[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008253672A - Volatile organic compound eliminating device - Google Patents

Volatile organic compound eliminating device Download PDF

Info

Publication number
JP2008253672A
JP2008253672A JP2007101947A JP2007101947A JP2008253672A JP 2008253672 A JP2008253672 A JP 2008253672A JP 2007101947 A JP2007101947 A JP 2007101947A JP 2007101947 A JP2007101947 A JP 2007101947A JP 2008253672 A JP2008253672 A JP 2008253672A
Authority
JP
Japan
Prior art keywords
air
treated
voc
dehumidifying
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007101947A
Other languages
Japanese (ja)
Inventor
Makoto Furukawa
誠 古川
Takahiro Sakai
隆弘 酒井
Koji Ota
幸治 太田
Yasuhiro Tanimura
泰宏 谷村
Katsumi Araki
克己 荒木
Kazuhiko Satake
和彦 佐竹
Takeshi Doi
全 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007101947A priority Critical patent/JP2008253672A/en
Publication of JP2008253672A publication Critical patent/JP2008253672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Drying Of Gases (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a VOC (volatile organic compounds) eliminating device, heightening the decomposition and eliminating efficiency of VOC. <P>SOLUTION: This VOC eliminating device includes an adsorption discharge part 20 having an adsorbent 15, a discharge electrode 16 and a high-voltage power supply 17, and configured to adsorb VOC in the air to be treated with the adsorbent 15 and decompose the adsorbed VOC with discharge plasma, wherein a dehumidifying element (a dehumidifier) 21 is provided on the upstream of the adsorption discharge part 20. The device can obtain an effect of dehumidifying the air A1 to be treated by the dehumidifying element 21. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は室内空気汚染物質あるいは大気汚染物質として規制の対象となるVOC(Volatile Organic Compounds:主としてホルムアルデヒド、トルエン、キシレンおよびスチレン等の揮発性有機化合物)の除去を行うVOC除去装置に関するものである。   The present invention relates to a VOC removal apparatus that removes VOCs (Volatile Organic Compounds: mainly volatile organic compounds such as formaldehyde, toluene, xylene, and styrene) that are regulated as indoor air pollutants or air pollutants.

近年、冷暖房効果を高めるために居住空間の断熱化、気密化が進むにつれて室内空気の汚染が問題となっている。ガス状の汚染物質としては臭気ガスおよび有害ガスがある。前者は不快感を示す程度であるが、後者はシックハウス症候群を引き起こし、大きな社会問題となっている。シックハウス症候群の原因物質として上記VOCが挙げられる。VOCとしてホルムアルデヒド、アセトアルデヒド、トルエン、キシレン、エチルベンゼン、スチレン等が挙げられるが、シックハウス症候群の主たる原因物質はホルムアルデヒドと言われている。そして、国土交通省は上記シックハウス症候群を大きな社会問題として捉え、高気密住宅においてホルムアルデヒドを発生する建材の使用制限と24時間換気を義務づける改正建築基準法を施行した。   In recent years, contamination of indoor air has become a problem as heat insulation and airtightness of living spaces progress in order to enhance the cooling and heating effect. Gaseous pollutants include odorous gases and harmful gases. The former is uncomfortable, but the latter causes sick house syndrome, which is a big social problem. VOC is mentioned as a causative substance of sick house syndrome. VOC includes formaldehyde, acetaldehyde, toluene, xylene, ethylbenzene, styrene and the like, and the main causative substance of sick house syndrome is said to be formaldehyde. The Ministry of Land, Infrastructure, Transport and Tourism took the above-mentioned sick house syndrome as a major social problem and enforced the revised Building Standards Law, which obliged to restrict the use of building materials that generate formaldehyde and provide 24-hour ventilation in highly airtight houses.

一方、工場から大気中に排出されるVOC(主としてトルエン、キシレンおよびスチレン)に関しても車の排気ガスと同様に大気汚染の原因であり、大きな社会問題となっている。国土交通省では工場排気中のVOCに関しても今後排出規制の対象と考えている。   On the other hand, VOC (mainly toluene, xylene, and styrene) discharged from the factory to the atmosphere is a cause of air pollution as well as car exhaust gas, and is a serious social problem. The Ministry of Land, Infrastructure, Transport and Tourism also considers VOCs in factory exhaust to be subject to emission regulations in the future.

従来、粒状、ペレット状、ハニカム状などの吸着材(吸着剤)と、高圧放電により発生する放電プラズマを利用するVOC除去装置は、次のようにして被処理空気のVOCを除去する。すなわち、VOCを含む被処理空気を、吸着剤に通気もしくは接触させることにより、吸着剤にVOCを吸着捕集させる。そして、連続もしくは間欠的に放電プラズマを発生させ、その際に生成させる活性種により、吸着剤に吸着捕集されたVOCを分解して除去する(例えば、特許文献1及び2参照)。   2. Description of the Related Art Conventionally, a VOC removal apparatus that uses an adsorbent (adsorbent) in the form of particles, pellets, honeycombs, and discharge plasma generated by high-pressure discharge removes VOC from air to be treated as follows. That is, VOC is adsorbed and collected by the adsorbent by aeration or contact of the air to be treated containing VOC with the adsorbent. Then, discharge plasma is generated continuously or intermittently, and the VOCs adsorbed and collected by the adsorbent are decomposed and removed by the active species generated at that time (see, for example, Patent Documents 1 and 2).

特開2004−181377号公報JP 2004-181377 A 特開2002−18231号公報JP 2002-18231 A

上記のような方式に用いられる吸着剤には、大気中の水分に影響され難い疎水性吸着剤、水分に影響され易い親水性吸着剤が存在する。親水性吸着剤は導電率が高く、放電が生じ易い性質を有するため上記方式に好適に用いられるが、吸湿した場合、つまり水分を吸着した場合、この水分が被毒物質となりVOCの吸着能力が低下する。一方、また疎水性吸着剤を用いた場合には、吸着剤そのものは水分に影響されないが、基材・バインダー等の吸着剤に付随する材料に水分が吸着することにより、VOCの吸着能力が低下する。すなわち、親水性、疎水性いずれの吸着剤であっても水分の影響を受けて、VOCの吸着能力を低下させる。   Among the adsorbents used in the above system, there are hydrophobic adsorbents that are not easily affected by moisture in the atmosphere and hydrophilic adsorbents that are easily affected by moisture. Hydrophilic adsorbents are suitable for the above method because they have a high electrical conductivity and are prone to discharge. However, when moisture is absorbed, that is, when moisture is adsorbed, this moisture becomes a poisonous substance and has a VOC adsorption capacity. descend. On the other hand, when a hydrophobic adsorbent is used, the adsorbent itself is not affected by moisture, but the adsorption capacity of the VOC is reduced by adsorbing moisture to the materials accompanying the adsorbent such as the base material and binder. To do. That is, even if the adsorbent is hydrophilic or hydrophobic, the adsorption capacity of VOC is lowered due to the influence of moisture.

VOC除去装置が、一般の大気環境や人間が活動する建物内一般作業環境において使用される場合、対象とする被処理空気には通常水蒸気が含まれている。一例として、人間が屋内で快適に過ごすことが出来る環境は、「建築物における衛生的環境の確保に関する法律」において、室温17〜28℃、相対湿度40〜70%とされている。他の表現では、水分濃度で約7600〜26000ppm程度であり、空気中には多量の水分が含まれていることがわかる。   When the VOC removal apparatus is used in a general atmospheric environment or a general working environment in a building where human activity is active, water to be treated usually contains water vapor. As an example, an environment in which a human can spend comfortably indoors is set to a room temperature of 17 to 28 ° C. and a relative humidity of 40 to 70% in the “Law for Ensuring Hygienic Environment in Buildings”. In other expressions, the moisture concentration is about 7600 to 26000 ppm, and it can be seen that a large amount of moisture is contained in the air.

