[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008270729A - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
JP2008270729A
JP2008270729A JP2008026984A JP2008026984A JP2008270729A JP 2008270729 A JP2008270729 A JP 2008270729A JP 2008026984 A JP2008026984 A JP 2008026984A JP 2008026984 A JP2008026984 A JP 2008026984A JP 2008270729 A JP2008270729 A JP 2008270729A
Authority
JP
Japan
Prior art keywords
group
layer
organic
transport layer
electron transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008026984A
Other languages
Japanese (ja)
Other versions
JP5230218B2 (en
Inventor
Yu Sato
祐 佐藤
Hirofumi Fukunaga
広文 福永
Manabu Tobiyo
学 飛世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008026984A priority Critical patent/JP5230218B2/en
Priority to US12/054,147 priority patent/US20080241518A1/en
Publication of JP2008270729A publication Critical patent/JP2008270729A/en
Application granted granted Critical
Publication of JP5230218B2 publication Critical patent/JP5230218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescence element that exhibits high light-emission efficiency and is excellent in durability. <P>SOLUTION: The organic electroluminescence element has at least one organic layer including a light-emitting layer between a pair of electrodes; and an electron transport layer containing a phosphine oxide compound and an electron transport layer that does not substantially contain the phosphine oxide compound between the light-emitting layer and a cathode, wherein the electron transport layer containing the phosphine oxide compound is nearer to the cathode, and the electron transport layer that does not substantially contain the phosphine oxide compound is nearer to the light-emitting layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はフルカラ−ディスプレイ、バックライト、照明光源等の面光源やプリンタ−等の光源アレイ等に有効に利用できる有機電界発光素子(以下、有機EL素子と呼ぶ場合がある。)に関する。   The present invention relates to an organic electroluminescent element (hereinafter sometimes referred to as an organic EL element) that can be effectively used for a surface light source such as a full color display, a backlight, and an illumination light source, and a light source array such as a printer.

有機EL素子は、発光層もしくは発光層を含む複数の有機層と、有機層を挟んだ対向電極とから構成されている。有機EL素子は、陰極から注入された電子と陽極から注入された正孔とが有機層において再結合し、生成した励起子からの発光、及び前記励起子からエネルギー移動して生成した他の分子の励起子からの発光の少なくとも一方を利用した発光を得るための素子である。   The organic EL element is composed of a light emitting layer or a plurality of organic layers including a light emitting layer and a counter electrode sandwiching the organic layer. In the organic EL element, electrons injected from the cathode and holes injected from the anode are recombined in the organic layer, emitted light from the generated excitons, and other molecules generated by energy transfer from the excitons. It is an element for obtaining light emission using at least one of light emission from the excitons.

これまで有機EL素子は、機能を分離した積層構造を用いることにより、輝度及び素子効率が大きく改善され発展してきた。例えば、正孔輸送層と発光兼電子輸送層を積層した二層積層型素子や正孔輸送層、発光層および電子輸送層とを積層した三層積層型素子や、正孔輸送層、発光層、正孔阻止層および電子輸送層とを積層した四層積層型素子がよく用いられる。   Until now, organic EL elements have been developed with greatly improved brightness and element efficiency by using a laminated structure with separated functions. For example, a two-layer stacked device in which a hole transport layer and a light-emitting / electron transport layer are stacked, a three-layer stacked device in which a hole transport layer, a light-emitting layer, and an electron transport layer are stacked, a hole transport layer, and a light-emitting layer A four-layer stacked element in which a hole blocking layer and an electron transport layer are stacked is often used.

しかしながら、有機EL素子の実用化には、発光効率を高めることおよび駆動耐久性を高めることなど未だ多くの課題が残されている。特に発光効率を高めることは、電力消費が低減でき、さらに駆動耐久性の点でも有利となるので、これまで多くの改良手段が開示されている。しかしながら、一般に発光効率の高い発光材料は駆動中に輝度劣化を起こす欠点を有し、また、駆動耐久性に優れた材料は輝度が低い欠点を有し、発光効率を高めることと駆動耐久性を高めることを両立させることは容易ではなく、さらに改良が探索されている。   However, many problems still remain in practical use of organic EL elements, such as improving luminous efficiency and driving durability. In particular, increasing the light emission efficiency can reduce power consumption and is advantageous in terms of driving durability. Therefore, many improvement means have been disclosed so far. However, in general, a light emitting material with high luminous efficiency has a defect of causing luminance deterioration during driving, and a material with excellent driving durability has a defect of low luminance, which improves luminous efficiency and driving durability. It is not easy to achieve both enhancements, and further improvements are being sought.

その中で、陽極より正孔注入および正孔輸送を促進するための正孔輸送材料、および陰極より電子注入および電子輸送を促進するための電子輸送材料の探索が進められている。特に、陰極から速やかに電子が注入でき、電子輸送性に優れた電子輸送材料が求められている。例えば、ホスフィンオキサイド化合物が電子輸送材料として電子輸送性に優れた電子輸送材料として知られている((例えば、特許文献1参照。)。しかしながら、ホスフィンオキサイド化合物を含めて陰極からの電子注入障壁が小さく、電子移動度の高い電子輸送材料は、駆動耐久性が低いことが問題であった。
一方、発光効率が高い発光材料の探索も進められている。例えば、ホスフィンオキサイド化合物が、電子注入性および輸送性に優れているため、発光層に使用することで発光効率向上や低電圧化が見込まれることが開示されている(例えば、特許文献2、非特許文献1参照。)。しかしながら、ホスフィンオキサイド化合物を発光層のホスト材料として用いた場合、連続駆動中にホスフィンオキサイド化合物が劣化しホスト材料としての機能を失うため、駆動耐久性が著しく悪化する問題があった。
従って、高い発光効率を有し、かつ駆動耐久性に優れた有機EL素子の開発が求められている。
特開2006−73581号公報 特開2002−63989号公報 ”New Charge Transporting Host Material for Short Wavelength Organic Electrophosphorescence:2,7−Bis(diphenylphosphine oxide)−9,9−dimethyl−fluorene”,Chem.Mater.,18,page 2389−2396(2006).
Among them, the search for a hole transport material for promoting hole injection and hole transport from the anode and an electron transport material for promoting electron injection and electron transport from the cathode has been advanced. In particular, there is a demand for an electron transport material that can quickly inject electrons from a cathode and has excellent electron transport properties. For example, a phosphine oxide compound is known as an electron transport material having excellent electron transport properties (see, for example, Patent Document 1) However, there is an electron injection barrier from the cathode including the phosphine oxide compound. A small electron transport material with high electron mobility has a problem of low driving durability.
On the other hand, a search for a light emitting material having high light emission efficiency is also in progress. For example, since a phosphine oxide compound is excellent in electron injecting property and transporting property, it is disclosed that use in a light emitting layer is expected to improve luminous efficiency and lower voltage (for example, Patent Document 2, Non-Patent Document 2). (See Patent Document 1). However, when a phosphine oxide compound is used as the host material of the light emitting layer, the phosphine oxide compound deteriorates during continuous driving and loses its function as a host material, so that there is a problem that driving durability is remarkably deteriorated.
Therefore, development of an organic EL element having high luminous efficiency and excellent driving durability is demanded.
JP 2006-73581 A Japanese Patent Application Laid-Open No. 2002-63989 "New Charge Transforming Host Material for Short Wavelength Organic Electrophoresis: 2, 7-Bis (diphenylphosphine oxide) -9, 9-dimethyl-fluor." Mater. , 18, page 2389-2396 (2006).

本発明の目的は、高い発光効率を示し、かつ耐久性に優れた有機電界発光素子を提供することにある。   An object of the present invention is to provide an organic electroluminescent device exhibiting high luminous efficiency and excellent durability.

本発明は上記課題に鑑みてなされたものであり、下記の手段により達成されるものである。
<1> 一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、前記発光層と陰極との間に、ホスフィンオキサイド化合物を含有する電子輸送層と該ホスフィンオキサイド化合物を実質的に含有しない電子輸送層とを有し、前記ホスフィンオキサイド化合物を含有する電子輸送層が前記陰極に近接し、前記ホスフィンオキサイド化合物を実質的に含有しない電子輸送層が前記発光層に近接していることを特徴とする有機電界発光素子。
<2> 前記ホスフィンオキサイドを含有する電子輸送層が電子注入層に接する層であることを特徴とする<1>に記載の有機電界発光素子。
<3> 前記ホスフィンオキサイドを含有する電子輸送層の膜厚が0.01nm以上10nm以下であることを特徴とする<1>又は<2>に記載の有機電界発光素子。
<4> 前記ホスフィンオキサイドを含有する電子輸送層の膜厚が0.01nm以上5nm以下であることを特徴とする<3>に記載の有機電界発光素子。
<5> 前記ホスフィンオキサイド化合物が下記一般式(I)で表される化合物であることを特徴とする<1>〜<4>のいずれかに記載の有機電界発光素子:
The present invention has been made in view of the above problems, and is achieved by the following means.
<1> An organic electroluminescence device having at least one organic layer including a light emitting layer between a pair of electrodes, the electron transport layer containing a phosphine oxide compound between the light emitting layer and the cathode, and the phosphine oxide An electron transport layer substantially free of a compound, the electron transport layer containing the phosphine oxide compound is close to the cathode, and the electron transport layer substantially free of the phosphine oxide compound is in the light emitting layer. An organic electroluminescence device characterized by being close to each other.
<2> The organic electroluminescent element according to <1>, wherein the electron transport layer containing the phosphine oxide is a layer in contact with the electron injection layer.
<3> The organic electroluminescence device according to <1> or <2>, wherein the electron transport layer containing the phosphine oxide has a thickness of 0.01 nm to 10 nm.
<4> The organic electroluminescence device according to <3>, wherein the electron transport layer containing the phosphine oxide has a thickness of 0.01 nm to 5 nm.
<5> The organic electroluminescent element according to any one of <1> to <4>, wherein the phosphine oxide compound is a compound represented by the following general formula (I):

(式中、R、R、およびRは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、又はヘテロ環基を表す。)。
<6> 前記一般式(I)で表されるホスフィンオキサイド化合物が、下記一般式(II)で表される化合物であることを特徴とする<5>に記載の有機電界発光素子:
Wherein R 1 , R 2 and R 3 are each independently an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, acyl group, alkoxycarbonyl Group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, or heterocyclic group To express.).
<6> The organic electroluminescent element according to <5>, wherein the phosphine oxide compound represented by the general formula (I) is a compound represented by the following general formula (II):

(式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。)。
<7> 前記ホスフィンオキサイド化合物が、下記一般式(III)で表される化合物であることを特徴とする<1>〜<4>のいずれかに記載の有機電界発光素子:
(In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represents an aryl group or a heterocyclic group).
<7> The organic luminescence device according to any one of <1> to <4>, wherein the phosphine oxide compound is a compound represented by the following general formula (III):

(式中、R21〜R24はそれぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。)。
<8> 前記発光層が燐光発光材料を含有することを特徴とする<1>〜<7>のいずれかに記載の有機電界発光素子。
<9> 前記燐光発光材料が白金を中心金属とした有機金属錯体であることを特徴とする<8>に記載の有機電界発光素子。
<10> 前記発光層がホスト材料として正孔輸送性有機材料を含有することを特徴とする<1>〜<9>のいずれかに記載の有機電界発光素子。
(In the formula, R 21 to R 24 each independently represents an aryl group or a heterocyclic group. L represents a divalent linking group).
<8> The organic electroluminescent element according to any one of <1> to <7>, wherein the light emitting layer contains a phosphorescent material.
<9> The organic electroluminescent element according to <8>, wherein the phosphorescent material is an organometallic complex having platinum as a central metal.
<10> The organic electroluminescent element according to any one of <1> to <9>, wherein the light emitting layer contains a hole transporting organic material as a host material.

本発明によれば、高い発光効率を示し、かつ耐久性に優れた有機電界発光素子が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the organic electroluminescent element which shows high luminous efficiency and was excellent in durability is provided.

以下、本発明の有機電界発光素子(以下、適宜「有機EL素子」と称する場合がある。)について詳細に説明する。
本発明の発光素子は基板上に陰極と陽極を有し、両電極の間に有機発光層(以下、単に「発光層」と称する場合がある。)を含む有機化合物層を有する。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。
本発明における有機化合物層は、単層または積層のいずれであってもよい。積層の場合の態様としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と発光層との間、又は、発光層と電子輸送層との間には、電荷ブロック層等を有していてもよい。陽極と正孔輸送層との間に、正孔注入層を有してもよく、陰極と電子輸送層との間には、電子注入層を有してもよい。尚、各層は複数の二次層に分かれていてもよい。
Hereinafter, the organic electroluminescent element of the present invention (hereinafter sometimes referred to as “organic EL element” as appropriate) will be described in detail.
The light-emitting element of the present invention has a cathode and an anode on a substrate, and an organic compound layer including an organic light-emitting layer (hereinafter sometimes simply referred to as “light-emitting layer”) between both electrodes. In view of the properties of the light emitting element, at least one of the anode and the cathode is preferably transparent.
The organic compound layer in the present invention may be either a single layer or a laminate. As an aspect in the case of lamination, an aspect in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the anode side is preferable. Further, a charge blocking layer or the like may be provided between the hole transport layer and the light-emitting layer, or between the light-emitting layer and the electron transport layer. A hole injection layer may be provided between the anode and the hole transport layer, and an electron injection layer may be provided between the cathode and the electron transport layer. Each layer may be divided into a plurality of secondary layers.

