[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008280857A - Heat and cold simultaneous generation system - Google Patents

Heat and cold simultaneous generation system Download PDF

Info

Publication number
JP2008280857A
JP2008280857A JP2007123419A JP2007123419A JP2008280857A JP 2008280857 A JP2008280857 A JP 2008280857A JP 2007123419 A JP2007123419 A JP 2007123419A JP 2007123419 A JP2007123419 A JP 2007123419A JP 2008280857 A JP2008280857 A JP 2008280857A
Authority
JP
Japan
Prior art keywords
boiler
steam
superheater
heat
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007123419A
Other languages
Japanese (ja)
Other versions
JP4729748B2 (en
Inventor
Hirohide Furuya
博秀 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007123419A priority Critical patent/JP4729748B2/en
Publication of JP2008280857A publication Critical patent/JP2008280857A/en
Application granted granted Critical
Publication of JP4729748B2 publication Critical patent/JP4729748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat and cold simultaneous generation system improved in steam utilization efficiency, which obtains heat and cold simultaneously. <P>SOLUTION: The heat and cold simultaneous generation system has a boiler, a superheater, a steam turbine, and an expander. The system is provided with a compressor for the superheater and a compressor for the boiler, both driven by the power generated by the steam turbine and expander. The superheater heats steam generated by the boiler by causing the combustor for superheater to burn the air supplied from the compressor for superheater and the fuel for superheater; the combustor for boiler introduces combustion gas from the superheater and air supplied from the compressor for boiler and burns them with the fuel for boiler, thereby causing the boiler to generate steam; and the above superheater heats the steam. The heated steam is led to the steam turbine to drive the steam turbine and the exhaust gas emitted from the boiler is led to the expander to drive the expander. The steam emitted from the steam turbine and the gas emitted from the expander are made available as the heat and cold, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、食品工場など温熱と冷熱を同時に利用する現場で便利な温熱・冷熱同時発生システムに関し、特に、投入燃料以上の熱量を発生することのできる温熱・冷熱同時発生システムに関する。   The present invention relates to a simultaneous hot / cold heat generation system that is convenient in the field such as a food factory where heat and cold are used at the same time, and more particularly, to a simultaneous hot / cold heat generation system capable of generating an amount of heat that is greater than the input fuel.

従来、小型貫流ボイラで蒸気を生成し、その蒸気を蒸気利用設備で利用することが知られている。例えば、食品工場等では小型貫流ボイラで生成された0.3MPa程度の低圧の蒸気を蒸気釜等で利用している。また、特許文献1及び2には、マイクロガスタービンと小型貫流ボイラとを備えた熱電併給システムが開示されている。この特許文献1、2の小型貫流ボイラは、発電を行うマイクロガスタービンからの排ガスで燃料を燃焼するものであり、この小型貫流ボイラで生成された蒸気を蒸気供給路を通して蒸気利用設備へ供給するようにしている。   Conventionally, it is known that steam is generated by a small once-through boiler, and the steam is used in a steam utilization facility. For example, in a food factory or the like, low-pressure steam of about 0.3 MPa generated by a small once-through boiler is used in a steam pot or the like. Patent Documents 1 and 2 disclose a combined heat and power system including a micro gas turbine and a small once-through boiler. The small once-through boilers of Patent Documents 1 and 2 burn fuel with exhaust gas from a micro gas turbine that generates power, and supply steam generated by the small once-through boiler to steam utilization equipment through a steam supply path. I am doing so.

また、小型貫流ボイラで生成される蒸気の利用効率を向上させるため、小型貫流ボイラによって構成されるボイラ手段と、小型貫流ボイラで生成された蒸気を過熱する蒸気過熱器と、該蒸気過熱器で過熱された過熱蒸気によって駆動される蒸気タービンと、該蒸気タービンの駆動に伴って発電を行う発電機とを備えた発電システムとを備え、蒸気利用設備は、蒸気タービンからの排出蒸気が導入されるように構成されているコージェネレーションシステムが知られている(特許文献3参照)。
特開2004−108150号公報 特開2004−108274号公報 特開2006−329119号公報
Further, in order to improve the utilization efficiency of the steam generated in the small once-through boiler, boiler means constituted by the small once-through boiler, a steam superheater that superheats the steam generated in the small once-through boiler, and the steam superheater A steam turbine driven by superheated superheated steam, and a power generation system that includes a generator that generates electric power as the steam turbine is driven. A cogeneration system configured as described above is known (see Patent Document 3).
JP 2004-108150 A JP 2004-108274 A JP 2006-329119 A

