[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008263027A - Substrate processing method - Google Patents

Substrate processing method Download PDF

Info

Publication number
JP2008263027A
JP2008263027A JP2007104068A JP2007104068A JP2008263027A JP 2008263027 A JP2008263027 A JP 2008263027A JP 2007104068 A JP2007104068 A JP 2007104068A JP 2007104068 A JP2007104068 A JP 2007104068A JP 2008263027 A JP2008263027 A JP 2008263027A
Authority
JP
Japan
Prior art keywords
polishing
substrate
film
abrasive grains
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007104068A
Other languages
Japanese (ja)
Other versions
JP4374038B2 (en
Inventor
Atsushi Shigeta
厚 重田
Masaru Fukushima
大 福島
Hiroyuki Yano
博之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007104068A priority Critical patent/JP4374038B2/en
Priority to TW097112893A priority patent/TW200906541A/en
Priority to US12/100,450 priority patent/US20080254719A1/en
Publication of JP2008263027A publication Critical patent/JP2008263027A/en
Application granted granted Critical
Publication of JP4374038B2 publication Critical patent/JP4374038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/002Machines or devices using grinding or polishing belts; Accessories therefor for grinding edges or bevels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove an unwanted film containing a silicon oxide based or silicon nitride based highly hardened film, and a rugged face at a high efficiency, and to enhance a polishing face accuracy. <P>SOLUTION: This substrate processing method contains the steps of: bringing a first polishing face which fixes abrasive grains having particles having a chemical effect as a main component with respect to a silicon oxide based or silicon nitride based film 11, 12 into contact with a peripheral part of a semiconductor substrate 10 to polish the substrate 10; and bringing a second polishing face which fixes the abrasive grains having particles having a mechanical effect as a main component into contact with the peripheral part of the substrate 10 to polish the substrate 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体基板の周縁部を研磨する基板処理方法に係わり、特に基板の周縁部に形成された不要膜や凹凸面などを除去するための基板処理方法に関する。   The present invention relates to a substrate processing method for polishing a peripheral portion of a semiconductor substrate, and more particularly to a substrate processing method for removing an unnecessary film or an uneven surface formed on the peripheral portion of a substrate.

配線の微細化に伴い、管理すべきパーティクル及び不純物濃度の値は、益々厳しくなってきており、半導体基板の表面は勿論、周縁部(ノッチ部及びベベル部)の管理も重要となってきている。半導体装置の製造過程では、SiO2 膜,SiN膜といった絶縁膜とポリSi膜,W膜,Cu膜といった導電膜を成膜・露光・エッチング加工等を繰り返しながら、微細配線を形成していく。この製造過程で基板周縁部にも絶縁膜や導電膜が成膜されると共に、露光・エッチング加工等が繰り返されることにより、絶縁膜や導電膜を含む不要膜及び凹凸面が形成される。これら不要膜や凹凸面は、製造過程でパーティクル発生源となり、配線の微細化に伴い歩留まりを低下させる要因として顕在化してきた。 With the miniaturization of wiring, the particle and impurity concentration values to be managed are becoming increasingly severe, and the management of the peripheral portion (notch portion and bevel portion) as well as the surface of the semiconductor substrate has become important. . In the manufacturing process of a semiconductor device, fine wiring is formed by repeating film formation / exposure / etching processing of an insulating film such as a SiO 2 film and a SiN film and a conductive film such as a poly-Si film, a W film, and a Cu film. In this manufacturing process, an insulating film and a conductive film are formed also on the peripheral edge of the substrate, and an unnecessary film and an uneven surface including the insulating film and the conductive film are formed by repeating exposure and etching processes. These unnecessary films and uneven surfaces have become a particle generation source in the manufacturing process, and have become apparent as factors that reduce the yield as the wiring becomes finer.

例えば、トレンチキャパシタのトレンチ(Deep Trench)の形成過程においては、SiN膜とSiO2 膜をCVD法で順次成膜した積層絶縁膜の上にレジストパターンを形成し、これをマスクとしてRIE(Reactive Ion Etching)によりSiO2 膜,SiN膜及びシリコン基板を順次エッチングしてトレンチを形成する。この際に、基板周縁部ではプラズマの生成やエッチングガスの供給が不安定となり、針状突起が形成されることがある。この針状突起は、基板の搬送時或いはプロセス時に破損してパーティクルが発生する原因となる。このようなパーティクルは製造される半導体装置の歩留りの低下につながるため、基板周縁部に形成された針状突起を除去する必要がある。 For example, in the process of forming a trench (Deep Trench) of a trench capacitor, a resist pattern is formed on a laminated insulating film in which a SiN film and a SiO 2 film are sequentially formed by a CVD method, and this is used as a mask for RIE (Reactive Ion). Etching) sequentially etches the SiO 2 film, SiN film, and silicon substrate to form a trench. At this time, the generation of plasma and the supply of the etching gas become unstable at the peripheral edge of the substrate, and needle-like protrusions may be formed. These needle-like protrusions are damaged during the transfer of the substrate or during the process and cause particles to be generated. Since such particles lead to a decrease in the yield of the manufactured semiconductor device, it is necessary to remove the needle-like protrusions formed on the peripheral edge of the substrate.

基板周縁部を処理する方法として、被研磨面を有する基板と研磨面を押圧しながら摺動させることにより、基板上の被研磨膜を研磨除去する研磨技術がある。この研磨技術には、不織布からなる研磨面と被研磨面との接触面に研磨粒子を含む研磨剤を供給しながら研磨する遊離砥粒方式と、砥粒を固定させた研磨面と被研磨面との接触面に純水を供給しながら研磨する固定砥粒方式がある。   As a method for treating the peripheral edge of the substrate, there is a polishing technique in which a film to be polished on the substrate is removed by polishing while sliding the substrate having the surface to be polished and the polishing surface while pressing. This polishing technology includes a free abrasive grain method in which a polishing agent containing abrasive particles is supplied to a contact surface between a polishing surface made of nonwoven fabric and a surface to be polished, and a polishing surface and a surface to be polished with the abrasive grains fixed There is a fixed abrasive method that polishes while supplying pure water to the contact surface.

トレンチ形成時に生じる針状突起を固定砥粒方式で研磨除去する場合、従来は研磨速度の高いダイヤモンド砥粒#4000(粒子径3μm程度)でシリコン基板上のSiN膜及び針状突起を全て研磨除去した後に、ダイヤモンド砥粒#10000(粒子径0.5μm程度)で仕上げ研磨を実施していた。しかし、この方法によると、研磨時間は速いが、ダイヤモンド砥粒#4000によるシリコン基板へのキズが大きく、ダイヤモンド砥粒#10000による仕上げ研磨後もキズが残存する(例えば、特許文献1参照)。   When removing the needle-like protrusions that occur during trench formation using the fixed abrasive method, conventionally, all of the SiN film and needle-like protrusions on the silicon substrate are polished and removed with diamond abrasive grains # 4000 (grain diameter of about 3 μm) with a high polishing rate. Then, finish polishing was performed with diamond abrasive grains # 10000 (particle diameter of about 0.5 μm). However, according to this method, the polishing time is fast, but the scratches on the silicon substrate due to the diamond abrasive grains # 4000 are large, and the scratches remain after the final polishing with the diamond abrasive grains # 10000 (see, for example, Patent Document 1).