1.ホスフィンオキサイド化合物の説明
次に本発明の有機電界発光素子に用いるホスフィンオキサイド化合物について、詳細に説明する。
本発明に用いられるホスフィンオキサイド化合物は、好ましくは下記一般式(I)で表される化合物である。
1. Description of Phosphine Oxide Compound Next, the phosphine oxide compound used in the organic electroluminescence device of the present invention will be described in detail.
The phosphine oxide compound used in the present invention is preferably a compound represented by the following general formula (I).

式中、R、R、およびRは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、又はヘテロ環基を表す。 In the formula, R 1 , R 2 , and R 3 are each independently an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, acyl group, alkoxycarbonyl group , Aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, or heterocyclic group .

好ましくは、下記一般式(II)で表されるホスフィンオキサイド化合物である。   Preferably, it is a phosphine oxide compound represented by the following general formula (II).

式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。 In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represent an aryl group or a heterocyclic group.

本発明における好ましいもう一群のホスフィンオキサイド化合物は、下記一般式(III)で表される化合物である。   Another preferred group of phosphine oxide compounds in the present invention is a compound represented by the following general formula (III).

式中、R31〜R34はそれぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。 In the formula, R 31 to R 34 each independently represents an aryl group or a heterocyclic group. L represents a divalent linking group.

一般式(I)について説明する。
、RおよびRは、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、
The general formula (I) will be described.
R 1 , R 2 and R 3 are alkyl groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms such as methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, Particularly preferably, it has 2 to 10 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, and 3-pentenyl.), An alkynyl group (preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms). , Particularly preferably having 2 to 10 carbon atoms, such as propargyl and 3-pentynyl).

アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントリルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、 An aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, and anthryl); An amino group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, and And dtolylamino), an alkoxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, and 2-ethyl). Hexyloxy, etc.), aryloxy groups (preferably having 6 to 30 carbon atoms, more preferred) Ku 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 1-naphthyloxy, and 2-naphthyloxy and the like.),

ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、 Heterocyclic oxy group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably 1 to 12 carbon atoms, and examples thereof include pyridyloxy, pyrazyloxy, pyrimidyloxy, and quinolyloxy). An acyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoyl, formyl, and pivaloyl), an alkoxycarbonyl group. (Preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms. Examples thereof include methoxycarbonyl and ethoxycarbonyl).

アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、 An aryloxycarbonyl group (preferably having a carbon number of 7 to 30, more preferably a carbon number of 7 to 20, particularly preferably a carbon number of 7 to 12, such as phenyloxycarbonyl), an acyloxy group (preferably carbon 2 to 30, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy and benzoyloxy), acylamino group (preferably 2 to 30 carbon atoms, more preferably Has 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and an alkoxycarbonylamino group (preferably 2 to 30 carbon atoms, more preferably 2 carbon atoms). -20, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino Is.), An aryloxycarbonylamino group (preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, e.g., phenyloxycarbonylamino and the like.),

スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、及びフェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、 A sulfonylamino group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino), a sulfamoyl group ( Preferably it is C0-30, More preferably, it is C0-20, Most preferably, it is C0-12, for example, sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl, etc. are mentioned. ), A carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include carbamoyl, methylcarbamoyl, diethylcarbamoyl, and phenylcarbamoyl. ), An alkylthio group (preferably having a carbon number of 1 to 0, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio and ethylthio, and arylthio groups (preferably 6 to 30 carbon atoms, more preferably 6 carbon atoms). To 20 and particularly preferably 6 to 12 carbon atoms, such as phenylthio).

ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、 Heterocyclic thio group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, And 2-benzthiazolylthio and the like.

又は、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、又はホスホリル基(例えばジフェニルホスホリル、ジメチルホスホリルなどが挙げられる。)である。 Or a heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, specifically imidazolyl, pyridyl, Quinolyl, furyl, thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl group, azepinyl group, etc.), silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 carbon atoms) To 30 and particularly preferably 3 to 24 carbon atoms such as trimethylsilyl and triphenylsilyl), silyloxy groups (preferably 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms such as trimethylsilyloxy, triphenylsilyloxy And the like.), Or a phosphoryl group (e.g., diphenylphosphoryl, dimethyl phosphoryl and the like.).

、RおよびRで表される基は、互いに同一でも異なっていてもよい。R、RおよびRで表される置換基として好ましくはアルキル基、アルケニル基、アルキニル基、アリール基、又はヘテロ環基であり、より好ましくはアルキル基、アリール基、又はヘテロ環基であり、特に好ましくはアリール基、ヘテロ環基である。 The groups represented by R 1 , R 2 and R 3 may be the same as or different from each other. The substituent represented by R 1 , R 2 and R 3 is preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heterocyclic group, more preferably an alkyl group, an aryl group or a heterocyclic group. And particularly preferably an aryl group or a heterocyclic group.

、RおよびRで表される置換基は、さらに置換基を有していてもよく、置換基としては、アルキル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、及びシクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばビニル、アリル、2−ブテニル、及び3−ペンテニルなどが挙げられる。)、 The substituent represented by R 1 , R 2 and R 3 may further have a substituent, and as the substituent, an alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 1 carbon atom). 20, Particularly preferably, it has 1 to 10 carbon atoms, and examples thereof include methyl, ethyl, iso-propyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, and cyclohexyl. ), An alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include vinyl, allyl, 2-butenyl, and 3-pentenyl. ),

アルキニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチル、及びアントリルなどが挙げられる。)、アミノ基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、及びジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、及び2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、及び2−ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、及びキノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、及びピバロイルなどが挙げられる。)、 Alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl, 3-pentynyl, etc.), aryl group (preferably carbon 6 to 30, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, and anthryl.), Amino group (preferably carbon It has 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, and particularly preferably 0 to 10 carbon atoms. Examples thereof include amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, and ditolylamino. ), An alkoxy group (preferably having 1 to 30 carbon atoms, more preferably having 1 to 20 carbon atoms, particularly preferred) Has 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, and 2-ethylhexyloxy), an aryloxy group (preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, Particularly preferably, it has 6 to 12 carbon atoms, and examples thereof include phenyloxy, 1-naphthyloxy, 2-naphthyloxy and the like, and a heterocyclic oxy group (preferably having 1 to 30 carbon atoms, more preferably having carbon atoms). 1 to 20, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy and quinolyloxy), acyl groups (preferably 1 to 30 carbon atoms, more preferably 1 to 1 carbon atoms). 20, particularly preferably having 1 to 12 carbon atoms, such as acetyl, benzoyl, formyl, and pivaloyl Etc., and the like.),

アルコキシカルボニル基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜30、より好ましくは炭素数7〜20、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、 An alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), an aryloxycarbonyl group ( Preferably it has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl, etc.), an acyloxy group (preferably 2 to 30 carbon atoms, More preferably, it has 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetoxy and benzoyloxy.), Acylamino group (preferably 2 to 30 carbon atoms, more preferably 2 to 2 carbon atoms). 20, particularly preferably 2 to 10 carbon atoms, such as acetylamino, benzoylamino An alkoxycarbonylamino group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino). Aryloxycarbonylamino group (preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, such as phenyloxycarbonylamino), sulfonylamino group ( Preferably it is C1-C30, More preferably, it is C1-C20, Most preferably, it is C1-C12, for example, methanesulfonylamino, benzenesulfonylamino, etc. are mentioned.

スルファモイル基(好ましくは炭素数0〜30、より好ましくは炭素数0〜20、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、及びフェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、及びフェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、及び2−ベンズチアゾリルチオなどが挙げられる。)、 Sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenylsulfamoyl, etc. ), A carbamoyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, phenylcarbamoyl, etc. An alkylthio group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms such as methylthio and ethylthio), an arylthio group. (Preferably 6 to 30 carbon atoms, more preferably 6 to 6 carbon atoms. 0, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 carbon atom). -12, and examples thereof include pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, and 2-benzthiazolylthio).

スルホニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、及びフェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、フルオロ基、クロロ基、ブロモ基、ヨード基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは炭素数1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、又は硫黄原子であり、具体的にはイミダゾリル、ピリジル、キノリル、フリル、チエニル、ピペリジル、モルホリノ、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル基、及びアゼピニル基などが挙げられる。)、 A sulfonyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl and tosyl), a sulfinyl group (preferably having 1 carbon atom). To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.), ureido groups (preferably 1 to 30 carbon atoms, more preferably C1-C20, Most preferably, it is C1-C12, for example, ureido, methylureido, phenylureido etc. are mentioned), phosphoric acid amide groups (preferably C1-C30, more preferably carbon 1 to 20, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide. Hydroxy group, mercapto group, fluoro group, chloro group, bromo group, iodo group, cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group (Preferably having 1 to 30 carbon atoms, more preferably having 1 to 12 carbon atoms, and the hetero atom is, for example, a nitrogen atom, an oxygen atom, or a sulfur atom, specifically imidazolyl, pyridyl, quinolyl, furyl, Thienyl, piperidyl, morpholino, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl group, azepinyl group and the like.

シリル基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、又はホスホリル基(例えばジフェニルホスホリル、ジメチルホスホリルなどが挙げられる。)が適用できる。 A silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyl, triphenylsilyl, etc.), a silyloxy group (preferably carbon 3 to 40, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, for example, trimethylsilyloxy, triphenylsilyloxy, etc.) or phosphoryl group (for example, diphenylphosphoryl, dimethylphosphoryl) Etc.) can be applied.

、RおよびRで表される基が有する置換基として好ましくは、アルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、フルオロ基、クロロ基、ブロモ基、ヨード基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基、又はホスホリル基であり、より好ましくはアルキル基、アルケニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、スルホニル基、フルオロ基、シアノ基、ヘテロ環基、シリル基、シリルオキシ基、又はホスホリル基であり、さらに好ましくはアルキル基、アリール基、アミノ基、フルオロ基、シアノ基、ヘテロ環基、シリル基、又はホスホリル基であり、さらに好ましくはアルキル基、アリール基、シアノ基、ヘテロ環基、又はホスホリル基である。 The substituent represented by the group represented by R 1 , R 2 and R 3 is preferably an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, alkylthio group. , Arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, fluoro group, chloro group, bromo group, iodo group, cyano group, heterocyclic group, silyl group, silyloxy group, or phosphoryl group, more preferably alkyl Group, alkenyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, sulfonyl group, fluoro group, cyano group, heterocyclic group, silyl group, silyloxy group, or phosphoryl group, more preferably Is an alkyl group, aryl group, amino group, fluoro group, cyano group, heterocyclic group, Ryl group or phosphoryl group, more preferably an alkyl group, an aryl group, a cyano group, a heterocyclic group, or a phosphoryl group.

一般式(I)で表される化合物は、より好ましくは一般式(II)で表される化合物である。   The compound represented by the general formula (I) is more preferably a compound represented by the general formula (II).

式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。 In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represent an aryl group or a heterocyclic group.

次に一般式(II)について説明する。   Next, general formula (II) will be described.

式中、Ar、Ar、およびArは置換または無置換のアリール基、ヘテロ環基を表す。Ar、Ar、およびArで表されるアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、ペリレニル基、フルオランテニル基、フルオレニル基、クリセニル基、テトラセニル基、ペンタセニル基、トリフェニレニル基、及びテトラフェニレニル基などが挙げられる。これらのアリール基は置換基を有していてもよく、置換基としては、一般式(I)におけるR、R、およびRで表される基が有する置換基として挙げたものが適用でき、また好ましい範囲も同様である。 In the formula, Ar 1 , Ar 2 , and Ar 3 represent a substituted or unsubstituted aryl group or heterocyclic group. Examples of the aryl group represented by Ar 1 , Ar 2 , and Ar 3 include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a fluoranthenyl group, a fluorenyl group, a chrysenyl group, a tetracenyl group, Examples include a pentacenyl group, a triphenylenyl group, and a tetraphenylenyl group. These aryl groups may have a substituent, and examples of the substituent include those listed as the substituents of the groups represented by R 1 , R 2 and R 3 in the general formula (I). The preferred range is also the same.

Ar、Ar、およびArで表されるヘテロアリール基としては、ピリジル基、ピラジニル基、トリアジニル基、ピリミジニル基、ピリダジニル基、キノリル基、キノキサリニル基、フタラジニル基、キナゾリニル基、シンノリニル基、イソキノリル基、アクリジニル基、フェナントリジニル基、フェナントロリニル基、プテリジニル基、イミダゾピリジル基、ピロリル基、インドリル基、ピラゾリル基、インダゾリル基、イミダゾリル基、ベンゾイミダゾリル基、カルバゾリル基、カルボリニル基、プリニル基、フリル基、チエニル基、イソキサゾリル基、イソチアゾリル基、オキサゾリル基、チアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、インドリジニル基、ベンゾキノリニル基、キノリジニル基、トリアゾリル基、ベンゾトリアゾリル基、及びナフチリジニル基などが挙げられる。これらのヘテロアリール基は置換基を有していてもよく、置換基としては、一般式(I)におけるR、R、およびRで表される基が有する置換基として挙げたものが適用でき、また好ましい範囲も同様である。 Heteroaryl groups represented by Ar 1 , Ar 2 , and Ar 3 include pyridyl group, pyrazinyl group, triazinyl group, pyrimidinyl group, pyridazinyl group, quinolyl group, quinoxalinyl group, phthalazinyl group, quinazolinyl group, cinnolinyl group, isoquinolyl group Group, acridinyl group, phenanthridinyl group, phenanthrolinyl group, pteridinyl group, imidazolidyl group, pyrrolyl group, indolyl group, pyrazolyl group, indazolyl group, imidazolyl group, benzimidazolyl group, carbazolyl group, carbolinyl group, purinyl group , Furyl group, thienyl group, isoxazolyl group, isothiazolyl group, oxazolyl group, thiazolyl group, benzoxazolyl group, benzothiazolyl group, indolizinyl group, benzoquinolinyl group, quinolidinyl group, triazolyl , Benzotriazolyl group, and the like naphthyridinyl group. These heteroaryl groups may have a substituent, and examples of the substituent include those listed as the substituents of the groups represented by R 1 , R 2 and R 3 in the general formula (I). The applicable range is also the same.