特許文献1及び2に記載の発明は、マイクロガスタービンの排ガスを利用して小型貫流ボイラで蒸気を生成し、その蒸気を蒸気利用設備で利用するものである。 しかしながら、この発明においては、小型貫流ボイラで生成された蒸気の利用効率をさらに向上できる余地が残されている。また、小型貫流ボイラでは、ゲージ圧で1.0MPa以下で使用可能なので、0.3MPa程度の低圧の蒸気を利用する場合において、蒸気の利用効率をさらに向上できる余地がある。
また、特許文献3記載の発明では、小型貫流ボイラで生成された蒸気を蒸気利用設備で利用される前に利用して発電を行うようにしているので、小型貫流ボイラで生成された蒸気の利用効率を向上することができるが、供給熱量以上の電力および温熱を得ることはできない。
In the inventions described in Patent Documents 1 and 2, steam is generated by a small once-through boiler using the exhaust gas of a micro gas turbine, and the steam is used by a steam utilization facility. However, in this invention, the room which can improve further the utilization efficiency of the steam produced | generated with the small once-through boiler remains. In addition, since the small once-through boiler can be used at a gauge pressure of 1.0 MPa or less, there is room for further improving the steam utilization efficiency when using steam at a low pressure of about 0.3 MPa.
Moreover, in invention of patent document 3, since it is made to generate electric power using the steam produced | generated by the small once-through boiler before using with a steam utilization equipment, utilization of the steam produced | generated by the small once-through boiler is used. Although efficiency can be improved, it is not possible to obtain more power and heat than the amount of heat supplied.

そこで、本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、蒸気の利用効率を向上するとともに、供給熱量以上の温熱および冷熱を同時に得ることのできる温熱・冷熱同時発生システムを提供することを目的とする。   Accordingly, the present invention has been made in view of the above points, and the object of the present invention is to improve the efficiency of steam utilization and to simultaneously obtain hot and cold heat that can simultaneously obtain hot and cold heat exceeding the amount of heat supplied. It aims to provide a generation system.

〔原理〕本発明の原理は以下のとおりである。
(1)蒸気タービンに供給する蒸気を加熱する過熱器から出る排ガスをボイラ用燃焼器の吸気に混入させることにより、実質的に高い熱効率を実現する。
(2)蒸気タービンおよび膨張機から発生する動力を利用して過熱器用燃焼器およびボイラ用燃焼器に供給する空気を圧縮し、圧縮してから燃焼させることにより、過熱器用燃焼器およびボイラ用燃焼器に投入する燃料の発熱量以上の熱量を取り出すことができる。
(3)過熱器用燃焼器およびボイラ用燃焼器の排ガスを膨張機に導き、圧縮機の駆動動力を補い、同時に冷熱を供給する。
[Principle] The principle of the present invention is as follows.
(1) A substantially high thermal efficiency is realized by mixing the exhaust gas emitted from the superheater that heats the steam supplied to the steam turbine into the intake air of the boiler combustor.
(2) Combustion for the superheater and boiler by compressing the air supplied to the combustor for the superheater and the boiler combustor using the power generated from the steam turbine and the expander, and then compressing and combusting. The amount of heat that is greater than the calorific value of the fuel that is put into the container can be extracted.
(3) The exhaust gas of the combustor for the superheater and the combustor for the boiler is guided to the expander, supplementing the driving power of the compressor, and simultaneously supplying cold heat.

〔手段〕上記目的を達成するため、本発明の温熱・冷熱同時発生システムは、蒸気を生成するボイラ、該ボイラからの蒸気を加熱する過熱器、加熱された蒸気で駆動される蒸気タービンおよびボイラから排出される排ガスで駆動される膨張機を備え、前記蒸気タービンおよび前記膨張機の発生する動力で駆動される過熱器用圧縮機およびボイラ用圧縮機を設け、過熱器用圧縮機から供給される空気と過熱器用燃料とを過熱器用燃焼器で燃焼させることにより前記過熱器において前記ボイラで生成される蒸気を加熱し、前記過熱器からの燃焼ガスと前記ボイラ用圧縮機から供給される空気とをボイラ用燃焼器に導きボイラ用燃料との燃焼によって前記ボイラで蒸気を生成し、該蒸気を前記過熱器で加熱して前記蒸気タービンに導き蒸気タービンを駆動するとともに、前記ボイラから排出される排ガスを前記膨張機に導き膨張機を駆動し、前記蒸気タービンから排出される蒸気を温熱として、また、前記膨張機から排出されるガスを冷熱として利用可能とすることを特徴としている。 [Means] To achieve the above object, a system for simultaneously generating heat and cold according to the present invention comprises a boiler for generating steam, a superheater for heating steam from the boiler, a steam turbine driven by the heated steam, and a boiler Provided with an expander driven by exhaust gas discharged from the superheater compressor and boiler compressor driven by power generated by the steam turbine and the expander, and supplied from the superheater compressor And the superheater fuel are combusted in the superheater combustor to heat the steam generated in the boiler in the superheater, and the combustion gas from the superheater and the air supplied from the boiler compressor are Steam is generated in the boiler by being guided to the boiler combustor and is burned with the fuel for the boiler, and the steam is heated by the superheater and led to the steam turbine. Drives exhaust gas discharged from the boiler to the expander and drives the expander, and steam discharged from the steam turbine can be used as hot heat, and gas discharged from the expander can be used as cold heat It is characterized by that.