その場合の対処として、SiN膜の研磨除去にもダイヤモンド砥粒#10000を用いる方法もあるが、高硬度膜のSiN膜を研磨除去するのに莫大な時間を要する。別の対処として、ダイヤモンド砥粒#4000と#8000と#10000を徐々に砥粒サイズを小さくしながら、仕上がり面粗さを改善する方法もある。しかし、研磨テープを3種類も使用するため、研磨ヘッドが3個必要となり、装置が大型化する。しかも、シリコン基板の研磨量も大きくなるため、半導体装置の製造過程で複数回の研磨処理を行うと元々の基板の形状規格を逸脱し、製造ラインで流すことができなくなることがある。   As a countermeasure in this case, there is a method of using diamond abrasive grains # 10000 for polishing removal of the SiN film, but it takes an enormous time to polish and remove the SiN film of high hardness. As another countermeasure, there is a method of improving the finished surface roughness while gradually reducing the abrasive grain size of diamond abrasive grains # 4000, # 8000, and # 10000. However, since three types of polishing tapes are used, three polishing heads are required, which increases the size of the apparatus. In addition, since the amount of polishing of the silicon substrate becomes large, if the polishing process is performed a plurality of times in the manufacturing process of the semiconductor device, it may deviate from the original shape specification of the substrate and may not flow on the manufacturing line.

このように、基板周縁部の研磨処理の目的から考えても、被研磨面の面粗さを向上させることが、その後の欠陥の発生を抑制するために必要である。しかし、被研磨面の面粗さの向上には、砥粒サイズを小さくすることが有効だが、SiN膜やSiO2 膜といった高硬度膜を研磨除去する場合、著しく研磨速度が低下して生産性が悪化する副作用がある。 Thus, even if it considers from the objective of the grinding | polishing process of a peripheral part of a board | substrate, it is required in order to suppress generation | occurrence | production of a subsequent defect to improve the surface roughness of a to-be-polished surface. However, to improve the surface roughness of the surface to be polished, it is effective to reduce the size of the abrasive grains. However, when removing high hardness films such as SiN films and SiO 2 films, the polishing rate is significantly reduced and productivity is reduced. There are side effects that get worse.

被研磨面の面粗さを悪化させずに研磨除去効率を上げるため、研磨中の薬液添加が提案されている(例えば、特許文献2参照)。この提案では、シリコン基板上のSiN膜の除去効率を上げるために、ポリエチレンイミン又はテトラメチルアンモニウムハイドロオキサイドを添加している。しかし、この方法では、基板表面も同様の薬液に晒されるため、副作用としてシリコン基板へのエッチングが問題となる。
特開2003−234314号公報 特開2007−012943号公報
In order to increase the polishing removal efficiency without deteriorating the surface roughness of the surface to be polished, addition of a chemical solution during polishing has been proposed (see, for example, Patent Document 2). In this proposal, polyethyleneimine or tetramethylammonium hydroxide is added to increase the removal efficiency of the SiN film on the silicon substrate. However, in this method, since the substrate surface is also exposed to the same chemical solution, etching to the silicon substrate becomes a problem as a side effect.
JP 2003-234314 A JP 2007-012943 A

本発明は、上記事情を考慮してなされたもので、その目的とするところは、半導体基板の周縁部に形成された酸化シリコン系や窒化シリコン系の高硬度膜を含む不要膜や凹凸面を高効率で除去し、研磨面精度の向上をはかり得る基板処理方法を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to provide an unnecessary film or uneven surface including a silicon oxide-based or silicon nitride-based high-hardness film formed on a peripheral portion of a semiconductor substrate. An object of the present invention is to provide a substrate processing method which can be removed with high efficiency and can improve the accuracy of a polished surface.

本発明の一態様に係わる基板処理方法は、半導体基板の周縁部に、酸化シリコン系或いは窒化シリコン系の膜に対してケミカル効果を有する粒子を主成分とする砥粒を固定した第1研磨面を接触させて、該基板を研磨する工程と、前記基板の周縁部に、メカニカル効果を主体とする砥粒を固定した第2研磨面を接触させて、該基板を研磨する工程と、を含むことを特徴とする。   A substrate processing method according to an aspect of the present invention includes a first polishing surface in which abrasive grains mainly containing particles having a chemical effect on a silicon oxide or silicon nitride film are fixed to a peripheral portion of a semiconductor substrate. And polishing the substrate, and contacting the peripheral edge of the substrate with a second polishing surface fixed with abrasive grains mainly having a mechanical effect to polish the substrate. It is characterized by that.

また、本発明の別の一態様に係わる基板処理方法は、酸化シリコン系或いは窒化シリコン系の膜に対してケミカル効果を有する粒子を主成分とする砥粒を含む研磨液を用いて、又は該砥粒を固定した研磨面に接触させて、半導体基板の周縁部を研磨する工程と、メカニカル効果を主体とする砥粒を含む研磨液を用いて、又は該砥粒を固定した研磨面に接触させて、前記基板の周縁部を研磨する工程と、を含むことを特徴とする。   In addition, a substrate processing method according to another embodiment of the present invention uses a polishing liquid containing abrasive grains mainly containing particles having a chemical effect on a silicon oxide-based or silicon nitride-based film, or A process of polishing a peripheral portion of a semiconductor substrate by bringing the abrasive grains into contact with a fixed polishing surface, and using a polishing liquid containing abrasive grains mainly having a mechanical effect, or contacting with a polishing surface having the abrasive grains fixed And polishing the peripheral edge of the substrate.

本発明によれば、ケミカル効果を有する砥粒を用いた研磨とメカニカル効果を有する砥粒を用いた研磨とを併用することにより、酸化シリコン系或いは窒化シリコン系の高硬度膜を含む不要膜や凹凸面を高効率で除去することができると共に、研磨面精度を向上させることが可能となる。   According to the present invention, an unnecessary film including a silicon oxide-based or silicon nitride-based high hardness film can be obtained by using both polishing using abrasive grains having a chemical effect and polishing using abrasive grains having a mechanical effect. The uneven surface can be removed with high efficiency, and the polished surface accuracy can be improved.

以下、本発明の詳細を図示の実施形態によって説明する。   The details of the present invention will be described below with reference to the illustrated embodiments.

(第1の実施形態)
図1は、本発明の第1の実施形態に係わる基板処理工程を示す断面図であり、(a)は被処理基板の研磨前の状態、(b)は被処理基板の研磨後の状態を示している。図中の10はシリコン基板、11はSiO2 膜、12はSiN膜である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a substrate processing process according to the first embodiment of the present invention, where (a) shows a state before polishing of the substrate to be processed, and (b) shows a state after polishing of the substrate to be processed. Show. In the figure, 10 is a silicon substrate, 11 is a SiO 2 film, and 12 is a SiN film.

本実施形態では、図1(a)に示す構造に対し、シリコン基板10の周縁部に、SiO2 及びSiNに対してケミカル効果を有するセリア(酸化セリウム)粒子を主成分とする砥粒を固定した第1研磨面を接触・加圧すると共に、基板10を回転させることにより基板周縁部を研磨する。次いで、シリコン基板10の周縁部に、メカニカル効果を主体とするダイヤモンドの砥粒を固定した第2研磨面を接触・加圧すると共に、基板10を回転させることにより基板周縁部を研磨する。これにより、図1(b)に示すように、基板10の周縁部でSiO2 膜11やSiN膜12が除去されると共に、基板周縁部の表面粗さが極めて小さいものとなる。 In the present embodiment, abrasive grains mainly composed of ceria (cerium oxide) particles having a chemical effect on SiO 2 and SiN are fixed to the peripheral portion of the silicon substrate 10 with respect to the structure shown in FIG. The peripheral edge of the substrate is polished by contacting and pressurizing the first polished surface and rotating the substrate 10. Next, the peripheral edge portion of the silicon substrate 10 is polished by contacting and pressurizing the second polishing surface on which diamond abrasive grains mainly having a mechanical effect are fixed and rotating the substrate 10. As a result, as shown in FIG. 1B, the SiO 2 film 11 and the SiN film 12 are removed at the periphery of the substrate 10 and the surface roughness of the substrate periphery is extremely small.