Ar、Ar、およびArで表される基として好ましくは、置換または無置換のフェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、フルオレニル基、ピリジル基、ピラジニル基、キノリル基、キノキサリニル基、アクリジニル基、フェナントロリニル基、又はベンゾキノリニル基であり、より好ましくは、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、ピリジル基、ピラジニル基、キノリル基、フェナントロリニル基、又はベンゾキノリニル基である。 As the group represented by Ar 1 , Ar 2 , and Ar 3 , a substituted or unsubstituted phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, fluorenyl group, pyridyl group, pyrazinyl group, quinolyl group, A quinoxalinyl group, an acridinyl group, a phenanthrolinyl group, or a benzoquinolinyl group, more preferably a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a pyridyl group, a pyrazinyl group, a quinolyl group, a phenanthrolinyl group Or a benzoquinolinyl group.

本発明におけるホスフィンオキサイド化合物のより好ましい一群は、一般式(III)で
表される化合物である。
A more preferred group of phosphine oxide compounds in the present invention are compounds represented by the general formula (III).

式中、R31〜R34は、それぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。 In formula, R < 31 > -R < 34 > represents an aryl group or a heterocyclic group each independently. L represents a divalent linking group.

次に、一般式(III)について説明する。   Next, general formula (III) will be described.

一般式(III)中、R31〜R34で表されるアリール基またはヘテロ環基は、一般式
(I)におけるR〜Rについて説明したアリール基またはヘテロ環基と同義であり、また好ましい範囲も同様である。Lは二価の連結基を表す。二価の連結基としては特に限定されないが、炭素原子、窒素原子、酸素原子、硫黄原子、ケイ素原子、又はハロゲン原子からなる連結基が好ましく、より好ましくは炭素原子、窒素原子、又はケイ素原子からなる連結基である。
In general formula (III), the aryl group or heterocyclic group represented by R 31 to R 34 has the same meaning as the aryl group or heterocyclic group described for R 1 to R 3 in general formula (I), and The preferable range is also the same. L represents a divalent linking group. The divalent linking group is not particularly limited, but is preferably a linking group comprising a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, or a halogen atom, more preferably a carbon atom, a nitrogen atom, or a silicon atom. A linking group.

Lで表される二価の連結基として好ましくは、p−フェニレン、m−フェニレン、o−フェニレン、ビフェニルジイル、ナフタレンジイル、フルオレンジイル、ジベンゾフランジイル、ピリジンジイル、又はピラジンジイルであり、より好ましくはビフェニルジイル、フルオレンジイル、ピリジンジイル、又はピラジンジイルである。   The divalent linking group represented by L is preferably p-phenylene, m-phenylene, o-phenylene, biphenyldiyl, naphthalenediyl, fluorenediyl, dibenzofurandyl, pyridinediyl, or pyrazinediyl, more preferably Biphenyldiyl, fluorenediyl, pyridinediyl, or pyrazinediyl.

以下に本発明に用いられるホスフィンオキサイド化合物の具体例を挙げるが、本発明の化合物がこれらに限定されるものではない。   Specific examples of the phosphine oxide compound used in the present invention are given below, but the compound of the present invention is not limited thereto.

以下に本発明に用いられるホスフィンオキサイド化合物の具体例としては、上記の他、例えば特開2002−63989に記載の化合物段落番号化5〜化7に例示する化合物がある。   Specific examples of the phosphine oxide compound used in the present invention include the compounds exemplified in Compound Paragraph Nos. 5 to 7 described in JP-A No. 2002-63989, for example.

<使用方法>
本発明に於いてホスフィンオキサイド化合物を含有する層の形成方法は、特に限定されるものではないが、抵抗加熱蒸着法、電子ビーム法、スパッタリング法、分子積層法、湿式塗布方式(スプレーコート法、ディップコート法、含浸法、ロールコート法、グラビアコート法、リバースコート法、ロールブラッシュ法、エアーナイフコート法、カーテンコート法、スピンコート法、フローコート法、バーコート法、マイクログラビアコート法、エアードクターコート、ブレードコート法、スクイズコート法、トランスファーロールコート法、キスコート法、キャストコート法、エクストルージョンコート法、ワイヤーバーコート法、スクリーンコート法等)、インクジェット法、印刷法、または転写法などの方法が用いられる。
<How to use>
In the present invention, a method for forming a layer containing a phosphine oxide compound is not particularly limited, but a resistance heating vapor deposition method, an electron beam method, a sputtering method, a molecular lamination method, a wet coating method (spray coating method, Dip coating method, impregnation method, roll coating method, gravure coating method, reverse coating method, roll brush method, air knife coating method, curtain coating method, spin coating method, flow coating method, bar coating method, micro gravure coating method, air Doctor coating, blade coating method, squeeze coating method, transfer roll coating method, kiss coating method, cast coating method, extrusion coating method, wire bar coating method, screen coating method, etc.), inkjet method, printing method, transfer method, etc. The method is used.

2.有機電界発光素子
以下、本発明の有機電界発光素子の構成について詳細に説明する。
本発明の発光素子は基板上に陰極と陽極を有し、両電極の間に有機発光層(以下、単に「発光層」と称する場合がある。)を含む有機層を有する有機電界発光素子であって、前記発光層と陰極との間に、ホスフィンオキサイド化合物を含有する電子輸送層と該ホスフィンオキサイド化合物を実質的に含有しない電子輸送層とを有し、前記ホスフィンオキサイド化合物を含有する電子輸送層が前記陰極に近接し、前記ホスフィンオキサイド化合物を実質的に含有しない電子輸送層が前記発光層に近接している。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。
好ましくは、前記ホスフィンオキサイドを含有する電子輸送層が電子注入層に接する層である。
2. Organic Electroluminescent Device Hereinafter, the configuration of the organic electroluminescent device of the present invention will be described in detail.
The light emitting device of the present invention is an organic electroluminescent device having a cathode and an anode on a substrate, and an organic layer including an organic light emitting layer (hereinafter sometimes simply referred to as “light emitting layer”) between both electrodes. An electron transport layer having an electron transport layer containing a phosphine oxide compound and an electron transport layer substantially free of the phosphine oxide compound between the light emitting layer and the cathode, and containing the phosphine oxide compound A layer is close to the cathode, and an electron transport layer substantially free of the phosphine oxide compound is close to the light emitting layer. In view of the properties of the light emitting element, at least one of the anode and the cathode is preferably transparent.
Preferably, the electron transport layer containing the phosphine oxide is a layer in contact with the electron injection layer.

本発明における有機層の積層の態様としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と発光層との間、又は、発光層と電子輸送層との間には、電荷ブロック層等を有していてもよい。陽極と正孔輸送層との間に、正孔注入層を有してもよく、陰極と電子輸送層との間には、電子注入層を有してもよい。尚、各層は複数の二次層に分かれていてもよい。   As an aspect of lamination of the organic layer in the present invention, an aspect in which a hole transport layer, a light emitting layer, and an electron transport layer are laminated in this order from the anode side is preferable. Further, a charge blocking layer or the like may be provided between the hole transport layer and the light-emitting layer, or between the light-emitting layer and the electron transport layer. A hole injection layer may be provided between the anode and the hole transport layer, and an electron injection layer may be provided between the cathode and the electron transport layer. Each layer may be divided into a plurality of secondary layers.

次に、本発明の発光材料を構成する要素について、詳細に説明する。
<基板>
本発明で使用する基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
Next, the elements constituting the light emitting material of the present invention will be described in detail.
<Board>
The substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic compound layer. Specific examples thereof include zirconia stabilized yttrium (YSZ), inorganic materials such as glass, polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, and polycycloolefin. , Norbornene resins, and organic materials such as poly (chlorotrifluoroethylene).
For example, when glass is used as the substrate, it is preferable to use non-alkali glass as the material in order to reduce ions eluted from the glass. Moreover, when using soda-lime glass, it is preferable to use what gave barrier coatings, such as a silica. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.

基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。   There is no restriction | limiting in particular about the shape of a board | substrate, a structure, a magnitude | size, It can select suitably according to the use, purpose, etc. of a light emitting element. In general, the shape of the substrate is preferably a plate shape. The structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.

基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。   The substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the organic light emitting layer.

基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
The substrate can be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
As a material for the moisture permeation preventive layer (gas barrier layer), inorganic materials such as silicon nitride and silicon oxide are preferably used. The moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
When a thermoplastic substrate is used, a hard coat layer, an undercoat layer, or the like may be further provided as necessary.

<陽極>
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<Anode>
The anode usually has a function as an electrode for supplying holes to the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element. , Can be appropriately selected from known electrode materials. As described above, the anode is usually provided as a transparent anode.

陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。   Suitable examples of the material for the anode include metals, alloys, metal oxides, conductive compounds, and mixtures thereof. Specific examples of the anode material include conductive metals such as tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), etc. Metals such as oxides, gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, polyaniline, polythiophene, polypyrrole, etc. Organic conductive materials, and a laminate of these and ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。   The anode is composed of, for example, a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, and a chemical method such as a CVD and a plasma CVD method. It can be formed on the substrate according to a method appropriately selected in consideration of suitability with the material to be processed. For example, when ITO is selected as the anode material, the anode can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.

本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。が、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。   In the organic electroluminescent element of the present invention, the formation position of the anode is not particularly limited and can be appropriately selected according to the use and purpose of the light emitting element. Is preferably formed on the substrate. In this case, the anode may be formed on the entire one surface of the substrate, or may be formed on a part thereof.

なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   The patterning for forming the anode may be performed by chemical etching such as photolithography, or may be performed by physical etching such as laser, or vacuum deposition or sputtering with a mask overlapped. It may be performed by a lift-off method or a printing method.

陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。   The thickness of the anode can be appropriately selected depending on the material constituting the anode and cannot be generally defined, but is usually about 10 nm to 50 μm, and preferably 50 nm to 20 μm.

陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。 The resistance value of the anode is preferably 10 3 Ω / □ or less, and more preferably 10 2 Ω / □ or less. When the anode is transparent, it may be colorless and transparent or colored and transparent. In order to take out light emission from the transparent anode side, the transmittance is preferably 60% or more, and more preferably 70% or more.

なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。   The transparent anode is described in detail in the book “New Development of Transparent Electrode Films” published by CMC (1999), supervised by Yutaka Sawada, and the matters described here can be applied to the present invention. In the case of using a plastic substrate having low heat resistance, a transparent anode formed using ITO or IZO at a low temperature of 150 ° C. or lower is preferable.

<陰極>
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<Cathode>
The cathode usually has a function as an electrode for injecting electrons into the organic compound layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.

陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられる。具体例としてはアルカリ金属(たとえば、LI、Na、K、又はCs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。   Examples of the material constituting the cathode include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Specific examples include alkali metals (eg, LI, Na, K, or Cs), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, And a rare earth metal such as magnesium-silver alloy, indium, and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection.

これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、又はマグネシウム−アルミニウム合金など)をいう。
Among these, as a material constituting the cathode, an alkali metal or an alkaline earth metal is preferable from the viewpoint of electron injecting property, and a material mainly composed of aluminum is preferable from the viewpoint of excellent storage stability.
The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy or magnesium-aluminum). Alloy).

なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの公報に記載の材料は、本発明においても適用することができる。   The cathode materials are described in detail in JP-A-2-15595 and JP-A-5-121172, and the materials described in these publications can also be applied in the present invention.

陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。
例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
There is no restriction | limiting in particular about the formation method of a cathode, According to a well-known method, it can carry out.
For example, the cathode described above is configured from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. It can be formed according to a method appropriately selected in consideration of suitability with the material. For example, when a metal or the like is selected as the cathode material, one or more of them can be simultaneously or sequentially performed according to a sputtering method or the like.

陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   Patterning when forming the cathode may be performed by chemical etching such as photolithography, physical etching by laser, or the like, or by vacuum deposition or sputtering with the mask overlaid. It may be performed by a lift-off method or a printing method.

本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
In the present invention, the cathode formation position is not particularly limited, and may be formed on the entire organic compound layer or a part thereof.
Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or oxide may be inserted between the cathode and the organic compound layer with a thickness of 0.1 nm to 5 nm. This dielectric layer can also be regarded as a kind of electron injection layer. The dielectric layer can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
The thickness of the cathode can be appropriately selected depending on the material constituting the cathode and cannot be generally defined, but is usually about 10 nm to 5 μm, and preferably 50 nm to 1 μm.
Further, the cathode may be transparent or opaque. The transparent cathode can be formed by depositing a thin cathode material to a thickness of 1 nm to 10 nm and further laminating a transparent conductive material such as ITO or IZO.

<有機化合物層>
本発明における有機化合物層について説明する。
本発明の有機電界発光素子は、発光層を含む少なくとも一層の有機化合物層を有しており、有機発光層以外の他の有機化合物層としては、前述したごとく、正孔輸送層、電子輸送層、電荷ブロック層(正孔ブロック層、電子ブロック層)、正孔注入層、及び電子注入層等の各層が挙げられる。
<Organic compound layer>
The organic compound layer in the present invention will be described.
The organic electroluminescent element of the present invention has at least one organic compound layer including a light emitting layer, and the organic compound layer other than the organic light emitting layer includes a hole transport layer, an electron transport layer as described above. , Charge blocking layer (hole blocking layer, electron blocking layer), hole injection layer, electron injection layer, and the like.

本発明の有機電界発光素子において、有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、又はインクジェット方式等いずれによっても好適に形成することができる。   In the organic electroluminescence device of the present invention, each layer constituting the organic compound layer is suitably formed by any of dry film forming methods such as vapor deposition and sputtering, wet coating methods, transfer methods, printing methods, and ink jet methods. can do.

1)有機発光層
有機発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、ホスト材料と発光材料を含有するのが好ましい。
発光材料は蛍光発光材料でも燐光発光材料であっても良く、ドーパントは1種であっても2種以上であっても良いが、本発明において好ましくは燐光発光材料である。また、発光材料は、低分子化合物であっても高分子化合物であってもよい。
ホスト材料は電荷輸送材料であることが好ましく、本発明においては、正孔輸送性ホスト材料が特に好ましい。ホスト材料は1種であっても2種以上であっても良く、例えば、正孔輸送性ホスト材料に電子輸送性ホスト材料を混合して用いても良い。さらに、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
1) Organic light-emitting layer The organic light-emitting layer receives holes from the anode, hole injection layer, or hole transport layer and receives electrons from the cathode, electron injection layer, or electron transport layer when an electric field is applied. This layer has a function of emitting light by providing a recombination field of electrons.
The light emitting layer in the present invention preferably contains a host material and a light emitting material.
The light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and the dopant may be one type or two or more types, but in the present invention, the phosphorescent light emitting material is preferable. The light emitting material may be a low molecular compound or a high molecular compound.
The host material is preferably a charge transport material, and in the present invention, a hole transportable host material is particularly preferable. The host material may be one kind or two or more kinds. For example, a hole transporting host material may be mixed with an electron transporting host material. Further, the light emitting layer may include a material that does not have charge transporting properties and does not emit light.
Further, the light emitting layer may be a single layer or two or more layers, and each layer may emit light in different emission colors.

(発光材料)
本発明に使用できる蛍光発光材料の例としては、例えば、ベンゾフラン誘導体、ベンゾチオフェン誘導体、ピラン誘導体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリレン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、シクロペンタジエン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリディン化合物、8−キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体などの化合物等が挙げられる。
(Luminescent material)
Examples of fluorescent materials that can be used in the present invention include, for example, benzofuran derivatives, benzothiophene derivatives, pyran derivatives, benzoxazole derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetra Phenylbutadiene derivatives, naphthalimide derivatives, coumarin derivatives, condensed aromatic compounds, perylene derivatives, oxadiazole derivatives, oxazine derivatives, aldazine derivatives, pyrazine derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiols Asiazolopyridine derivatives, cyclopentadiene derivatives, styrylamine derivatives, diketopyrrolopyrrole derivatives, aromatic dimethylidin compounds , 8-quinolinol derivatives of various metal complexes typified by metal complexes of the metal complex and pyrromethene derivatives, polythiophene, polyphenylene, polyphenylene vinylene polymer compounds include compounds such as organic silane derivatives.

また、本発明に使用できる燐光発光材料は、例えば、遷移金属原子又はランタノイド原子を含む錯体が挙げられる。
遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金である。本発明において特に好ましくは、白金を中心金属とした有機金属錯体である。
ランタノイド原子としては、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
Examples of the phosphorescent material that can be used in the present invention include complexes containing transition metal atoms or lanthanoid atoms.
Although it does not specifically limit as a transition metal atom, Preferably, ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, and platinum are mentioned, More preferably, they are rhenium, iridium, and platinum. In the present invention, an organometallic complex having platinum as a central metal is particularly preferable.
Examples of lanthanoid atoms include lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among these lanthanoid atoms, neodymium, europium, and gadolinium are preferable.

錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、ナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、イソキノリン、キノリノール、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子、ピコリナトなど)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Examples include ligands described in Yersin's "Photochemistry and Photophysics of Coordination Compounds" published by Springer-Verlag 1987, Akio Yamamoto "Organic Metal Chemistry-Fundamentals and Applications-" .
The specific ligand is preferably a halogen ligand (preferably a chlorine ligand), an aromatic ligand (eg, cyclopentadienyl anion, benzene anion, naphthyl anion, etc.), nitrogen-containing hetero Ring ligands (eg, phenylpyridine, benzoquinoline, isoquinoline, quinolinol, bipyridyl, phenanthroline, etc.), diketone ligands (eg, acetylacetone), carboxylic acid ligands (eg, acetate ligand, picolinato, etc.) , A carbon monoxide ligand, an isonitrile ligand, and a cyano ligand, and more preferably a nitrogen-containing heterocyclic ligand. The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.

燐光発光材料は、発光層中に、0.1質量%〜40質量%含有されることが好ましく、0.5質量%〜30質量%含有されることがより好ましい。   The phosphorescent material is preferably contained in the light emitting layer in an amount of 0.1% by mass to 40% by mass, and more preferably 0.5% by mass to 30% by mass.

以下に本発明に用いられる白金錯体の具体例を以下に例示するが、本発明はこれらに限定されものではない。   Specific examples of the platinum complex used in the present invention are illustrated below, but the present invention is not limited thereto.

(ホスト材料)
本発明におけるホスト材料は、特に限定される事はないが、正孔輸送性ホスト材料を用いた場合が効果が大きく、特に好ましい。
(Host material)
The host material in the present invention is not particularly limited, but the use of a hole transporting host material is particularly effective because it is highly effective.

《正孔輸送性ホスト》
本発明の有機層に用いられる正孔輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、Ipが5.1eV以上6.3eV以下であることが好ましく、5.4eV以上6.1eV以下であることがより好ましく、5.6eV以上5.8eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
このような正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。ピロール、カルバゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマチオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及びそれらの誘導体等が挙げられる。
正孔輸送性ホストとしての具体的化合物としては、例えば下記のものが挙げられるが、本発明はこれらに限定されるものではない。
《Hole-transporting host》
The hole transporting host used in the organic layer of the present invention preferably has an Ip of 5.1 eV or more and 6.3 eV or less from the viewpoint of improving durability and lowering driving voltage. More preferably, it is 5.6 eV or more and 5.8 eV or less. Further, from the viewpoint of improving durability and lowering driving voltage, the electron affinity Ea is preferably 1.2 eV or more and 3.1 eV or less, more preferably 1.4 eV or more and 3.0 eV or less, and 1.8 eV or more. More preferably, it is 2.8 eV or less.
Specific examples of such a hole transporting host include the following materials. Pyrrole, carbazole, pyrazole, imidazole, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone, hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, aromatic Group dimethylidin compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole), aniline copolymers, thiophene oligomer thiophene oligomers, conductive polymer oligomers such as polythiophene, organic silanes, carbon films, and their Derivatives and the like.
Specific examples of the hole transporting host include the following compounds, but the present invention is not limited thereto.

(発光層の厚み)
発光層の厚さは、特に限定されるものではないが、通常、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
(Light emitting layer thickness)
Although the thickness of a light emitting layer is not specifically limited, Usually, it is preferable that they are 1 nm-500 nm, it is more preferable that they are 5 nm-200 nm, and it is still more preferable that they are 10 nm-100 nm.

2)正孔注入層、正孔輸送層
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。本発明の正孔注入層、正孔輸送層に使用できる材料としては、特に限定されるものではなく、低分子化合物であっても高分子化合物であってもよい。
具体的には、ピロール誘導体、カルバゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、フェニルアゾール、フェニルアジンを配位子に有する金属錯体、等を含有する層であることが好ましい。
2) Hole injection layer, hole transport layer The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. The material that can be used for the hole injection layer and the hole transport layer of the present invention is not particularly limited, and may be a low molecular compound or a high molecular compound.
Specifically, pyrrole derivatives, carbazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives , Silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organic silane derivatives, carbon, phenylazole, phenylazine A layer containing a metal complex or the like is preferable.

本発明の有機EL素子の正孔注入層あるいは正孔輸送層には、電子受容性ドーパントを含有させることができる。正孔注入層、あるいは正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。   An electron-accepting dopant can be contained in the hole injection layer or the hole transport layer of the organic EL device of the present invention. As the electron-accepting dopant introduced into the hole-injecting layer or the hole-transporting layer, an inorganic compound or an organic compound can be used as long as it has an electron-accepting property and oxidizes an organic compound.

具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、および三酸化モリブデンなどの金属酸化物などが挙げられる。   Specifically, examples of the inorganic compound include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride, and antimony pentachloride, metal oxides such as vanadium pentoxide, and molybdenum trioxide.

有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、又はトリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、又はフラーレンなどを好適に用いることができる。
この他にも、特開平6−212153、特開平11−111463、特開平11−251067、特開2000−196140、特開2000−286054、特開2000−315580、特開2001−102175、特開2001−160493、特開2002−252085、特開2002−56985、特開2003−157981、特開2003−217862、特開2003−229278、特開2004−342614、特開2005−72012、特開2005−166637、特開2005−209643等に記載の化合物を好適に用いることが出来る。
In the case of an organic compound, a compound having a nitro group, halogen, cyano group, or trifluoromethyl group as a substituent, a quinone compound, an acid anhydride compound, or fullerene can be preferably used.
In addition, JP-A-6-212153, JP-A-11-111463, JP-A-11-251067, JP-A-2000-196140, JP-A-2000-286054, JP-A-2000-315580, JP-A-2001-102175, JP-A-2001-2001. -160493, JP2002-252085, JP2002-56985, JP2003-157981, JP2003-217862, JP2003-229278, JP2004-342614, JP2005-72012, JP20051666667 The compounds described in JP-A-2005-209643 and the like can be preferably used.

これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。
These electron-accepting dopants may be used alone or in combination of two or more.
Although the usage-amount of an electron-accepting dopant changes with kinds of material, it is preferable that it is 0.01 mass%-50 mass% with respect to hole transport layer material, and it is 0.05 mass%-20 mass%. It is further more preferable and it is especially preferable that it is 0.1 mass%-10 mass%.

正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
The thicknesses of the hole injection layer and the hole transport layer are each preferably 500 nm or less from the viewpoint of lowering the driving voltage.
The thickness of the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. In addition, the thickness of the hole injection layer is preferably 0.1 nm to 200 nm, more preferably 0.5 nm to 100 nm, and still more preferably 1 nm to 100 nm.
The hole injection layer and the hole transport layer may have a single-layer structure composed of one or more of the materials described above, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .

3)電子輸送層
電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
本発明における電子輸送層は、ホスフィンオキサイド化合物を含有する電子輸送層とホスフィンオキサイド化合物を実質的に含有しない電子輸送層とを有し、前記ホスフィンオキサイド化合物を含有する電子輸送層が前記陰極に近接し、前記ホスフィンオキサイド化合物を実質的に含有しない電子輸送層が発光層に近接していることを特徴とする。本発明で「近接」とは、一方が他方よりも相対的に対象とする層に近い位置にあることを意味する。本願に於いては、ホスフィンオキサイド化合物を含有する電子輸送層とホスフィンオキサイド化合物を実質的に含有しない電子輸送層の内、ホスフィンオキサイド化合物を実質的に含有しない層の方が発光層に近い位置にあることを意味する。即ち、ホスフィンオキサイド化合物を含有する電子輸送層は発光層と近接しておらず、ホスフィンオキサイド化合物を実質的に含有しない層よりも陰極に近接している。
好ましくは、陰極と電子輸送層との間に電子注入層を有し、前記ホスフィンオキサイド化合物を含有する電子輸送層が電子注入層に接する。
3) Electron transport layer The electron transport layer is a layer having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
The electron transport layer in the present invention has an electron transport layer containing a phosphine oxide compound and an electron transport layer substantially free of a phosphine oxide compound, and the electron transport layer containing the phosphine oxide compound is close to the cathode. And the electron carrying layer which does not contain the said phosphine oxide compound substantially is adjoining to the light emitting layer, It is characterized by the above-mentioned. In the present invention, “proximity” means that one is relatively closer to the target layer than the other. In the present application, of the electron transport layer containing the phosphine oxide compound and the electron transport layer substantially free of the phosphine oxide compound, the layer substantially not containing the phosphine oxide compound is closer to the light emitting layer. It means that there is. That is, the electron transport layer containing the phosphine oxide compound is not close to the light emitting layer, and is closer to the cathode than the layer substantially not containing the phosphine oxide compound.
Preferably, an electron injection layer is provided between the cathode and the electron transport layer, and the electron transport layer containing the phosphine oxide compound is in contact with the electron injection layer.

本発明において、ホスフィンオキサイド化合物を含有する電子輸送層が発光層に近い位置にあると素子耐久性に悪影響を及ぼすため、該ホスフィンオキサイド化合物を含有する電子輸送層と発光層との間の距離を離すことを目的として「ホスフィンオキサイド化合物を実質的に含有しない電子輸送層」が設けられる。ホスフィンオキサイド化合物を実質的に含有しない電子輸送層は、ホスフィンオキサイド以外の電子輸送材料を構成材料として採用することにより設けられる。また、ホスフィンオキサイド化合物を実質的に含有しない電子輸送層において、該電子輸送層の発光層側界面から該電子輸送層全体の厚みの10%までの領域におけるホスフィンオキサイド化合物の比率(前記10%までの領域におけるホスフィンオキサイド化合物の量/電子輸送層全体のホスフィンオキサイド化合物の量)が0.05以下であることが好ましく、0.03以下であることがより好ましく、最も好ましくは0.01以下である。   In the present invention, if the electron transport layer containing the phosphine oxide compound is located near the light emitting layer, the device durability is adversely affected. Therefore, the distance between the electron transport layer containing the phosphine oxide compound and the light emitting layer is For the purpose of separation, an “electron transport layer substantially free of a phosphine oxide compound” is provided. The electron transport layer substantially not containing a phosphine oxide compound is provided by employing an electron transport material other than phosphine oxide as a constituent material. In the electron transport layer substantially free of a phosphine oxide compound, the ratio of the phosphine oxide compound in the region from the light emitting layer side interface of the electron transport layer to 10% of the total thickness of the electron transport layer (up to 10% above) The amount of phosphine oxide compound in the region / the amount of phosphine oxide compound in the entire electron transport layer) is preferably 0.05 or less, more preferably 0.03 or less, and most preferably 0.01 or less. is there.