そして、放電プラズマによるVOCの分解は吸着剤での濃縮度が高いほど高効率となる。しかしながら、従来、吸着剤への水分の吸着量が増加すると、上記のように相対的にVOCの吸着量が低下するため、吸着剤でのVOCの濃縮度が低下し、結果的に分解効率が低下するという問題が発生していた。また、吸着剤への水分の吸着量が増加すると、吸着剤の抵抗成分が増加するため、放電プラズマ発生時の電力に占める無効電力の割合が増大し、過大な電力が必要になるという問題も発生していた。   And the decomposition | disassembly of VOC by discharge plasma becomes so efficient that the concentration in an adsorbent is high. However, conventionally, when the amount of moisture adsorbed on the adsorbent increases, the amount of VOC adsorbed relatively decreases as described above, so that the concentration of VOC in the adsorbent decreases, and as a result, the decomposition efficiency increases. There was a problem of decline. In addition, as the amount of moisture adsorbed on the adsorbent increases, the resistance component of the adsorbent increases, so the proportion of reactive power in the electric power at the time of discharge plasma generation increases and excessive power is required. It has occurred.

また、放電プラズマを用いたVOCの分解に関して、従来、湿度制御を行う提案がされている(例えば、上記特許文献2)。しかしながら、この湿度制御は、間欠的でなく連続的に放電プラズマを発生させた際、吸着剤の温度が上昇し、吸着剤への水分吸着が起こりにくくなり、被処理空気を比較的高い一定の水分濃度(水分量15000〜26000ppm程度)に調節しなければ放電プラズマによる活性種が生成されなくなることに対する対応策として行われている。この例のように常時放電プラズマを発生させる場合は、VOCを分解する作用が常に発生することとなるが、吸着剤でのVOCの濃縮度を高くできないため分解効率は低く、結果的にVOCの分解に過大な電力が必要になることとなる。   In addition, regarding the decomposition of VOC using discharge plasma, there has been a proposal to perform humidity control conventionally (for example, Patent Document 2). However, in this humidity control, when the discharge plasma is generated continuously instead of intermittently, the temperature of the adsorbent rises, moisture adsorption to the adsorbent is less likely to occur, and the air to be treated is kept relatively high and constant. This is done as a countermeasure against the fact that active species are not generated by the discharge plasma unless the water concentration is adjusted to the water content (about 15000 to 26000 ppm). In the case of always generating discharge plasma as in this example, the action of decomposing VOC will always occur, but the concentration of VOC in the adsorbent cannot be increased, so the decomposition efficiency is low, and as a result VOC Excessive power will be required for disassembly.

以上のように、従来、吸着剤が吸湿すると、捕集対象であるVOCの飽和吸着量が低減するので、吸着剤における濃縮率が低減する。その結果、放電プラズマによるVOCの分解効率が低下していた。また、吸着剤が吸湿すると、吸着剤の電気抵抗値が増大するため、放電プラズマ発生時に電圧を印加した際に無効電力が多く発生する。その結果、吸着剤に吸着したVOCを放電プラズマで分解する際に過大な電力を必要としていた。   As described above, conventionally, when the adsorbent absorbs moisture, the saturated adsorption amount of the VOC to be collected is reduced, so that the concentration rate in the adsorbent is reduced. As a result, the decomposition efficiency of VOC by the discharge plasma was lowered. Further, when the adsorbent absorbs moisture, the electric resistance value of the adsorbent increases, so that a large amount of reactive power is generated when a voltage is applied when the discharge plasma is generated. As a result, excessive power is required when the VOC adsorbed on the adsorbent is decomposed by the discharge plasma.

本発明は、上記問題を解決するためになされたもので、被処理空気のVOCを吸着剤に吸着させる前に、除湿装置により被処理空気を除湿することにより、VOCの分解除去効率を高くするVOC除去装置を提供することを目的とする。   The present invention has been made to solve the above-described problem. Before the VOC of the air to be treated is adsorbed by the adsorbent, the air to be treated is dehumidified by a dehumidifying device, thereby increasing the efficiency of decomposition and removal of the VOC. An object of the present invention is to provide a VOC removal device.

上述した課題を解決し、目的を達成するために、本発明のVOC除去装置は、吸込口と排出口との間に風路が形成されたケーシングと、ケーシング内の風路上に設けられ吸込口から吸い込んだ被処理空気を排出口に移動させる送風機と、風路上に設けられ、吸着剤、放電電極、及び高電圧電源を有し、被処理空気中のVOCを吸着剤で吸着するとともに、吸着したVOCを放電プラズマで分解する吸着放電部と、風路の吸着放電部より上流に設けられ被処理空気に含まれる水分を低減させる除湿装置とを備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the VOC removal device of the present invention includes a casing in which an air passage is formed between an inlet and an outlet, and an inlet provided on the air passage in the casing. A blower that moves the air to be treated sucked from the outlet to the discharge port, and an adsorbent, a discharge electrode, and a high-voltage power supply that are provided on the air path, and adsorb the VOC in the air to be treated with the adsorbent. An adsorption discharge unit that decomposes the VOCs with discharge plasma and a dehumidifying device that is provided upstream of the adsorption discharge unit in the air path and that reduces moisture contained in the air to be treated are provided.

この発明のVOC除去装置によれば、吸着剤、放電電極、及び高電圧電源を有する吸着放電部を有しており、この吸着放電部の上流に除湿装置を設けたので、この除湿装置により被処理空気が除湿されるので、被処理空気の水分含有量が減る。これにより、吸着剤への水分の吸着量が減少して相対的にVOCの吸着量が増加する。この結果、吸着剤にて除去したVOCの濃縮率を向上させることができるとともに、放電時の無効電力が低減されVOCの分解除去効率が大きく改善される。   According to the VOC removal apparatus of the present invention, the adsorption discharge unit having the adsorbent, the discharge electrode, and the high voltage power source is provided, and the dehumidifying device is provided upstream of the adsorption discharge unit. Since the processing air is dehumidified, the moisture content of the air to be processed is reduced. As a result, the amount of moisture adsorbed on the adsorbent decreases and the amount of VOC adsorbed relatively increases. As a result, the concentration ratio of the VOC removed by the adsorbent can be improved, the reactive power during discharge is reduced, and the VOC decomposition and removal efficiency is greatly improved.

以下に、本発明にかかるVOC除去装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a VOC removal apparatus according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は本発明にかかるVOC除去装置の実施の形態1の機能構成を示す模式図である。図1において、VOC除去装置は、空気の吸込口、空気の排出口、及び吸込口と排出口との間に設けられ空気を流通させる風路が形成されたケーシング(図示せず)を有しており、図中白抜き矢印は、この風路内を流れる空気の様子を示している。矢印A1から矢印A3は、第1の風路(図示せず)を流れる被処理空気の流れを示している。矢印B1から矢印B3は、第2の風路(図示せず)を流れる素子再生用の空気の流れを示している。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram showing a functional configuration of a first embodiment of a VOC removal apparatus according to the present invention. In FIG. 1, the VOC removal device has a casing (not shown) in which an air suction port, an air discharge port, and an air passage through which air is circulated are formed between the suction port and the discharge port. The white arrow in the figure shows the state of the air flowing in this air passage. Arrows A1 to A3 indicate the flow of the air to be processed that flows through the first air passage (not shown). Arrows B1 to B3 indicate the air flow for element regeneration flowing through the second air passage (not shown).