本発明は、以下のような優れた効果を奏する。
(1)蒸気タービン前の過熱器の排気をボイラ用燃焼器の吸気に混入させることによって過熱器からの廃熱を無駄にせずかつ、効率よく利用し、全体のロスを低減している。
(2)過熱器用燃焼器およびボイラ用燃焼器の前で吸気を圧縮することにより、ヒートポンプと同様の効果をもたらすことが出来、これに燃料による熱を供給することにより現実的な熱交換器の大きさで従来超えられなかった効率を超えて熱を発生することができる。この圧縮機の動力については過熱器とボイラの各排気の圧力エネルギーを膨張器で回収すると共に、マイクロ蒸気タービンから動力を回収することによって、従来の95%の効率のボイラと比較して10から20%の効率向上が可能となり、同時に冷熱を発生することが可能となる。
(3)燃料の持つ発熱量以上の温熱を発生することが出来る。
通常、蒸気を燃焼により作る場合、燃料の発熱量から見て1を大きく超えることは難しい。これを本発明に係るシステムを利用することによって熱交換器を極端に増大することなく1を超える熱量を作り出すことが出来る。これは、省エネルギーに対して非常に効果的である。
(4)食品工場などで必要とされる温熱と冷熱とを同時に発生することができる。
The present invention has the following excellent effects.
(1) By mixing exhaust gas from the superheater before the steam turbine into the intake air of the boiler combustor, waste heat from the superheater is not wasted and efficiently used, and the overall loss is reduced.
(2) By compressing the intake air in front of the combustor for the superheater and the combustor for the boiler, it is possible to bring about the same effect as the heat pump. Heat can be generated in excess of efficiency that was previously unacceptable in size. With regard to the power of this compressor, the pressure energy of each exhaust gas of the superheater and the boiler is recovered by an expander, and by recovering the power from the micro steam turbine, the compressor power is increased from 10 compared with a conventional 95% efficiency boiler. The efficiency can be improved by 20%, and at the same time, cold heat can be generated.
(3) It is possible to generate warm heat exceeding the calorific value of the fuel.
Usually, when steam is produced by combustion, it is difficult to greatly exceed 1 in view of the calorific value of the fuel. By utilizing the system according to the present invention, it is possible to produce a heat quantity exceeding 1 without extremely increasing the heat exchanger. This is very effective for energy saving.
(4) It is possible to simultaneously generate hot and cold heat required in a food factory or the like.

本発明に係る温熱・冷熱同時発生システムの最良の形態を図面を参照しながら詳細に説明する。図1において、流量(t/h、kg/h)、圧力(kPa)、温度(℃)および入力・出力(kw)等を示す数値は、1例としてシステム計算を実施した際の数値である。   The best mode of the simultaneous hot / cold heat generation system according to the present invention will be described in detail with reference to the drawings. In FIG. 1, numerical values indicating flow rate (t / h, kg / h), pressure (kPa), temperature (° C.), input / output (kW), etc. are numerical values when system calculation is performed as an example. .