以下、本実施形態を具体的に説明する。   Hereinafter, this embodiment will be specifically described.

図2は、本実施形態に使用した固定砥粒方式の研磨装置を示す概略構成図である。   FIG. 2 is a schematic configuration diagram showing a fixed abrasive type polishing apparatus used in the present embodiment.

被処理基板20が載置されるステージ21は、モータ22により回転可能となっている。基板20は、その中心をステージ21の中心に合わせてステージ21に吸着固定され、基板20の周縁部の一部が研磨テープ23に接触する。研磨テープ23は、図示してないシリンダーに接続された研磨ヘッド24により基板側に押圧される。そして、研磨ヘッド24により研磨テープ23を基板20の周縁部に押圧した状態でモータ22により基板20を回転させることにより、基板20の周縁部が研磨されるようになっている。即ち、基板20の周縁部に成膜された不要膜の一部又は全てを基板10に達するまで研磨除去するようになっている。また、研磨時には、基板中心近傍のノズル25から基板表面に純水が供給され、この純水が基板周縁部の研磨領域に供給されるようになっている。   The stage 21 on which the substrate 20 to be processed is placed is rotatable by a motor 22. The substrate 20 is attracted and fixed to the stage 21 with its center aligned with the center of the stage 21, and a part of the peripheral edge of the substrate 20 contacts the polishing tape 23. The polishing tape 23 is pressed toward the substrate by a polishing head 24 connected to a cylinder (not shown). Then, the peripheral portion of the substrate 20 is polished by rotating the substrate 20 with the motor 22 while the polishing tape 24 is pressed against the peripheral portion of the substrate 20 by the polishing head 24. That is, part or all of the unnecessary film formed on the peripheral edge of the substrate 20 is polished and removed until it reaches the substrate 10. Further, at the time of polishing, pure water is supplied from the nozzle 25 near the center of the substrate to the substrate surface, and this pure water is supplied to the polishing region at the peripheral edge of the substrate.

研磨テープ23としては、ケミカル効果を有する粒子を主成分とする砥粒を固定した第1の研磨テープ23aと、メカニカル効果を主体とする砥粒を固定した第2の研磨テープ23bとの2種類を用いた。第1の研磨テープ23aは、図3(a)に示すように、PET(ポリエチレンテレフタレート)フィルム31にバインダー32によりセリア砥粒33(#10000:粒子径0.5μm程度)を固定したもので、テープ幅80mm、厚さ50μmである。第2の研磨テープ23bは、図3(b)に示すように、PETフィルム31にバインダー32によりダイヤモンド砥粒34(#10000:粒子径0.5μm程度)を固着したものである。これらの2種の研磨テープ23は、必要に応じて交換可能となっている。さらに、これらの研磨テープ23は、研磨時に少しずつ巻き取ることにより、研磨により劣化した部分を新しい研磨面に置換できるようになっている。   As the polishing tape 23, there are two types, a first polishing tape 23a in which abrasive grains mainly composed of particles having a chemical effect are fixed, and a second polishing tape 23b in which abrasive grains mainly having a mechanical effect are fixed. Was used. As shown in FIG. 3A, the first polishing tape 23a is formed by fixing ceria abrasive grains 33 (# 10000: particle diameter of about 0.5 μm) to a PET (polyethylene terephthalate) film 31 with a binder 32. The tape width is 80 mm and the thickness is 50 μm. As shown in FIG. 3B, the second polishing tape 23b is obtained by fixing diamond abrasive grains 34 (# 10000: particle diameter of about 0.5 μm) to a PET film 31 with a binder 32. These two types of polishing tapes 23 can be exchanged as necessary. Furthermore, these polishing tapes 23 can be wound up little by little during polishing, so that a portion deteriorated by polishing can be replaced with a new polishing surface.

前記図1(a)に示すように、シリコン基板10の表面全体に、厚さ100nmのSiO2 膜11と厚さ100nmのSiN膜12を順次CVD法により成膜した。この基板10の周縁部に成膜された積層絶縁膜の除去に本実施形態の研磨方法を適用した結果を、以下に説明する。 As shown in FIG. 1A, a 100 nm thick SiO 2 film 11 and a 100 nm thick SiN film 12 were sequentially formed on the entire surface of the silicon substrate 10 by a CVD method. The result of applying the polishing method of this embodiment to the removal of the laminated insulating film formed on the peripheral portion of the substrate 10 will be described below.

前記図2に示した研磨装置を用いて、研磨テープ23として図3(a)に示すセリア砥粒を固着した第1の研磨テープ23aをセットし、被処理基板20をステージ21に吸着させ、所定の速度でステージ21を回転させると共に、研磨テープ23を所定の速度で送りながら、基板周縁部に研磨テープ23を押圧することにより、基板周縁部の研磨を行った。   Using the polishing apparatus shown in FIG. 2, the first polishing tape 23a to which the ceria abrasive grains shown in FIG. 3 (a) are fixed is set as the polishing tape 23, and the substrate 20 to be processed is adsorbed to the stage 21, While rotating the stage 21 at a predetermined speed and feeding the polishing tape 23 at a predetermined speed, the peripheral edge of the substrate was polished by pressing the polishing tape 23 against the peripheral edge of the substrate.

従来技術のダイヤモンド砥粒#4000とダイヤモンド砥粒#10000の組合せに対して、研磨時間は2倍に長くなるが、研磨後の表面粗さは1/5に低減した。また、同じ粒子径のダイヤモンド砥粒#10000のみによる研磨除去と比較すると、研磨時間は1/10に短縮され、研磨後の表面粗さは約1/2に低減した。   The polishing time is twice as long as the conventional combination of diamond abrasive grains # 4000 and diamond abrasive grains # 10000, but the surface roughness after polishing is reduced to 1/5. In addition, the polishing time was shortened to 1/10 and the surface roughness after polishing was reduced to about ½ compared with polishing removal using only diamond abrasive grains # 10000 having the same particle diameter.

一方、シリコン基板10に対する研磨能力を、研磨前後の基板重量変化から比較してみると、ダイヤモンド砥粒#4000に比べて1/150と低く、更にダイヤモンド砥粒#10000と比べても1/5と低い。これらのことは、セリア砥粒がSiO2 膜11やSiN膜12に対しては化学作用が効果的に働いていることを示している。また、Siに対しては化学的作用が働かず、砥粒自体の機械的強度に依存していることを示している。 On the other hand, when comparing the polishing ability with respect to the silicon substrate 10 from the change in substrate weight before and after polishing, it is 1/150 lower than the diamond abrasive grain # 4000, and further 1/5 compared with the diamond abrasive grain # 10000. And low. These facts indicate that the chemical action of ceria abrasive grains is effective against the SiO 2 film 11 and the SiN film 12. Further, it shows that no chemical action acts on Si, and it depends on the mechanical strength of the abrasive grains themselves.

基板周縁部を研磨する場合、基板表面とは異なり、シリコン基板10の断面方向及び円周方向に曲率を有するため、研磨ヘッド24をシリコン基板10の曲率に沿うように接触面を動かしながら研磨を行うが、研磨残りを発生させないために過剰研磨が必要となる。この過剰研磨においては、SiO2 やSiNに対する研磨能力が高く、Siに対する研磨能力が低いというセリア砥粒の特徴が有利に働く。即ち、セリア砥粒はシリコン基板10の周縁部に堆積された不要膜(SiO2 膜、SiN膜)の研磨除去に極めて有効である。 When polishing the peripheral edge of the substrate, unlike the substrate surface, since the curvature is in the cross-sectional direction and the circumferential direction of the silicon substrate 10, the polishing head 24 is polished while moving the contact surface along the curvature of the silicon substrate 10. However, excessive polishing is required in order not to generate polishing residue. In this overpolishing, the characteristics of the ceria abrasive grains that have high polishing ability for SiO 2 and SiN and low polishing ability for Si are advantageous. That is, the ceria abrasive grains are extremely effective for polishing and removing unnecessary films (SiO 2 film, SiN film) deposited on the peripheral portion of the silicon substrate 10.