VOC除去装置は、第1の風路の下流に被処理空気送風用の送風機11を有している。送風機11は、吸込口から吸込した被処理空気A1を、第1の風路に設けられた種々の機器を通過させた後、排出口まで移動させ被処理空気(排熱空気)A3として排出する。   The VOC removing device has a blower 11 for blowing air to be processed downstream of the first air passage. The blower 11 allows the air to be treated A1 sucked from the suction port to pass through various devices provided in the first air passage, moves to the discharge port, and discharges it as air to be treated (exhaust heat air) A3. .

VOC除去装置は、また、この第1の風路の送風機11より上流に設けられた吸着放電部20を有している。吸着放電部20は、吸着剤15、放電電極16及び高電圧電源17を含んで構成されている。吸着放電部20は次の動作を行う。すなわち、まず、VOCを含む被処理空気A2を吸着剤15に通気させて吸着濃縮を行う。つまり、被処理空気中のVOCを吸着剤15で吸着する。その後、吸着剤15に吸着したVOCを放電電極16から発生する放電プラズマで分解する。吸着剤15には、接地するための接地電源線18が設けられている。   The VOC removal device also has an adsorption discharge unit 20 provided upstream from the blower 11 in the first air path. The adsorption discharge unit 20 includes an adsorbent 15, a discharge electrode 16, and a high voltage power supply 17. The adsorption discharge unit 20 performs the following operation. That is, first, the air to be treated A2 containing VOC is passed through the adsorbent 15 to perform adsorption concentration. That is, the VOC in the air to be treated is adsorbed by the adsorbent 15. Thereafter, the VOC adsorbed on the adsorbent 15 is decomposed by the discharge plasma generated from the discharge electrode 16. The adsorbent 15 is provided with a ground power supply line 18 for grounding.

VOC除去装置は、さらに第1の風路の吸着放電部20よりさらに上流に設けられた回転式の除湿素子(除湿装置)21を有している。除湿素子21は、ゼオライトもしくはシリカ等の親水性の高い吸湿材にて構成され、概略円板状を成し軸回りに矢印Cのように回転する。そして、第1風路内に突出させた片側に吸込口から吸い込んだ被処理空気A1を通気させる。これにより、被処理空気A1に対して吸湿して、被処理空気A1に含まれる水分を低減させる。   The VOC removing device further includes a rotary dehumidifying element (dehumidifying device) 21 provided further upstream than the adsorption discharge unit 20 of the first air path. The dehumidifying element 21 is made of a highly hydrophilic hygroscopic material such as zeolite or silica, has a substantially disk shape, and rotates around an axis as indicated by an arrow C. And the to-be-processed air A1 suck | inhaled from the suction inlet is ventilated to the one side protruded in the 1st air path. Thereby, moisture to be treated air A1 is absorbed and moisture contained in treated air A1 is reduced.

吸着剤15は、導電性を有するものであれば限定されるものではないが、吸着剤にニッケル、銅、銀、金、白金、パラジウムなどの金属及び、酸化銅、酸化亜鉛、二酸化チタン、酸化マンガンなどの金属酸化物など、触媒作用を有する物質を添着・担持することによりVOCの分解除去性能を向上させることができる。吸着剤15を、粒状、ペレット状、ハニカム状などの形状とすることで表面積を増大させVOCの分解効率を向上させることができる。   The adsorbent 15 is not limited as long as it has electrical conductivity, but the adsorbent is made of metal such as nickel, copper, silver, gold, platinum, palladium, and copper oxide, zinc oxide, titanium dioxide, oxide. By attaching and supporting a substance having a catalytic action such as a metal oxide such as manganese, the decomposition and removal performance of VOC can be improved. By making the adsorbent 15 into a granular shape, a pellet shape, a honeycomb shape, or the like, the surface area can be increased and the decomposition efficiency of VOC can be improved.

吸着剤15は、除湿された被処理空気A2を連続して通気させて、含まれるVOCを連続して吸着し濃縮する。そして、吸着剤15の化学物質吸着性能が飽和したタイミング、もしくは一定時間吸着を行ったタイミングにて、高電圧電源17を作動させて放電電極16から放電プラズマを発生させる。この放電プラズマを発生させることにより生成される酸素原子等の活性種により、吸着剤15において濃縮吸着されたVOCが分解除去されて清浄化される。   The adsorbent 15 continuously aerates the dehumidified air to be treated A2 and continuously adsorbs and concentrates the VOC contained therein. Then, the high voltage power source 17 is operated to generate discharge plasma from the discharge electrode 16 at the timing when the adsorption performance of the chemical substance of the adsorbent 15 is saturated or when the adsorption is performed for a certain time. By virtue of the active species such as oxygen atoms generated by generating this discharge plasma, the VOC concentrated and adsorbed in the adsorbent 15 is decomposed and removed for purification.

VOC除去装置は、また、第2の風路の下流に設けられた除湿素子再生用送風機31と、この除湿素子再生用送風機31の上流に設けられた除湿素子21の再生用加熱ヒータ33とを有している。除湿素子再生用送風機31は、吸込口(図示せず)から吸い込んだ再生用空気B1を、再生用加熱ヒータ33を通過させて加熱して加熱空気(除湿素子再生空気)として除湿素子21に供給する。除湿素子21を通過して除湿素子21の除湿性能を再生した空気は、その後、排出口(図示せず)から排出空気B3として排出される。再生用加熱ヒータ33と除湿素子再生用送風機31とは、除湿素子21を加熱することにより除湿素子21の除湿性能を再生する加熱再生手段を構成している。   The VOC removal apparatus also includes a dehumidifying element regeneration blower 31 provided downstream of the second air passage and a regeneration heater 33 of the dehumidifying element 21 provided upstream of the dehumidification element regeneration blower 31. Have. The dehumidifying element regeneration blower 31 supplies the dehumidifying element 21 as heated air (dehumidifying element regenerating air) by heating the regenerating air B1 sucked from the suction port (not shown) through the regenerating heater 33. To do. The air that has passed through the dehumidifying element 21 and regenerated the dehumidifying performance of the dehumidifying element 21 is then discharged from the discharge port (not shown) as exhaust air B3. The heater 33 for regeneration and the blower 31 for regeneration of the dehumidifying element constitute heating regeneration means for regenerating the dehumidifying performance of the dehumidifying element 21 by heating the dehumidifying element 21.

被処理空気A1は、この除湿素子21を通過することにより水分濃度が6000ppm以下になるまで除湿される。除湿素子21の材料としては、上記のようにゼオライト、或いはシリカが好適であるが、これに限定されるものではなく除湿性能を有するものであれば用いることができる。   The air to be treated A1 is dehumidified by passing through the dehumidifying element 21 until the water concentration becomes 6000 ppm or less. As the material of the dehumidifying element 21, zeolite or silica is suitable as described above, but is not limited thereto, and any material having dehumidifying performance can be used.

上記のように除湿素子21は、矢印Cのように常時回転している回転式の除湿素子である。除湿素子21は、第1の風路にて吸湿して水分を含んだ部分を第2の風路側に回転させて、再生用加熱ヒータ33にて加熱された除湿素子再生空気(加熱空気)B2を供給することで除湿性能を再生する。このように回転式の除湿素子21は、回転しながら吸湿と再生を連続して行うので、被処理空気A1を連続して除湿することができる。   As described above, the dehumidifying element 21 is a rotary dehumidifying element that is always rotating as indicated by an arrow C. The dehumidifying element 21 absorbs moisture in the first air path and rotates the portion containing moisture to the second air path side, and is dehumidified element regenerated air (heated air) B2 heated by the regenerating heater 33. Dehumidification performance is regenerated by supplying Thus, the rotary dehumidifying element 21 continuously absorbs moisture and regenerates while rotating, so that the air to be treated A1 can be dehumidified continuously.

以上のように、本実施の形態のVOC除去装置は、吸着剤15、放電電極16及び高電圧電源17を有し、被処理空気中のVOCを吸着剤15で吸着するとともに、吸着したVOCを放電プラズマで分解する吸着放電部20を有しており、この吸着放電部20の上流に除湿素子(除湿装置)21を設けたので、この除湿素子21により被処理空気A1が除湿されるので、被処理空気A2の水分含有量が減る。これにより、吸着剤15への水分の吸着量が減少して相対的に吸着剤15のVOCの吸着量が増加する。この結果、吸着剤15にて除去したVOCの濃縮率を向上させることができるとともに、放電時の無効電力が低減されVOCの分解除去効率が大きく改善される。   As described above, the VOC removal apparatus according to the present embodiment includes the adsorbent 15, the discharge electrode 16, and the high-voltage power source 17, and adsorbs the VOC in the air to be treated with the adsorbent 15, and the adsorbed VOC. Since it has the adsorption discharge part 20 decomposed by the discharge plasma and the dehumidifying element (dehumidifying device) 21 is provided upstream of the adsorption discharge part 20, the air to be treated A1 is dehumidified by the dehumidifying element 21. The moisture content of the air to be treated A2 is reduced. As a result, the amount of moisture adsorbed on the adsorbent 15 decreases, and the amount of VOC adsorbed on the adsorbent 15 relatively increases. As a result, the concentration rate of the VOC removed by the adsorbent 15 can be improved, the reactive power during discharge is reduced, and the VOC decomposition and removal efficiency is greatly improved.

本実施の形態のVOC除去装置は、除湿素子21を加熱することにより除湿性能を再生する加熱再生手段を有しており、この加熱再生手段は、再生用加熱ヒータ33と、この
再生用加熱ヒータ33で加熱された除湿素子再生空気(加熱空気)B2を除湿素子21に供給する除湿素子再生用送風機31とを有するので、除湿素子21を効率良く再生することができる。
The VOC removal apparatus according to the present embodiment has a heating regeneration unit that regenerates the dehumidifying performance by heating the dehumidifying element 21. The heating regeneration unit includes the regeneration heater 33 and the regeneration heater. Since the dehumidifying element regeneration air blower 31 for supplying the dehumidifying element regeneration air (heated air) B2 heated at 33 to the dehumidifying element 21 is provided, the dehumidifying element 21 can be efficiently regenerated.

ここで、本実施の形態のように、除湿装置を併用した場合の化学物質濃縮度向上効果について検証した結果について述べる。厚さ30mmのマンガン系吸着剤に線風速0.5m/sで、化学物質濃度50ppmの被処理空気を連続通気させた場合における被処理空気中の水分濃度による化学物質濃度変化を図2に示す。化学物質を含む被処理空気が吸着剤を通気すると、吸着剤通気直後の被処理空気中の化学物質濃度は減少するが、時間経過と共に徐々に増加し、一定時間経過後には入口濃度と同じ値になった。   Here, the result of having verified about the chemical substance concentration improvement effect at the time of using together with a dehumidifier like this Embodiment is described. FIG. 2 shows the change in chemical substance concentration due to the moisture concentration in the air to be treated when the air to be treated having a chemical substance concentration of 50 ppm is continuously passed through a manganese-based adsorbent having a thickness of 30 mm at a linear wind speed of 0.5 m / s. . When the air to be treated containing chemical substances passes through the adsorbent, the chemical substance concentration in the air to be treated immediately after the adsorption of the adsorbent decreases, but gradually increases over time. Became.

ここで、被処理空気中に含まれる水分濃度の違いを調べると、被処理空気中の水分濃度が低い場合(水300ppm)では出口濃度と入口濃度が等しくなるまでの時間は約80分程度であることに対して、被処理空気中の水分濃度が高い場合(水6000ppm)では、出口濃度と入口濃度が等しくなるまでの時間は約50分程度と、被処理空気中の水分濃度により大きく異なる。さらに吸着剤に吸着した化学物質の総量は、被処理空気中の水分濃度が高いほど少なくなる傾向が確認された。   Here, when the difference in moisture concentration contained in the air to be treated is examined, when the moisture concentration in the air to be treated is low (300 ppm of water), the time until the outlet concentration becomes equal to the inlet concentration is about 80 minutes. On the other hand, when the moisture concentration in the air to be treated is high (water 6000 ppm), the time until the outlet concentration becomes equal to the inlet concentration is about 50 minutes, which varies greatly depending on the moisture concentration in the air to be treated. . Furthermore, it was confirmed that the total amount of chemical substances adsorbed on the adsorbent tends to decrease as the moisture concentration in the air to be treated increases.

また、化学物質濃縮度の向上が、化学物質の分解効率向上となる内容について検証した結果について述べる。導電性ハニカム状吸着剤を接地電極、その対向する位置に放電電極を配置し、水分濃度が低い(水300ppm)場合における導電性ハニカム状吸着剤に吸着させた化学物質のモル量を1とし、モル量3.2倍,4.9倍の化学物質を吸着した濃縮度の異なる導電性ハニカム状吸着剤を用いて、化学物質の分解効率を比較した。   In addition, the result of verifying the content that the improvement of chemical substance concentration improves the decomposition efficiency of chemical substances will be described. When the conductive honeycomb adsorbent is a ground electrode and the discharge electrode is disposed at the opposite position, the molar amount of the chemical substance adsorbed on the conductive honeycomb adsorbent when the water concentration is low (300 ppm of water) is 1. The decomposition efficiency of chemical substances was compared using conductive honeycomb adsorbents having different concentrations and adsorbing chemical substances with molar amounts of 3.2 times and 4.9 times.

導電性ハニカム状吸着剤からなる接地電極と、放電電極の両電極間に電圧を印加し、化学物質の分解生成物を測定することにより、化学物質1gを分解するために必要な放電エネルギ(分解効率)の評価を行った。この結果を図3に示す。横軸には、導電性ハニカム状吸着剤に吸着する化学物質吸着モル数比、縦軸には化学物質1g分解させるために必要なエネルギ(分解効率)[Wh/g]、第2の縦軸には、水分濃度300ppm共存下での結果を基準とした放電時に脱着する化学物質のモル量比を示す。   Discharge energy (decomposition) required for decomposing the chemical substance 1g by applying a voltage between the ground electrode made of the conductive honeycomb adsorbent and the discharge electrode and measuring the decomposition product of the chemical substance (Efficiency) was evaluated. The result is shown in FIG. The horizontal axis represents the ratio of the number of moles of chemical substances adsorbed on the conductive honeycomb adsorbent, the vertical axis represents the energy (decomposition efficiency) [Wh / g] required to decompose 1 g of the chemical substance, and the second vertical axis. Shows the molar ratio of chemical substances to be desorbed at the time of discharge based on the result in the presence of a water concentration of 300 ppm.

図3のように、導電性ハニカム状吸着剤の化学物質濃縮度が高くなるほど、化学物質の分解効率が向上する。即ち、化学物質1gを分解するために必要な放電エネルギを抑制することが出来るので、消費電力の低減が実現出来ることが確認された。   As shown in FIG. 3, the higher the chemical substance concentration of the conductive honeycomb adsorbent, the higher the chemical substance decomposition efficiency. That is, it was confirmed that the power consumption can be reduced because the discharge energy required to decompose 1 g of the chemical substance can be suppressed.

さらに、除湿装置を併用した場合の無効電力の低減について検証した結果について述べる。導電性ハニカム状吸着剤を接地電極とし、その対向する位置に放電電極を配置した吸着放電部を用い、化学物質吸着時に被処理空気中に含まれる水分濃度を300、6000、13000[ppm]とした場合において、等量の化学物質を吸着させた導電性ハニカム状吸着剤に対して放電処理した際の化学物質の分解効率を比較した。なお、放電分解時には水分濃度300ppmを含む空気を通気しながら分解操作を行った。   Furthermore, the result of having verified about reduction of the reactive power at the time of using a dehumidifier together is described. Using an adsorption discharge section in which a conductive honeycomb adsorbent is a ground electrode and a discharge electrode is arranged at the opposite position, the moisture concentration contained in the air to be treated during chemical substance adsorption is 300, 6000, and 13000 [ppm]. In this case, the decomposition efficiency of the chemical substance when the discharge treatment was performed on the conductive honeycomb adsorbent in which an equal amount of the chemical substance was adsorbed was compared. During the discharge decomposition, the decomposition operation was performed while ventilating air containing a water concentration of 300 ppm.

導電性ハニカム状吸着剤からなる接地電極と、放電電極の両電極間に電圧を印加し、化学物質の分解生成物を測定することにより、化学物質1gを分解するために必要な放電エネルギ(分解効率)の評価を行った。この結果を図4に示す。横軸には、化学物質吸着時の被処理空気に含まれる水分濃度[ppm]、縦軸には化学物質1g分解させるために必要なエネルギ(分解効率)[Wh/g]を示す。   Discharge energy (decomposition) required for decomposing the chemical substance 1g by applying a voltage between the ground electrode made of the conductive honeycomb adsorbent and the discharge electrode and measuring the decomposition product of the chemical substance (Efficiency) was evaluated. The result is shown in FIG. The horizontal axis indicates the water concentration [ppm] contained in the air to be treated at the time of chemical substance adsorption, and the vertical axis indicates the energy (decomposition efficiency) [Wh / g] required to decompose 1 g of the chemical substance.

図4のように、同一の吸着量、投入電力で放電処理した条件においても、被処理空気の水分濃度が高くなると、分解せずにそのまま脱着する化学物質が増加するため化学物質の分解効率が低下することが確認された。即ち、放電時の温度上昇による水分脱着と同時に化学物質の脱着量が多くなり、化学物質1gを分解させるために必要なエネルギが増加することから、必要高圧電源容量が大きくなる。   As shown in FIG. 4, even when the discharge treatment is performed with the same adsorption amount and input power, if the moisture concentration of the air to be treated increases, the chemical substance that is desorbed without being decomposed increases, so the decomposition efficiency of the chemical substance increases. It was confirmed that it decreased. That is, the amount of desorption of the chemical substance increases simultaneously with the desorption of moisture due to the temperature rise at the time of discharge, and the energy required for decomposing the chemical substance 1g increases, so the required high-voltage power supply capacity increases.

水分を含んだ被処理空気が導電性ハニカム状吸着剤を通過する場合、吸着剤の細孔部に水分子が吸着する。この導電性ハニカム状吸着剤に対して放電プラズマを生成すると、放電以外に電力が消費される。つまり、水分吸着により吸着剤の抵抗成分が増加し、投入電力に対する無効消費電力が増加する。無効消費電力が増加すると、投入電力に対する酸素原子などの活性種の生成効率、導電性ハニカム状吸着剤に吸着する化学物質との反応速度が低下し、化学物質の分解効率が低下する。   When the air to be treated containing moisture passes through the conductive honeycomb adsorbent, water molecules are adsorbed on the pores of the adsorbent. When discharge plasma is generated for the conductive honeycomb adsorbent, electric power is consumed in addition to discharge. That is, the resistance component of the adsorbent increases due to moisture adsorption, and the reactive power consumption with respect to the input power increases. When the reactive power consumption increases, the generation efficiency of active species such as oxygen atoms with respect to the input power, the reaction rate with the chemical substance adsorbed on the conductive honeycomb adsorbent, and the chemical substance decomposition efficiency decrease.

これに対して、本実施の形態のように、放電部前段部に除湿装置を設け、導電性ハニカム状吸着剤への水分吸着を抑制することで、放電時における吸着剤からの化学物質の脱着量を抑止するとともに、吸着剤の抵抗成分を減少させ損失電力を抑制することが出来るため、低電力で化学物質を高効率に分解除去することが可能となる。これらの効果により、より分解効率の高いVOC除去装置が提供できる。   On the other hand, as in the present embodiment, a dehumidifying device is provided at the front part of the discharge unit to suppress moisture adsorption to the conductive honeycomb adsorbent, thereby desorbing chemical substances from the adsorbent during discharge. In addition to suppressing the amount, the resistance component of the adsorbent can be reduced and the power loss can be suppressed, so that the chemical substance can be decomposed and removed with high efficiency and low power. With these effects, a VOC removal device with higher decomposition efficiency can be provided.

実施の形態2.
図5は本発明にかかるVOC除去装置の実施の形態2の機能構成を示す模式図である。本実施の形態においては、除湿素子21の除湿性能の再生に放電プラズマの排熱空気A3を利用する。そのため、加熱再生手段は、放電プラズマの排熱空気A3を、再生用空気B1として迂回させながら除湿素子21に導く誘導風路(図示せず)と、この誘導風路を介して、排熱空気A3を除湿素子21に供給する送風機(被処理空気送風用の送風機11と兼用されている)とを有している。その他の構成は実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 5 is a schematic diagram showing a functional configuration of the second embodiment of the VOC removal apparatus according to the present invention. In the present embodiment, the exhausted hot air A3 of the discharge plasma is used for regeneration of the dehumidifying performance of the dehumidifying element 21. For this reason, the heating regeneration means uses an induction air path (not shown) for guiding the exhaust plasma exhaust heat air A3 to the dehumidifying element 21 while bypassing it as regeneration air B1, and exhaust heat air via the induction air path. A blower for supplying A3 to the dehumidifying element 21 (also used as the blower 11 for blowing the air to be treated). Other configurations are the same as those of the first embodiment.

高電圧電源17を作動し、放電電極16から放電プラズマを発生させ、吸着剤15に濃縮吸着されているVOCを分解する際、放電のエネルギにより吸着剤15の温度が上昇する。このため、この吸着剤15を通過した吸着清浄後の排熱空気A3が加温されて温度が上昇する。そして、加温された吸着清浄後の排熱空気A3を除湿素子21に導くことでと、除湿素子21が加温され除湿性能が再生される。この処理を除湿素子21を回転させながら連続で行うことにより、被処理空気A1を連続して除湿することができる。なお、被処理空気A1を除湿した後の吸着放電部20における濃縮吸着、放電分解の動作については実施の形態1と同様であるため説明は省略する。   When the high-voltage power supply 17 is operated to generate discharge plasma from the discharge electrode 16 and decompose the VOC that is concentrated and adsorbed on the adsorbent 15, the temperature of the adsorbent 15 rises due to the energy of discharge. For this reason, the exhaust heat air A3 after adsorbing and cleaning that has passed through the adsorbent 15 is heated and the temperature rises. And the dehumidifying element 21 is heated and the dehumidifying performance is regenerated by introducing the heated exhaust heat air A3 after the adsorption cleaning to the dehumidifying element 21. By performing this process continuously while rotating the dehumidifying element 21, the air to be treated A1 can be dehumidified continuously. The operation of concentration adsorption and discharge decomposition in the adsorption discharge unit 20 after dehumidifying the air to be treated A1 is the same as that in the first embodiment, and thus the description thereof is omitted.

以上のように、本実施の形態のVOC除去装置は、加熱再生手段が、放電プラズマの排熱空気を除湿素子に導く誘導風路と、この誘導風路に設けられ、排熱空気を除湿素子21に供給する送風機(被処理空気送風用の送風機11と兼用されている)とからなるので、除湿素子21の再生を行う目的のヒータが不要となるため、被処理空気A1をより少ない消費電力で清浄化するVOC除去装置を提供することができる。   As described above, in the VOC removal apparatus according to the present embodiment, the heating and regenerating means is provided in the induction air passage that guides the exhaust heat air of the discharge plasma to the dehumidification element, and the exhaust air is supplied to the dehumidification element. 21 is used as a blower 11 for supplying air to be treated (also used as the blower 11 for blowing the air to be treated), so that a heater for the purpose of regenerating the dehumidifying element 21 is not required, so that the air to be treated A1 has less power consumption It is possible to provide a VOC removal apparatus that performs cleaning with the above.

実施の形態3.
図6は本発明にかかるVOC除去装置の実施の形態3の機能構成を示す模式図である。本実施の形態においては、実施の形態1の除湿素子21に替わって、吸着放電部20の上流に熱交換器34が設けられている。この熱交換器34には、冷媒配管36を介してヒートポンプ装置35が接続されている。ヒートポンプ装置35は、熱交換器34に冷却した冷媒を供給する。その他の構成は実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 6 is a schematic diagram showing a functional configuration of the VOC removal apparatus according to the third embodiment of the present invention. In the present embodiment, a heat exchanger 34 is provided upstream of the adsorption discharge unit 20 in place of the dehumidifying element 21 of the first embodiment. A heat pump device 35 is connected to the heat exchanger 34 via a refrigerant pipe 36. The heat pump device 35 supplies the cooled refrigerant to the heat exchanger 34. Other configurations are the same as those of the first embodiment.

動作を説明する。ヒートポンプ装置35を作動させて、冷却された冷媒を熱交換器34に循環させる。そして、冷却された冷媒が供給された熱交換器34は、被処理空気A1の露点以下に冷却される。これにより、熱交換器34を通過した被処理空気A1は熱伝達により露点以下に冷却され、熱交換器34内を通過する際に結露する。その結果、被処理空気A1は除湿される。なお、被処理空気A1を除湿した後の吸着放電部20における濃縮吸着、放電分解の動作については実施の形態1と同様であるため説明は省略する。   The operation will be described. The heat pump device 35 is operated to circulate the cooled refrigerant to the heat exchanger 34. And the heat exchanger 34 supplied with the cooled refrigerant is cooled below the dew point of the air to be treated A1. Thereby, the to-be-processed air A1 that has passed through the heat exchanger 34 is cooled below the dew point by heat transfer, and dew condensation occurs when passing through the heat exchanger 34. As a result, the air to be treated A1 is dehumidified. Note that the operation of concentration adsorption and discharge decomposition in the adsorption discharge unit 20 after dehumidifying the air to be treated A1 is the same as that in the first embodiment, and thus the description thereof is omitted.

以上のように、本実施の形態のVOC除去装置においては、除湿装置が、被処理空気A1と熱交換する熱交換器34と、この熱交換器34に冷却された冷媒を供給するヒートポンプ装置35を有しているので、水分の吸着性能を再生する必要がある除湿素子21が不要となるため、除湿装置部分の必要容積を小さくした高効率なVOC除去装置が提供できる。   As described above, in the VOC removal device of the present embodiment, the dehumidifying device heat exchanger 34 that exchanges heat with the air to be treated A1, and the heat pump device 35 that supplies the cooled refrigerant to the heat exchanger 34. Therefore, the dehumidifying element 21 that needs to regenerate the moisture adsorption performance is not required, so that a highly efficient VOC removing device in which the required volume of the dehumidifying device portion is reduced can be provided.

実施の形態4.
図7は本発明にかかるVOC除去装置の実施の形態4の機能構成を示す模式図である。本実施の形態においては、まず、吸着放電部20の上流に、実施の形態1と同様なゼオライトもしくはシリカ等の吸湿材にて構成された除湿素子21が設けられている。そして、この除湿素子21のさらに上流に熱交換器34が設けられている。この熱交換器34には、冷媒配管36を介してヒートポンプ装置35が接続されている。ヒートポンプ装置35は、熱交換器34に冷却した冷媒を供給する。また、本実施の形態においては、ヒートポンプ装置35の排熱空気を除湿素子21の除湿機能再生に利用する。その他の構成は実施の形態1と同様である。
Embodiment 4 FIG.
FIG. 7 is a schematic diagram showing a functional configuration of the fourth embodiment of the VOC removal apparatus according to the present invention. In the present embodiment, first, a dehumidifying element 21 made of a hygroscopic material such as zeolite or silica similar to that of the first embodiment is provided upstream of the adsorption discharge unit 20. A heat exchanger 34 is provided further upstream of the dehumidifying element 21. A heat pump device 35 is connected to the heat exchanger 34 via a refrigerant pipe 36. The heat pump device 35 supplies the cooled refrigerant to the heat exchanger 34. In the present embodiment, the exhaust heat air from the heat pump device 35 is used for the regeneration of the dehumidifying function of the dehumidifying element 21. Other configurations are the same as those of the first embodiment.

動作を説明する。ヒートポンプ装置35を作動させて、冷却された冷媒を熱交換器34に循環させる。そして、冷却された冷媒が供給された熱交換器34は、被処理空気A1の露点以下に冷却される。これにより、熱交換器34を通過した被処理空気A1は熱伝達により露点以下に冷却され、熱交換器34内を通過する際に結露する。その結果、被処理空気A1は除湿される。   The operation will be described. The heat pump device 35 is operated to circulate the cooled refrigerant to the heat exchanger 34. And the heat exchanger 34 supplied with the cooled refrigerant is cooled below the dew point of the air to be treated A1. Thereby, the to-be-processed air A1 that has passed through the heat exchanger 34 is cooled below the dew point by heat transfer, and dew condensation occurs when passing through the heat exchanger 34. As a result, the air to be treated A1 is dehumidified.

熱交換器34にて除湿された被処理空気A1を、続いて除湿素子21に通気させる。被処理空気A1は熱交換器34を通過したことにより所定量除湿されており、さらに除湿素子21を通気させることでさらに残存する水分を除去することができる。結果として、被処理空気A1は露点0℃よりさらに低い状態にまで除湿される。   The air to be treated A1 dehumidified by the heat exchanger 34 is then passed through the dehumidifying element 21. The air to be treated A1 has been dehumidified by a predetermined amount by passing through the heat exchanger 34, and further residual moisture can be removed by ventilating the dehumidifying element 21. As a result, the air to be treated A1 is dehumidified to a state further lower than the dew point of 0 ° C.

熱交換器34を冷却するために動作するヒートポンプ装置35は、熱交換器34に送られる冷却された冷媒に対して相対的に高い温度の排熱空気を排出する。そのため、この排熱空気を除湿素子21に導き、除湿素子21を加温することにより、除湿素子21の除湿性能を再生することができる。被処理空気A1を除湿した後の吸着放電部20における濃縮吸着、放電分解の動作については実施の形態1と同様であるため説明は省略する。   The heat pump device 35 that operates to cool the heat exchanger 34 discharges exhaust heat air having a relatively high temperature with respect to the cooled refrigerant sent to the heat exchanger 34. Therefore, the dehumidifying performance of the dehumidifying element 21 can be regenerated by guiding this exhausted air to the dehumidifying element 21 and heating the dehumidifying element 21. Since the operation of concentration adsorption and discharge decomposition in the adsorption discharge unit 20 after dehumidifying the air to be treated A1 is the same as that of the first embodiment, the description thereof is omitted.

以上のように、本実施の形態のVOC除去装置は、除湿装置が、被処理空気A1を通気されてこの被処理空気A1中の水分を除湿する除湿素子21と、この除湿素子21より上流に設けられ被処理空気A1と熱交換する熱交換器34と、この熱交換器34に冷却された冷媒を供給するヒートポンプ装置35とを有しているので、実施の形態1から3のVOC除去装置に比べ、被処理空気A1に含まれる水分をさらに多く除去することができるため、吸着剤15へのVOCの濃縮度を高くすることができ、かつ除湿素子21の再生に必要な加熱ヒータが不要となる。その結果、より高いVOCの分解効率を得ることが可能なOC除去装置が提供できる。   As described above, in the VOC removal apparatus according to the present embodiment, the dehumidifier is dehumidified by the dehumidifying element 21 that ventilates the air to be treated A1 and dehumidifies the moisture in the air to be treated A1, and upstream of the dehumidifying element 21. Since the heat exchanger 34 that is provided and exchanges heat with the air to be treated A1 and the heat pump device 35 that supplies the cooled refrigerant to the heat exchanger 34 are provided, the VOC removal devices according to the first to third embodiments are provided. Compared to the above, since it is possible to remove more water contained in the air to be treated A1, the concentration of VOC in the adsorbent 15 can be increased, and a heater required for regenerating the dehumidifying element 21 is not required. It becomes. As a result, it is possible to provide an OC removal device capable of obtaining higher VOC decomposition efficiency.

この発明は、室内空気汚染物質あるいは大気汚染物質として規制の対象となるVOCを被処理空気から除去するVOC除去装置に適用されて好適なものである。   The present invention is suitably applied to a VOC removal apparatus that removes VOCs that are subject to regulation as indoor air pollutants or air pollutants from the air to be treated.

本発明にかかるVOC除去装置の実施の形態1の機能構成を示す模式図である。It is a schematic diagram which shows the function structure of Embodiment 1 of the VOC removal apparatus concerning this invention. 被処理空気中に含まれる水分濃度の違いによる吸着剤の吸着特性図である。It is an adsorption | suction characteristic view of adsorbent by the difference in the moisture concentration contained in to-be-processed air. 吸着剤の化学物質濃縮度と化学物質の分解効率の特性図である。It is a characteristic figure of the chemical substance concentration of an adsorbent and the decomposition efficiency of a chemical substance. 被処理空気の水分濃度と化学物質の分解効率の特性図である。It is a characteristic view of the moisture concentration of to-be-processed air, and the decomposition efficiency of a chemical substance. 本発明にかかるVOC除去装置の実施の形態2の機能構成を示す模式図である。It is a schematic diagram which shows the function structure of Embodiment 2 of the VOC removal apparatus concerning this invention. 本発明にかかるVOC除去装置の実施の形態3の機能構成を示す模式図である。It is a schematic diagram which shows the function structure of Embodiment 3 of the VOC removal apparatus concerning this invention. 本発明にかかるVOC除去装置の実施の形態4の機能構成を示す模式図である。It is a schematic diagram which shows the function structure of Embodiment 4 of the VOC removal apparatus concerning this invention.

符号の説明Explanation of symbols

11 被処理空気用送風機
15 吸着剤
16 放電電極
17 高電圧電源
18 接地電源線
20 吸着放電部
21 除湿素子
31 除湿素子再生用送風機
33 再生用加熱ヒータ
34 熱交換器
35 ヒートポンプ装置
36 冷媒配管
DESCRIPTION OF SYMBOLS 11 Blower for to-be-processed air 15 Adsorbent 16 Discharge electrode 17 High voltage power supply 18 Ground power supply line 20 Adsorption discharge part 21 Dehumidification element 31 Dehumidification element reproduction | regeneration fan 33 Regeneration heater 34 Heat exchanger 35 Heat pump apparatus 36 Refrigerant piping

Claims (9)

吸込口と排出口との間に風路が形成されたケーシングと、
前記ケーシング内の前記風路上に設けられ前記吸込口から吸い込んだ被処理空気を前記排出口に移動させる送風機と、
前記風路上に設けられ、吸着剤、放電電極、及び高電圧電源を有し、被処理空気中のVOCを前記吸着剤で吸着するとともに、吸着したVOCを放電プラズマで分解する吸着放電部と、
前記風路の吸着放電部より上流に設けられ被処理空気に含まれる水分を低減させる除湿装置と
を備えたことを特徴とするVOC除去装置。
A casing in which an air passage is formed between the suction port and the discharge port;
A blower for moving the air to be treated, which is provided on the air passage in the casing and sucked from the suction port, to the discharge port;
An adsorption discharge unit provided on the air passage, having an adsorbent, a discharge electrode, and a high-voltage power supply, adsorbing VOC in the air to be treated with the adsorbent, and decomposing the adsorbed VOC with discharge plasma;
A VOC removal device comprising: a dehumidifying device provided upstream of an adsorption discharge portion of the air passage to reduce moisture contained in the air to be treated.
前記除湿装置は、被処理空気を通気されて該被処理空気中の水分を除湿する除湿素子を有する
ことを特徴とする請求項1に記載のVOC除去装置。
The VOC removal apparatus according to claim 1, wherein the dehumidifying apparatus includes a dehumidifying element that ventilates the air to be treated and dehumidifies moisture in the air to be treated.
前記除湿装置は、前記被処理空気と熱交換する熱交換器と、該熱交換器に冷却された冷媒を供給するヒートポンプ装置を有する
ことを特徴とする請求項1に記載のVOC除去装置。
The VOC removal device according to claim 1, wherein the dehumidifying device includes a heat exchanger that exchanges heat with the air to be treated, and a heat pump device that supplies a cooled refrigerant to the heat exchanger.
前記除湿装置は、被処理空気を通気されて該被処理空気中の水分を除湿する除湿素子と、該除湿素子より上流に設けられ前記被処理空気と熱交換する熱交換器と、該熱交換器に冷却された冷媒を供給するヒートポンプ装置とを有する
ことを特徴とする請求項1に記載のVOC除去装置。
The dehumidifier includes a dehumidifying element that ventilates the air to be treated and dehumidifies moisture in the air to be treated, a heat exchanger that is provided upstream of the dehumidifying element and exchanges heat with the air to be treated, and the heat exchange The VOC removal apparatus according to claim 1, further comprising: a heat pump device that supplies a cooled refrigerant to the vessel.
前記除湿素子は、ゼオライトもしくはシリカで構成されている
ことを特徴とする請求項2又は4に記載のVOC除去装置。
The VOC removing apparatus according to claim 2 or 4, wherein the dehumidifying element is made of zeolite or silica.
前記除湿素子を加熱することにより除湿性能を再生する加熱再生手段を有する
ことを特徴とする請求項2、4及び5の何れか1項に記載のVOC除去装置。
The VOC removal apparatus according to any one of claims 2, 4, and 5, further comprising a heating regeneration unit that regenerates the dehumidifying performance by heating the dehumidifying element.
前記加熱再生手段は、ヒータと、該ヒータで加熱された空気を前記除湿素子に供給する送風機とを有する
ことを特徴とする請求項6に記載のVOC除去装置。
The VOC removal apparatus according to claim 6, wherein the heating regeneration unit includes a heater and a blower that supplies air heated by the heater to the dehumidifying element.
前記加熱再生手段は、前記放電プラズマの排熱空気を除湿素子に導く誘導風路と、該誘導風路に設けられ、前記排熱空気を前記除湿素子に供給する送風機とを有する
ことを特徴とする請求項6に記載のVOC除去装置。
The heating regeneration unit includes an induction air path that guides exhaust heat air of the discharge plasma to a dehumidification element, and a blower that is provided in the induction air path and supplies the exhaust heat air to the dehumidification element. The VOC removal apparatus according to claim 6.
前記除湿装置は、前記被処理空気中に含まれる水分量を水分濃度6000ppm以下になるように調整する
ことを特徴とする請求項1から8の何れか1項に記載のVOC除去装置。
The VOC removal apparatus according to any one of claims 1 to 8, wherein the dehumidifying apparatus adjusts the amount of water contained in the air to be treated so that a water concentration is 6000 ppm or less.
JP2007101947A 2007-04-09 2007-04-09 Volatile organic compound eliminating device Pending JP2008253672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101947A JP2008253672A (en) 2007-04-09 2007-04-09 Volatile organic compound eliminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101947A JP2008253672A (en) 2007-04-09 2007-04-09 Volatile organic compound eliminating device

Publications (1)

Publication Number Publication Date
JP2008253672A true JP2008253672A (en) 2008-10-23

Family

ID=39977891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101947A Pending JP2008253672A (en) 2007-04-09 2007-04-09 Volatile organic compound eliminating device

Country Status (1)

Country Link
JP (1) JP2008253672A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169500A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Air conditioner
JP2014032006A (en) * 2013-09-09 2014-02-20 Mitsubishi Electric Corp Air conditioner
DE102015212040A1 (en) * 2015-06-29 2016-12-29 E.G.O. Elektro-Gerätebau GmbH Process for the regeneration of a VOC adsorber and Adsorbervorrichtung
CN112742348A (en) * 2020-12-25 2021-05-04 合肥学院 Waste plastic-based porous activated carbon composite material, preparation method thereof and application thereof in purification of VOCs (volatile organic compounds)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268339A (en) * 1985-05-21 1986-11-27 Ckd Corp Apparatus for dehumidifying gas fed under pressure
JPH09108325A (en) * 1995-10-19 1997-04-28 Toyo Eng Works Ltd Deodorization device with adsorbent
JP2002136833A (en) * 2000-10-31 2002-05-14 Nkk Corp Deodorizing apparatus
JP2002321912A (en) * 2001-04-23 2002-11-08 Mitsubishi Electric Corp Zeolite for absorption and device for removing gas using the same
JP2002343535A (en) * 2001-05-21 2002-11-29 Daikin Ind Ltd Gas treatment device
JP2004041847A (en) * 2002-07-09 2004-02-12 Daikin Ind Ltd Air cleaning apparatus
JP2005329317A (en) * 2004-05-19 2005-12-02 Daikin Ind Ltd Adsorption/desorption device
WO2007004426A1 (en) * 2005-07-04 2007-01-11 Mitsubishi Electric Corporation Apparatus for volatile organic compound treatment and method of volatile organic compound treatment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268339A (en) * 1985-05-21 1986-11-27 Ckd Corp Apparatus for dehumidifying gas fed under pressure
JPH09108325A (en) * 1995-10-19 1997-04-28 Toyo Eng Works Ltd Deodorization device with adsorbent
JP2002136833A (en) * 2000-10-31 2002-05-14 Nkk Corp Deodorizing apparatus
JP2002321912A (en) * 2001-04-23 2002-11-08 Mitsubishi Electric Corp Zeolite for absorption and device for removing gas using the same
JP2002343535A (en) * 2001-05-21 2002-11-29 Daikin Ind Ltd Gas treatment device
JP2004041847A (en) * 2002-07-09 2004-02-12 Daikin Ind Ltd Air cleaning apparatus
JP2005329317A (en) * 2004-05-19 2005-12-02 Daikin Ind Ltd Adsorption/desorption device
WO2007004426A1 (en) * 2005-07-04 2007-01-11 Mitsubishi Electric Corporation Apparatus for volatile organic compound treatment and method of volatile organic compound treatment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169500A (en) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp Air conditioner
JP2014032006A (en) * 2013-09-09 2014-02-20 Mitsubishi Electric Corp Air conditioner
DE102015212040A1 (en) * 2015-06-29 2016-12-29 E.G.O. Elektro-Gerätebau GmbH Process for the regeneration of a VOC adsorber and Adsorbervorrichtung
CN106268170A (en) * 2015-06-29 2017-01-04 E.G.O.电气设备制造股份有限公司 For regenerating method and the adsorbent equipment of VOC adsorber
EP3112010A1 (en) * 2015-06-29 2017-01-04 E.G.O. ELEKTRO-GERÄTEBAU GmbH Method for regenerating a voc adsorber and adsorbent device
DE102015212040B4 (en) * 2015-06-29 2018-03-01 E.G.O. Elektro-Gerätebau GmbH Process for the regeneration of a VOC adsorber
CN106268170B (en) * 2015-06-29 2021-07-02 E.G.O.电气设备制造股份有限公司 Method and adsorption device for regenerating VOC adsorbers
CN112742348A (en) * 2020-12-25 2021-05-04 合肥学院 Waste plastic-based porous activated carbon composite material, preparation method thereof and application thereof in purification of VOCs (volatile organic compounds)

Similar Documents

Publication Publication Date Title
KR102546428B1 (en) Ventilating and air conditioning device
JP5795423B1 (en) Absorption type removal and concentration equipment
CN107477732B (en) Air purification device and method capable of continuously degrading indoor VOCs (volatile organic compounds)
JP2013526697A (en) Method and system for improved efficiency air conditioning
TW201800141A (en) Absorption type removal / concentration apparatus
JP2012200592A (en) Toxic substance removing device and air cleaning device using the same
JP2011247566A (en) Desiccant air conditioner
WO2017114687A1 (en) A component for an air filter
JP2013128866A (en) Dehumidification apparatus
JP2008253672A (en) Volatile organic compound eliminating device
CN105771639A (en) Low-concentration VOC (volatile organic compound) polluted air purification device using catalyst rotating wheel
JP6118760B2 (en) PM removal air purifier
JP2006288647A (en) Sterilizing system
JP2004089708A (en) Gas cleaning method and gas cleaning apparatus
WO2017199908A1 (en) Adsorbent, method for removing carbon dioxide, carbon dioxide remover, and air conditioner
JP2009090206A (en) Air cleaning apparatus and air cleaning method
JP2008224111A (en) Deodorizing device
TW201802402A (en) Air conditioner, air conditioning system, method for removing carbon dioxide, adsorbent, and carbon dioxide remover
WO2018150583A1 (en) Air conditioner and air-conditioning system
JP2013132582A (en) Organic solvent-containing gas treatment system
JP2010025384A (en) Humidity controller
WO2018150582A1 (en) Air conditioner and air conditioning system
JP2007292441A (en) Air conditioner
JP2003166732A (en) Air cleaning device
TW201815465A (en) Adsorbent, method for removing carbon dioxide, carbon dioxide remover, and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011