図1は、本発明の実施形態に係る温熱・冷熱同時発生システムの全体構成を示す系統図である。
この温熱・冷熱同時発生システムは、水ポンプ13、ボイラ6、過熱器1、蒸気タービン20および温熱利用設備21を連通する蒸気通路30を備えている。
この蒸気通路30は、ボイラ6で生成された蒸気を蒸気タービン20を介して温熱利用設備21へ導くための経路であり、水配管22a、第1蒸気配管22b、第2蒸気配管22cおよび第3蒸気配管22dを備えている。なお、配管中に適宜設けられる開閉弁については、図示を省略している。
FIG. 1 is a system diagram showing the overall configuration of a system for simultaneously generating heat and cold according to an embodiment of the present invention.
This simultaneous heat / cold heat generation system includes a steam passage 30 that communicates the water pump 13, the boiler 6, the superheater 1, the steam turbine 20, and the heat utilization equipment 21.
The steam passage 30 is a path for guiding the steam generated in the boiler 6 to the heat utilization facility 21 via the steam turbine 20, and includes a water pipe 22a, a first steam pipe 22b, a second steam pipe 22c, and a third pipe. A steam pipe 22d is provided. In addition, about the on-off valve suitably provided in piping, illustration is abbreviate | omitted.

水ポンプ13は、例えば、3t/hの水14を827kPaの圧力でボイラ6に供給可能に設計されている。また、ボイラ6は、例えば、1つまたは複数の小型貫流ボイラによって構成され、温度167℃、圧力788kPaの蒸気(飽和蒸気)15を生成する。小型貫流ボイラ6は、使用圧力が1MPa以下で伝熱面積が10m以下の貫流ボイラで、熱効率が95%以上と高く、ボイラ技士免許が不要であるなどの利便性から、食品、製紙、化学、繊維業界などの中小工場を中心に導入されている。この小型貫流ボイラの発生した蒸気の利用条件は、流量が2t/h〜20t/h、圧力が1MPaまでの範囲で利用される。 The water pump 13 is designed so that, for example, 3 t / h of water 14 can be supplied to the boiler 6 at a pressure of 827 kPa. Moreover, the boiler 6 is comprised by one or several small once-through boiler, for example, and produces | generates the steam (saturated steam) 15 of temperature 167 degreeC and pressure 788 kPa. The small once-through boiler 6 is a once-through boiler with a working pressure of 1 MPa or less and a heat transfer area of 10 m 2 or less, a high thermal efficiency of 95% or more, and a boiler engineer's license is not required. Introduced mainly in small and medium factories such as the textile industry. The use conditions of the steam generated by this small once-through boiler are used in a range where the flow rate is 2 t / h to 20 t / h and the pressure is 1 MPa.

ボイラ6の下流側に設置される過熱器1には、ボイラ6で生成された飽和蒸気15が導入され、後述する過熱器用燃焼器5の熱で加熱され、温度218℃、圧力750kPaの蒸気となる。   Saturated steam 15 generated in the boiler 6 is introduced into the superheater 1 installed on the downstream side of the boiler 6, heated by the heat of the superheater combustor 5 described later, and steam having a temperature of 218 ° C. and a pressure of 750 kPa Become.

過熱器1で加熱された蒸気は、第2蒸気配管22cを介して小型の蒸気タービン20に導入され、該蒸気タービン20を駆動した後、温度127℃、圧力250kPaの蒸気となり、温熱利用設備21へ導へ導かれる。
蒸気タービン20は、翼車に蒸気が円周方向から入るように構成されるとともに、この蒸気が軸方向に出るように構成されており、断熱効率が77%で136.5kwの発電を行うことができる。
The steam heated by the superheater 1 is introduced into the small steam turbine 20 through the second steam pipe 22c, and after driving the steam turbine 20, the steam becomes a steam having a temperature of 127 ° C. and a pressure of 250 kPa. Led to
The steam turbine 20 is configured such that steam enters the impeller from the circumferential direction, and is configured such that the steam exits in the axial direction, and performs heat generation of 136.5 kw with a heat insulation efficiency of 77%. Can do.

温熱利用設備21は、第3蒸気配管22dから導入された蒸気によって例えば常温の上水を加熱したり、食品を蒸すことができるように構成されている。   The heat utilization facility 21 is configured to be able to heat, for example, room temperature clean water or steam food using steam introduced from the third steam pipe 22d.

また、この温熱・冷熱同時発生システムは、過熱器用圧縮機3、過熱器用燃焼器5、過熱器1からボイラ用燃焼器8に至る加熱ガス通路40と、ボイラ用圧縮機11、ボイラ用燃焼器8、ボイラ6、気液分離器17、膨張機18及び冷熱利用設備23を連通する蒸気生成用ガス通路50と備えている。   Further, this simultaneous heating / cooling system includes a superheater compressor 3, a superheater combustor 5, a heating gas passage 40 from the superheater 1 to the boiler combustor 8, a boiler compressor 11, and a boiler combustor. 8, a steam generation gas passage 50 communicating with the boiler 6, the gas-liquid separator 17, the expander 18, and the cold utilization facility 23 is provided.