このように、セリア砥粒を固着した第1の研磨テープ23aを用いることにより、従来技術のダイヤモンド砥粒#4000とダイヤモンド砥粒#10000の組合せに対して、研磨後の表面粗さは十分に低減されるものの、研磨時間が長くなる。そこで、上記結果から研磨時間の短縮を目的に、セリア砥粒(#10000)を固着した研磨テープ23aとダイヤモンド砥粒(#10000)を固着した研磨テープ23bを組み合わせた実施形態を説明する。   As described above, by using the first polishing tape 23a to which the ceria abrasive grains are fixed, the surface roughness after polishing is sufficiently larger than the combination of the diamond abrasive grains # 4000 and the diamond abrasive grains # 10000 of the prior art. Although reduced, the polishing time becomes longer. Therefore, an embodiment in which the polishing tape 23a to which the ceria abrasive grains (# 10000) are fixed and the polishing tape 23b to which the diamond abrasive grains (# 10000) are fixed is combined for the purpose of shortening the polishing time from the above results will be described.

最初に、セリア砥粒を固着した研磨テープ23aで積層絶縁膜の研磨除去を開始し、下地のSiの一部が露出するまで研磨を継続した。次いで、セリア砥粒よりもシリコン基板に対する研磨能力の高いダイヤモンド砥粒を固着した研磨テープ23bによる研磨に変更した。これにより、トータルの研磨時間は、セリア砥粒のみの場合の約1/2に改善した。即ち、従来技術のダイヤモンド砥粒#4000とダイヤモンド砥粒#10000の組合せと同じ時間となった。そして、このときの研磨後の表面粗さは、従来技術のダイヤモンド砥粒#4000とダイヤモンド砥粒#10000の組合せに対して約1/3に低減された。   First, polishing removal of the laminated insulating film was started with the polishing tape 23a to which the ceria abrasive grains were fixed, and polishing was continued until a part of the underlying Si was exposed. Next, the polishing was changed to polishing with a polishing tape 23b to which diamond abrasive grains having higher polishing ability with respect to the silicon substrate than ceria abrasive grains were fixed. As a result, the total polishing time was improved to about ½ that of the ceria abrasive grains alone. That is, it was the same time as the combination of diamond abrasive grains # 4000 and diamond abrasive grains # 10000 of the prior art. The surface roughness after polishing at this time was reduced to about 1/3 of the conventional combination of diamond abrasive grains # 4000 and diamond abrasive grains # 10000.

なお、セリア砥粒の研磨テープ23aでの研磨ステップとダイヤモンド砥粒の研磨テープ23bでの研磨ステップを分ける場合、研磨対象基板を保持・回転するモータの回転負荷の変化を利用して研磨ステップを切り替えると効率的である。   When the polishing step with ceria abrasive polishing tape 23a and the polishing step with diamond abrasive polishing tape 23b are separated, the polishing step is performed using the change in the rotational load of the motor that holds and rotates the substrate to be polished. It is efficient to switch.

また、研磨テープ23aによる研磨の終了後に研磨テープ23bによる研磨を行うことに代えて、研磨テープ23aによる研磨と研磨テープ23bによる研磨とを交互に繰り返すことによっても、上記とほぼ同様の効果が得られた。   Further, instead of performing the polishing with the polishing tape 23b after the polishing with the polishing tape 23a, the same effect as described above can be obtained by alternately repeating the polishing with the polishing tape 23a and the polishing with the polishing tape 23b. It was.

また、図4に示すように、被処理基板20の周縁部の2箇所にセリア砥粒を固着した研磨テープ23aと、ダイヤモンド砥粒を固着した研磨テープ23bを同時に接触させ、セリア砥粒とダイヤモンド砥粒による研磨を並行して行った。この場合、研磨時間は、セリア砥粒のみの場合の約1/3に改善した。即ち、従来技術のダイヤモンド砥粒#4000とダイヤモンド砥粒#10000の組合せに対して、研磨時間が2/3に短縮され、研磨後の表面粗さは、約1/3に低減された。   Further, as shown in FIG. 4, the polishing tape 23a having ceria abrasive grains fixed at two locations on the peripheral portion of the substrate 20 to be processed and the polishing tape 23b having diamond abrasive grains fixed are simultaneously brought into contact with each other so that the ceria abrasive grains and diamond Polishing with abrasive grains was performed in parallel. In this case, the polishing time was improved to about 1/3 that of the ceria abrasive grains alone. That is, with respect to the combination of diamond abrasive grains # 4000 and diamond abrasive grains # 10000 of the prior art, the polishing time was shortened to 2/3, and the surface roughness after polishing was reduced to about 1/3.

これは、高硬度のSiO2 膜11とSiN膜12に対する研磨効率の高いセリア砥粒による研磨と、下地シリコン基板が一部露出した後は、ダイヤモンド砥粒によるシリコン研磨効率向上による相乗効果で、積層絶縁膜の除去効率が向上したことを示している。 This is due to a synergistic effect of polishing with ceria abrasive grains having high polishing efficiency for the high hardness SiO 2 film 11 and SiN film 12 and improvement of silicon polishing efficiency with diamond abrasive grains after the underlying silicon substrate is partially exposed. It shows that the removal efficiency of the laminated insulating film has been improved.

このように本実施形態によれば、シリコン基板10の表面にSiO2 膜11及びSiN膜12などの高硬度膜を含む不要膜が形成された被処理基板に対し、セリア砥粒を固着した研磨テープ23aとダイヤモンド砥粒を固着した研磨テープ23bを用いて研磨することにより、不要膜を高効率で除去することができ、しかも研磨面精度を向上させることができる。従って、生産性の向上と欠陥低減による歩留まりの向上が可能となる。 As described above, according to the present embodiment, the ceria abrasive grains are fixed to the substrate to be processed on which the unnecessary film including the high hardness film such as the SiO 2 film 11 and the SiN film 12 is formed on the surface of the silicon substrate 10. By polishing using the polishing tape 23b to which the tape 23a and diamond abrasive grains are fixed, the unnecessary film can be removed with high efficiency, and the polished surface accuracy can be improved. Therefore, it is possible to improve yield by improving productivity and reducing defects.

なお、SiO2 膜11とSiN膜12の積層膜の代わりに、シリコン基板10上に厚さ200nmのSiO2 膜をCVD法により成膜し、このときの基板周縁部の膜除去に前記図4に示した研磨装置を用いて本実施形態を適用した結果、従来のダイヤモンド#4000及び#10000の組合せに対して、セリア砥粒#10000とダイヤモンド砥粒#10000の組み合わせでは、研磨時間は約1/2に短縮され、表面粗さは1/3に改善された。 In place of the laminated film of the SiO 2 film 11 and the SiN film 12, a 200 nm thick SiO 2 film is formed on the silicon substrate 10 by the CVD method. As a result of applying this embodiment using the polishing apparatus shown in FIG. 4, the polishing time is about 1 for the combination of ceria abrasive grain # 10000 and diamond abrasive grain # 10000, compared to the conventional combination of diamond # 4000 and # 10000. The surface roughness was improved to 1/3.