好ましくは、ホスフィンオキサイド化合物を含有する電子輸送層の膜厚が0.01nm以上10nm以下が好ましく、より好ましくは、0.01nm以上5nm以下である。0.01nmを下まわると、電子注入促進効果が得られにくくなる点で好ましくなく、10nmを超えると駆動電圧の上昇や耐久性の悪化を招くことがあり、好ましくない。
好ましくは、ホスフィンオキサイド化合物を実質的に含有しない電子輸送層の膜厚が5nm以上60nm以下が好ましく、より好ましくは、10nm以上30nm以下である。5nmを下まわると、耐久性の点で好ましくなく、60nmを超えると駆動電圧の点で好ましくない。
Preferably, the thickness of the electron transport layer containing the phosphine oxide compound is preferably 0.01 nm or more and 10 nm or less, and more preferably 0.01 nm or more and 5 nm or less. If it is less than 0.01 nm, it is not preferable in that it is difficult to obtain the effect of promoting electron injection, and if it exceeds 10 nm, the drive voltage may be increased or the durability may be deteriorated.
Preferably, the film thickness of the electron transport layer substantially free of a phosphine oxide compound is preferably 5 nm to 60 nm, and more preferably 10 nm to 30 nm. If it is less than 5 nm, it is not preferable in terms of durability, and if it exceeds 60 nm, it is not preferable in terms of driving voltage.

ホスフィンオキサイドを実質的に含有しない電子輸送層は、特に限定されることは無く、一般的な電子輸送性の有機材料を用いることができる。例えば、具体的には、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、有機シラン誘導体、等を用いることが出来る。   The electron transport layer substantially free of phosphine oxide is not particularly limited, and a general electron transporting organic material can be used. For example, specifically, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimide derivatives, fluorenylidenemethane Derivatives, distyrylpyrazine derivatives, aromatic ring tetracarboxylic anhydrides such as naphthalene and perylene, phthalocyanine derivatives, 8-quinolinol metal complexes, metal phthalocyanines, metal complexes with benzoxazole and benzothiazole as ligands Various metal complexes, organosilane derivatives, and the like can be used.

本発明の有機EL素子の電子輸送層には、電子供与性ドーパントを含有させることができる。電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
この他にも、特開平6−212153、特開2000−196140、特開2003−68468、特開2003−229278、特開2004−342614等に記載の材料を用いることが出来る。
The electron transport layer of the organic EL device of the present invention can contain an electron donating dopant. The electron-donating dopant introduced into the electron-transporting layer only needs to have an electron-donating property and reduce the organic compound, and includes alkali metals such as Li, alkaline earth metals such as Mg, and rare earth metals. Transition metals and reducing organic compounds are preferably used. As the metal, a metal having a work function of 4.2 eV or less can be preferably used. Specifically, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, Cs, La, Sm, Gd , And Yb. Examples of the reducing organic compound include nitrogen-containing compounds, sulfur-containing compounds, and phosphorus-containing compounds.
In addition, materials described in JP-A-6-212153, JP-A-2000-196140, JP-A-2003-68468, JP-A-2003-229278, JP-A-2004-342614, and the like can be used.

これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。
These electron donating dopants may be used alone or in combination of two or more.
The amount of the electron donating dopant varies depending on the type of material, but is preferably 0.1% by mass to 99% by mass, and 1.0% by mass to 80% by mass with respect to the electron transport layer material. Is more preferable, and 2.0 mass% to 70 mass% is particularly preferable.

4)ホールブロック層
ホールブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機化合物層として、ホールブロック層を設けることができる。
ホールブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
ホールブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
ホールブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
4) Hole blocking layer The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic compound layer adjacent to the light emitting layer on the cathode side.
Examples of the compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like.
The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
The hole block layer may have a single-layer structure made of one or more of the materials described above, or may have a multilayer structure made up of a plurality of layers having the same composition or different compositions.

5)電子ブロック層
電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機化合物層として、電子ブロック層を設けることができる。
電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
電子ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
ホールブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
6)電子注入層
本発明に於いては、陰極と電子輸送層との間に電子注入層を有し、前記ホスフィンオキサイド化合物を含有する電子輸送層が電子注入層に接するのが好ましい。
電子注入層とは、陰極から電子輸送層に電子を注入しやすくする層であり、具体的にはフッ化リチウム、塩化リチウム、臭化リチウム等のリチウム塩、フッ化ナトリウム、塩化ナトリウム、フッ化セシウム等のアルカリ金属塩、酸化リチウム、酸化アルミニウム、酸化インジウム、または酸化マグネシウム等の絶縁性金属酸化物等を好適に用いることができる。
電子注入層の膜厚は0.1nm〜5nmが好ましい。
5) Electron blocking layer The electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side. In the present invention, an electron blocking layer can be provided as the organic compound layer adjacent to the light emitting layer on the anode side.
As examples of the compound constituting the electron blocking layer, for example, those mentioned as the hole transport material described above can be applied.
The thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
The hole block layer may have a single-layer structure made of one or more of the materials described above, or may have a multilayer structure made up of a plurality of layers having the same composition or different compositions.
6) Electron Injection Layer In the present invention, it is preferable that an electron injection layer is provided between the cathode and the electron transport layer, and the electron transport layer containing the phosphine oxide compound is in contact with the electron injection layer.
The electron injection layer is a layer that facilitates injection of electrons from the cathode into the electron transport layer. Specifically, lithium salts such as lithium fluoride, lithium chloride, and lithium bromide, sodium fluoride, sodium chloride, fluoride An alkali metal salt such as cesium, an insulating metal oxide such as lithium oxide, aluminum oxide, indium oxide, or magnesium oxide can be preferably used.
The thickness of the electron injection layer is preferably 0.1 nm to 5 nm.

<保護層>
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、又はNi等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、又はTiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、又はCaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
<Protective layer>
In the present invention, the entire organic EL element may be protected by a protective layer.
As a material contained in the protective layer, any material may be used as long as it has a function of preventing materials that promote device deterioration such as moisture and oxygen from entering the device.
Specific examples thereof include metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, and Ni, MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, and Fe 2. Metal oxides such as O 3 , Y 2 O 3 , or TiO 2 , metal nitrides such as SiN x , SiN x O y , metal fluorides such as MgF 2 , LiF, AlF 3 , or CaF 2 , polyethylene, polypropylene Polymethyl methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, a copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, tetrafluoroethylene and at least one comonomer. A copolymer obtained by copolymerizing a monomer mixture containing Examples thereof include a fluorine-containing copolymer having a cyclic structure in the main chain, a water-absorbing substance having a water absorption of 1% or more, and a moisture-proof substance having a water absorption of 0.1% or less.

保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、又は転写法を適用できる。   The method for forming the protective layer is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, MBE (molecular beam epitaxy), cluster ion beam, ion plating, plasma polymerization (high frequency) Excited ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, or transfer method can be applied.

<封止>
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。
水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、およびシリコーンオイル類が挙げられる。
<Sealing>
Furthermore, the organic electroluminescent element of this invention may seal the whole element using a sealing container.
Further, a moisture absorbent or an inert liquid may be sealed in a space between the sealing container and the light emitting element.
Although it does not specifically limit as a moisture absorber, For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, calcium chloride, magnesium chloride, copper chloride Cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide, and the like. The inert liquid is not particularly limited, and examples thereof include paraffins, liquid paraffins, fluorinated solvents such as perfluoroalkane, perfluoroamine, and perfluoroether, chlorinated solvents, and silicone oils. Can be mentioned.

<駆動>
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。 本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
<Drive>
The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable. The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-29080, JP-A-7-134558, JP-A-8-234658, and JP-A-8-2441047. The driving method described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.

本発明の発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。   The light-emitting element of the present invention can improve the light extraction efficiency by various known devices. For example, by processing the substrate surface shape (for example, forming a fine concavo-convex pattern), controlling the refractive index of the substrate / ITO layer / organic layer, controlling the film thickness of the substrate / ITO layer / organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.

本発明の発光素子は、陽極側から発光を取り出す、いわゆる、トップエミッション方式であっても良い。   The light-emitting element of the present invention may be a so-called top emission type in which light emission is extracted from the anode side.

(本発明の用途)
本発明の有機電界発光素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、又は光通信等に好適に利用できる。
(Use of the present invention)
The organic electroluminescent element of the present invention can be suitably used for a display element, a display, a backlight, an electrophotography, an illumination light source, a recording light source, an exposure light source, a reading light source, a sign, a signboard, an interior, or optical communication.

本発明について実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   The present invention will be specifically described using examples, but the present invention is not limited to these examples.

実施例1
(有機EL素子の作製)
<比較の有機EL素子1の作製>
1)陽極の形成
25mm×25mm×0.7mmのガラス基板上に酸化インジウム錫(以後、ITOと略記)を150nmの厚さで蒸着し製膜したもの(東京三容真空(株)製)を透明支持基板とした。この透明支持基板をエッチング、洗浄した。
2)正孔注入・輸送層
このITOガラス基板上に、4,4−bis(N−(m−tolyl)−N−phenyl−amino)biphenyl(以後、TPDと略記)を50nmに蒸着した。
Example 1
(Production of organic EL element)
<Production of Comparative Organic EL Element 1>
1) Formation of anode An indium tin oxide film (hereinafter abbreviated as ITO) is deposited on a 25 mm × 25 mm × 0.7 mm glass substrate with a thickness of 150 nm (Tokyo Sanyo Vacuum Co., Ltd.). A transparent support substrate was used. This transparent support substrate was etched and washed.
2) Hole injection / transport layer 4,4-bis (N- (m-tolyl) -N-phenyl-amino) biphenyl (hereinafter abbreviated as TPD) was deposited on this ITO glass substrate at 50 nm.

3)発光層
上記正孔注入・輸送層の上にホスト材料として4,4'−di−(N−carbazole)−biphenyl(以後、CBPと略記)、発光材料としてfac−tris(2−phenylpyridinate−N,C2’)iridium(III)(以後、Ir(ppy)と略記)をCBPに対して6質量%含有する発光層を50nmに蒸着した。
3) Light-Emitting Layer On the hole injection / transport layer, 4,4′-di- (N-carbazole) -biphenyl (hereinafter abbreviated as CBP) as a host material and fac-tris (2-phenylpyridine) — A light emitting layer containing 6% by mass of N, C2 ′) iridium (III) (hereinafter abbreviated as Ir (ppy) 3 ) with respect to CBP was deposited at 50 nm.

4)電子輸送層
上記発光層の上に、ホスフィンオキサイド化合物A−1を膜厚50nmに蒸着した。
5)電子注入層
さらにLiFを膜厚0.5nmに蒸着した。
6)陰極電極の形成
この上にパターニングしたマスク(発光面積が2mm×2mmとなるマスク)を設置し、アルミニウムを膜厚約200nmに蒸着して素子を作製した。なお、作製した素子は乾燥グローブボックス内で封止した。
上記の蒸着は、10−3Pa〜10−4Paの真空中で、基板温度は室温の条件下で行った。
4) Electron transport layer On the light emitting layer, a phosphine oxide compound A-1 was deposited to a thickness of 50 nm.
5) Electron injection layer Furthermore, LiF was vapor-deposited with a film thickness of 0.5 nm.
6) Formation of cathode electrode A patterned mask (a mask having a light emitting area of 2 mm × 2 mm) was placed thereon, and aluminum was evaporated to a film thickness of about 200 nm to produce a device. The produced element was sealed in a dry glove box.
Said vapor deposition was performed in the vacuum of 10 < -3 > Pa-10 < -4 > Pa, and the substrate temperature on the conditions of room temperature.

<本発明の有機EL素子1の作製>
比較の有機EL素子1の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子1の作製と全く同様にして本発明の有機EL素子1を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−1を膜厚30nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
aluminum(III)bis(2−methyl−8−quinolinato)4−phenylphenolate(以後、BAlqと略記)を膜厚20nmに蒸着した。
<Preparation of the organic EL element 1 of the present invention>
In the production of the comparative organic EL element 1, the organic EL element 1 of the present invention was produced in the same manner as the production of the comparative organic EL element 1 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-1 was deposited to a thickness of 30 nm.
Second electron transport layer: a layer close to the light emitting layer.
Aluminum (III) bis (2-methyl-8-quinolinato) 4-phenylphenolate (hereinafter abbreviated as BAlq) was deposited to a thickness of 20 nm.

<本発明の有機EL素子2の作製>
比較の有機EL素子1の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子1の作製と全く同様にして本発明の有機EL素子2を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−1を膜厚10nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚40nmに蒸着した。
<Preparation of the organic EL element 2 of the present invention>
In the production of the comparative organic EL element 1, the organic EL element 2 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 1 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-1 was deposited to a thickness of 10 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a film thickness of 40 nm.

<本発明の有機EL素子3の作製>
比較の有機EL素子1の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子1の作製と全く同様にして本発明の有機EL素子3を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−1を膜厚3nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚47nmに蒸着した。
<Preparation of the organic EL element 3 of the present invention>
In the production of the comparative organic EL element 1, the organic EL element 3 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 1 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-1 was deposited to a thickness of 3 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 47 nm.

<本発明の有機EL素子4の作製>
比較の有機EL素子1の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子1の作製と全く同様にして本発明の有機EL素子4を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−1を膜厚1nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚49nmに蒸着した。
<Preparation of the organic EL element 4 of the present invention>
In the production of the comparative organic EL element 1, the organic EL element 4 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 1, except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-1 was deposited to a thickness of 1 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a film thickness of 49 nm.

以下に実施例に用いた材料の化学構造を示す。   The chemical structure of the material used in the examples is shown below.

(有機EL素子の性能評価)
1)外部量子効率
東陽テクニカ(株)製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し、発光させた。その輝度をトプコン社製輝度計BM−8を用いて測定した。発光スペクトルと発光波長は、浜松ホトニクス(株)製スペクトルアナライザーPMA−11を用いて測定した。これらの数値をもとに、輝度が1000cd/mにおける外部量子効率を輝度換算法により算出した。
(Performance evaluation of organic EL elements)
1) External quantum efficiency Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a direct current voltage was applied to each element to emit light. The brightness was measured using a luminance meter BM-8 manufactured by Topcon Corporation. The emission spectrum and emission wavelength were measured using a spectrum analyzer PMA-11 manufactured by Hamamatsu Photonics. Based on these numerical values, the external quantum efficiency at a luminance of 1000 cd / m 2 was calculated by a luminance conversion method.

2)駆動電圧
東陽テクニカ(株)製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し、発光させた。輝度が1000cd/mとなったときの電圧を駆動電圧として測定した。
3)駆動耐久性:輝度半減時間
各素子を輝度1000cd/mになるように直流電圧を印加し、連続駆動して輝度が500cd/mになるまでの時間を測定した。この輝度半減時間をもってして駆動耐久性の指標とした。
2) Driving voltage Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a DC voltage was applied to each element to emit light. The voltage when the luminance was 1000 cd / m 2 was measured as the driving voltage.
3) driving durability: a luminance half-life each element by applying a DC voltage so that the luminance 1000 cd / m 2, the luminance was measured the time until 500 cd / m 2 is continuously driven. This luminance half time was used as an index of driving durability.

得られた結果を下の表1にまとめた。   The results obtained are summarized in Table 1 below.

上記結果から明らかなように、比較の素子1に対して本発明の素子は、外部量子効率が増加し、駆動電圧が低下し、高い駆動耐久性を示した。特に、本発明の素子3,4が高い駆動耐久性を示した。即ち、ホスフィンオキサイド化合物を含有する電子輸送層の厚みが1nm、3nmの薄層領域で、本発明の素子が優れた効果を発揮することが明らかである。   As is apparent from the above results, the device of the present invention has an increased external quantum efficiency, a reduced drive voltage, and a high drive durability compared to the comparative device 1. In particular, the elements 3 and 4 of the present invention showed high driving durability. That is, it is apparent that the device of the present invention exhibits excellent effects in the thin layer region of 1 nm and 3 nm of the electron transport layer containing the phosphine oxide compound.

実施例2
(有機EL素子の作製)
<比較の有機EL素子2の作製>
1)陽極の形成
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したもの(東京三容真空(株)製)を透明支持基板とした。この透明支持基板をエッチング、洗浄した。
2)正孔注入層
このITOガラス基板上に、4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(以後、2−TNATAと略記)を蒸着した。蒸着厚みは120nmとした。
Example 2
(Production of organic EL element)
<Production of Comparative Organic EL Element 2>
1) Formation of anode A transparent support substrate was formed by depositing ITO on a glass substrate of 25 mm × 25 mm × 0.7 mm to a thickness of 150 nm to form a film (Tokyo Sanyo Vacuum Co., Ltd.). This transparent support substrate was etched and washed.
2) Hole Injecting Layer 4,4 ′, 4 ″ -Tris (2-naphthylphenylamino) triphenylamine (hereinafter abbreviated as 2-TNATA) was deposited on the ITO glass substrate. The deposition thickness was 120 nm. did.

3)正孔輸送層
上記正孔注入送層の上にN,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(以後、α−NPDと略記)を10nmに蒸着した。
3) Hole transport layer N, N′-Dinaphthyl-N, N′-diphenyl- [1,1′-biphenyl] -4,4′-diamine (hereinafter referred to as α-NPD) on the hole injection / transport layer. And abbreviated to 10 nm.

4)発光層
上記正孔輸送層の上にホスト材料として1,3−bis(N−carbazolyl)benzene(以後、mCPと略記)、発光材料としてiridium(III)bis(4,6−(di−fluoropheny)−pyridinate−N,C2’)picolinate(以後、FIrpicと略記)をmCPに対して6質量%となるように共蒸着した。蒸着厚みは30nmであった。
4) Light-Emitting Layer On the hole transport layer, 1,3-bis (N-carbazolyl) benzene (hereinafter abbreviated as mCP) is used as a host material, and iridium (III) bis (4,6- (di-) is used as a light-emitting material. Fluoropheny) -pyridinate-N, C2 ′) picolinate (hereinafter abbreviated as FIrpic) was co-evaporated to 6 mass% with respect to mCP. The deposition thickness was 30 nm.

5)電子輸送層
上記発光層の上に、ホスフィンオキサイド化合物A−2を膜厚40nmに蒸着した。
6)電子注入層
さらにLiFを膜厚約0.5nm蒸着した。
7)陰極電極の形成
この上にパターニングしたマスク(発光面積が2mm×2mmとなるマスク)を設置し、アルミニウムを膜厚約100nmに蒸着して素子を作製した。なお、作製した素子は乾燥グローブボックス内で封止した。
上記の蒸着は、10−3Pa〜10−4Paの真空中で、基板温度は室温の条件下で行った。
5) Electron transport layer On the said light emitting layer, the phosphine oxide compound A-2 was vapor-deposited by the film thickness of 40 nm.
6) Electron injection layer Further, LiF was deposited to a thickness of about 0.5 nm.
7) Formation of cathode electrode A patterned mask (a mask having a light emitting area of 2 mm × 2 mm) was placed thereon, and aluminum was evaporated to a film thickness of about 100 nm to produce a device. The produced element was sealed in a dry glove box.
Said vapor deposition was performed in the vacuum of 10 < -3 > Pa-10 < -4 > Pa, and the substrate temperature on the conditions of room temperature.

<比較の有機EL素子3の作製>
比較の有機EL素子2の作製において、電子輸送層として下記の層を用いる以外は比較の有機EL素子1の作製と全く同様にして比較の有機EL素子2を作製した。
電子輸送層:ホスフィンオキサイド化合物A−2にセシウム(Cs)を20質量%ドーピングして膜厚40nmに蒸着した。
<Production of Comparative Organic EL Element 3>
In the production of the comparative organic EL element 2, the comparative organic EL element 2 was produced in exactly the same manner as the production of the comparative organic EL element 1, except that the following layers were used as the electron transport layer.
Electron transport layer: 20% by mass of cesium (Cs) was doped into the phosphine oxide compound A-2 and evaporated to a thickness of 40 nm.

<本発明の有機EL素子5の作製>
比較の有機EL素子2の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子2の作製と全く同様にして本発明の有機EL素子5を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−2を膜厚30nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚10nmに蒸着した。
<Preparation of the organic EL element 5 of the present invention>
In the production of the comparative organic EL element 2, the organic EL element 5 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 2 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-2 was deposited to a thickness of 30 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 10 nm.

<本発明の有機EL素子6の作製>
比較の有機EL素子2の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子2の作製と全く同様にして本発明の有機EL素子6を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−2を膜厚10nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚30nmに蒸着した。
<Preparation of the organic EL element 6 of the present invention>
In the production of the comparative organic EL element 2, the organic EL element 6 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 2 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-2 was deposited to a thickness of 10 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 30 nm.

<本発明の有機EL素子7の作製>
比較の有機EL素子2の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子2の作製と全く同様にして本発明の有機EL素子7を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−2を膜厚3nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚37nmに蒸着した。
<Preparation of the organic EL element 7 of the present invention>
In the production of the comparative organic EL element 2, the organic EL element 7 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 2 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-2 was deposited to a thickness of 3 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 37 nm.

<本発明の有機EL素子8の作製>
比較の有機EL素子2の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子2の作製と全く同様にして本発明の有機EL素子8を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−2を膜厚1nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚39nmに蒸着した。
<Preparation of the organic EL element 8 of the present invention>
In the production of the comparative organic EL element 2, the organic EL element 8 of the present invention was produced in the same manner as the production of the comparative organic EL element 2 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-2 was deposited to a thickness of 1 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a film thickness of 39 nm.

実施例に用いた材料の化学構造を下記に示す。   The chemical structure of the material used in the examples is shown below.

(有機EL素子の性能評価)
実施例1と同様にして、外部量子効率、駆動電圧および駆動耐久性を評価した。
但し、外部量子効率および駆動電圧は、輝度300cd/mにおける値である。駆動耐久性は、初期輝度300cd/mにおける輝度半減時間である。
(Performance evaluation of organic EL elements)
In the same manner as in Example 1, the external quantum efficiency, drive voltage, and drive durability were evaluated.
However, the external quantum efficiency and the driving voltage are values at a luminance of 300 cd / m 2 . The driving durability is a luminance half time at an initial luminance of 300 cd / m 2 .

得られた結果を下の表2に示した。   The results obtained are shown in Table 2 below.

上記結果から明らかなように、比較の素子2に対して比較の素子3は、外部量子効率が向上し、駆動電圧も低下したが、駆動耐久性が著しく低いままであった。本発明の素子5〜8は、外部量子効率が向上し、駆動電圧が低下し、駆動耐久性が顕著に向上した。特に、本発明の素子7,8が高い駆動耐久性を示した。即ち、ホスフィンオキサイド化合物を含有する電子輸送層の厚みが1nm、3nmの薄層領域で、本発明の素子が優れた効果を発揮することが明らかである。   As is apparent from the above results, the comparative element 3 has an external quantum efficiency improved and a driving voltage has decreased, but the driving durability remains extremely low. In the elements 5 to 8 of the present invention, the external quantum efficiency was improved, the driving voltage was lowered, and the driving durability was remarkably improved. In particular, the elements 7 and 8 of the present invention showed high driving durability. That is, it is apparent that the device of the present invention exhibits excellent effects in the thin layer region of 1 nm and 3 nm of the electron transport layer containing the phosphine oxide compound.

実施例3
(有機EL素子の作製)
<比較の有機EL素子3の作製>
1)陽極の形成
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したもの(東京三容真空(株)製)を透明支持基板とした。この透明支持基板をエッチング、洗浄した。
2)正孔注入層
このITOガラス基板上に、2−TNATAを蒸着した。蒸着厚みは120nmであった。
Example 3
(Production of organic EL element)
<Production of Comparative Organic EL Element 3>
1) Formation of anode A transparent support substrate was formed by depositing ITO on a glass substrate of 25 mm × 25 mm × 0.7 mm to a thickness of 150 nm to form a film (Tokyo Sanyo Vacuum Co., Ltd.). This transparent support substrate was etched and washed.
2) Hole injection layer 2-TNATA was vapor-deposited on this ITO glass substrate. The deposition thickness was 120 nm.

3)正孔輸送層
上記正孔注入送層の上にα−NPDを10nmに蒸着した。
3) Hole transport layer α-NPD was vapor-deposited at 10 nm on the hole injection / transport layer.

4)発光層
上記正孔輸送層の上にホスト材料としてmCP、発光材料として白金錯体Pt−1をmCPに対して15質量%となるように共蒸着した。蒸着厚みは30nmであった。
4) Light-Emitting Layer On the hole transport layer, mCP as a host material and platinum complex Pt-1 as a light-emitting material were co-deposited so as to be 15% by mass with respect to mCP. The deposition thickness was 30 nm.

5)電子輸送層
上記発光層の上に、ホスフィンオキサイド化合物A−3を膜厚40nmに蒸着した。
6)電子注入層
さらにLiFを膜厚約0.5nm蒸着した。
7)陰極電極の形成
この上にパターニングしたマスク(発光面積が2mm×2mmとなるマスク)を設置し、アルミニウムを膜厚約100nmに蒸着して素子を作製した。なお、作製した素子は乾燥グローブボックス内で封止した。
上記の蒸着は、10−3Pa〜10−4Paの真空中で、基板温度は室温の条件下で行った。
5) Electron transport layer On the light emitting layer, a phosphine oxide compound A-3 was deposited to a thickness of 40 nm.
6) Electron injection layer Further, LiF was deposited to a thickness of about 0.5 nm.
7) Formation of cathode electrode A patterned mask (a mask having a light emitting area of 2 mm × 2 mm) was placed thereon, and aluminum was evaporated to a film thickness of about 100 nm to produce a device. The produced element was sealed in a dry glove box.
Said vapor deposition was performed in the vacuum of 10 < -3 > Pa-10 < -4 > Pa, and the substrate temperature on the conditions of room temperature.

<本発明の有機EL素子9の作製>
比較の有機EL素子4の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子4の作製と全く同様にして本発明の有機EL素子9を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−3を膜厚30nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚10nmに蒸着した。
<Preparation of the organic EL element 9 of the present invention>
In the production of the comparative organic EL element 4, the organic EL element 9 of the present invention was produced in the same manner as the production of the comparative organic EL element 4 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
The phosphine oxide compound A-3 was deposited to a thickness of 30 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 10 nm.

<本発明の有機EL素子10の作製>
比較の有機EL素子4の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子4の作製と全く同様にして本発明の有機EL素子10を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−3を膜厚10nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚30nmに蒸着した。
<Preparation of the organic EL element 10 of the present invention>
In the production of the comparative organic EL element 4, the organic EL element 10 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 4 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-3 was deposited to a thickness of 10 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 30 nm.

<本発明の有機EL素子11の作製>
比較の有機EL素子4の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子4の作製と全く同様にして本発明の有機EL素子11を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−3を膜厚3nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚37nmに蒸着した。
<Preparation of the organic EL element 11 of the present invention>
In the production of the comparative organic EL element 4, the organic EL element 11 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 4 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-3 was deposited to a thickness of 3 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 37 nm.

<本発明の有機EL素子12の作製>
比較の有機EL素子4の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子4の作製と全く同様にして本発明の有機EL素子12を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−3を膜厚1nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚39nmに蒸着した。
<Preparation of the organic EL element 12 of the present invention>
In the production of the comparative organic EL element 4, the organic EL element 12 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 4 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-3 was deposited to a thickness of 1 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a film thickness of 39 nm.

実施例に用いた材料の化学構造を下記に示す。   The chemical structure of the material used in the examples is shown below.

(有機EL素子の性能評価)
実施例1と同様にして、外部量子効率、駆動電圧および駆動耐久性を評価した。
(Performance evaluation of organic EL elements)
In the same manner as in Example 1, the external quantum efficiency, drive voltage, and drive durability were evaluated.

得られた結果を下の表3に示した。   The results obtained are shown in Table 3 below.

上記結果から明らかなように、比較の素子4に対して本発明の素子9〜12は、外部量子効率が向上し、駆動電圧が低下し、駆動耐久性が顕著に向上した。特に、本発明の素子11,12が高い駆動耐久性を示した。即ち、ホスフィンオキサイド化合物を含有する電子輸送層の厚みが1nm、3nmの薄層領域で、本発明の素子が優れた効果を発揮することが明らかであった。ホスフィンオキサイド化合物を用いた電子輸送層と白金錯体を用いた発光層の組合せが特異的に優れた効果を発揮することを示している。   As is clear from the above results, the devices 9 to 12 of the present invention have an improved external quantum efficiency, a reduced driving voltage, and a significantly improved driving durability relative to the comparative device 4. In particular, the elements 11 and 12 of the present invention showed high driving durability. That is, it was clear that the device of the present invention exhibited excellent effects in the thin layer region of 1 nm and 3 nm of the electron transport layer containing the phosphine oxide compound. It shows that a combination of an electron transport layer using a phosphine oxide compound and a light emitting layer using a platinum complex exhibits a particularly excellent effect.

実施例4
(有機EL素子の作製)
<比較の有機EL素子5の作製>
1)陽極の形成
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したもの(東京三容真空(株)製)を透明支持基板とした。この透明支持基板をエッチング、洗浄した。
2)正孔注入層
このITOガラス基板上に、2−TNATAを蒸着した。蒸着厚みは120nmであった。
Example 4
(Production of organic EL element)
<Production of Comparative Organic EL Element 5>
1) Formation of anode A transparent support substrate was formed by depositing ITO on a glass substrate of 25 mm × 25 mm × 0.7 mm to a thickness of 150 nm to form a film (Tokyo Sanyo Vacuum Co., Ltd.). This transparent support substrate was etched and washed.
2) Hole injection layer 2-TNATA was vapor-deposited on this ITO glass substrate. The deposition thickness was 120 nm.

3)正孔輸送層
上記正孔注入送層の上にα−NPDを10nmに蒸着した。
3) Hole transport layer α-NPD was vapor-deposited at 10 nm on the hole injection / transport layer.

4)発光層
上記正孔輸送層の上にホスト材料としてmCP、発光材料として白金錯体Pt−2をmCPに対して15質量%となるように共蒸着した。蒸着厚みは30nmであった。
4) Light-emitting layer On the hole transport layer, mCP as a host material and platinum complex Pt-2 as a light-emitting material were co-deposited so as to be 15% by mass with respect to mCP. The deposition thickness was 30 nm.

5)電子輸送層
上記発光層の上に、ホスフィンオキサイド化合物A−4を膜厚40nmに蒸着した。
6)電子注入層
さらにLiFを膜厚約0.5nm蒸着した。
7)陰極電極の形成
この上にパターニングしたマスク(発光面積が2mm×2mmとなるマスク)を設置し、アルミニウムを膜厚約100nmに蒸着して素子を作製した。なお、作製した素子は乾燥グローブボックス内で封止した。
上記の蒸着は、10−3Pa〜10−4Paの真空中で、基板温度は室温の条件下で行った。
5) Electron transport layer On the light emitting layer, a phosphine oxide compound A-4 was deposited to a thickness of 40 nm.
6) Electron injection layer Further, LiF was deposited to a thickness of about 0.5 nm.
7) Formation of cathode electrode A patterned mask (a mask having a light emitting area of 2 mm × 2 mm) was placed thereon, and aluminum was evaporated to a film thickness of about 100 nm to produce a device. The produced element was sealed in a dry glove box.
Said vapor deposition was performed in the vacuum of 10 < -3 > Pa-10 < -4 > Pa, and the substrate temperature on the conditions of room temperature.

<本発明の有機EL素子13の作製>
比較の有機EL素子5の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子5の作製と全く同様にして本発明の有機EL素子13を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−4を膜厚30nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚10nmに蒸着した。
<Preparation of the organic EL element 13 of the present invention>
In the production of the comparative organic EL element 5, the organic EL element 13 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 5 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-4 was deposited to a thickness of 30 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 10 nm.

<本発明の有機EL素子14の作製>
比較の有機EL素子5の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子5の作製と全く同様にして本発明の有機EL素子14を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−4を膜厚10nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚30nmに蒸着した。
<Preparation of the organic EL element 14 of the present invention>
In the production of the comparative organic EL element 5, the organic EL element 14 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 5 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-4 was deposited to a thickness of 10 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 30 nm.

<本発明の有機EL素子15の作製>
比較の有機EL素子5の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子5の作製と全く同様にして本発明の有機EL素子15を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−4を膜厚3nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚37nmに蒸着した。
<Preparation of the organic EL element 15 of the present invention>
In the production of the comparative organic EL element 5, the organic EL element 15 of the present invention was produced in the same manner as the production of the comparative organic EL element 5 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-4 was deposited to a thickness of 3 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a thickness of 37 nm.

<本発明の有機EL素子16の作製>
比較の有機EL素子5の作製において、電子輸送層として下記の2層を用いる以外は比較の有機EL素子5の作製と全く同様にして本発明の有機EL素子16を作製した。
第1の電子輸送層:陰極に近い層である。
ホスフィンオキサイド化合物A−4を膜厚1nmに蒸着した。
第2の電子輸送層:発光層に近い層である。
BAlqを膜厚39nmに蒸着した。
<Preparation of the organic EL element 16 of the present invention>
In the production of the comparative organic EL element 5, the organic EL element 16 of the present invention was produced in exactly the same manner as the production of the comparative organic EL element 5 except that the following two layers were used as the electron transport layer.
First electron transport layer: a layer close to the cathode.
Phosphine oxide compound A-4 was deposited to a thickness of 1 nm.
Second electron transport layer: a layer close to the light emitting layer.
BAlq was deposited to a film thickness of 39 nm.

実施例に用いた材料の化学構造を下記に示す。   The chemical structure of the material used in the examples is shown below.

(有機EL素子の性能評価)
実施例1と同様にして、外部量子効率、駆動電圧および駆動耐久性を評価した。
但し、外部量子効率および駆動電圧は、輝度300cd/mにおける値である。駆動耐久性は、初期輝度300cd/mにおける輝度半減時間である。
(Performance evaluation of organic EL elements)
In the same manner as in Example 1, the external quantum efficiency, drive voltage, and drive durability were evaluated.
However, the external quantum efficiency and the driving voltage are values at a luminance of 300 cd / m 2 . The driving durability is a luminance half time at an initial luminance of 300 cd / m 2 .

得られた結果を下の表4に示した。   The results obtained are shown in Table 4 below.


上記結果から明らかなように、比較の素子5に対して本発明の素子13〜16は、外部量子効率が向上し、駆動電圧が低下し、駆動耐久性が顕著に向上した。特に、本発明の素子15.16が高い駆動耐久性を示した。即ち、ホスフィンオキサイド化合物を含有する電子輸送層の厚みが1nm、3nmの薄層領域で、本発明の素子が優れた効果を発揮することが明らかである。

As is clear from the above results, the devices 13 to 16 of the present invention have an improved external quantum efficiency, a lower driving voltage, and a significantly improved driving durability relative to the comparative device 5. In particular, the device 15.16 of the present invention showed high driving durability. That is, it is apparent that the device of the present invention exhibits excellent effects in the thin layer region of 1 nm and 3 nm of the electron transport layer containing the phosphine oxide compound.

Claims (10)

一対の電極間に発光層を含む少なくとも一層の有機層を有する有機電界発光素子であって、前記発光層と陰極との間に、ホスフィンオキサイド化合物を含有する電子輸送層と該ホスフィンオキサイド化合物を実質的に含有しない電子輸送層とを有し、前記ホスフィンオキサイド化合物を含有する電子輸送層が前記陰極に近接し、前記ホスフィンオキサイド化合物を実質的に含有しない電子輸送層が前記発光層に近接していることを特徴とする有機電界発光素子。   An organic electroluminescence device having at least one organic layer including a light emitting layer between a pair of electrodes, wherein an electron transport layer containing a phosphine oxide compound and the phosphine oxide compound are substantially disposed between the light emitting layer and the cathode. And an electron transport layer containing no phosphine oxide compound is close to the cathode, and an electron transport layer substantially not containing the phosphine oxide compound is close to the light emitting layer. An organic electroluminescent element characterized by comprising: 前記ホスフィンオキサイドを含有する電子輸送層が電子注入層に接する層であることを特徴とする請求項1に記載の有機電界発光素子。   The organic electroluminescent element according to claim 1, wherein the electron transport layer containing the phosphine oxide is a layer in contact with the electron injection layer. 前記ホスフィンオキサイドを含有する電子輸送層の膜厚が0.01nm以上10nm以下であることを特徴とする請求項1又は請求項2に記載の有機電界発光素子。   3. The organic electroluminescence device according to claim 1, wherein a film thickness of the electron transport layer containing the phosphine oxide is 0.01 nm or more and 10 nm or less. 前記ホスフィンオキサイドを含有する電子輸送層の膜厚が0.01nm以上5nm以下であることを特徴とする請求項3に記載の有機電界発光素子。   The organic electroluminescent element according to claim 3, wherein the electron transport layer containing the phosphine oxide has a thickness of 0.01 nm or more and 5 nm or less. 前記ホスフィンオキサイド化合物が下記一般式(I)で表される化合物であることを特徴とする請求項1〜請求項4のいずれか1項に記載の有機電界発光素子:

(式中、R、R、およびRは、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、又はヘテロ環基を表す。)。
5. The organic electroluminescent element according to claim 1, wherein the phosphine oxide compound is a compound represented by the following general formula (I):

Wherein R 1 , R 2 and R 3 are each independently an alkyl group, alkenyl group, alkynyl group, aryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, acyl group, alkoxycarbonyl Group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, or heterocyclic group To express.).
前記一般式(I)で表されるホスフィンオキサイド化合物が、下記一般式(II)で表される化合物であることを特徴とする請求項5に記載の有機電界発光素子:

(式中、Ar、Ar、およびArは、それぞれ独立にアリール基またはヘテロ環基を表す。)。
The organic electroluminescent element according to claim 5, wherein the phosphine oxide compound represented by the general formula (I) is a compound represented by the following general formula (II):

(In the formula, Ar 1 , Ar 2 , and Ar 3 each independently represents an aryl group or a heterocyclic group).
前記ホスフィンオキサイド化合物が、下記一般式(III)で表される化合物であることを特徴とする請求項1〜請求項4のいずれか1項に記載の有機電界発光素子:

(式中、R31〜R34はそれぞれ独立にアリール基またはヘテロ環基を表す。Lは二価の連結基を表す。)。
5. The organic electroluminescent element according to claim 1, wherein the phosphine oxide compound is a compound represented by the following general formula (III):

(Wherein R 31 to R 34 each independently represents an aryl group or a heterocyclic group; L represents a divalent linking group).
前記発光層が燐光発光材料を含有することを特徴とする請求項1〜請求項7のいずれか1項に記載の有機電界発光素子。   The organic electroluminescent element according to claim 1, wherein the light emitting layer contains a phosphorescent material. 前記燐光発光材料が白金を中心金属とした有機金属錯体であることを特徴とする請求項8に記載の有機電界発光素子。   The organic electroluminescent element according to claim 8, wherein the phosphorescent material is an organometallic complex having platinum as a central metal. 前記発光層がホスト材料として正孔輸送性有機材料を含有することを特徴とする請求項1〜請求項9のいずれか1項に記載の有機電界発光素子。   The organic light-emitting device according to claim 1, wherein the light-emitting layer contains a hole-transporting organic material as a host material.
JP2008026984A 2007-03-26 2008-02-06 Organic electroluminescence device Active JP5230218B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008026984A JP5230218B2 (en) 2007-03-26 2008-02-06 Organic electroluminescence device
US12/054,147 US20080241518A1 (en) 2007-03-26 2008-03-24 Organic electroluminescence element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007080253 2007-03-26
JP2007080253 2007-03-26
JP2008026984A JP5230218B2 (en) 2007-03-26 2008-02-06 Organic electroluminescence device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012209738A Division JP5782000B2 (en) 2007-03-26 2012-09-24 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2008270729A true JP2008270729A (en) 2008-11-06
JP5230218B2 JP5230218B2 (en) 2013-07-10

Family

ID=40049791

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008026984A Active JP5230218B2 (en) 2007-03-26 2008-02-06 Organic electroluminescence device
JP2012209738A Active JP5782000B2 (en) 2007-03-26 2012-09-24 Organic electroluminescence device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012209738A Active JP5782000B2 (en) 2007-03-26 2012-09-24 Organic electroluminescence device

Country Status (1)

Country Link
JP (2) JP5230218B2 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140950A (en) * 2008-12-09 2010-06-24 Fujifilm Corp Organic electroluminescence device
JP2010278376A (en) * 2009-06-01 2010-12-09 Daiden Co Ltd Organic electron transport material, component for forming organic electron material, and organic electric field light-emitting element
JP2011086925A (en) * 2009-09-16 2011-04-28 Mitsubishi Chemicals Corp Photoelectric conversion element material, and photoelectric conversion element and solar cell
JP2011119648A (en) * 2009-08-04 2011-06-16 Mitsubishi Chemicals Corp Photoelectric conversion element, and solar cell using the same
EP2403029A1 (en) * 2009-02-27 2012-01-04 Nippon Steel Chemical Co., Ltd. Organic electroluminescent element
WO2012085988A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Organic el element and method for manufacturing same
JP2012528143A (en) * 2009-05-27 2012-11-12 インダストリー−アカデミック コーポレーション ファウンデーション,ダンクック ユニバーシティ Carbazole-based phosphine oxide compound and organic electroluminescent device containing the same
US8946417B2 (en) 2009-04-06 2015-02-03 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
JP2015506095A (en) * 2011-11-30 2015-02-26 ノヴァレッド ゲーエムベーハー Organic electronic equipment
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US9382273B2 (en) 2010-04-30 2016-07-05 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9385329B2 (en) 2013-10-14 2016-07-05 Arizona Board of Regents on behalf of Arizona State University and Universal Display Corporation Platinum complexes and devices
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
JP2017502518A (en) * 2013-12-23 2017-01-19 ノヴァレッド ゲーエムベーハー N-doped semiconductor material comprising a phosphine oxide matrix and a metal dopant
WO2017047977A1 (en) * 2015-09-15 2017-03-23 주식회사 엘지화학 Heterocyclic compound and organic light emitting diode comprising same
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
KR20180019224A (en) * 2015-06-23 2018-02-23 노발레드 게엠베하 Organic light emitting devices including polar matrices and metal dopants
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
CN107851733A (en) * 2015-06-23 2018-03-27 诺瓦尔德股份有限公司 Include the organic luminescent device of polarity matrix, metal dopant and silver cathode
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
JP2018536289A (en) * 2015-11-23 2018-12-06 ノヴァレッド ゲーエムベーハー Organic semiconductive layer containing a phosphine oxide compound
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
US12037348B2 (en) 2018-03-09 2024-07-16 Arizona Board Of Regents On Behalf Of Arizona State University Blue and narrow band green and red emitting metal complexes
US12091429B2 (en) 2018-07-16 2024-09-17 Arizona Board Of Regents On Behalf Of Arizona State University Fluorinated porphyrin derivatives for optoelectronic applications

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413125B2 (en) * 2013-09-24 2018-10-31 日本放送協会 ORGANIC ELECTROLUMINESCENCE ELEMENT AND DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
KR102455727B1 (en) * 2017-11-13 2022-10-19 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting display device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093425A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Light emitting device
WO2005104628A1 (en) * 2004-04-20 2005-11-03 Kyushu Electric Power Co., Inc. Organic electroluminescent element and manufacturing method thereof, organic compound containing phosphorus and manufacturing method thereof
JP2006270053A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Organic electroluminescence element
JP2007042875A (en) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp Organic electroluminescence element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876333B2 (en) * 2000-06-08 2012-02-15 東レ株式会社 Light emitting element
JP4254231B2 (en) * 2002-12-26 2009-04-15 東レ株式会社 Light emitting device material and light emitting device using the same
JP4725056B2 (en) * 2004-08-31 2011-07-13 東レ株式会社 Light emitting device material and light emitting device
DE102005023437A1 (en) * 2005-05-20 2006-11-30 Merck Patent Gmbh Connections for organic electronic devices
US7419728B2 (en) * 2005-05-31 2008-09-02 Eastman Kodak Company Light-emitting device containing bis-phosphineoxide compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093425A (en) * 2003-08-12 2005-04-07 Toray Ind Inc Light emitting device
WO2005104628A1 (en) * 2004-04-20 2005-11-03 Kyushu Electric Power Co., Inc. Organic electroluminescent element and manufacturing method thereof, organic compound containing phosphorus and manufacturing method thereof
JP2006270053A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Organic electroluminescence element
JP2007042875A (en) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp Organic electroluminescence element

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140950A (en) * 2008-12-09 2010-06-24 Fujifilm Corp Organic electroluminescence device
EP2403029A4 (en) * 2009-02-27 2012-08-08 Nippon Steel Chemical Co Organic electroluminescent element
EP2403029A1 (en) * 2009-02-27 2012-01-04 Nippon Steel Chemical Co., Ltd. Organic electroluminescent element
US8946417B2 (en) 2009-04-06 2015-02-03 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
US9550801B2 (en) 2009-04-06 2017-01-24 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
JP2012528143A (en) * 2009-05-27 2012-11-12 インダストリー−アカデミック コーポレーション ファウンデーション,ダンクック ユニバーシティ Carbazole-based phosphine oxide compound and organic electroluminescent device containing the same
JP2010278376A (en) * 2009-06-01 2010-12-09 Daiden Co Ltd Organic electron transport material, component for forming organic electron material, and organic electric field light-emitting element
JP2011119648A (en) * 2009-08-04 2011-06-16 Mitsubishi Chemicals Corp Photoelectric conversion element, and solar cell using the same
JP2011086925A (en) * 2009-09-16 2011-04-28 Mitsubishi Chemicals Corp Photoelectric conversion element material, and photoelectric conversion element and solar cell
US10263197B2 (en) 2010-04-30 2019-04-16 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9382273B2 (en) 2010-04-30 2016-07-05 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US9755163B2 (en) 2010-04-30 2017-09-05 Arizona Board Of Regents Acting For Or On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US10727422B2 (en) 2010-04-30 2020-07-28 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
WO2012085988A1 (en) * 2010-12-24 2012-06-28 パナソニック株式会社 Organic el element and method for manufacturing same
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9711742B2 (en) 2011-02-18 2017-07-18 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US11121328B2 (en) 2011-05-26 2021-09-14 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9698359B2 (en) 2011-05-26 2017-07-04 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US10804476B2 (en) 2011-05-26 2020-10-13 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US10374165B2 (en) 2011-11-30 2019-08-06 Novaled Gmbh Organic electronic device
JP2015506095A (en) * 2011-11-30 2015-02-26 ノヴァレッド ゲーエムベーハー Organic electronic equipment
US10818845B2 (en) 2011-11-30 2020-10-27 Novaled Gmbh Organic electronic device
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US11114626B2 (en) 2012-09-24 2021-09-07 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US10622571B2 (en) 2012-09-24 2020-04-14 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US12043633B2 (en) 2012-10-26 2024-07-23 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US10211414B2 (en) 2013-06-10 2019-02-19 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9899614B2 (en) 2013-06-10 2018-02-20 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US10566553B2 (en) 2013-10-14 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US11189808B2 (en) 2013-10-14 2021-11-30 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US9385329B2 (en) 2013-10-14 2016-07-05 Arizona Board of Regents on behalf of Arizona State University and Universal Display Corporation Platinum complexes and devices
US9947881B2 (en) 2013-10-14 2018-04-17 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
JP2017502518A (en) * 2013-12-23 2017-01-19 ノヴァレッド ゲーエムベーハー N-doped semiconductor material comprising a phosphine oxide matrix and a metal dopant
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10937976B2 (en) 2014-01-07 2021-03-02 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US11839144B2 (en) 2014-06-02 2023-12-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US10886478B2 (en) 2014-07-24 2021-01-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US12082486B2 (en) 2014-07-24 2024-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10790457B2 (en) 2014-07-29 2020-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US12082488B2 (en) 2014-07-29 2024-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US11145830B2 (en) 2014-07-29 2021-10-12 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US12043611B2 (en) 2014-08-15 2024-07-23 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US10745615B2 (en) 2014-08-22 2020-08-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US10294417B2 (en) 2014-08-22 2019-05-21 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDS
US11339324B2 (en) 2014-08-22 2022-05-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11795387B2 (en) 2014-08-22 2023-10-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11856840B2 (en) 2014-11-10 2023-12-26 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10944064B2 (en) 2014-11-10 2021-03-09 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US11653560B2 (en) 2014-11-10 2023-05-16 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US10056564B2 (en) 2015-06-02 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US10836785B2 (en) 2015-06-03 2020-11-17 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11472827B2 (en) 2015-06-03 2022-10-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
KR20180019731A (en) * 2015-06-23 2018-02-26 노발레드 게엠베하 N-doped semiconductive materials including polar matrices and metal dopants
CN107851733A (en) * 2015-06-23 2018-03-27 诺瓦尔德股份有限公司 Include the organic luminescent device of polarity matrix, metal dopant and silver cathode
KR20180019224A (en) * 2015-06-23 2018-02-23 노발레드 게엠베하 Organic light emitting devices including polar matrices and metal dopants
JP2021132218A (en) * 2015-06-23 2021-09-09 ノヴァレッド ゲーエムベーハー Organic light emitting device including polar matrix and metal dopant
US10749115B2 (en) 2015-06-23 2020-08-18 Novaled Gmbh N-doped semiconducting material comprising polar matrix and metal dopant
JP2021145144A (en) * 2015-06-23 2021-09-24 ノヴァレッド ゲーエムベーハー N-type doped semiconductor material containing polar matrix and metal dopant
KR102581921B1 (en) * 2015-06-23 2023-09-21 노발레드 게엠베하 Organic light-emitting device containing polar matrix and metal dopant
KR102581918B1 (en) * 2015-06-23 2023-09-21 노발레드 게엠베하 N-doped semiconducting material with polar matrix and metal dopant
JP7503521B2 (en) 2015-06-23 2024-06-20 ノヴァレッド ゲーエムベーハー Organic light-emitting device including a polar matrix, a metal dopant, and a silver cathode
JP2021119637A (en) * 2015-06-23 2021-08-12 ノヴァレッド ゲーエムベーハー Organic luminescent device including polar matrix, metal dopant, and silver cathode
JP2018527740A (en) * 2015-06-23 2018-09-20 ノヴァレッド ゲーエムベーハー Organic light emitting device comprising a polar matrix and a metal dopant
JP7443286B2 (en) 2015-06-23 2024-03-05 ノヴァレッド ゲーエムベーハー Organic light emitting devices containing polar matrices and metal dopants
JP2018524812A (en) * 2015-06-23 2018-08-30 ノヴァレッド ゲーエムベーハー N-type doped semiconductor material comprising a polar matrix and a metal dopant
US11355721B2 (en) 2015-06-23 2022-06-07 Novaled Gmbh Organic light emitting device comprising polar matrix, metal dopant and silver cathode
JP2018518847A (en) * 2015-06-23 2018-07-12 ノヴァレッド ゲーエムベーハー Organic light-emitting device comprising a polar matrix, a metal dopant and a silver cathode
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10930865B2 (en) 2015-08-04 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10833277B2 (en) 2015-09-15 2020-11-10 Lg Chem, Ltd. Heterocyclic compound and organic light emitting diode comprising same
WO2017047977A1 (en) * 2015-09-15 2017-03-23 주식회사 엘지화학 Heterocyclic compound and organic light emitting diode comprising same
JP2021177568A (en) * 2015-11-23 2021-11-11 ノヴァレッド ゲーエムベーハー Organic el device provided with organic semiconductive layer comprising phosphine oxide compounds
JP2018536289A (en) * 2015-11-23 2018-12-06 ノヴァレッド ゲーエムベーハー Organic semiconductive layer containing a phosphine oxide compound
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US10566554B2 (en) 2016-08-22 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US12010908B2 (en) 2017-05-19 2024-06-11 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US11974495B2 (en) 2017-05-19 2024-04-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11063228B2 (en) 2017-05-19 2021-07-13 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US12120945B2 (en) 2017-10-17 2024-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US12037348B2 (en) 2018-03-09 2024-07-16 Arizona Board Of Regents On Behalf Of Arizona State University Blue and narrow band green and red emitting metal complexes
US12091429B2 (en) 2018-07-16 2024-09-17 Arizona Board Of Regents On Behalf Of Arizona State University Fluorinated porphyrin derivatives for optoelectronic applications
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US12082490B2 (en) 2019-01-25 2024-09-03 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US12120946B2 (en) 2019-10-02 2024-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes

Also Published As

Publication number Publication date
JP5230218B2 (en) 2013-07-10
JP5782000B2 (en) 2015-09-24
JP2013033982A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5782000B2 (en) Organic electroluminescence device
JP5187493B2 (en) Organic electroluminescent devices and novel indole derivatives
JP5484690B2 (en) Organic electroluminescence device
JP5282260B2 (en) Organic electroluminescence device
JP4796802B2 (en) Organic electroluminescence device
JP2008244012A (en) Organic electroluminescent element
JP2008270737A (en) Organic electroluminescent element
JP2008108617A (en) Organic electroluminescent element
JP2009267171A (en) Organic electric field light emitting element
JP2009161524A (en) Platinum complex compound and organic electroluminescent device using the same
JP2009076834A (en) Organic electroluminescednt device, and new indole derivative
JP2006256999A (en) Organic electroluminescent element
JP2007324309A (en) Organic electroluminescence device
JP2006203172A (en) Organic electroluminescent element
JP2004221063A (en) Organic electroluminescent element
JP2009004753A (en) Organic electroluminescent device
JP2005276799A (en) Light emitting device
JP2009267176A (en) Organic electroluminescent element
JP4794919B2 (en) Organic electroluminescence device
JP2009076508A (en) Organic electroluminescent element
JP2006310479A (en) Organic electroluminescence element
JP4909695B2 (en) Organic electroluminescence device
JP2007194506A (en) Organic electroluminescence element
JP2007194505A (en) Organic electroluminescence element
JP2008244013A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5230218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250