前記加熱ガス通路40は、例えば、圧力100kPa、温度25℃、流量180.8kg/hの空気2を過熱器用圧縮機3で圧縮して、温度284.5℃の圧縮された圧縮空気と燃料である流量9.8kg/hのメタンガス4とを過熱器用燃焼器5で燃焼させ、2205℃の高温ガスとなって過熱器1に供給され、過熱器1においてボイラ6で生成された飽和蒸気15を加熱するとともに、ボイラ用燃焼器8に導入され、その熱源となるものであり、空気配管40a、第1加熱ガス配管40bおよび第2加熱ガス配管40cを備えている。   For example, the heated gas passage 40 compresses the air 2 having a pressure of 100 kPa, a temperature of 25 ° C., and a flow rate of 180.8 kg / h by the superheater compressor 3, and is compressed by compressed air and fuel having a temperature of 284.5 ° C. The methane gas 4 having a flow rate of 9.8 kg / h is combusted in the superheater combustor 5 and is supplied to the superheater 1 as a high-temperature gas of 2205 ° C. The saturated steam 15 generated in the boiler 6 in the superheater 1 is supplied. While heating, it introduce | transduces into the combustor 8 for boilers, becomes the heat source, and is provided with the air piping 40a, the 1st heating gas piping 40b, and the 2nd heating gas piping 40c.

また、蒸気生成用ガス通路50は、例えば、圧力100kPa、温度25℃、流量2800kg/hの空気10をボイラ用圧縮機11で圧縮して、温度284.5℃に圧縮された圧縮空気と燃料である流量130kg/hのメタンガス12とをボイラ用燃焼器8で燃焼させ、1877℃の高温ガスとなってボイラ6に供給され、該ボイラ6から温度46℃のボイラ排ガス16となって排出され、気液分離器17で278.9kg/hの水を分離した後、ガスタービン、容積型原動機等からなる膨張機18に導入され、該膨張器18を駆動した後、膨張機18の出口19では外気温度よりも低い温度となり、温度−14℃、流量2842kg/hのガスとなり、冷熱として利用が可能であり、冷熱利用設備23へ導へ導かれるもので、空気配管50a、燃焼ガス管50b、第1排ガス管50c、第2排ガス管50dおよび第3排ガス管50eを備えている。
膨張機18は、断熱効率が75%で69.1kwの発電を行うことができる。
The steam generating gas passage 50 is, for example, compressed air and fuel compressed at a temperature of 284.5 ° C. by compressing the air 10 having a pressure of 100 kPa, a temperature of 25 ° C., and a flow rate of 2800 kg / h by the boiler compressor 11. The methane gas 12 having a flow rate of 130 kg / h is combusted in the boiler combustor 8 and is supplied to the boiler 6 as a high-temperature gas of 1877 ° C., and is discharged from the boiler 6 as boiler exhaust gas 16 having a temperature of 46 ° C. After separating 278.9 kg / h of water by the gas-liquid separator 17, the water is introduced into the expander 18 composed of a gas turbine, a positive displacement prime mover, and the like, and after driving the expander 18, the outlet 19 of the expander 18. In this case, the temperature is lower than the outside air temperature, becomes a gas having a temperature of −14 ° C. and a flow rate of 2842 kg / h, can be used as cold heat, and is led to the cold heat utilization equipment 23. 0a, and it includes combustion gas pipe 50b, the first exhaust gas pipe 50c, the second exhaust pipe 50d and the third exhaust pipe 50e.
The expander 18 can generate 69.1 kw with 75% heat insulation efficiency.

蒸気タービン20および膨張機18での発電出力は合計205.6kwであり、この電力を利用して効率75%、必要動力13.3kwの過熱器用圧縮機3および効率75%、必要動力185.5kwのボイラ用圧縮機11を駆動した場合、6.8kwが余剰動力として利用可能である。この余剰動力は、本システムにおける補機の動力として、あるいは、他の目的に利用される。   The total power output of the steam turbine 20 and the expander 18 is 205.6 kw, and using this electric power, the efficiency of the superheater 3 is 75%, the required power is 13.3 kw, the efficiency is 75%, and the required power is 185.5 kw. When the boiler compressor 11 is driven, 6.8 kw can be used as surplus power. This surplus power is used as power for auxiliary equipment in this system or for other purposes.

上記したように、過熱器1に供給される空気2は、過熱器用圧縮機3で圧縮され、温度と圧力が上がった状態で、過熱器用燃料であるメタンガス4と燃焼器5に供給され、燃焼によってボイラ6から排出される蒸気15を過熱器1で加熱するものであり、図1では説明の都合上、燃焼器5と過熱器1は別々に記載しているが、実際には一体であり、燃焼させつつ蒸気を過熱する。この後、過熱器1から排出された過熱器排ガス7はボイラ用熱源の1つとしてボイラ用燃焼器8に供給される。   As described above, the air 2 supplied to the superheater 1 is compressed by the superheater compressor 3, and is supplied to the methane gas 4 and the combustor 5 as fuel for the superheater in a state where the temperature and pressure are increased. The steam 15 discharged from the boiler 6 is heated by the superheater 1 in FIG. 1, and the combustor 5 and the superheater 1 are shown separately for convenience of explanation in FIG. , Superheat steam while burning. Thereafter, the superheater exhaust gas 7 discharged from the superheater 1 is supplied to the boiler combustor 8 as one of the heat sources for the boiler.

また、上記したように、ボイラ6に供給される空気10は、ボイラ用圧縮機11で圧縮され、温度と圧力が上がった状態で、過熱器排ガス7と混合されるか、または、共にボイラ用燃焼器8に供給される。ボイラ用燃焼器8には、ボイラ用燃料であるメタンガス12も供給され、燃焼によって水ポンプ13から供給される水14を加熱し飽和蒸気15を生成する。図1では説明の都合上、ボイラ用燃焼器8とボイラ6とは別々に書かれているが、実際には一体であり、燃焼させつつ蒸気を生成する。また、ボイラ6からのボイラ排ガス16は、必要に応じて通常のボイラと同じく、通常、ポンプ13の前に設置される給水加熱器において給水加熱に利用されるが、図1ではボイラ一体として、省略している。   Further, as described above, the air 10 supplied to the boiler 6 is compressed by the boiler compressor 11 and mixed with the superheater exhaust gas 7 in a state where the temperature and pressure are increased, or both are used for the boiler. It is supplied to the combustor 8. The boiler combustor 8 is also supplied with methane gas 12 as fuel for the boiler, and heats the water 14 supplied from the water pump 13 by combustion to generate saturated steam 15. In FIG. 1, for convenience of explanation, the boiler combustor 8 and the boiler 6 are written separately, but are actually integrated and generate steam while being burned. Further, the boiler exhaust gas 16 from the boiler 6 is usually used for feed water heating in a feed water heater installed in front of the pump 13 as necessary, as in a normal boiler, but in FIG. Omitted.

図1に示した本実施形態では、発熱量を算出する都合上、過熱器用燃料およびボイラ用燃料としてメタンガス(CH4)を用いた例を示しているが、これに限らず、公知の燃料を用いることができることはいうまでもない。   In the present embodiment shown in FIG. 1, for the sake of convenience of calculating the calorific value, an example in which methane gas (CH4) is used as the superheater fuel and the boiler fuel is shown, but this is not restrictive, and a known fuel is used. It goes without saying that it can be done.

以上説明したように、本実施の形態に係る温熱・冷熱同時発生システムでは、温熱と冷熱を同時に作り出すことができ、図1に示した例では、ボイラ用燃料12と、過熱器用燃料4の発熱量(LHV)1943KWに対して、温熱2194KW、冷熱54.45KWを生成している。この時、温熱2194KW及び冷熱54.45KWの合計熱量が投入燃料の熱量1943KWを超えることが出来る。本例では、供給熱量の約1.1倍となっている。
このように、燃焼器に投入する以上の熱量を取り出すことができる。また、供給する空気を圧縮することによりボイラの伝熱面積を減らすこともできる。
As described above, the simultaneous heating and cooling generation system according to the present embodiment can simultaneously generate heating and cooling. In the example shown in FIG. 1, the heat generated by the boiler fuel 12 and the superheater fuel 4 is generated. For the amount (LHV) 1943 KW, hot heat 2194 KW and cold heat 54.45 KW are generated. At this time, the total heat amount of the warm heat 2194 KW and the cold heat 54.45 KW can exceed the heat amount 1943 KW of the input fuel. In this example, it is about 1.1 times the amount of heat supplied.
In this way, it is possible to take out more heat than is put into the combustor. Moreover, the heat transfer area of a boiler can also be reduced by compressing the supplied air.