同様に、シリコン基板10上に厚さ200nmのSiN膜をCVD法により成膜し、このときの基板周縁部の膜除去に前記図4に示した研磨装置を用いて本実施形態を適用した結果、従来のダイヤモンド#4000及び#10000の組合せに対して、セリア砥粒#10000とダイヤモンド砥粒#10000の組み合わせでは、研磨時間は約3/4に短縮され、表面粗さは1/3に改善された。   Similarly, a SiN film having a thickness of 200 nm is formed on the silicon substrate 10 by the CVD method, and the present embodiment is applied to the film removal at the peripheral edge of the substrate using the polishing apparatus shown in FIG. Compared to the conventional diamond # 4000 and # 10000 combination, the combination of ceria abrasive grain # 10000 and diamond abrasive grain # 10000 reduces the polishing time to about 3/4 and improves the surface roughness to 1/3. It was done.

(第2の実施形態)
図5は、本発明の第2の実施形態に係わる基板処理工程を示す断面図であり、(a)はトレンチを形成した状態、(b)は被処理基板の研磨前の状態、(c)は被処理基板の研磨後の状態を示している。図中の10はシリコン基板、11はSiO2 膜、12はSiN膜、13はシリコンの針状突起である。
(Second Embodiment)
5A and 5B are cross-sectional views showing a substrate processing process according to the second embodiment of the present invention, in which FIG. 5A shows a state in which a trench is formed, FIG. 5B shows a state before polishing of the substrate to be processed, and FIG. Indicates a state after polishing of the substrate to be processed. In the figure, 10 is a silicon substrate, 11 is a SiO 2 film, 12 is a SiN film, and 13 is a needle-like protrusion of silicon.

図5(a)に示すように、シリコン基板10の表面に、LP−CVD法でSiN膜12及びSiO2 膜11を順に堆積し、これらをパターニングしてSiN膜12及びSiO2 膜11の積層膜からなるハードマスクを形成する。続いて、このハードマスクを用いて、シリコン基板10をRIE法によりエッチングし、トレンチを形成する。このとき、基板周縁部ではエッチングの乱れが生じマスクの残渣やSiの針状突起13が形成される。その後、ウェットエッチングにより、SiO2 膜11を剥離する。 As shown in FIG. 5A, the SiN film 12 and the SiO 2 film 11 are sequentially deposited on the surface of the silicon substrate 10 by the LP-CVD method, and these are patterned to laminate the SiN film 12 and the SiO 2 film 11. A hard mask made of a film is formed. Subsequently, using this hard mask, the silicon substrate 10 is etched by the RIE method to form a trench. At this time, etching disturbance occurs at the peripheral edge of the substrate, and mask residues and Si needle-like protrusions 13 are formed. Thereafter, the SiO 2 film 11 is peeled off by wet etching.

SiO2 膜11を剥離した状態が図5(b)であり、シリコン基板10の周縁部には、SiN膜12とシリコン針状突起13が発生している。このようなトレンチ形成時に生じるSiN膜12を含むシリコン針状突起13の除去及び基板平坦化に、本実施形態の研磨方法を適用する。 FIG. 5B shows a state where the SiO 2 film 11 is peeled off, and the SiN film 12 and the silicon needle-like protrusions 13 are generated at the peripheral edge of the silicon substrate 10. The polishing method of the present embodiment is applied to the removal of the silicon needle-like protrusions 13 including the SiN film 12 generated during the trench formation and the planarization of the substrate.

本実施形態においても、セリア砥粒#10000を固着させた研磨テープ23aとダイヤモンド砥粒#10000を固着させた研磨テープ23bを組合せた研磨方法を適用した。前記図4に示した研磨装置を用いて、所定の研磨条件で研磨を実施し、図5(c)に示す被研磨基板の断面図のように仕上げた。   Also in this embodiment, a polishing method in which the polishing tape 23a to which the ceria abrasive grain # 10000 is fixed and the polishing tape 23b to which the diamond abrasive grain # 10000 is fixed is applied. Using the polishing apparatus shown in FIG. 4, polishing was performed under predetermined polishing conditions, and finished as shown in the sectional view of the substrate to be polished shown in FIG.

ここで、セリア砥粒の研磨テープ23aのみでSiN膜12とシリコン針状突起13の除去及び基板10の平坦化を試みたところ、SiN膜12の除去は進むが、シリコン針状突起13の除去及び基板平坦化の進行は遅く、従来技術のダイヤモンド砥粒#4000とダイヤモンド砥粒#10000の組合せに対して、研磨時間を2倍に長くしても、シリコン針状突起13の除去は完了しなかった。   Here, when the removal of the SiN film 12 and the silicon needle-like protrusions 13 and the flattening of the substrate 10 were attempted only with the polishing tape 23a of ceria abrasive grains, the removal of the SiN film 12 progressed, but the removal of the silicon needle-like protrusions 13 progressed. Further, the progress of the planarization of the substrate is slow, and the removal of the silicon needle-like protrusions 13 is completed even if the polishing time is doubled compared to the combination of the diamond abrasive grain # 4000 and the diamond abrasive grain # 10000 of the prior art. There wasn't.

一方、セリア砥粒の研磨テープ23aとダイヤモンド砥粒の研磨テープ23bを組み合わせた研磨方法を用いると、従来技術に対して、研磨時間は2/3に短縮され、従来技術で観察されたダイヤモンド砥粒#4000による研磨キズは無くなり、表面粗さは1/3に改善された。即ち、酸化シリコン系膜や窒化シリコン系の不要膜の除去と基板の平坦化が必要な場合は、セリア砥粒の研磨テープ23aとダイヤモンド砥粒の研磨テープ23bの組合せは、より一層の効果を示すことになる。   On the other hand, when a polishing method in which a polishing tape 23a of ceria abrasive and a polishing tape 23b of diamond abrasive are combined is used, the polishing time is shortened to 2/3 as compared with the prior art, and the diamond grinding observed in the prior art. Polishing scratches due to grain # 4000 were eliminated, and the surface roughness was improved to 1/3. That is, in the case where it is necessary to remove the unnecessary silicon oxide film or silicon nitride film and to flatten the substrate, the combination of the ceria abrasive tape 23a and the diamond abrasive tape 23b is more effective. Will show.

このように本実施形態によれば、シリコン基板10の表面にSiN膜12やシリコン針状突起13などが形成された被処理基板に対し、セリア砥粒を固着した研磨テープ23aとダイヤモンド砥粒を固着した研磨テープ23bを用いて研磨することにより、基板周縁部の不要膜及び針状突起13を高効率で除去することができ、しかも研磨面精度を向上させることができる。従って、第1の実施形態と同様の効果が得られる。   As described above, according to the present embodiment, the polishing tape 23a and the diamond abrasive grains to which the ceria abrasive grains are fixed are attached to the substrate to be processed on which the SiN film 12 and the silicon needle-like protrusions 13 are formed on the surface of the silicon substrate 10. By polishing using the fixed polishing tape 23b, the unnecessary film and the needle-like protrusions 13 on the peripheral edge of the substrate can be removed with high efficiency, and the accuracy of the polished surface can be improved. Therefore, the same effect as the first embodiment can be obtained.

(第3の実施形態)
図6は、本発明の第3の実施形態に係わる基板処理工程を示す断面図である。
(Third embodiment)
FIG. 6 is a cross-sectional view showing a substrate processing process according to the third embodiment of the present invention.

本実施形態は、金属膜(Ni,Co等)のシリサイド形成時に生じる基板周縁部の金属汚染除去に適用した例である。   This embodiment is an example applied to the removal of metal contamination at the peripheral edge of the substrate that occurs during the formation of a silicide of a metal film (Ni, Co, etc.).

まず、図6(a)に示すように、シリコン基板10上にSiN膜12を堆積させた後に、SiN膜12上にレジスト膜(図示せず)を塗布し、このレジスト膜をマスクとしてフォトリソグラフィ技術によりシリコン基板10上に開口部を形成する。   First, as shown in FIG. 6A, after a SiN film 12 is deposited on the silicon substrate 10, a resist film (not shown) is applied onto the SiN film 12, and photolithography is performed using this resist film as a mask. An opening is formed on the silicon substrate 10 by a technique.

次いで、図6(b)に示すように、例えばスパッタ法により金属(Co)を堆積し、SiN膜12及び基板10の露出部分に金属膜(Co膜)61を形成する。その後、熱処理を行うことにより、図6(c)に示すように、開口部に露出した基板Siの表面のみを金属と反応させてシリサイド膜(CoSi膜)62を形成する。未反応の金属膜61は、エッチング等により除去する。この時、シリコン基板10の周縁部へのレジスト膜の塗布が十分に行われないと、シリコン基板10上に開口部を形成する際に周縁部に基板Siが露出することがある。周縁部に基板Siが露出した状態で金属膜を堆積して熱処理を行うと、周縁部に露出したSiと金属とが反応し、シリサイド膜等の金属膜とSiの反応物が形成され、シリコン基板10の周縁部から金属汚染が発生する問題がある。   Next, as shown in FIG. 6B, metal (Co) is deposited by, for example, sputtering, and a metal film (Co film) 61 is formed on the SiN film 12 and the exposed portion of the substrate 10. Thereafter, by performing heat treatment, as shown in FIG. 6C, only the surface of the substrate Si exposed in the opening is reacted with metal to form a silicide film (CoSi film) 62. The unreacted metal film 61 is removed by etching or the like. At this time, if the resist film is not sufficiently applied to the peripheral portion of the silicon substrate 10, the substrate Si may be exposed at the peripheral portion when the opening is formed on the silicon substrate 10. When a metal film is deposited and heat treatment is performed with the substrate Si exposed at the peripheral edge, the silicon exposed at the peripheral edge reacts with the metal, and a metal film such as a silicide film and a reaction product of Si are formed. There is a problem that metal contamination occurs from the peripheral edge of the substrate 10.

この金属汚染を防止するために、シリサイド膜等の反応物が形成された後に、周縁部の金属シリサイド膜62及びSiN膜12を除去することが望まれる。ここで、基板周縁部のSiN膜12を除去するのは、図6(c)からも分かるように、基板周縁部の金属シリサイド膜62の研磨に際して周辺のSiN膜12が邪魔になるためである。即ち、金属シリサイド膜62の周辺にSiN膜12が残っていると、メカニカル効果を利用した金属シリサイド膜62の研磨が捗らないためである。   In order to prevent this metal contamination, it is desirable to remove the metal silicide film 62 and the SiN film 12 at the peripheral portion after the reactant such as a silicide film is formed. Here, the reason why the SiN film 12 at the peripheral edge of the substrate is removed is that the peripheral SiN film 12 becomes an obstacle when polishing the metal silicide film 62 at the peripheral edge of the substrate, as can be seen from FIG. . That is, if the SiN film 12 remains around the metal silicide film 62, polishing of the metal silicide film 62 utilizing the mechanical effect does not progress.

基板周縁部に生じた金属汚染除去に本実施形態を適用した結果を説明する。先の実施形態で説明したセリア砥粒を固着した研磨テープ23aと仕上げ用ダイヤモンド砥粒を固着した研磨テープ23bを組合せた研磨方法を適用した。   The result of applying this embodiment to the removal of metal contamination generated at the peripheral edge of the substrate will be described. A polishing method in which the polishing tape 23a having the ceria abrasive grains fixed in the previous embodiment and the polishing tape 23b having the finishing diamond abrasive grains fixed thereon were combined was applied.

前記図4に示す研磨装置を用いて、被処理基板20をステージに吸着させ、所定の速度でステージを回転させながら、研磨テープ23(23a,23b)を所定の速度で送りながら、基板周縁部に所定の圧力で加圧して研磨を実施し、図6(d)に示す基板断面図のように仕上げた。このとき、研磨テープ23bによるメカニカル効果を利用した研磨に加え、研磨テープ23aによるケミカル効果を利用した研磨を並行して行うため、除去すべき金属シリサイド膜の周辺のSiN膜を効率良く研磨することができ、金属シリサイド膜の研磨除去を確実に行うことができる。   Using the polishing apparatus shown in FIG. 4, the substrate 20 is adsorbed on the stage, the stage is rotated at a predetermined speed, and the polishing tape 23 (23a, 23b) is fed at a predetermined speed while the peripheral edge of the substrate. Polishing was performed by applying a predetermined pressure to the substrate and finished as shown in the cross-sectional view of the substrate in FIG. At this time, in addition to polishing using the mechanical effect by the polishing tape 23b, polishing using the chemical effect by the polishing tape 23a is performed in parallel, so that the SiN film around the metal silicide film to be removed is efficiently polished. Thus, the metal silicide film can be reliably removed by polishing.

従来技術のダイヤモンドの粗砥粒(#4000)と仕上げ用砥粒(#10000)の組合せに対して、同一研磨条件で研磨した場合、研磨時間は2/3に短縮され、従来技術で観察された粗砥粒のダイヤモンドによる研磨キズは無くなり、表面粗さは1/3に改善した。ここで、表面粗さが改善したのは、ダイヤモンドは仕上げ用砥粒のみを用い、粗砥粒を用いなかったからである。さらに、ダイヤモンドの粗砥粒を用いないにも拘わらず研磨時間が短縮されたのは、セリア砥粒を固着した研磨テープ23aを用いることにより、基板周縁部の金属シリサイド膜の周辺のSiN膜をケミカル効果により効率良く除去できたためである。   When a conventional combination of coarse diamond grains (# 4000) and finishing abrasive grains (# 10000) is polished under the same polishing conditions, the polishing time is reduced to 2/3, which is observed in the prior art. The rough abrasive grains were no longer scratched by diamond and the surface roughness was improved to 1/3. Here, the surface roughness was improved because diamond used only finishing abrasive grains and did not use coarse abrasive grains. In addition, the polishing time was shortened despite the fact that the diamond coarse abrasive grains were not used. By using the polishing tape 23a to which the ceria abrasive grains were fixed, the SiN film around the metal silicide film on the periphery of the substrate was removed. This is because it was efficiently removed by the chemical effect.

本実施形態では、マスク材として窒化膜(Si窒化膜系)を用いた例を示したが、酸化膜(Si酸化膜系)を用いても構わない。また、シリサイド形成後に酸化膜や窒化膜を形成して一時的に他プロセスへの金属汚染を抑制した後に、シリサイド膜と共に酸化膜や窒化膜を除去しても、研磨時間の短縮と表面粗さの改善の効果は得られる。   In the present embodiment, an example in which a nitride film (Si nitride film system) is used as a mask material is shown, but an oxide film (Si oxide film system) may be used. Even if the oxide film or nitride film is formed after the silicide is formed to temporarily suppress metal contamination to other processes and then the oxide film or nitride film is removed together with the silicide film, the polishing time is shortened and the surface roughness is reduced. The effect of improvement is obtained.

(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。実施形態では、基板周縁部の不要膜としてSiO2 及びSiNを示したが、必ずしもこれらに限るものではなく、例えばSiOC,SiCNに対しても適用できる。つまり、酸化シリコン系、窒化シリコン系の膜に適用可能である。
(Modification)
In addition, this invention is not limited to each embodiment mentioned above. In the embodiment, SiO 2 and SiN are shown as unnecessary films on the peripheral edge of the substrate. However, the present invention is not necessarily limited thereto, and can be applied to, for example, SiOC and SiCN. That is, the present invention can be applied to silicon oxide-based and silicon nitride-based films.

また、酸化シリコン系膜或いは窒化シリコン系膜に加えて、セリア砥粒の研磨テープで研磨除去困難な材料、例えば単結晶シリコン、アモルファスシリコン、ポリシリコン、これらシリコン膜へ不純物導入した膜、カーボン膜、金属膜(タングステン、銅、アルミニウム、ルテニウム、チタン、タンタル、ハフニウム、及びそれら材料を含む化合物)を上層、下層、或いは混在層として研磨除去する場合、メカニカルに研磨除去する能力を有するダイヤモンド等の砥粒を組み合わせることが有効である。   In addition to silicon oxide films or silicon nitride films, materials difficult to polish and remove with ceria abrasive polishing tape, such as single crystal silicon, amorphous silicon, polysilicon, films in which impurities are introduced into these silicon films, carbon films When a metal film (tungsten, copper, aluminum, ruthenium, titanium, tantalum, hafnium, and compounds containing these materials) is polished and removed as an upper layer, a lower layer, or a mixed layer, such as diamond having the ability to mechanically polish and remove It is effective to combine abrasive grains.

実施形態では、酸化シリコン系或いは窒化シリコン系の膜に対してケミカル効果を有する砥粒としてセリア粒子を用いたが、セリア粒子の代わりにシリカ粒子を用いることも可能である。さらに、ダイヤモンド粒子の変わりにSiC粒子を用いてもよい。   In the embodiment, ceria particles are used as abrasive grains having a chemical effect on a silicon oxide-based or silicon nitride-based film, but silica particles may be used instead of ceria particles. Furthermore, SiC particles may be used instead of diamond particles.

実施形態では、ケミカル効果を有する粒子を主成分とする砥粒を用いた研磨として研磨テープを用いた固定砥粒方式を説明したが、研磨面と被研磨面との接触面に研磨粒子を含む研磨剤を供給しながら研磨する遊離砥粒方式としても良い。さらに、ダイヤモンド砥粒を用いたメカニカル効果による研磨に際しても、固定砥粒方式に限らず、遊離砥粒方式を採用しても良い。   In the embodiment, the fixed abrasive method using the polishing tape is described as the polishing using the abrasive mainly composed of the particles having the chemical effect. However, the abrasive particles are included in the contact surface between the polishing surface and the surface to be polished. It is good also as a loose abrasive grain system grind | polishing while supplying an abrasive | polishing agent. Furthermore, the polishing by the mechanical effect using diamond abrasive grains is not limited to the fixed abrasive grain system, and a free abrasive grain system may be employed.

具体的には、図7に示すように、ステージ21上に吸着された被処理基板20の周縁部に研磨ヘッド71に固定された不織布72を接触させると共に、基板20の周辺近傍にセリア粒子等を主成分とする砥粒を含む研磨液をノズル73から供給し、不織布72との接触部で基板周縁部を研磨するようにしても良い。この場合も、ダイヤモンド砥粒による研磨を併用することにより先の実施形態と同様の効果が得られることになる。ここで、ノズル73から供給するのは、ケミカル効果を有する粒子を主成分とする砥粒を含む研磨液であり、基板Siと反応する薬液ではないため、基板表面がエッチングされる等の不都合を避けることができる。   Specifically, as shown in FIG. 7, the non-woven fabric 72 fixed to the polishing head 71 is brought into contact with the peripheral portion of the substrate to be processed 20 adsorbed on the stage 21, and ceria particles or the like are formed in the vicinity of the periphery of the substrate 20. A polishing liquid containing abrasive grains containing as a main component may be supplied from the nozzle 73 to polish the peripheral edge of the substrate at the contact portion with the nonwoven fabric 72. Also in this case, the same effect as in the previous embodiment can be obtained by using polishing with diamond abrasive grains in combination. Here, the nozzle 73 supplies a polishing liquid containing abrasive grains mainly composed of particles having a chemical effect, and is not a chemical liquid that reacts with the substrate Si. Can be avoided.

また、実施形態では、半導体基板の端部において断面が曲率を有する部分であるベベル部を研磨する例で説明したが、基板の周辺の一部にアライメントの際のマーク或いはウェハ主面上の結晶方位の認識のために設けられたノッチ部の研磨に適用することも可能である。さらに、半導体基板は必ずしもSiに限るものではなく、他の半導体材料を用いることも可能である。   Further, in the embodiment, the example of polishing the bevel portion, which is a portion having a curved cross section at the end portion of the semiconductor substrate, has been described. However, a mark on alignment or a crystal on the main surface of the wafer is partially aligned around the substrate. It is also possible to apply to polishing of a notch portion provided for orientation recognition. Furthermore, the semiconductor substrate is not necessarily limited to Si, and other semiconductor materials can be used.

その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。   In addition, various modifications can be made without departing from the scope of the present invention.

第1の実施形態に係わる基板処理工程を示す断面図。Sectional drawing which shows the substrate processing process concerning 1st Embodiment. 第1の実施形態に使用した固定砥粒方式の研磨装置を示す概略構成図。The schematic block diagram which shows the polish device of the fixed abrasive system used for 1st Embodiment. 図2の研磨装置に使用した研磨テープの例を示す断面図。Sectional drawing which shows the example of the polishing tape used for the grinding | polishing apparatus of FIG. 第1の実施形態に使用した固定砥粒方式の研磨装置の他の例を示す概略構成図。The schematic block diagram which shows the other example of the polishing apparatus of the fixed abrasive system used for 1st Embodiment. 第2の実施形態に係わる基板処理工程を示す断面図。Sectional drawing which shows the substrate processing process concerning 2nd Embodiment. 第3の実施形態に係わる基板処理工程を示す断面図。Sectional drawing which shows the substrate processing process concerning 3rd Embodiment. 本発明の変形例に係わる遊離砥粒方式の研磨装置を示す概略構成図。The schematic block diagram which shows the grinding | polishing apparatus of the loose abrasive system concerning the modification of this invention.

符号の説明Explanation of symbols

10…シリコン基板
11…SiO2
12…SiN膜
20…被処理基板
21…回転ステージ
22…モータ
23…研磨テープ
23a…セリア砥粒を用いた研磨テープ
23b…ダイヤモンド砥粒を用いた研磨テープ
24…研磨ヘッド
25…純水供給ノズル
31…PETフィルム
32…バインダー
33…セリア砥粒
34…ダイヤモンド砥粒
61…金属膜(Co)
62…シリサイド(CoSi)
71…研磨ヘッド
72…不織布
73…研磨液供給ノズル
10 ... silicon substrate 11 ... SiO 2 film 12 ... SiN film 20 ... abrasive tape 24 using the polishing tape 23b ... diamond abrasive grains using a substrate to be processed 21 ... rotation stage 22 ... motor 23 ... abrasive tape 23a ... ceria abrasive ... Polishing head 25 ... Pure water supply nozzle 31 ... PET film 32 ... Binder 33 ... Ceria abrasive grain 34 ... Diamond abrasive grain 61 ... Metal film (Co)
62 ... Silicide (CoSi)
71 ... Polishing head 72 ... Non-woven fabric 73 ... Polishing liquid supply nozzle

Claims (5)

半導体基板の周縁部に、酸化シリコン系或いは窒化シリコン系の膜に対してケミカル効果を有する粒子を主成分とする砥粒を固定した第1研磨面を接触させて、該基板を研磨する工程と、
前記基板の周縁部に、メカニカル効果を主体とする砥粒を固定した第2研磨面を接触させて、該基板を研磨する工程と、
を含むことを特徴とする基板処理方法。
Polishing the substrate by bringing a peripheral surface of the semiconductor substrate into contact with a first polishing surface on which abrasive grains mainly composed of particles having a chemical effect are fixed to a silicon oxide-based or silicon nitride-based film; ,
Polishing the substrate by bringing a peripheral surface of the substrate into contact with a second polishing surface on which abrasive grains mainly having a mechanical effect are fixed; and
A substrate processing method comprising:
前記第1研磨面に固定された砥粒はセリアを主成分とし、前記第2研磨面に固定された砥粒はダイヤモンド又はSiCを主成分としたことを特徴とする請求項1記載の基板処理方法。   The substrate processing according to claim 1, wherein the abrasive grains fixed to the first polishing surface are mainly composed of ceria, and the abrasive grains fixed to the second polishing surface are mainly composed of diamond or SiC. Method. 前記基板を回転すると共に、該基板の周縁部に前記第1研磨面及び前記第2研磨面の両方を接触させ、前記第1研磨面による研磨と前記第2研磨面による研磨を並行して行うことを特徴とする請求項1記載の基板処理方法。   While rotating the substrate, both the first polishing surface and the second polishing surface are brought into contact with the peripheral portion of the substrate, and polishing by the first polishing surface and polishing by the second polishing surface are performed in parallel. The substrate processing method according to claim 1. 前記基板を回転すると共に、前記第1研磨面による研磨を行った後に前記第2研磨面による研磨を行うか、又は前記第1研磨面による研磨と前記第2研磨面による研磨を交互に行うことを特徴とする請求項1記載の基板処理方法。   Rotating the substrate and polishing with the second polishing surface after polishing with the first polishing surface, or alternately polishing with the first polishing surface and polishing with the second polishing surface The substrate processing method according to claim 1. 酸化シリコン系或いは窒化シリコン系の膜に対してケミカル効果を有する粒子を主成分とする砥粒を含む研磨液を用いて、又は該砥粒を固定した研磨面に接触させて、半導体基板の周縁部を研磨する工程と、
メカニカル効果を主体とする砥粒を含む研磨液を用いて、又は該砥粒を固定した研磨面に接触させて、前記基板の周縁部を研磨する工程と、
を含むことを特徴とする基板処理方法。
The periphery of the semiconductor substrate using a polishing liquid containing abrasive grains mainly composed of particles having a chemical effect on a silicon oxide-based or silicon nitride-based film, or in contact with a polishing surface on which the abrasive grains are fixed Polishing the part,
Polishing a peripheral portion of the substrate by using a polishing liquid containing abrasive grains mainly having a mechanical effect, or in contact with a polishing surface on which the abrasive grains are fixed;
A substrate processing method comprising:
JP2007104068A 2007-04-11 2007-04-11 Substrate processing method Expired - Fee Related JP4374038B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007104068A JP4374038B2 (en) 2007-04-11 2007-04-11 Substrate processing method
TW097112893A TW200906541A (en) 2007-04-11 2008-04-09 Substrate processing method
US12/100,450 US20080254719A1 (en) 2007-04-11 2008-04-10 Substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104068A JP4374038B2 (en) 2007-04-11 2007-04-11 Substrate processing method

Publications (2)

Publication Number Publication Date
JP2008263027A true JP2008263027A (en) 2008-10-30
JP4374038B2 JP4374038B2 (en) 2009-12-02

Family

ID=39854147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104068A Expired - Fee Related JP4374038B2 (en) 2007-04-11 2007-04-11 Substrate processing method

Country Status (3)

Country Link
US (1) US20080254719A1 (en)
JP (1) JP4374038B2 (en)
TW (1) TW200906541A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171647A (en) * 2010-02-22 2011-09-01 Ebara Corp Method for manufacturing semiconductor device
US8641480B2 (en) 2010-03-02 2014-02-04 Ebara Corporation Polishing apparatus and polishing method
JP2015153939A (en) * 2014-02-17 2015-08-24 株式会社Sumco Semiconductor wafer manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254575B2 (en) * 2007-07-11 2013-08-07 株式会社東芝 Polishing apparatus and polishing method
JP2010162624A (en) * 2009-01-13 2010-07-29 Ebara Corp Polishing device and method
DE102010042040A1 (en) 2010-10-06 2012-04-12 Siltronic Ag Method for material removal processing of sides of semiconductor wafers in e.g. microelectronics, involves bringing side of wafer in contact with sandpaper, so that material removal from side of wafer is caused in processing step

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534106A (en) * 1994-07-26 1996-07-09 Kabushiki Kaisha Toshiba Apparatus for processing semiconductor wafers
US6602439B1 (en) * 1997-02-24 2003-08-05 Superior Micropowders, Llc Chemical-mechanical planarization slurries and powders and methods for using same
JP4113282B2 (en) * 1998-05-07 2008-07-09 スピードファム株式会社 Polishing composition and edge polishing method using the same
DE19842709A1 (en) * 1998-09-17 2000-03-30 Siemens Ag Polishing liquid for polishing components, preferably wafers, in particular for chemical-mechanical polishing of such components
JP3141939B2 (en) * 1998-11-26 2001-03-07 日本電気株式会社 Metal wiring formation method
US6267649B1 (en) * 1999-08-23 2001-07-31 Industrial Technology Research Institute Edge and bevel CMP of copper wafer
JP4090247B2 (en) * 2002-02-12 2008-05-28 株式会社荏原製作所 Substrate processing equipment
JP2007012943A (en) * 2005-06-30 2007-01-18 Toshiba Corp Substrate processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171647A (en) * 2010-02-22 2011-09-01 Ebara Corp Method for manufacturing semiconductor device
US8445360B2 (en) 2010-02-22 2013-05-21 Ebara Corporation Method for manufacturing semiconductor device
US8748289B2 (en) 2010-02-22 2014-06-10 Ebara Corporation Method for manufacturing semiconductor device
US8641480B2 (en) 2010-03-02 2014-02-04 Ebara Corporation Polishing apparatus and polishing method
JP2015153939A (en) * 2014-02-17 2015-08-24 株式会社Sumco Semiconductor wafer manufacturing method
US9991110B2 (en) 2014-02-17 2018-06-05 Sumco Corporation Method for manufacturing semiconductor wafer

Also Published As

Publication number Publication date
TW200906541A (en) 2009-02-16
TWI354598B (en) 2011-12-21
JP4374038B2 (en) 2009-12-02
US20080254719A1 (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US7063597B2 (en) Polishing processes for shallow trench isolation substrates
US6946397B2 (en) Chemical mechanical polishing process with reduced defects in a copper process
JP4374038B2 (en) Substrate processing method
US20130061876A1 (en) Semiconductor Device Surface Clean
TWI294456B (en)
TW201432804A (en) SiC substrate manufacturing method
JP4163494B2 (en) Semiconductor device manufacturing method
US20060261041A1 (en) Method for manufacturing metal line contact plug of semiconductor device
JP2004363191A (en) Chemical mechanical polishing slurry for organic film, method of chemically/mechanically polishing organic film, and method of manufacturing semiconductor device
US20060124592A1 (en) Chemical mechanical polish slurry
JP2008226935A (en) Manufacturing method of semiconductor device
CN100521108C (en) Method of manufacturing semiconductor device
CN111599677B (en) Semiconductor structure and forming method thereof
CN101081488A (en) On-line Control Method of Hybrid Chemical Mechanical Polishing Process
US7125321B2 (en) Multi-platen multi-slurry chemical mechanical polishing process
JP2000012543A (en) Method for manufacturing semiconductor integrated circuit device
JP4301305B2 (en) Substrate polishing method and semiconductor device manufacturing method
US20070269908A1 (en) Method for in-line controlling hybrid chemical mechanical polishing process
JPH08323614A (en) Chemical and mechanical abrasion method and device
JP3187216B2 (en) Method for manufacturing semiconductor device
JP2005262406A (en) Polishing apparatus, and method for manufacturing semiconductor device
US20050142988A1 (en) CMP process using slurry containing abrasive of low concentration
CN100414666C (en) Hybrid Chemical Mechanical Polishing
US20060088976A1 (en) Methods and compositions for chemical mechanical polishing substrates
US7109117B2 (en) Method for chemical mechanical polishing of a shallow trench isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees