(例えば特許文献5参照)。しかしながら、上記特許文献は、流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性についてバランス良く優れた樹脂組成物を開示するものではなかった。
特開昭49−41442号公報 特開昭58−117247号公報 特開2004−18558号公報 特開2004−307794号公報 特開2003−160721号公報
本発明の目的は、上記従来技術の諸欠点を解消し、流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性についてバランス良く優れた、塗装部品製造用樹脂組成物を提供することにある。
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、芳香族ポリカーボネート樹脂の含有量が多い、芳香族ポリカーボネート樹脂とポリブチレンテレフタレート樹脂とのポリマーアロイに、ゴム性重合体、酸化チタン、紫外線吸収剤、及びリン系安定剤を配合し、かつ、ゴム性重合体と酸化チタンの重量比を特定比率に限定することによって、流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性が同時に向上し、物性バランスに優れた塗装部品製造用樹脂組成物となることを見出し、本発明を完成させた。
即ち、本発明の要旨は、芳香族ポリカーボネート樹脂(A成分)51〜99重量部、ポリブチレンテレフタレート樹脂(B成分)1〜49重量部を含む芳香族ポリカーボネート樹脂組成物であって、芳香族ポリカーボネート樹脂(A成分)とポリブチレンテレフタレート樹脂(B成分)の合計100重量部に対して、ゴム性重合体(C成分)を11〜25重量部、酸化チタン(D成分)を1〜5重量部、紫外線吸収剤を(E成分)0.01〜3重量部、及びリン系安定剤(F成分)を0.001〜1重量部含有し、かつ、ゴム性重合体(C成分)と酸化チタン(D成分)の重量比が5〜10である塗装部品製造用樹脂組成物である。
本発明の芳香族ポリカーボネート樹脂組成物は、流動性、剛性、耐衝撃性、耐疲労性、耐候性、塗装性の諸物性を同時に満たす、物性バランスの優れた樹脂組成物である。
このような特長を有する、本発明の塗装部品製造用ポリカーボネート樹脂組成物は、電気・電子機器部品、OA機器、機械部品、車輌部品、建築部材、各種容器、レジャー用品・雑貨類等の幅広い分野に使用することが可能であり、特に車輌外装・外板部品への適用が期待できる。
さらに具体的な車輌外装・外板部品としては、アウタードアハンドル、バンパー、フェンダー、ドアパネル、トランクリッド、フロントパネル、リアパネル、ルーフパネル、ボンネット、ピラー、サイドモール、ガーニッシュ、ホイールキャップ、フードバルジ、フューエルリッド、各種スポイラー、モーターバイクのカウル等が挙げられる。
以下、本発明を更に詳細に説明する。尚、本願明細書において「〜」とは、その前後に記載される数値を下限値及び上限値として含むことを意味し、また各種化合物が有する「基」は、本発明の趣旨を逸脱しない範囲内において、置換基を有していてもよいことを含む。
[1]芳香族ポリカーボネート樹脂(A成分)
本発明に用いるA成分である芳香族ポリカーボネート樹脂(以下、「A成分」と略記することがある。)は、例えば、芳香族ジヒドロキシ化合物とカーボネート前駆体とを、又は、これらに併せて少量のポリヒドロキシ化合物等を反応させてなる、直鎖又は分岐の熱可塑性の芳香族ポリカーボネート重合体又は共重合体である。
また、本発明に用いる芳香族ポリカーボネート樹脂(A成分)は、従来公知の任意の製造方法により得られるものを使用できる。具体的には例えば、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法等を挙げることができる。中でも、界面重合法、又は溶融エステル交換法を用いることが化学産業上有利である。以下、芳香族ポリカーボネート樹脂の製造方法として、この二つの方法を例に挙げて説明する。
原料として使用される芳香族ジヒドロキシ化合物としては、具体的には例えば、2,2−ビス(4−ヒドロキシフェニル)プロパン(=ビスフェノールA)、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン(=テトラブロモビスフェノールA)、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(3−tert−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジクロロ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、2,2−ビス(4−ヒドロキシフェニル)−1,1,1−トリクロロプロパン、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサクロロプロパン、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン等で例示されるビス(ヒドロキシアリール)アルカン類;
1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン等で例示されるビス(ヒドロキシアリール)シクロアルカン類;
9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等で例示されるカルド構造含有ビスフェノール類;4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル等で例示されるジヒドロキシジアリールエーテル類;
4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等で例示されるジヒドロキシジアリールスルフィド類;4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等で例示されるジヒドロキシジアリールスルホキシド類;4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等で例示されるジヒドロキシジアリールスルホン類;ハイドロキノン、レゾルシン、4,4’−ジヒドロキシジフェニル等が挙げられる。
これらの中で好ましくは、ビス(4−ヒドロキシフェニル)アルカン類であり、特に耐衝撃性の点から好ましくは、2,2−ビス(4−ヒドロキシフェニル)プロパン[=ビスフェノールA]である。これらの芳香族ジヒドロキシ化合物は、1種類単独でも2種類以上を組み合わせて用いてもよい。
芳香族ジヒドロキシ化合物と反応させるカーボネート前駆体としては、カルボニルハライド、カーボネートエステル、ハロホルメート等が使用され、具体的にはホスゲン;ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;二価フェノールのジハロホルメート等が挙げられる。これらのカーボネート前駆体もまた1種類単独でも2種類以上を組み合わせて用いてもよい。
また、本発明に用いる芳香族ポリカーボネート樹脂(A成分)は、三官能以上の多官能性芳香族化合物を共重合した、分岐芳香族ポリカーボネート樹脂であってもよい。三官能以上の多官能性芳香族化合物としては、フロログルシン、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−2、4,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプタン、2,6−ジメチル−2,4,6−トリ(4−ヒドロキシフェニル)ヘプテン−3、1,3,5−トリ(4−ヒドロキシフェニル)べンゼン、1,1,1−トリ(4−ヒドロキシフェニル)エタン等で例示されるポリヒドロキシ化合物類、又は3,3−ビス(4−ヒドロキシアリール)オキシインドール(=イサチンビスフェノール)、5−クロロイサチン、5,7−ジクロロイサチン、5−ブロムイサチン等が挙げられる。中でも、1,1,1−トリ(4−ヒドロキシフェニル)エタンが好ましい。多官能性芳香族化合物は、前記芳香族ジヒドロキシ化合物の一部を置換して用いることができ、その使用量は芳香族ジヒドロキシ化合物に対して0.01〜10モル%が好ましく、中でも0.1〜2モル%が好ましい。
界面重合法による反応は、例えば、反応に不活性な有機溶媒とアルカリ水溶液の存在下で、通常pHを9以上に保ち、芳香族ジヒドロキシ化合物を、必要に応じて分子量調整剤(末端停止剤)、芳香族ジヒドロキシ化合物の酸化防止剤と共にホスゲンと反応させる。次いで、第三級アミン又は第四級アンモニウム塩等の重合触媒を添加し、界面重合を行うことによってポリカーボネートを得る方法が挙げられる。ホスゲン化反応の温度は通常、0〜40℃、反応時間は数分(例えば10分)〜数時間(例えば6時間)である。また分子量調節剤の添加タイミングはホスゲン化反応以降、重合反応開始時迄の間において、適宜選択して決定すればよい。
ここで、反応に不活性な有機溶媒としては、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。またアルカリ水溶液に用いられるアルカリ化合物としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が挙げられる。
分子量調節剤としては、一価のフェノール性水酸基を有する化合物が挙げられる。一価のフェノール性水酸基を有する化合物としては、m−メチルフェノール、p−メチルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−tert−ブチルフェノール及びp−長鎖アルキル置換フェノール等が挙げられる。分子量調節剤の使用量は、芳香族ジヒドロキシ化合物100モルに対して、好ましくは0.5〜50モル、より好ましくは1〜30モルである。
重合触媒としては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン、ピリジン等の第三級アミン類;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。
溶融エステル交換法による反応は、例えば、炭酸ジエステルと芳香族ジヒドロキシ化合物とのエステル交換反応により行う。炭酸ジエステルとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−tert−ブチルカーボネート等の炭酸ジアルキル化合物、ジフェニルカーボネート及びジトリルカーボネート等の置換ジフェニルカーボネート等が挙げられる。中でもジフェニルカーボネート、置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートが好ましい。
また、芳香族ポリカーボネート樹脂においては、その末端水酸基量が製品ポリカーボネートの熱安定性、加水分解安定性、色調等に大きな影響を及ぼすので、従来公知の任意の方法によって、適宜調整してもよい。溶融エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率や、エステル交換反応時の減圧度を調整して、所望の分子量及び末端水酸基量を調整した芳香族ポリカーボネートを得ることができる。通常、溶融エステル交換反応においては、芳香族ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用い、中でも1.01〜1.30モルの量で用いることが好ましい。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を添加する方法が挙げられ、この際の末端停止剤としては、一価フェノール類、一価カルボン酸類、炭酸ジエステル類が挙げられる。
溶融エステル交換法によりポリカーボネートを製造する際には、通常エステル交換触媒が使用される。エステル交換触媒は、特に制限はないが、アルカリ金属化合物及び/又はアルカリ土類金属化合物が好ましい。また補助的に、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物又はアミン系化合物等の塩基性化合物を併用してもよい。上記原料を用いたエステル交換反応としては、100〜320℃の温度で反応を行い、最終的には2mmHg以下の減圧下、芳香族ヒドロキシ化合物等の副生成物を除去しながら溶融重縮合反応を行えばよい。
溶融重縮合は、バッチ式、連続式の何れの方法でも行うことができる。中でも、本発明に用いる芳香族ポリカーボネート樹脂や、本発明の樹脂組成物の安定性等を考慮すると、連続式で行うことが好ましい。溶融エステル交換法に用いる触媒失活剤としては、該エステル交換反応触媒を中和する化合物、例えば、イオウ含有酸性化合物又はそれより形成される誘導体を使用することが好ましい。このような触媒を中和する化合物は、該触媒が含有するアルカリ金属に対して、好ましくは0.5〜10当量、より好ましくは1〜5当量の範囲で添加する。さらに加えて、このような触媒を中和する化合物は、ポリカーボネートに対して、好ましくは1〜100ppm、より好ましくは1〜20ppmの範囲で添加する。
本発明に用いる芳香族ポリカーボネート樹脂(A成分)の分子量は、適宜選択して決定すればよいが、溶液粘度から換算した粘度平均分子量[Mv]で、10000〜50000の範囲のものが好ましい。芳香族ポリカーボネートの粘度平均分子量を10000以上とすることにより、機械的強度がより向上する傾向にあり、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、粘度平均分子量を、50000より以下とすることにより、流動性が低下するのをより改善できる傾向にあり、成形加工性容易の観点からより好ましい。
粘度平均分子量は、より好ましくは14000〜30000であり、さらに好ましくは15000〜25000、特に好ましくは16000〜21000である。また、粘度平均分子量の異なる2種類以上の芳香族ポリカーボネート樹脂を混合してもよい。もちろん、粘度平均分子量が上記好適範囲外である芳香族ポリカーボネート樹脂を混合してもよい。
ここで粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dL/g)を求め、Schnellの粘度式、すなわち、η=1.23×10−4Mv0.83、から算出される値を意味する。ここで極限粘度[η]とは各溶液濃度[C](g/dL)での比粘度ηspを測定し、下記式により算出した値である。
Figure 2008285529
本発明に用いる芳香族ポリカーボネート樹脂の末端水酸基濃度は、通常1000ppm以下であり、中でも700ppm以下、更には400ppm以下、特に300ppm以下であることが好ましい。またその下限は、10ppm以上、中でも20ppm以上、更には30ppm以上、特に40ppm以上であることが好ましい。
末端水酸基濃度を10ppm以上とすることで、分子量の低下が抑制でき、樹脂組成物の機械的特性や疲労特性がより向上する傾向にある。また末端基水酸基濃度を1000ppm以下にすることで、樹脂組成物の耐熱性、滞留熱安定性が、より向上する傾向にあるので好ましい。
なお、末端水酸基濃度の単位は、芳香族ポリカーボネート樹脂重量に対する、末端水酸基の重量をppmで表示したものであり、測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
また、成形品外観の向上や流動性の向上を図るため、本発明に用いる芳香族ポリカーボネート樹脂(A成分)は、芳香族ポリカーボネートオリゴマーを含有していてもよい。この芳香族ポリカーボネートオリゴマーの粘度平均分子量[Mv]は、好ましくは1500〜9500であり、より好ましくは2000〜9000である。芳香族ポリカーボネートオリゴマーは、A成分の30重量%以下の範囲で使用するのが好ましい。
さらに、本発明に用いる芳香族ポリカーボネート樹脂(A成分)は、バージン原料だけでなく、使用済みの製品から再生された芳香族ポリカーボネート樹脂、いわゆるマテリアルリサイクルされた芳香族ポリカーボネート樹脂を使用してもよい。使用済みの製品としては、光学ディスク等の光記録媒体、導光板、自動車窓ガラス・自動車ヘッドランプレンズ・風防等の車両透明部材、水ボトル等の容器、メガネレンズ、防音壁・ガラス窓・波板等の建築部材等が好ましく挙げられる。また、製品の不適合品、スプルー、ランナー等から得られた粉砕品又はそれらを溶融して得たペレット等も使用可能である。再生された芳香族ポリカーボネート樹脂は、A成分の80重量%以下であることが好ましく、より好ましくは50重量%以下である。
[2]ポリブチレンテレフタレート樹脂(B成分)
本発明に用いるポリブチレンテレフタレート樹脂(以下、「B成分」と略記することがある。)とは、テレフタル酸単位及び1,4−ブタンジオール単位がエステル結合した構造を有するポリエステルであり、ジカルボン酸単位の50モル%以上がテレフタル酸単位から成り、ジオール単位の50モル%以上が1,4−ブタンジオール単位からなる重合体又は共重合体を言い、より好ましくはポリブチレンテレフタレート樹脂(B成分)のチタン化合物の含有量がチタン原子として1ppmを超えて75ppm以下であり、且つ末端カルボキシル基が39μeq/g以下である、ポリブチレンテレフタレート樹脂である。
全ジカルボン酸単位中のテレフタル酸単位の割合は、好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは95モル%以上であり、全ジオール単位中の1,4−ブタンジオール単位の割合は、好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは95モル%以上である。テレフタル酸単位又は1,4−ブタンジオール単位を50モル%以上とすることによって、B成分の結晶化速度の低下を抑制し、また成形性を良好なものとすることができる。
本発明に用いるポリブチレンテレフタレート樹脂において、テレフタル酸以外のジカルボン酸成分には特に制限はなく、従来公知の任意のものを使用できる。具体的には例えば、フタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ベンゾフェノンジカルボン酸、4,4’−ジフェノキシエタンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、2,6−ナフタレンジカルボン酸等の芳香族ジカルボン酸類;1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸類;マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸類等を挙げることができる。これらのジカルボン酸成分は、ジカルボン酸として、又は、ジカルボン酸エステル、ジカルボン酸ハライド等のジカルボン酸誘導体を原料として、ポリマー骨格に導入できる。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)において、1,4−ブタンジオール以外のジオール成分には特に制限はなく、従来公知の任意のものを使用できる。具体的には例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ポリプロピレングリコール、ポリテトラメチレングリコール、ジブチレングリコール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、1,8−オクタンジオール等の脂肪族ジオール類;1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,1−シクロヘキサンジメチロール、1,4−シクロヘキサンジメチロール等の脂環式ジオール類;キシリレングリコール、4,4’−ジヒドロキシビフェニル、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン等の芳香族ジオール類等を挙げることができる。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)においては、更に、乳酸、グリコール酸、m−ヒドロキシ安息香酸、p−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフタレンカルボン酸、p−β−ヒドロキシエトキシ安息香酸等のヒドロキシカルボン酸、アルコキシカルボン酸、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、t−ブチル安息香酸、ベンゾイル安息香酸等の単官能成分;トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール等の三官能以上の多官能成分等を共重合成分として使用することができる。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)は、例えば1,4−ブタンジオールとテレフタル酸(又はテレフタル酸ジアルキル)を、チタン化合物等の触媒存在下にて重縮合することにより得られる。本発明に好ましく用いられるポリブチレンテレフタレート樹脂(B成分)の特徴は、チタン含量がチタン原子として1ppmを超えて75ppm以下である点に存する。この値はポリブチレンテレフタレート樹脂に対するチタン原子の重量比である。なおチタン原子の含有量は、湿式灰化等の方法でポリマー中の金属を回収し、原子発光、原子吸光、Inductively Coupled Plasma(ICP)等の方法を使用して測定することができる。
チタン含有量の下限は、チタン原子として好ましくは1ppm、中でも10ppm、更には20ppm、特に25ppmであることが好ましく、また上限は、チタン原子として好ましくは75ppm、中でも50ppm、特に45ppmであることが好ましい。チタンの含有量がチタン原子として1ppm未満では、ポリブチレンテレフタレート樹脂の重合反応速度が低下するため、高温、長時間で重合反応を進めざるを得なくなり、ポリブチレンテレフタレート樹脂の色調悪化や熱劣化反応が助長されるだけでなく、芳香族ポリカーボネートとの混練の際に反応が進行せずポリマーアロイの機械的物性や疲労特性の低下を招くので好ましくない場合がある。
一方、チタンの含有量がチタン原子として75ppmを超えると混練時や成形時のガスの発生や熱安定性の悪化を招くだけでなく、エステル交換反応の制御が困難となり、芳香族ポリカーボネートとのポリマーアロイのポリマーアロイの機械的物性や疲労特性の低下を招き、更には色調や耐候性の低下を招くので好ましくない場合がある。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)は、先述の通り好ましくは特定量のチタン化合物を含有するが、このチタン化合物はポリブチレンテレフタレート樹脂の重縮合触媒であることが好ましい。この重縮合触媒として用いるチタン化合物としては、特に制限はなく、具体的には例えば、酸化チタン、四塩化チタン等の無機チタン化合物類;テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート類;テトラフェニルチタネート等のチタンフェノラート類;等が挙げられる。中でもチタンアルコラート類が好ましく、更にはテトラアルキルチタネート類が好ましく、特にテトラブチルチタネートが好ましい。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)は、チタン化合物以外に、1族金属化合物及び/又は2族金属化合物を含有していることが好ましい。ポリブチレンテレフタレート樹脂(B成分)における1族金属化合物及び/又は2族金属化合物の含有量は、その金属原子換算で、好ましくは1ppmを超えて50ppm以下である。なお、金属原子の含有量は、上述のチタンの測定法と同様に測定することができる。
1族金属化合物及び/又は2族金属化合物の含有量の下限は、その金属原子換算で中でも3ppm、特に5ppmであることが好ましい。またその上限は、その金属原子換算で50ppm、中でも30ppm、特に20ppmであることが好ましい。1族金属化合物及び/又は2族金属化合物の含有量を1ppm以上とすることで、樹脂組成物の機械的特性や疲労特性が向上する傾向にあり、1族金属化合物及び/又は2族金属化合物の含有量を50ppm未満とすることで樹脂組成物の機械特性や疲労特性、耐候性が向上する傾向にある。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)は、先述の通り好ましくは1族金属化合物及び/又は2族金属化合物チタン化合物を含有するが、これらの化合物はポリブチレンテレフタレート樹脂(B成分)の重縮合触媒や、チタン化合物触媒の助触媒であることが好ましい。この重縮合触媒として用いる1族金属化合物及び/又は2族金属化合物としては特に制限はなく、具体的には例えば、1族金属化合物としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウムの、水酸化物類;酸化物類;アルコラート類;酢酸塩、リン酸塩、炭酸塩等の各種有機酸塩類;等の各種化合物が挙げられる。また2族金属化合物としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムの、水酸化物類;酸化物類;アルコラート類;酢酸塩、リン酸塩、炭酸塩等の各種有機酸塩類;等の各種化合物が挙げられる。
これらは単独で使用しても、また併用してもよい。中でも、取り扱いや入手の容易さ、触媒効果の点から、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム等の化合物が好ましく、更には触媒効果と色調に優れる、リチウム又はマグネシウムの化合物が好ましく、特にマグネシウム化合物が好ましい。マグネシウム化合物としては、具体的には例えば酢酸マグネシウム、水酸化マグネシウム、炭酸マグネシウム、酸化マグネシウム、マグネシウムアルコキサイド、燐酸水素マグネシウム等が挙げられる。中でも有機酸塩類が好ましく、特に酢酸マグネシウムが好ましい。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)の末端カルボキシル基の濃度は、好ましくは39μeq/g以下であり、中でも5〜35μeq/g、特に10〜30μeq/gであることが好ましい。末端カルボキシル基を39μeq/g以下とすることで、樹脂組成物の機械的特性や疲労特性の点から好ましい場合があり、逆に末端カルボキシル基濃度を5μeq/g以上とすることで、樹脂組成物の機械的特性や疲労特性、耐候性の点から好ましい場合がある。
なお、ポリブチレンテレフタレート樹脂の末端カルボキシル基濃度は、ベンジルアルコール25mLにポリブチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定することにより求めることができる。
ポリブチレンテレフタレート樹脂の末端には、上記カルボキシル基以外に水酸基、ビニル基があり、その他として原料由来のメトキシカルボニル基が残存していることがあり、特に、テレフタル酸ジメチルを原料とする場合には多く残存することがある。またポリブチレンテレフタレート樹脂における末端メトキシカルボニル基は、樹脂成形時等において、成型時に係る熱により、毒性のメタノール、ホルムアルデヒド、蟻酸等が発生する原因となり、例えば蟻酸は金属製の成形機器やこれに付随する真空関連機器等に影響を及ぼす恐れがある。よって本発明に用いるポリブチレンテレフタレート樹脂(B成分)においては、末端メトキシカルボニル基の量(濃度)が0.5μeq/g以下であることが好ましく、中でも0.3μeq/g以下、更には0.2μeq/g以下、特に0.1μeq/g以下であることが好ましい。
また、本発明に用いるポリブチレンテレフタレート樹脂(B成分)の末端ビニル基濃度は、通常0.1〜15μeq/gであり、中でも0.5〜10μeq/g、特に1〜8μeq/gであることが好ましい。末端ビニル基濃度が高すぎる場合は、樹脂組成物の色調悪化の原因となり、成形時の熱履歴により、末端ビニル基濃度は更に上昇する傾向にあるため、成形温度が高い場合、リサイクル工程を有する製造方法の場合には、更に色調が悪化する場合がある。
上記の各末端基濃度は、重クロロホルム/ヘキサフルオロイソプロパノール=7/3(体積比)の混合溶媒にポリブチレンテレフタレート樹脂を溶解させ、H−NMRを測定することによって定量することができる。この際、溶媒シグナルとの重なりを防ぐため、重ピリジン等の塩基性成分等を極少量添加してもよい。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)の固有粘度は、適宜選択して決定すればよいが、通常0.5〜2dL/g、中でも0.6〜1.5dL/g、更には0.8〜1.3dL/g、特に0.95〜1.25dL/gであることが好ましい。固有粘度を0.5dL/g以上とすることで、本発明の樹脂組成物における機械的特性や疲労特性が向上する傾向にある。逆に固有粘度を2dL/g未満とすることで樹脂組成物の流動性が向上する傾向にある。なお上記の固有粘度は、フェノール/テトラクロルエタン(重量比1/1)の混合溶媒を使用し、30℃で測定した値である。
更に、本発明に用いるポリブチレンテレフタレート樹脂(B成分)は、バージン原料だけでなく、使用済みの製品から再生されたポリブチレンテレフタレート樹脂、いわゆるマテリアルリサイクルされたポリブチレンテレフタレート樹脂の使用も可能である。使用済みの製品としては、容器、フィルム、シート、繊維、製品の不適合品、スプルー、ランナー等が挙げられ、これらから得られた粉砕品又はそれらを溶融して得たペレット等も使用可能である。
次に、本発明に用いるポリブチレンテレフタレート樹脂(B成分)の製造方法について説明する。ポリブチレンテレフタレート樹脂の製造方法は、原料面から、ジカルボン酸を主原料として使用するいわゆる直接重合法と、ジカルボン酸ジアルキルを主原料として使用するエステル交換法とに大別される。前者は初期のエステル化反応で水が生成し、後者は初期のエステル交換反応でアルコールが生成するという違いがある。
また、ポリブチレンテレフタレート樹脂の製造方法は、原料供給又はポリマーの払い出し形態により、回分法と連続法に大別される。初期のエステル化反応又はエステル交換反応を連続操作で行い、次いで行う重縮合を回分操作で行う方法や、逆に初期のエステル化反応又はエステル交換反応を回分操作で行い、次いで行う重縮合を連続操作で行う方法もある。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)は、原料の入手安定性、留出物の処理の容易さ、原料原単位の優位性、本発明の効果の観点から、直接重合法により製造したポリブチレンテレフタレート樹脂を用いることが好ましい。また本発明においては、生産性や製品品質の安定性、本発明の効果の観点から、連続的に原料を供給し、連続的にエステル化反応又はエステル交換反応を行う方法を採用することが好ましく、中でもエステル化反応又はエステル交換反応に続く重縮合反応も連続的に行う、いわゆる連続法により、ポリブチレンテレフタレート樹脂を製造することが好ましい。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)の製造方法においては、エステル化反応槽にて、好ましくはチタン触媒の存在下、少なくとも一部の1,4−ブタンジオールをテレフタル酸(又はテレフタル酸ジアルキル)とは独立にエステル化反応槽(又はエステル交換反応槽)に供給しながら、テレフタル酸(又はテレフタル酸ジアルキル)と1,4−ブタンジオールとを連続的にエステル化(又はエステル交換)する工程が好ましく採用される。
即ち、本発明に用いるポリブチレンテレフタレート樹脂(B成分)の製造方法としては、触媒に由来するヘイズや異物を低減し、触媒活性を低下させないため、原料スラリー又は溶液として、テレフタル酸又はテレフタル酸ジアルキルと共に供給される1,4−ブタンジオールとは別に、しかも、テレフタル酸又はテレフタル酸ジアルキルとは独立に1,4−ブタンジオールをエステル化反応槽又はエステル交換反応槽に供給することが好ましい。以後、当該1,4−ブタンジオールを「別供給1,4−ブタンジオール」と称することがある。
上記の「別供給1,4−ブタンジオール」には、プロセスとは無関係の新鮮な1,4−ブタンジオールを充てることができる。また、「別供給1,4−ブタンジオール」は、エステル化反応槽又はエステル交換反応槽から留出した1,4−ブタンジオールをコンデンサ等で捕集し、そのまま、又は、一時タンク等へ保持して反応槽に還流させたり、不純物を分離、精製して純度を高めた1,4−ブタンジオールとして供給することもできる。以後、コンデンサ等で捕集された1,4−ブタンジオールから構成される「別供給1,4−ブタンジオール」を「再循環1,4−ブタンジオール」と称することがある。資源の有効活用、設備の単純さの観点からは、「再循環1,4−ブタンジオール」を「別供給1,4−ブタンジオール」に充てることが好ましい。
また、通常、エステル化反応槽又はエステル交換反応槽より留出した1,4−ブタンジオールは、1,4−ブタンジオール成分以外に、水、アルコール、テトラヒドロフラン(THF)、ジヒドロフラン等の成分を含んでいる。従って、上記の留出物した1,4−ブタンジオールは、コンデンサ等で捕集した後、又は、捕集しながら、水、アルコール、THF等の成分と分離、精製し、反応槽に戻すことが好ましい。
そして、本発明においては、「別供給1,4−ブタンジオール」の内、10重量%以上を反応液液相部に直接戻すことが好ましい。ここで、反応液液相部とは、エステル化反応槽又はエステル交換反応槽中の気液界面の液相側を示し、反応液液相部に直接戻すとは、配管等を使用して「別供給1,4−ブタンジオール」が気相部を経由せずに直接液相部分に供給されることを表す。反応液液相部に直接戻す割合は、好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。反応液液相部に直接戻す「別供給1,4−ブタンジオール」が少ない場合は、チタン触媒が失活する傾向にある。
また、反応器に戻す際の「別供給1,4−ブタンジオール」の温度は、通常50〜220℃、好ましくは100〜200℃、更に好ましくは150〜190℃である。「別供給1,4−ブタンジオール」の温度が高過ぎる場合はTHFの副生量が多くなる傾向にあり、低過ぎると場合は熱負荷が増すためエネルギーロスを招く傾向がある。
本発明に用いるポリブチレンテレフタレート樹脂(B成分)の重縮合触媒としては、上述したチタン化合物や、1族金属化合物及び/又は2族金属化合物(以下、これらを各々、「チタン触媒」「1属金属触媒」「2族金属触媒」ということがある。)の他に、例えばスズやその化合物が挙げられる。
スズは、通常、スズ化合物として使用され、具体的には例えば、ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズ、ヘキサエチルジスズオキサイド、シクロヘキサヘキシルジスズオキサイド、ジドデシルスズオキサイド、トリエチルスズハイドロオキサイド、トリフェニルスズハイドロオキサイド、トリイソブチルスズアセテート、ジブチルスズジアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、トリブチルスズクロライド、ジブチルスズサルファイド、ブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸、ブチルスタンノン酸等が挙げられる。
但し、一般的に、スズやスズ化合物はポリブチレンテレフタレート樹脂の色調を悪化させるため、本発明に用いるポリブチレンテレフタレート樹脂中におけるスズ化合物の含有量は低い方が好ましく、中でも、含有しないことが好ましい。具体的には、通常、スズ化合物の含有量が、スズ原子換算で200ppm以下、中でも100ppm以下、更には10ppm以下であることが好ましい。
また、本発明に用いるポリブチレンテレフタレート樹脂(B成分)の製造に際しては、触媒として更に他の触媒を用いることもできる。具体的には例えば、三酸化アンチモン等のアンチモン化合物;二酸化ゲルマニウム、四酸化ゲルマニウム等のゲルマニウム化合物;マンガン化合物;亜鉛化合物;ジルコニウム化合物;コバルト化合物;正燐酸、亜燐酸、次亜燐酸、ポリ燐酸等やこれらのエステルや金属塩等の燐化合物;等の反応助剤が挙げられる。
また、触媒の失活を防ぐため、エステル化反応(又はエステル交換反応)に使用されるチタン触媒の内、10重量%以上をテレフタル酸(又はテレフタル酸ジアルキル)とは独立に反応液液相部に直接供給することが好ましい。ここで、反応液液相部とは、エステル化反応槽又はエステル交換反応槽中の気液界面の液相側を示し、反応液液相部に直接供給するとは、配管等を使用し、チタン触媒が反応器の気相部を経由せずに直接液相部分に供給されることを表す。反応液液相部に直接添加するチタン触媒の割合は、好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。
上記のチタン触媒は、溶媒等に溶解させたり又は溶解させずに直接エステル化反応槽又はエステル交換反応槽の反応液液相部に供給することもできるが、供給量を安定化させ、反応器の熱媒ジャケット等からの熱による変性等の悪影響を軽減するためには、1,4−ブタンジオール等の溶媒で希釈することが好ましい。この際の濃度は、溶液全体に対するチタン触媒の濃度として、通常0.01〜20重量%、中でも0.05〜10重量%、特に0.08〜8重量%であることが好ましい。また異物低減の観点から、溶液中の水分濃度は、通常0.05〜1.0重量%とし、溶液調製の際の温度は、失活や凝集を防ぐ観点から、通常20〜150℃、中でも30〜100℃、特に40〜80℃であることが好ましい。また触媒溶液は、劣化防止、析出防止、失活防止の点から、別供給1,4−ブタンジオールと配管等で混合してエステル化反応槽又はエステル交換反応槽に供給することが好ましい。
1族金属触媒及び/又は2族金属触媒は、エステル化反応槽又はエステル交換反応槽に供給することができるが、その供給位置に特に制限はなく、これら反応槽の反応液気相部から反応液上面へ供給してもよいし、反応液液相部に直接供給してもよい。この際、原料であるテレフタル酸や、チタン触媒と共に供給してもよいし、独立して供給してもよい。
中でも触媒の安定性の観点から、テレフタル酸やチタン触媒とは独立して、且つ、反応液気相部から反応液上面に供給することが好ましい。2族金属触媒の供給方法としては、例えば2族触媒が常温で固体の場合には、個体のまま反応液へ供給することもできるが、供給量を安定化させ、熱による変性等の悪影響を軽減するためには、水、1,4−ブタンジオール等の溶媒に溶解し、溶液として供給することが好ましい。この溶液中の2属金属触媒の濃度は、通常0.01重量%以上、中でも0.05重量%以上、特に0.08重量%以上であることが好ましく、その上限は20重量%以下、中でも10重量%以下、特に8重量%以下であることが好ましい。
また、1族金属触媒及び/又は2族金属触媒は、エステル化反応槽又はエステル交換反応槽に続く重縮合反応槽や、それに付帯したオリゴマー配管に添加してもよい。この場合の添加方法も、供給量を安定化させ、熱による変性等の悪影響を軽減するために、水、1,4−ブタンジオール等の溶媒や、ポリテトラメチレンエーテルグリコール等の共重合成分に溶解し、溶液として供給することが好ましく、この際の濃度は、上述の溶液濃度と同様である。
次に、ポリブチレンテレフタレート樹脂の製造方法として、直接重合法を採用した連続法の一例を説明する。先ずテレフタル酸を主成分とする前記ジカルボン酸成分と、1,4−ブタンジオールを主成分とする前記ジオール成分とを原料混合槽で混合してスラリーとし、単数又は複数のエステル化反応槽内で、チタン触媒の存在下に、通常180〜260℃、好ましくは200〜245℃、更に好ましくは210〜235℃の温度、また、通常10〜133kPa、好ましくは13〜101kPa、更に好ましくは60〜90kPaの圧力下(絶対圧力、以下同じ。)で、通常0.5〜10時間、好ましくは1〜6時間で、連続的にエステル化反応させてオリゴマーを得る。
次いで、このオリゴマーを重縮合反応槽に移送し、単数又は複数の重縮合反応槽内で、重縮合触媒の存在下に重縮合させる。この際、好ましくは連続的に、通常210〜280℃、好ましくは220〜260℃、更に好ましくは230〜250℃の温度で、少なくとも1つの重縮合反応槽においては、通常20kPa以下、好ましくは10kPa以下、更に好ましくは5kPa以下の減圧下で、攪拌下に、通常2〜15時間、好ましくは3〜10時間で重縮合反応させる。重縮合反応により得られたポリマーは、通常、重縮合反応槽の底部からポリマー抜き出しダイに移送されてストランド状に抜き出され、水冷されながら又は水冷後、カッターで切断され、ペレット状、チップ状等の粒状体とされる。
直接重合法の場合は、テレフタル酸と1,4−ブタンジオールとのモル比は、下記式を満たすことが好ましい。
B/TPA=1.1〜5.0(mol/mol)
(但し上記式において、Bは単位時間当たりのエステル化反応槽に外部から供給される1,4−ブタンジオールのモル数、TPAは単位時間当たりにエステル化反応槽に外部から供給されるテレフタル酸のモル数である。)
上記の「エステル化反応槽に外部から供給される1,4−ブタンジオール」とは、原料スラリー又は溶液として、テレフタル酸又はテレフタル酸ジアルキルと共に供給される1,4−ブタンジオールの他、これらとは独立に供給する1,4−ブタンジオール、触媒の溶媒として使用される1,4−ブタンジオール等、反応槽外部から反応槽内に入る1,4−ブタンジオールの総和である。
上記のB/TPAの値が1.1より小さい場合は、転化率の低下や触媒失活を招き、5.0より大きい場合は、熱効率が低下するだけでなく、THF等の副生物が増大する傾向にある。B/TPAの値は、好ましくは1.5〜4.5、更には2.0〜4.0、特に3.1〜3.8であることが好ましい。
エステル交換法を採用した連続法の一例は、次の通りである。まず、単数又は複数のエステル交換反応槽内で、チタン触媒の存在下に、通常110〜260℃、好ましくは140〜245℃、更に好ましくは180〜220℃の温度にて、通常10〜133kPa、好ましくは13〜120kPa、更に好ましくは60〜101kPaの圧力下で、通常0.5〜5時間、好ましくは1〜3時間で、連続的にエステル交換反応させてオリゴマーを得る。
次いで、このオリゴマーを重縮合反応槽に移送し、単数又は複数の重縮合反応槽内で、重縮合反応触媒の存在下に、好ましくは連続的に、通常210〜280℃、好ましくは220〜260℃、更に好ましくは230〜250℃の温度で、少なくとも1つの重縮合反応槽においは、通常20kPa以下、好ましくは10kPa以下、更に好ましくは5kPa以下の減圧下で、攪拌下に、通常2〜15時間、好ましくは3〜10時間で重縮合反応させる。
エステル交換法の場合、テレフタル酸ジアルキルと1,4−ブタンジオールとのモル比は、下記式を満たすことが好ましい。
B/DAT=1.1〜2.5(mol/mol)
(但し、上記式において、Bは、単位時間当たりのエステル化反応槽に外部から供給され
る1,4−ブタンジオールのモル数、DATは、単位時間当たりにエステル化反応槽に外部から供給されるテレフタル酸ジアルキルのモル数である。)
上記のB/DATの値が1.1より小さい場合は、転化率の低下や触媒活性の低下を招き、2.5より大きい場合は、熱効率が低下するだけでなく、THF等の副生物が増大する傾向にある。B/DATの値は、好ましくは1.1〜1.8、更に好ましくは1.2〜1.5である。
本発明において、エステル化反応又はエステル交換反応は、反応時間短縮のため、1,4−ブタンジオールの沸点以上の温度で行うことが好ましい。1,4−ブタンジオールの沸点は反応の圧力に依存するが、101.1kPa(大気圧)では230℃、50kPaでは205℃である。
エステル化反応槽又はエステル交換反応槽としては、従来公知の任意のものを使用でき、例えば、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽等の何れの型式であってもよい。また単数槽としても、同種もしくは異種の槽を直列又は並列させた複数槽としてもよい。中でも、攪拌装置を有する反応槽が好ましく、攪拌装置としては、動力部、軸受、軸、攪拌翼からなる通常のタイプの他、タービンステーター型高速回転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機等の高速回転するタイプも使用することができる。
攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部等から直接攪拌する通常の攪拌方法の他、配管等で反応液の一部を反応器の外部に持ち出してラインミキサ−等で攪拌し、反応液を循環させる方法も採ることができる。攪拌翼の種類は、公知のものが選択でき、具体的には、プロペラ翼、スクリュー翼、タービン翼、ファンタービン翼、デイスクタービン翼、ファウドラー翼、フルゾーン翼、マックスブレンド翼等が挙げられる。
ポリブチレンテレフタレート樹脂の製造においては、通常、複数段の反応槽を使用し、好ましくは2〜5の反応槽を使用し、順次に分子量を上昇させていく。通常、初期のエステル化反応又はエステル交換反応に引き続き、重縮合反応が行われる。
ポリブチレンテレフタレート樹脂の重縮合反応工程は、単数の反応槽を使用しても、複数の反応槽を使用してもよいが、好ましくは複数の反応槽を使用する。反応槽の形態は、縦型攪拌完全混合槽、縦型熱対流式混合槽、塔型連続反応槽等の何れの型式であってもよく、また、これらを組み合わせることもできる。中でも、攪拌装置を有する反応槽が好ましく、攪拌装置としては、動力部、軸受、軸、攪拌翼からなる通常のタイプの他、タービンステーター型高速回転式攪拌機、ディスクミル型攪拌機、ローターミル型攪拌機等の高速回転するタイプも使用することができる。
攪拌の形態は、特に制限されず、反応槽中の反応液を反応槽の上部、下部、横部等から直接攪拌する通常の攪拌方法の他、配管等で反応液の一部を反応器の外部に持ち出してラインミキサ−等で攪拌し、反応液を循環させる方法も採ることができる。中でも、少なくとも重縮合反応槽の1つは、水平方向に回転軸を有する表面更新とセルフクリーニング性に優れた横型の反応器を使用することが推奨される。
また、着色や劣化を抑え、ビニル基等の末端の増加を抑制するため、少なくとも1つの反応槽において、通常1.3kPa以下、中でも0.5kPa以下、特に0.3kPa以下の高真空下で行うことが好ましい。また反応温度は通常225〜255℃、中でも230〜250℃、特に233〜245℃の温度で行うのがよい。
更に、ポリブチレンテレフタレート樹脂の重縮合反応工程は、一旦、溶融重縮合で比較的分子量の小さい、例えば、固有粘度0.1〜1.0程度のポリブチレンテレフタレート樹脂を製造した後、引き続き、ポリブチレンテレフタレート樹脂の融点以下の温度で固相重縮合(固相重合)させることもできる。
以下、添付図面に基づいて、本発明に用いるポリブチレンテレフタレート樹脂(B成分)の製造方法の好ましい実施態様を説明する。図1は本発明で採用するエステル化反応工程又はエステル交換化反応工程の一例の説明図、図2、図3は本発明で採用する重縮合工程の一例の説明図である。
図1において、原料のテレフタル酸は、通常、原料混合槽(図示せず)で1,4−ブタンジオールと混合され、原料供給ライン(1)からスラリーの形態で反応槽(A)に供給され、原料がテレフタル酸ジアルキルの場合は、通常溶融した状態で反応槽(A)に供給される。一方、チタン触媒は、好ましくは触媒調整槽(図示せず)で1,4−ブタンジオールの溶液とした後、触媒供給ライン(3)から供給される。図1では再循環1,4−ブタンジオールの再循環ライン(2)に触媒供給ライン(3)を連結し、両者を混合した後、反応槽(A)の液相部に供給する態様を示した。
反応槽(A)から留出するガスは、留出ライン(5)を経て精留塔(C)で高沸成分と低沸成分とに分離される。通常、高沸成分の主成分は1,4−ブタンジオールであり、低沸成分の主成分は、直接重合法の場合は水及びTHF、エステル交換法の場合は、アルコール、THF、水である。
精留塔(C)で分離された高沸成分は抜出ライン(6)から抜き出され、ポンプ(D)を経て、一部は再循環ライン(2)から反応槽(A)に循環され、一部は循環ライン(7)から精留塔(C)に戻される。また、余剰分は抜出ライン(8)から外部に抜き出される。一方、精留塔(C)で分離された軽沸成分はガス抜出ライン(9)から抜き出され、コンデンサ(G)で凝縮され、凝縮液ライン(10)を経てタンク(F)に一時溜められる。
タンク(F)に集められた軽沸成分の一部は、抜出ライン(11)、ポンプ(E)及び循環ライン(12)を経て精留塔(C)に戻され、残部は、抜出ライン(13)を経て外部に抜き出される。コンデンサ(G)はベントライン(14)を経て排気装置(図示せず)に接続されている。反応槽(A)内で生成したオリゴマーは、抜出ポンプ(B)及び抜出ライン(4)を経て抜き出される。
図1に示す工程においては、再循環ライン(2)に触媒供給ライン(3)が連結されているが、両者は独立していてもよい。また、原料供給ライン(1)は反応槽(A)の液相部に接続されていてもよい。
図2において、前述の図1に示す抜出ライン(4)から供給されたオリゴマーは、第1重縮合反応槽(a)で減圧下に重縮合されてプレポリマーとなった後、抜出用ギヤポンプ(c)及び抜出ライン(L1)を経て第2重縮合反応槽(d)に供給さる。
1族、及び/又は2族金属触媒の添加が必要な場合は、調製槽(図示せず)でこれらの触媒を1,4−ブタンジオール等の溶媒で希釈し所定濃度に調製した後、ライン(L7)を経て、1,4−ブタンジオールの供給ライン(L8)に連結し、1,4−ブタンジオールでさらに希釈した後、オリゴマーの抜出ライン(4)に供給する。これは、図3においても同様である。
第2重縮合反応器(d)では、通常、第1重縮合反応器(a)よりも低い圧力で更に重縮合が進みポリマーとなる。得られたポリマーは、抜出用ギヤポンプ(e)及び抜出ライン(L3)を経て、ダイスヘッド(g)から溶融したストランドの形態で抜き出し、水等で冷却された後、回転式カッター(h)で切断してペレットとする。 更に、図3においては、第2重縮合反応器(d)で得られたポリマーを、抜出用ギヤポンプ(e)及び抜出ライン(L3)を経て第3重縮合反応槽(k)に供給する。第3重縮合反応槽(k)は、複数個の攪拌翼ブロックで構成され、2軸のセルフクリーニングタイプの攪拌翼を具備した横型の反応槽である。
通常、第2重縮合反応槽(d)においては、第1重縮合反応槽(a)よりも低い圧力で重縮合が進み、そして第3重縮合反応槽(k)において、重縮合が更に進み、ポリマーとなる。
第3縮合反応器(k)で得られたポリマーは、抜出用ギヤポンプ(m)及び抜出ライン(L5)を経てダイスヘッド(g)から溶融したストランドの形態で抜き出され、水等で冷却された後、回転式カッター(h)で切断されてペレットとなる。
なお、図2、3における符号(L2)、(L4)、(L6)は、各重縮合反応槽(a)、(d)、(k)のベントラインである。
[3]ゴム性重合体(C成分)
本発明に用いるゴム性重合体は、ガラス転移温度が0℃以下、中でも−20℃以下のものを示し、ゴム性重合体にこれと共重合可能な単量体成分とを共重合した重合体をも含む。本発明に用いるC成分は、一般にポリカーボネート樹脂組成物等に配合されて、その機械的特性を改良し得る、従来公知の任意のものを使用できる。
C成分としては、例えば、ポリブタジエン、ポリイソプレン、ジエン系共重合体(スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体、アクリル・ブタジエンゴム等)、エチレンとα−オレフィンとの共重合体(エチレン・プロピレン共重合体、エチレン・ブテン共重合体、エチレン・オクテン共重合体等)、エチレンと不飽和カルボン酸エステルとの共重合体(エチレン・メタクリレート共重合体、エチレン・ブチルアクリレート共重合体等)、エチレンと脂肪族ビニル化合物との共重合体、エチレンとプロピレンと非共役ジエンとのターポリマー、アクリルゴム(ポリブチルアクリレート、ポリ(2−エチルヘキシルアクリレート)、ブチルアクリレート・2−エチルヘキシルアクリレート共重合体等)、シリコーン系ゴム(ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキル(メタ)アクリレートゴムとからなるIPN型複合ゴム)等が挙げられる。
これらは1種を単独で用いても2種以上を併用してもよい。なお「(メタ)アクリレート」は「アクリレート」と「メタクリレート」を意味し、後述の「(メタ)アクリル酸」は「アクリル酸」と「メタクリル酸」を意味する。
また、本発明に用いるC成分としては、ゴム性重合体に単量体成分重合した、共重合体を用いてもよい。この単量体としては例えば、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物等が好適に挙げられる。その他の単量体成分としては、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N−メチルマレイミド、N−フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β−不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)が挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。
本発明に用いるC成分は、耐衝撃性の点からコア/シェル型グラフト共重合体タイプのものが好ましい。中でもブタジエン含有ゴム、ブチルアクリレート含有ゴム、シリコーン系ゴムから選ばれる少なくとも1種をゴム性重合体のコア層とし、その周囲にアクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物から選ばれる少なくとも1種の単量体成分を共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。
より具体的には、メチルメタクリレート−ブタジエン−スチレン重合体(MBS)、メチルメタクリレート−アクリロニトリル−ブタジエン−スチレン重合体(MABS)、メチルメタクリレート−ブタジエン重合体(MB)、メチルメタクリレート−アクリルゴム重合体(MA)、メチルメタクリレート−アクリルゴム−スチレン重合体(MAS)、メチルメタクリレート−アクリル・ブタジエンゴム共重合体、メチルメタクリレート−アクリル・ブタジエンゴム−スチレン共重合体、メチルメタクリレート−(アクリル・シリコーンIPN(interpenetrating polymer network)ゴム)重合体等が挙げられる。この様なゴム性重合体は、1種を単独で用いても2種以上を併用してもよい。
その他のゴム性重合体の具体例としては、ポリブタジエンゴム、スチレン−ブタジエン共重合体(SBR)、スチレン−ブタジエン−スチレンブロツク共重合体(SBS)、スチレン−エチレン/ブチレン−スチレンブロック共重合体(SEBS)、スチレン−エチレン/プロピレン−スチレンブロック共重合体(SEPS)、アクリロニトリル−ブタジエン−スチレン重合体(ABS)、アクリロニトリル−スチレン−アクリルゴム重合体(ASA)、アクリロニトリル−エチレンプロピレンゴム−スチレン重合体(AES)等が挙げられる。
[4]酸化チタン(D成分)
本発明における酸化チタン(D成分)としては、各種の酸化チタンを用いることができる。酸化チタン(D成分)の粒子径は、好ましくは0.05〜0.5μmである。粒子径が0.05μm未満であると遮光性及び光反射率に劣り、0.5μmを越えると、遮光性及び光反射率に劣りさらに成形品表面に肌荒れを起こしたり、衝撃強度の低下を生じやすい。酸化チタン(D成分)の粒子径は、より好ましくは0.1〜0.5μmであり、最も好ましくは0.15〜0.35μmである。
酸化チタン(D成分)は、塩素法で製造された酸化チタンが好ましい。塩素法で製造された酸化チタンは、硫酸法で製造された酸化チタンに比べて、白度等の点で優れている。酸化チタン(D成分)の結晶形態としては、ルチル型の酸化チタンが好ましく、アナターゼ型の酸化チタンに比べ、白度、光線反射率及び耐候性の点で優れている。
酸化チタンは、一般的には、無機系表面処理剤(アルミナ及び/又はシリカ)で表面処理されている。更に、有機系表面処理剤で処理される。有機系表面処理剤としては、アルコキシ基、エポキシ基、アミノ基、あるいはSi−H結合を有する有機シラン化合物あるいは有機シリコーン化合物で表面処理される。特に好ましいのは、Si−H結合を有するシリコーン化合物である。
[5]紫外線吸収剤(E成分)
本発明に用いられる紫外線吸収剤(E成分)としては、ベンゾトリアゾ−ル化合物、ベンゾフェノン化合物、トリアジン化合物、マロン酸エステル化合物、シアノアクリレート化合物、ベンゾオキサゾリン化合物等の有機紫外線吸収剤や酸化セリウム、酸化亜鉛等の無機紫外線吸収剤が挙げられ、好ましくは有機紫外線吸収剤であり、より好ましくはベンゾトリアゾ−ル化合物、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−[(ヘキシル)オキシ]−フェノ−ル、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチロキシ)フェノ−ル、2,2’−(1,4−フェニレン)ビス[4H−3,1−ベンゾキサジン−4−オン]、[(4−メトキシフェニル)−メチレン]−プロパンジオイックアシッド−ジメチルエステルから選ばれた少なくとも1種であり、特に好ましくは下記一般式(1)で表されるベンゾトリアゾール系紫外線吸収剤である。
Figure 2008285529
(ただし、Xはフェニル基、水酸基又は炭素数1〜10のアルキル基で置換されたフェニル基、R〜Rは水素原子、ハロゲン原子又は炭素数1〜4のアルキル基を示す)
ベンゾトリアゾール系紫外線吸収剤の具体的としては、例えば、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−tert−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−5−オクチルフェニル)ベンゾトリアゾール等が例示される。
これらのうち、本発明においては、特に下記式(d−1)で表される2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、及び下記式(d−2)で表される2−(3−tert−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾールが好適である。式(d−1)及び(d−2)の具体的な商品名としては、それぞれ、チバスペシャルティー社製のチヌビンP及びチヌビン326が挙げられる。
Figure 2008285529
Figure 2008285529
また、本発明においては、E成分のベンゾトリアゾール系紫外線吸収剤の他にヒンダードアミン系耐候性安定剤が使用される。アミン系化合物は通常芳香族ポリカーボネート樹脂の加水分解を促進しやすい傾向がありその使用は好まれないが、本発明においては、下記一般式(2)で示される特定の構造を有するヒンダードアミン系耐候性安定剤が上記のベンゾトリアゾール系化合物と併用した場合に格別な効果が発揮される。
Figure 2008285529
(ただし、式中R〜Rは、水素原子又はメチル基を示す)
本発明におけるヒンダードアミン系耐候性安定剤は、前記一般式(2)で示される構造を有する化合物であって、(E)成分と併用することにより耐候性をさらに向上させることができる。これの具体的なものとしては、例えば、下記式(e−1)及び(e−2)に示すものが挙げられる。式(e−1)及び(e−2)の商品名としては、それぞれ、三共社製のサノールLS−2626及びチバスペシャルティー社製のチヌビン622LD(分子量が3100〜4000)である。
Figure 2008285529
Figure 2008285529
[6]リン系安定剤(F成分)
本発明では耐熱性や滞留熱安定性を向上するためにリン系安定剤(F成分)が用いられる。リン系安定剤(F成分)としては、従来公知の任意のものを使用できる。具体的には、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸等のリンのオキソ酸、酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウム等の酸性ピロリン酸金属塩、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛等第1族又は第2B族金属のリン酸塩、有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物等を挙げることができる。
これらの中で、下記一般式(I)で表される有機ホスフェート化合物及び/又は下記一般式(II)で表される有機ホスファイト化合物が好ましく、より好ましくは下記一般式(I)で表される有機ホスフェート化合物である。
O=P(OH)(OR)3−m ・・・(I)
(一般式(I)中、Rはアルキル基又はアリール基であり、それぞれ同一であっても異なっていてもよい。mは0〜2の整数である。)
Figure 2008285529
(式中、R’はアルキル基又はアリール基であり、それぞれ同一でも異なっていてもよい。)
上記一般式(I)中、Rは、好ましくは、炭素原子数1〜30のアルキル基又は炭素原子数6〜30のアリール基であり、より好ましくは、炭素原子数2〜25のアルキル基である。またmは、好ましくは1又は2である。
また、上記一般式(II)中、R’は、好ましくは、炭素原子数1〜30のアルキル基又は炭素原子数6〜30のアリール基である。上記一般式(II)で表される亜リン酸エステルの好ましい具体例としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを挙げることできる。
本発明の塗装部品製造用樹脂組成物においては、これを構成するA成分〜F成分の含有比率は、芳香族ポリカーボネート樹脂(A成分)51〜99重量部、ポリブチレンテレフタレート樹脂(B成分)1〜49重量部を含む樹脂組成物であって、A成分とB成分の合計100重量部に対して、ゴム性重合体(C成分)を11〜25重量部、酸化チタン(D成分)を1〜5重量部、紫外線吸収剤(E成分)を0.01〜3重量部、及びリン系安定剤(F成分)を0.001〜1重量部含有し、かつ、ゴム性重合体(C成分)と酸化チタン(D成分)の重量比が5〜10である。
本発明の塗装部品製造用樹脂組成物においては、A成分及びB成分の合計100重量部中、A成分は中でも55〜90重量部、特に60〜85重量部であることが好ましく、B成分は中でも10〜45重量部、特に15〜40重量部であることが好ましい。
A成分を51重量部以上とすることで耐衝撃性が向上する傾向にあり、99重量部未満にすることで流動性や耐薬品性が向上する傾向にある。
C成分は、A成分とB成分の合計100重量部に対して、中でも12〜24重量部、特に14〜21重量部であることが好ましい。C成分を11重量部以上とすることで、耐衝撃性が良好になり、また25重量部以上にすると剛性や疲労特性、耐熱性が低下する傾向にある。
D成分はA成分とB成分の合計100重量部に対して、1.5〜4重量部であることが好ましい。D成分を1重量部以上にすることで耐候性が良好になり、4重量部を超えると耐衝撃性が低下する。
また、ゴム性重合体(C成分)と酸化チタン(D成分)の重量比が5.5〜9であることが好ましい。C成分とD成分の比が5未満では耐衝撃性が不足し、10を超えると耐候性が低下する。
E成分は、A成分とB成分の合計100重量部に対して、中でも0.03〜2重量部であることが好ましい。E成分が0.01重量部未満では耐候性が不足し、3重量部を超えるとモールドデボジットが発生し易く、塗装性が低下し、滞留熱安定性や耐衝撃性も低下する。
さらに、本発明の樹脂組成物には、E成分の紫外線吸収剤の他に、ヒンダードアミン系耐候性安定剤をA成分とB成分の合計100重量部に対して、0.01〜3重量部配合することが好ましい。
中でも、ヒンダードアミン系耐候性安定剤は、A成分とB成分の合計100重量部に対して、0.03〜2重量部配合することが好ましい。ヒンダードアミン系耐候性安定剤の配合率が0.01重量部未満では耐候性が不足し、3重量部を超えるとモールドデボジットが発生し易く、塗装性が低下し、滞留熱安定性や耐衝撃性も低下する。
F成分は、A成分とB成分の合計100重量部に対して、中でも0.003〜0.5重量部含有するのが好ましい。F成分が0.001重量部未満では樹脂組成物の熱安定性に対する改良効果が小さく、1重量部を超えると、モールドデボジットが発生しやすく、塗装性も低下する。
本発明の樹脂組成物は、必要に応じて本発明の目的を損なわない範囲において上記A〜F成分以外に他の樹脂や各種樹脂添加剤を含有していてもよい。
他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂等のポリブチレンテレフタレート樹脂以外のポリエステル樹脂、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリスチレン樹脂等のスチレン系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂等が挙げられる。
また、各種樹脂添加剤としては、酸化防止剤、離型剤、染顔料、強化剤、難燃剤、帯電防止剤、防曇剤、滑剤・アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、防菌剤等が挙げられる。これらは、1種類単独でも2種類以上を組み合わせて用いてもよい。
本発明の樹脂組成物は、前記A〜F成分の他に、樹脂や添加剤等を、従来公知の任意の方法を適宜選択して、製造することができる。
具体的には例えば、A〜F成分及び必要に応じて配合される添加成分を、タンブラーやヘンシェルミキサー等の各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダー等で溶融混練し、樹脂組成物を製造することができる。また、各成分を予め混合せずに、又は、一部の成分のみ予め混合してフィダーを用いて押出機に供給して溶融混練して樹脂組成物を製造することもできる。
本発明の樹脂組成物から成形品を製造する方法は、特に限定されるものではなく、熱可塑性樹脂について一般に採用されている成形法、すなわち一般的な射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を用いた成形法、急速加熱金型を用いた成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法等を採用することができる。また、ホットランナー方式を用いた成形法を選択することもできる。
本発明に係る塗装部品は、上記のように樹脂組成物から製造した成形品を塗装してなるものであり、塗装に用いる、塗料の種類としては、例えば、ウレタン系(1液硬化型、2液硬化型)、アクリルウレタン系、エポキシ系、塩化ビニル−酢酸ビニル共重合系、アクリル系、アクリルアルキッド系、アミノアルキッド系塗料等が挙げられる。また、塗装方法としては、例えば、スプレー噴霧、刷毛塗り、浸漬法等が挙げられる。
また、本発明においては、廃棄物低減等の環境負荷低減やコスト低減の観点から、樹脂組成物から成形品を製造する際に、製品の不適合品、スプルー、ランナー、使用済みの製品等のリサイクル原料をバージン材料と混合してリサイクル、いわゆるマテリアルリサイクルすることができる。この際、リサイクル原料は、粉砕して使用することが成形品を製造する際に不具合を少なくできるので好ましい。
リサイクル原料の含有比率は、リサイクル原料とバージン原料の合計100重量%中、70重量%以下であることが好ましく、より好ましくは50重量%以下、さらに好ましくは30重量%以下である。
以下に実施例を示し、本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下の実施例及び比較例において、配合量は重量部を意味する。
実施例及び比較例の各樹脂組成物を得るに当たり、次に示す原料を準備した。
<芳香族ポリカーボネート樹脂:A成分>
PC−1:界面重合法で製造されたビスフェノールA型芳香族ポリカーボネート(三菱エンジニアリングプラスチックス社製「ユーピロンS−3000」、粘度平均分子量22500、末端水酸基濃度=150ppm)
PC−2:界面重合法で製造されたビスフェノールA型芳香族ポリカーボネート(三菱エンジニアリングプラスチックス社製「ユーピロンH−3000」、粘度平均分子量19000、末端水酸基濃度=150ppm)
<ポリブチレンテレフタレート樹脂:B成分>
PBT−1:製造例1
図1に示すエステル化工程と図3に示す重縮合工程を通し、次の要領でポリブチレンテレフタレート樹脂の製造を行った。先ずテレフタル酸1.00モルに対して、1,4−ブタンジオール1.80モルの割合で混合した60℃のスラリーをスラリー調製槽から原料供給ライン(1)を通じ、予め、エステル化率99%のポリブチレンテレフタレートオリゴマーを充填したスクリュー型攪拌機を有するエステル化のための反応槽(A)に、41.0kg/hとなる様に連続的に供給した。
同時に、再循環ライン(2)から185℃の精留塔(C)の塔底成分を17.2kg/hで供給し、触媒供給ライン(3)から触媒として65℃のテトラブチルチタネートの6.0重量%1,4−ブタンジオール溶液を97g/hで供給した(理論ポリマー収量に対し30ppm)。この溶液中の水分は0.20重量%であった。
反応槽(A)の内温は230℃、圧力は78kPaとし、生成する水とTHF及び余剰の1,4−ブタンジオールを、留出ライン(5)から留出させ、精留塔(C)で高沸成分と低沸成分とに分離した。系が安定した後の塔底の高沸成分は、98重量%以上が1,4−ブタンジオールであり、精留塔(C)の液面が一定になる様に、抜出ライン(8)を通じてその一部を外部に抜き出した。一方、低沸成分は塔頂よりガスの形態で抜き出し、コンデンサ(G)で凝縮させ、タンク(F)の液面が一定になる様に、抜出ライン(13)より外部に抜き出した。
反応槽(A)で生成したオリゴマーの一定量は、ポンプ(B)を使用し、抜出ライン(4)から抜き出し、反応槽(A)内液の平均滞留時間が3.0hrになる様に液面を制御した。抜出ライン4から抜き出したオリゴマーは、第1重縮合反応槽(a)に連続的に供給した。系が安定した後、反応槽(A)の出口で採取したオリゴマーのエステル化率は97.4%であった。
第1重縮合反応槽(a)の内温は240℃、圧力2.1kPaとし、滞留時間が120分になる様に液面制御を行った。減圧機(図示せず)に接続されたベントライン(L2)から、水、THF、1,4−ブタンジオールを抜き出しながら、初期重縮合反応を行った。抜き出した反応液は第2重縮合反応槽(d)に連続的に供給した。
第2重縮合反応槽(d)の内温は245℃、圧力130Paとし、滞留時間が90分になる様に液面制御を行い、減圧機(図示せず)に接続されたベントライン(L4)から、水、THF、1,4−ブタンジオールを抜き出しながら、更に重縮合反応を進めた。得られたポリマーは、抜出用ギヤポンプ(e)により抜出ライン(L3)を経由し、第3重縮合反応槽(k)に連続的に供給した。第3重縮合反応槽(k)の内温は240℃、圧力は130Pa、滞留時間は60分とし、更に、重縮合反応を進めた。
得られたポリマーは、ダイスヘッド(g)からストランド状に連続的に抜き出し、回転式カッター(h)でカッティングした。得られたポリブチレンテレフタレートの分析値をまとめて表1に示す。以下、製造例1で得られたポリブチレンテレフタレート樹脂をPBT−1と記す。
なお、製造例1における分析値は、以下の方法により測定したものである。
(1)エステル化率:
下記式によって酸価及びケン化価から算出した。酸価は、ジメチルホルムアミドにオリゴマーを溶解させ、0.1NのKOH/メタノール溶液を使用して滴定により求めた。
ケン化価は0.5NのKOH/エタノール溶液でオリゴマーを加水分解し、0.5Nの塩酸で滴定し求めた。
エステル化率 =((ケン化価−酸価)/ケン化価)×100
(2)ポリブチレンテレフタレート樹脂中のチタン原子及び1族、2族金属原子濃度:
電子工業用高純度硫酸及び硝酸でポリブチレンテレフタレート樹脂を湿式分解し、高分解能ICP(Inductively Coupled Plasma)−MS(MassSpectrometer;サーモクエスト社製)を使用して測定した。
(3)ポリブチレンテレフタレート樹脂の固有粘度(IV):
ウベローデ型粘度計を使用し次の要領で求めた。すなわち、フェノール/テトラクロロエタン(重量比1/1)の混合溶媒を使用し、30℃において、濃度1.0g/dLのポリマー溶液及び溶媒のみの落下秒数を測定し、下記式より求めた。
IV=((1+4Kηsp0.5−1)/(2KC)
(但し、ηsp=n/n−1であり、nはポリマー溶液落下秒数、nは溶媒の落下秒数、Cはポリマー溶液濃度(g/dL)、Kはハギンズの定数であり0.33とした。)
(4)ポリブチレンテレフタレート樹脂の末端カルボキシル基濃度:
ベンジルアルコール25mLにポリブチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定した。
(5)ポリブチレンテレフタレート樹脂の末端メトキシカルボニル基濃度:
重クロロホルム/ヘキサフルオロイソプロパノール=7/3(体積比)の混合溶媒1mLにポリブチレンテレフタレート樹脂約100mgを溶解させ、重ピリジン36μLを添加し、50℃でH−NMRを測定し求めた。NMR装置には日本電子(株)製「α−400」又は「AL−400」を使用した。
PBT−2:製造例2
重縮合工程を、図2に示す工程で実施し、PBT−1においてスラリーを41kg/hとなる様に供給し、再循環ライン(2)から精留塔(C)の塔底成分を17.2kg/hで供給し、触媒供給ライン(3)から触媒として65℃のテトラブチルチタネートの6.0重量%1,4−ブタンジオール溶液を97g/hで供給した(理論ポリマー収量に対し30ppm)した他は、PBT−1と同様にしてエステル化反応を行った。
さらに、第1重縮合反応槽(a)の圧力を2.1kPaとし、第2重縮合反応槽(d)の圧力を130Pa、滞留時間を90分とし、第3重縮合反応槽(k)を用いなかった他はPBT−1と同様に行った。得られたPBTの分析値はまとめて表1に示した。以下、製造例2で得られたポリブチレンテレフタレート樹脂をPBT−2と記す。
PBT−3:製造例3
反応器(A)でのエステル化工程はPBT−1と同様に行った。酢酸マグネシウム4水塩を純水に溶解させた後、1,4−ブタンジオールを添加し、酢酸マグネシウム4水塩、純水、1,4−ブタンジオールがそれぞれ、5重量%、20重量%、75重量%になるように、調製槽(図示せず)で調製した。この時の温度は、25℃であった。この溶液を、供給ライン(L7)を通じて、1,4−ブタンジオールのライン(L8)に供給し、さらに濃度の低い溶液としてオリゴマーの抜出ライン(4)に所定量を供給した。
第1重縮合反応器(a)の内温は246℃、圧力2.4kPa、滞留時間120分とし、第2重縮合反応器(d)の内温は239℃、圧力150Pa、滞留時間130分、第3重縮合反応器(k)の内温は238℃、圧力130Pa、滞留時間は70分とした。得られたPBTの分析値はまとめて表1に示した。以下、製造例3で得られたポリブチレンテレフタレート樹脂をPBT−3と記す。
PBT−4:製造例4
反応器(A)でのエステル化工程はPBT−1と同様に行い、重縮合工程は図2に示す工程を用いて行った。酢酸マグネシウム4水塩の添加方法及び第1重縮合反応槽(a)での反応条件はPBT−3と同様とし、第2重縮合反応槽(d)の内温は238℃、圧力200Pa、滞留時間が140分としてペレットを得た。得られたPBTの分析値はまとめて表1に示した。以下、製造例4で得られたポリブチレンテレフタレート樹脂をPBT−4と記す。
PBT−5:製造例5
反応器(A)でのエステル化工程はPBT−1と同様に行った。PBT−3の酢酸マグネシウム4水塩に換えて、酢酸リチウム2水塩、純水、1,4−ブタンジオールがそれぞれ、2.5重量%、20重量%、77.5重量%になるように、調製槽(図示せず)で調製し、この溶液を、供給ライン(L7)を通じて、1,4−ブタンジオールのライン(L8)に供給し、さらに濃度の低い溶液としてオリゴマーの抜出ライン(4)に所定量を供給した。第1重縮合反応器(a)の条件はPBT−3と同様に行い、第2重縮合反応器(d)の内温を241℃、第3重縮合反応器(k)の内温を242℃にした他はPBT−3と同様に重縮合反応を行った。得られたPBTの分析値はまとめて表1に示した。以下、製造例5で得られたポリブチレンテレフタレート樹脂をPBT−5と記す。
PBT−6:
PBT−6として、ウィンテックポリマー(株)製 ジュラネックス2002(商品名)、固有粘度IVが1.03dL/g、チタン原子含有量が78ppm、末端カルボキシル基濃度が54μeq/g、末端メトキシカルボニル基濃度が2μeq/gのポリブチレンテレフタレートを使用した。
<ゴム性重合体:C成分>
ポリブタジエン(コア)/アクリル酸アルキル・メタクリル酸アルキル共重合物(シェル)からなるコア/シェル型グラフト共重合体(ローム・アンド・ハース・ジャパン社製「EXL2603」)
<酸化チタン:D成分>
塩素法によって製造されたルチル型酸化チタンに、シリカアルミナ(無機処理)及びメチルハイドロジェンポリシロキサン(有機シリコーン化合物)処理したもの(石原産業社製「タイペークPC−3」)、粒径0.21μm
<紫外線吸収剤:E成分>
ベンゾトリアゾール系紫外線吸収剤:2−(3−tert−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール(チバスペシャルティー社製「チヌビン326」)
<リン系安定剤:F成分>
F−1:
化学式O=P(OH)n’(OC18373−n’(n’=1及び2の混合物)で表される有機ホスフェート化合物、旭電化工業社製「アデカスタブAX−71」
F−2:
ジステアリルペンタエリスリトールジホスファイト、旭電化工業社製「アデカスタブPEP−8」
<その他成分>
ヒンダードアミン系耐候性安定剤:1−[2−{3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−{3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、三共社製「サノールLS−2626」
[樹脂組成物の調製]
A〜F成分及びその他成分を表2に示す割合にてタンブラーミキサーで均一に混合した後、二軸押出機(日本製鋼所社製、TEX30XCT、L/D=42、バレル数12)を用いて、シリンダー温度270℃、スクリュー回転数200rpmにてバレル1より押出機にフィードし溶融混練することにより樹脂組成物のペレットを作製した。
[試験片の作製]
上記の方法で得られたペレットを、110℃で4時間以上乾燥した後、名機製作所製のM150AII−SJ型射出成形機を用いて、シリンダー温度270℃、金型温度80℃、成形サイクル55秒の条件で、ASTM試験片を作成した。
[評価方法]
(1)流動性(Q値)
高化式フローテスターを用いて、280℃、荷重160kgf/cmの条件下で組成物の単位時間あたりの流出量Q値(単位:cc/s)を測定し、流動性を評価した。なお、オリフィスは直径1mm×長さ10mmのものを使用した。Q値が高いほど、流動性に優れていることを示す。
(2)剛性(曲げ弾性率)
ASTM D790に準拠して、厚さ6.4mmの試験片を用いて、23℃において測定した。
(3)耐衝撃性(Izod衝撃強度)
ASTM D256に準拠して、厚み3.2mmのノッチ付き試験片を用いて、23℃においてIzod衝撃強度(単位:J/m)を測定した。
(4)耐候性(耐侯促進試験)
JIS D0205に準拠したスガ試験機(株)のサンシャインウェザー試験機を用いて、厚み3.2mmの平板成形品をブラックパネル温度63℃、雨噴霧12分/60分の条件にて、240時間処理した。処理前後の色相を、ASTM−E1925に準じた日本電色工業社製の色差計(形式:SE−2000)にて測定し、色相変化△Eをもとめた。△Eの値が、小さい方程、変色しにくい事をしめす。
(5)疲労特性(曲げ疲労破壊)
ASTM D671に準拠して、Type1試験片を用い、23℃、実応力14MPaで試験を行い、破壊に至る回数で評価した。
(6)塗装性(塗膜の密着性試験)
大日本塗料(株)製 ウレタン系塗料(商品名;Vトップ 2液型白色塗料)の主剤及び硬化剤を4:1の重量比で計量・混合し、主剤と硬化剤の合計を100重量部として、当該塗料用シンナーを40重量部で希釈した。この塗料希釈液を厚み3.2mmの平板成形品上に30μmの塗装膜厚になる様、スプレー噴霧し、100℃で30分書き付け処理を行ったのち、塗装が施された塗装部品を得た。この塗装部品の塗装面に、カッターナイフで1mm間隔にて11本の切り目を直交させ、100個のゴバン目を形成し、これにニチバンセロハンテープを密着させた後、直角方向に急激に剥離した。この時に剥がれなかった目数を分子とし、最初に形成したゴバン目の数(ここでは100)を分母として評価した。100/100が望ましい。
(7)塗装後の耐衝撃性(低温及び高速度下での面衝撃強度)
(6)と同様の塗装部品を雰囲気温度−30℃保持し、ASTM D−3763に準拠した(株)島津製作所製高速パンクチャー衝撃試験機(商品名:ハイドロショット)使用して、5m/secの一定打撃速度で破壊試験を実施した。破壊に至るまで変位量と荷重曲線から破壊エネルギー値を求めた。破壊エネルギーの単位をJ(ジュール)で示した。
[実施例1〜10、比較例1〜6]
表2に記載の各々の樹脂組成物を製造し、上述の方法により評価した。結果を表2に示す。
Figure 2008285529
Figure 2008285529
表2に示した結果より、以下のことが判る。本発明の実施例1〜10に記載の塗装部品製造用芳香族ポリカーボネート樹脂組成物は、流動性、耐衝撃性(塗装の有無によらない)、剛性、耐候性、疲労特性、塗装性のバランスに優れた材料である。
一方、比較例1の組成物は、紫外線吸収剤(E成分)を含まないため、実施例と比較して耐候性が劣る。比較例2及び3の組成物は、ゴム性重合体(C成分)の含有量が本発明の範囲外であり、特に耐衝撃性の面で劣る。さらに、比較例5及び6の組成物は、ゴム性重合体(C成分)の含有量が本発明の範囲外である他に、酸化チタン(D成分)との重量比も範囲外となることから、比較例5においては耐衝撃性が劣り、比較例6では耐候性が劣る結果となる。
そして、比較例4の組成物は、ゴム性重合体(C成分)と酸化チタン(D成分)との重量比が本発明の範囲外であり、実施例の組成物と比較して、耐候性が劣る。
エステル化反応工程又はエステル交換反応工程の一例説明図 重縮合工程の一例の説明図 重縮合工程の一例の説明図
符号の説明
1:原料供給ライン
2:再循環ライン
3:触媒供給ライン
4:抜出ライン
5:留出ライン
6:抜出ライン
7:循環ライン
8:抜出ライン
9:ガス抜出ライン
10:凝縮液ライン
11:抜出ライン
12:循環ライン
13:抜出ライン
14:ベントライン
A:反応槽
B:抜出ポンプ
C:精留塔
D:ポンプ
E:ポンプ
F:タンク
G:コンデンサ
L1:抜出ライン
L3:抜出ライン
L5:抜出ライン
L2:ベントライン
L4:ベントライン
L6:ベントライン
L7:1族/2族金属化合物触媒供給ライン
L8:1,4−ブタンジオール供給ライン
a:第1重縮合反応槽
d:第2重縮合反応槽
k:第3重縮合反応槽
c:抜出用ギヤポンプ
e:抜出用ギヤポンプ
m:抜出用ギヤポンプ
g:ダイスヘッド
h:回転式カッター

Claims (15)

  1. 芳香族ポリカーボネート樹脂(A成分)51〜99重量部、ポリブチレンテレフタレート樹脂(B成分)1〜49重量部を含む芳香族ポリカーボネート樹脂組成物であって、芳香族ポリカーボネート樹脂(A成分)とポリブチレンテレフタレート樹脂(B成分)の合計100重量部に対して、ゴム性重合体(C成分)を11〜25重量部、酸化チタン(D成分)を1〜5重量部、紫外線吸収剤(E成分)を0.01〜3重量部、及びリン系安定剤(F成分)を0.001〜1重量部含有し、かつ、ゴム性重合体(C成分)と酸化チタン(D成分)の重量比が5〜10である塗装部品製造用樹脂組成物。
  2. ポリブチレンテレフタレート樹脂(B成分)におけるチタン化合物含有量が、チタン原子として1ppmを超えて75ppm以下で且つ、末端カルボキシル基濃度が39μeq/g以下であることを特徴とする請求項1に記載の塗装部品製造用樹脂組成物。
  3. ポリブチレンテレフタレート樹脂(B成分)が、更に1族金属化合物及び/又は2族金属化合物を含有し、1族金属化合物及び/又は2族金属化合物の含有量が、その金属原子換算で1ppmを超えて50ppm以下であることを特徴とする請求項1又は2に記載の塗装部品製造用樹脂組成物。
  4. ポリブチレンテレフタレート樹脂(B成分)の末端メトキシカルボニル基濃度が0.5μeq/g以下であることを特徴とする請求項1乃至3のいずれかに記載の塗装部品製造用樹脂組成物。
  5. ポリブチレンテレフタレート樹脂(B成分)のチタン化合物の含有量が、チタン原子として20ppmを超えて50ppm以下であることを特徴とする請求項1乃至4のいずれかに記載の塗装部品製造用樹脂組成物。
  6. ポリブチレンテレフタレート樹脂(B成分)の末端カルボキシル基濃度が10〜30μeq/gであることを特徴とする請求項1乃至5のいずれかに記載の塗装部品製造用樹脂組成物。
  7. ポリブチレンテレフタレート樹脂(B成分)が2族金属化合物としてマグネシウム化合物を含有することを特徴とする請求項3乃至6のいずれかに記載の塗装部品製造用樹脂組成物。
  8. 芳香族ポリカーボネート樹脂(A成分)55〜90重量部に対して、ポリブチレンテレフタレート樹脂(B成分)10〜45重量部を含有することを特徴とする請求項1乃至7のいずれかに記載の塗装部品製造用樹脂組成物。
  9. ゴム性重合体(C成分)が、コア/シェル型グラフト共重合体であることを特徴とする請求項1乃至8のいずれかに記載の塗装部品製造用樹脂組成物。
  10. ゴム性重合体(C成分)の含有量が、ポリカーボネート樹脂(A成分)とポリブチレンテレフタレート樹脂(B成分)との合計100重量部に対して、15〜20重量部であることを特徴とする請求項1乃至9のいずれかに記載の塗装部品製造用樹脂組成物。
  11. 紫外線吸収剤(E成分)がベンゾトリアゾール系紫外線吸収剤である請求項1乃至10のいずれかに記載の塗装部品製造用樹脂組成物。
  12. ヒンダードアミン系耐候性安定剤を、ポリカーボネート樹脂(A成分)とポリブチレンテレフタレート樹脂(B成分)の合計100重量部に対して、0.01〜3重量部含有することを特徴とする請求項1乃至11のいずれかに記載の塗装部品製造用樹脂組成物。
  13. リン系熱安定剤(F成分)が、下記一般式(I)で表される有機ホスフェート化合物である請求項1乃至12のいずれかに記載の塗装部品製造用樹脂組成物。
    O=P(OH)(OR)3−m ・・・(I)
    (一般式(I)中、Rはアルキル基又はアリール基であり、それぞれ同一であっても異なっていてもよい。mは0〜2の整数である。)
  14. 芳香族ポリカーボネート樹脂(A成分)の粘度平均分子量〔Mv〕が、15000〜25000であることを特徴とする請求項1乃至13のいずれかに記載の塗装部品製造用樹脂組成物。
  15. 請求項1乃至14のいずれかに記載の塗装部品製造用樹脂組成物を成形してなる成形品を、塗装してなる塗装部品。
JP2007129785A 2007-05-15 2007-05-15 塗装部品製造用樹脂組成物及び塗装部品 Active JP4946620B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129785A JP4946620B2 (ja) 2007-05-15 2007-05-15 塗装部品製造用樹脂組成物及び塗装部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129785A JP4946620B2 (ja) 2007-05-15 2007-05-15 塗装部品製造用樹脂組成物及び塗装部品

Publications (2)

Publication Number Publication Date
JP2008285529A true JP2008285529A (ja) 2008-11-27
JP4946620B2 JP4946620B2 (ja) 2012-06-06

Family

ID=40145585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129785A Active JP4946620B2 (ja) 2007-05-15 2007-05-15 塗装部品製造用樹脂組成物及び塗装部品

Country Status (1)

Country Link
JP (1) JP4946620B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138314A (ja) * 2008-12-12 2010-06-24 Nitto Denko Corp 塗膜保護シート
JP2010144173A (ja) * 2008-12-19 2010-07-01 Cheil Industries Inc ポリエステル/ポリカーボネートアロイ樹脂組成物及びこれを用いた成形品
WO2012111718A1 (ja) * 2011-02-16 2012-08-23 三菱化学株式会社 ポリカーボネート樹脂組成物及び成形品
JP2013224380A (ja) * 2012-04-23 2013-10-31 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート系複合樹脂組成物及び成形品
KR101395122B1 (ko) 2012-08-24 2014-05-20 주식회사 원풍 축광력이 향상된 광고용 소재 및 그의 제조방법
CN104387741A (zh) * 2014-11-28 2015-03-04 上海锦湖日丽塑料有限公司 一种高耐疲劳性pc/pbt合金组合物及其制备方法
JP2015510524A (ja) * 2011-12-29 2015-04-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 改良された接着性を有するポリマー組成物
JP2017206683A (ja) * 2016-04-28 2017-11-24 ランクセス・ドイチュランド・ゲーエムベーハー ポリブチレンテレフタレート組成物
KR101843937B1 (ko) * 2016-03-18 2018-03-30 김성빈 폴리에스테르 수지 조성물
JP2018178019A (ja) * 2017-04-18 2018-11-15 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306256A (ja) * 1991-04-03 1992-10-29 Teijin Chem Ltd 樹脂組成物
JPH07242804A (ja) * 1994-03-08 1995-09-19 Mitsubishi Gas Chem Co Inc 樹脂組成物
JPH09157512A (ja) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
JP2004018558A (ja) * 2002-06-12 2004-01-22 Mitsubishi Chemicals Corp ポリブチレンテレフタレート系樹脂及び熱可塑性樹脂組成物
JP2004277720A (ja) * 2003-02-28 2004-10-07 Mitsubishi Chemicals Corp ポリブチレンテレフタレート及びポリブチレンテレフタレート組成物
JP2005120322A (ja) * 2003-10-20 2005-05-12 Mitsubishi Engineering Plastics Corp 導電性熱可塑性樹脂組成物
JP2006199817A (ja) * 2005-01-20 2006-08-03 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306256A (ja) * 1991-04-03 1992-10-29 Teijin Chem Ltd 樹脂組成物
JPH07242804A (ja) * 1994-03-08 1995-09-19 Mitsubishi Gas Chem Co Inc 樹脂組成物
JPH09157512A (ja) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk 難燃性樹脂組成物
JP2004018558A (ja) * 2002-06-12 2004-01-22 Mitsubishi Chemicals Corp ポリブチレンテレフタレート系樹脂及び熱可塑性樹脂組成物
JP2004277720A (ja) * 2003-02-28 2004-10-07 Mitsubishi Chemicals Corp ポリブチレンテレフタレート及びポリブチレンテレフタレート組成物
JP2005120322A (ja) * 2003-10-20 2005-05-12 Mitsubishi Engineering Plastics Corp 導電性熱可塑性樹脂組成物
JP2006199817A (ja) * 2005-01-20 2006-08-03 Toray Ind Inc 熱可塑性樹脂組成物およびそれからなる成形品

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138314A (ja) * 2008-12-12 2010-06-24 Nitto Denko Corp 塗膜保護シート
JP2010144173A (ja) * 2008-12-19 2010-07-01 Cheil Industries Inc ポリエステル/ポリカーボネートアロイ樹脂組成物及びこれを用いた成形品
WO2012111718A1 (ja) * 2011-02-16 2012-08-23 三菱化学株式会社 ポリカーボネート樹脂組成物及び成形品
JP2012184415A (ja) * 2011-02-16 2012-09-27 Mitsubishi Chemicals Corp ポリカーボネート樹脂組成物及び成形品
US9670359B2 (en) 2011-02-16 2017-06-06 Mitsubishi Chemical Corporation Polycarbonate resin composition and molded article
JP2015510524A (ja) * 2011-12-29 2015-04-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 改良された接着性を有するポリマー組成物
KR101485338B1 (ko) 2012-04-23 2015-01-23 미쓰비시 엔지니어링-플라스틱스 코포레이션 방향족 폴리카보네이트계 복합 수지 조성물 및 성형품
WO2013161433A1 (ja) * 2012-04-23 2013-10-31 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート系複合樹脂組成物及び成形品
US9534115B2 (en) 2012-04-23 2017-01-03 Mitsubishi Engineering-Plastics Corporation Aromatic polycarbonate composite resin composition and molded article
JP2013224380A (ja) * 2012-04-23 2013-10-31 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート系複合樹脂組成物及び成形品
KR101395122B1 (ko) 2012-08-24 2014-05-20 주식회사 원풍 축광력이 향상된 광고용 소재 및 그의 제조방법
CN104387741A (zh) * 2014-11-28 2015-03-04 上海锦湖日丽塑料有限公司 一种高耐疲劳性pc/pbt合金组合物及其制备方法
KR101843937B1 (ko) * 2016-03-18 2018-03-30 김성빈 폴리에스테르 수지 조성물
JP2017206683A (ja) * 2016-04-28 2017-11-24 ランクセス・ドイチュランド・ゲーエムベーハー ポリブチレンテレフタレート組成物
JP2018178019A (ja) * 2017-04-18 2018-11-15 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品

Also Published As

Publication number Publication date
JP4946620B2 (ja) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4946620B2 (ja) 塗装部品製造用樹脂組成物及び塗装部品
JP2009001619A (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
JP3122721B2 (ja) ポリカーボネート組成物およびその製造方法
JP4983427B2 (ja) 熱可塑性樹脂組成物および樹脂成形品
US9499661B2 (en) Process for producing highly polymerized aromatic polycarbonate resin
JP5282379B2 (ja) 黒色樹脂組成物および樹脂成形体
JP4915155B2 (ja) 光反射性樹脂組成物およびこれを成形してなる光反射性部材
JP2007106984A (ja) 樹脂組成物および樹脂成形体
JP2010106171A (ja) 芳香族ポリカーボネート樹脂組成物
US9458290B2 (en) Process for preparing highly polymerized aromatic polycarbonate resin
JP2007204650A (ja) 熱可塑性樹脂組成物および樹脂成形品
JP6131961B2 (ja) 芳香族ポリカーボネート樹脂組成物
JP2007176969A (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
JP5141053B2 (ja) 樹脂組成物および樹脂成形体
JP2015189905A (ja) 芳香族ポリカーボネート樹脂組成物
JP5258164B2 (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
JP5423835B2 (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
JP2002294060A (ja) 熱可塑性樹脂組成物
JP6314600B2 (ja) 芳香族ポリカーボネート樹脂組成物
JP2007176971A (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
WO2006004005A1 (ja) 熱可塑性樹脂組成物および成形体
JP2007176970A (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
JP2009001621A (ja) 熱可塑性樹脂組成物および樹脂成形品
WO2007074603A1 (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
JPH09216995A (ja) 透明なポリエステル/ポリカーボネート組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4946620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250