本実施の形態に係る温熱・冷熱同時発生システムは、過熱器用燃焼器およびボイラ用燃焼器に供給する空気を圧縮することにより、ヒートポンプと同様の効果、すなわち、高温高圧の圧縮空気から熱を取り出し、その後、圧力を利用して動力を回収できるという効果をもたらすことができ、これに燃料による熱を供給することにより、現実的な熱交換の大きさで従来超えられなかった効率を超えて熱を発生することができる。
また、その際、圧縮機の動力については、加熱器とボイラの各排気の圧力エネルギを膨張機で回収するとともに、蒸気タービンから動力を回収することにより、従来の95%の効率のボイラと比較して10〜20%の効率向上が可能となり、同時に冷熱を発生することができるものである。
The system for simultaneously generating heat and cold according to the present embodiment compresses the air supplied to the superheater combustor and the boiler combustor, thereby extracting heat from the same effect as the heat pump, that is, high-temperature and high-pressure compressed air. Then, it is possible to bring about the effect that the power can be recovered using pressure, and by supplying the heat from the fuel to this, the heat exceeds the efficiency that could not be conventionally exceeded by the size of realistic heat exchange. Can be generated.
At that time, the power of the compressor is compared with the conventional 95% efficiency boiler by recovering the pressure energy of each exhaust of the heater and boiler by the expander and recovering the power from the steam turbine. Thus, the efficiency can be improved by 10 to 20%, and cold heat can be generated at the same time.

本発明の実施の形態に係る温熱・冷熱同時発生システムの全体構成を示す系統図である。1 is a system diagram showing an overall configuration of a simultaneous heating / cooling system according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 過熱器
2 空気
3 過熱器用圧縮機
4 メタンガス
5 過熱器用燃焼器
6 ボイラ
7 過熱器排ガス
8 ボイラ用燃焼器
10 空気
11 ボイラ用圧縮機
12 メタンガス
13 水ポンプ
14 水
15 飽和蒸気
16 ボイラ排ガス
17 気液分離器
18 膨張機
19 膨張機の出口
20 蒸気タービン
21 温熱利用設備
22a 水配管
22b 第1蒸気配管
22c 第2蒸気配管
22d 第3蒸気配管
23 冷熱利用設備
30 蒸気通路
40 加熱ガス通路
40a 空気配管
40b 第1加熱ガス配管
40c 第2加熱ガス配管
50 蒸気生成用ガス通路
50a 空気配管
50b 燃焼ガス管
50c 第1排ガス管
50d 第2排ガス管
50e 第3排ガス管
DESCRIPTION OF SYMBOLS 1 Superheater 2 Air 3 Superheater compressor 4 Methane gas 5 Superheater combustor 6 Boiler 7 Superheater exhaust gas 8 Boiler combustor 10 Air 11 Boiler compressor 12 Methane gas 13 Water pump 14 Water 15 Saturated steam 16 Boiler exhaust gas 17 Air Liquid separator 18 Expander 19 Expander outlet 20 Steam turbine 21 Thermal equipment 22a Water piping 22b First steam piping 22c Second steam piping 22d Third steam piping
23 Cold-use equipment 30 Steam passage 40 Heating gas passage 40a Air piping 40b First heating gas piping 40c Second heating gas piping 50 Steam generation gas passage 50a Air piping 50b Combustion gas pipe 50c First exhaust pipe 50d Second exhaust pipe 50e Third exhaust pipe

Claims (1)

蒸気を生成するボイラ、該ボイラからの蒸気を加熱する過熱器、加熱された蒸気で駆動される蒸気タービンおよびボイラから排出される排ガスで駆動される膨張機を備え、前記蒸気タービンおよび前記膨張機の発生する動力で駆動される過熱器用圧縮機およびボイラ用圧縮機を設け、過熱器用圧縮機から供給される空気と過熱器用燃料とを過熱器用燃焼器で燃焼させることにより前記過熱器において前記ボイラで生成される蒸気を加熱し、前記過熱器からの燃焼ガスと前記ボイラ用圧縮機から供給される空気とをボイラ用燃焼器に導きボイラ用燃料との燃焼によって前記ボイラで蒸気を生成し、該蒸気を前記過熱器で加熱して前記蒸気タービンに導き蒸気タービンを駆動するとともに、前記ボイラから排出される排ガスを前記膨張機に導き膨張機を駆動し、前記蒸気タービンから排出される蒸気を温熱として、また、前記膨張機から排出されるガスを冷熱として利用可能とすることを特徴とする温熱・冷熱同時発生システム。   A steam generator, a superheater for heating steam from the boiler, a steam turbine driven by the heated steam, and an expander driven by exhaust gas discharged from the boiler, the steam turbine and the expander Provided with a compressor for a superheater and a compressor for a boiler that are driven by the power generated by the boiler, and in the superheater, the air supplied from the compressor for the superheater and the fuel for the superheater are burned in the combustor for the superheater. The steam generated in the above is heated, the combustion gas from the superheater and the air supplied from the boiler compressor are led to the boiler combustor to generate steam in the boiler by combustion with the boiler fuel, The steam is heated by the superheater and led to the steam turbine to drive the steam turbine, and exhaust gas discharged from the boiler is led to the expander and expanded. Drives machine, the as heat the steam discharged from the steam turbine, also heat-cold concurrent system, characterized in that the available gas discharged from the expander as cold.
JP2007123419A 2007-05-08 2007-05-08 Simultaneous heating and cooling system Expired - Fee Related JP4729748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007123419A JP4729748B2 (en) 2007-05-08 2007-05-08 Simultaneous heating and cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007123419A JP4729748B2 (en) 2007-05-08 2007-05-08 Simultaneous heating and cooling system

Publications (2)

Publication Number Publication Date
JP2008280857A true JP2008280857A (en) 2008-11-20
JP4729748B2 JP4729748B2 (en) 2011-07-20

Family

ID=40141902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007123419A Expired - Fee Related JP4729748B2 (en) 2007-05-08 2007-05-08 Simultaneous heating and cooling system

Country Status (1)

Country Link
JP (1) JP4729748B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108274A (en) * 2002-09-19 2004-04-08 Miura Co Ltd Cogeneration system
JP2004108150A (en) * 2002-09-13 2004-04-08 Miura Co Ltd Cogeneration system
JP2006329119A (en) * 2005-05-27 2006-12-07 Kobe Steel Ltd Power generation system, cogeneration system and power generation method
JP2007505259A (en) * 2003-09-10 2007-03-08 イーティーエイ エントランス エイビー Heat tempering system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108150A (en) * 2002-09-13 2004-04-08 Miura Co Ltd Cogeneration system
JP2004108274A (en) * 2002-09-19 2004-04-08 Miura Co Ltd Cogeneration system
JP2007505259A (en) * 2003-09-10 2007-03-08 イーティーエイ エントランス エイビー Heat tempering system
JP2006329119A (en) * 2005-05-27 2006-12-07 Kobe Steel Ltd Power generation system, cogeneration system and power generation method

Also Published As

Publication number Publication date
JP4729748B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP3681434B2 (en) Cogeneration system and combined cycle power generation system
KR101317222B1 (en) High efficiency feedwater heater
RU2650232C1 (en) Combined-cycle cogeneration plant
JP2011085133A5 (en)
CN105026731A (en) Preheating device for gas-turbine fuel, gas-turbine plant provided therewith, and preheating method for gas-turbine fuel
RU2005101642A (en) WASTE HEAT STEAM GENERATOR
MX2008002710A (en) Cement burning plant waste heat power generation system.
JP2009185813A (en) Device and method for starting of power generation plant
JP2007255349A (en) Exhaust heat recovery power generation method and exhaust heat recovery power generation system
EP2604821B1 (en) System and method for thermal control in a gas turbine engine
CN109026400A (en) A kind of gas turbine engine systems and method using the pre-heating fuel that exchanges heat between grade
JP6243700B2 (en) Combined cycle power plant with absorption heat converter
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP2013117209A (en) Gas turbine and gas turbine plant
RU2639397C1 (en) Mode of gas turbine plant operation on methane-contained steam-gas mixture and its actualization device
JP4729748B2 (en) Simultaneous heating and cooling system
RU2528190C2 (en) Steam gas plant
RU2648478C2 (en) Maneuvered regenerative steam gas thermal power plant operating method and device for its implementation
RU2734127C1 (en) Manoeuvrable combined heat and power plant with steam drive of compressor
US20140069078A1 (en) Combined Cycle System with a Water Turbine
RU58613U1 (en) COMBINED STEAM-GAS UNIT WITH PARALLEL OPERATION DIAGRAM
RU126373U1 (en) STEAM GAS INSTALLATION
RU2420664C2 (en) Multi-mode heat extraction plant
WO2015187064A2 (en) Multi-mode combined cycle power plant
RU2280768C1 (en) Thermoelectric plant with gas-turbine unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4729748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees