[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008245404A - Power transmitting system - Google Patents

Power transmitting system Download PDF

Info

Publication number
JP2008245404A
JP2008245404A JP2007081268A JP2007081268A JP2008245404A JP 2008245404 A JP2008245404 A JP 2008245404A JP 2007081268 A JP2007081268 A JP 2007081268A JP 2007081268 A JP2007081268 A JP 2007081268A JP 2008245404 A JP2008245404 A JP 2008245404A
Authority
JP
Japan
Prior art keywords
power
power transmission
light
laser
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007081268A
Other languages
Japanese (ja)
Inventor
Tomomoto Yazaki
智基 矢崎
Masashi Usami
正士 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2007081268A priority Critical patent/JP2008245404A/en
Publication of JP2008245404A publication Critical patent/JP2008245404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To transmit power in space from transmission equipment to reception equipment. <P>SOLUTION: A laser diode (12) selectively outputs a low-power dummy beam for detection of reception equipment and a high-power laser beam for transmission. The output laser beam of the laser diode (12) is emitted out of the transmission equipment (10), with its beam spread adjusted by a lens (16). Four corner cube reflectors (CCR) (44-50) arranged around a light receiving element (42) reflect the dummy beams for detection of reception equipment from the transmission equipment (10). A controller (30) adjusts the focus of the lens (16), following the reflected beam from the reception equipment (40), and controls the direction of laser emission by an optical axis deflector (32). After these adjustment, the controller (30) outputs a laser beam for transmission from the laser diode. The receiving element (42) of the reception equipment (40) receives the laser beam for transmission from the transmission equipment (10) and converts it into electric energy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力伝送方法及びシステムに関し、より具体的には、光により電力を伝送する方法及びシステムに関する。   The present invention relates to a power transmission method and system, and more specifically, to a method and system for transmitting power by light.

太陽電池などの光電変換素子又は受光素子は、光エネルギーを電気エネルギーに変換する素子でもある。太陽、蛍光灯などの種々の照明装置、並びに、レーザ及び発光ダイオード等の発光素子等が、光源として利用され得る。   Photoelectric conversion elements or light receiving elements such as solar cells are also elements that convert light energy into electrical energy. Various illumination devices such as the sun and fluorescent lamps, and light emitting elements such as lasers and light emitting diodes can be used as the light source.

短時間に大電力を伝送するには、光源の出力光の輝度を上げるか、受光素子の受光面積を上げるか、その両方の何れかが必要になる。但し、高輝度の光源を利用する場合、安全性を確保する必要があるので、開放空間では使いづらい。通常は、受光光学系の形状や構造を工夫している(特許文献1)。
特開2004−165581号公報
In order to transmit a large amount of power in a short time, it is necessary to either increase the brightness of the output light of the light source or increase the light receiving area of the light receiving element. However, when using a high-luminance light source, it is necessary to ensure safety, so it is difficult to use in an open space. Usually, the shape and structure of the light receiving optical system are devised (Patent Document 1).
Japanese Patent Laid-Open No. 2004-165581

大電力を伝送しようとすると、光源の高出力化を避けえない。レーザを利用できればよいが、空間を伝搬させると危険である。   When trying to transmit a large amount of power, it is inevitable to increase the output of the light source. A laser can be used, but it is dangerous to propagate in space.

本発明は、開放空間で高輝度光を伝搬させつつ、安全に電力を伝送できる電力伝送システムを提示することを目的とする。   An object of this invention is to show the power transmission system which can transmit electric power safely, propagating high-intensity light in open space.

本発明に係る電力伝送システムは、送電装置から受電装置に電力を空間伝送する電力伝送システムであって、当該送電装置が、広いビーム拡がり角で低パワーの受電装置検出用ダミー光と細いビームで高パワーの送電用レーザ光を選択的に出力可能なレーザ出射装置と、当該レーザ出射装置の出力レーザ光の出射方向を偏向可能な光軸偏向装置と、当該受電装置検出用ダミー光の当該受電装置からの反射光に従い、当該光軸偏向装置を制御する制御装置とを具備し、当該受電装置は、当該送電装置からの当該受電装置検出用ダミー光を入射方向に反射する反射器と、当該送電装置からの当該送電用レーザ光を光電変換する受光器とを具備することを特徴とする。   A power transmission system according to the present invention is a power transmission system that spatially transmits power from a power transmission device to a power reception device, and the power transmission device includes a wide beam divergence and low power reception device detection dummy light and a narrow beam. A laser emitting device capable of selectively outputting a high-power laser beam for power transmission, an optical axis deflecting device capable of deflecting the emitting direction of the output laser beam of the laser emitting device, and the power receiving of the dummy light for detecting the power receiving device A control device for controlling the optical axis deflecting device according to the reflected light from the device, the power receiving device reflecting the power receiving device detection dummy light from the power transmitting device in the incident direction, and And a light receiver that photoelectrically converts the laser beam for power transmission from the power transmission device.

本発明によれば、レーザ光で高効率に送電装置から受電装置に電力を空間伝送できる。   According to the present invention, power can be spatially transmitted from a power transmitting device to a power receiving device with high efficiency by laser light.

以下、図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例の概略構成ブロック図を示し、図2は、本実施例の光学系の斜視図を示す。   FIG. 1 shows a schematic block diagram of an embodiment of the present invention, and FIG. 2 shows a perspective view of an optical system of this embodiment.

本実施例では、送電装置10は、給電開始を指示するユーザの所定操作に応じて、広いビーム拡がり角で低パワーのダミー光(受電装置検出用ダミー光)を出射して、受電装置40の存在と方向を確認する。そして、受電装置40の存在と方向を確認できると、送電装置10は、確認できた受電装置40の受光部に向けて、受光部の面積程度の細いビームで高パワー、例えば、数十mW〜数Wのレーザ光(送電用レーザ光)を出射する。詳細は後述するが、送電装置10は、送電用レーザ光の出射方向を互いに直交する2方向、例えば、水平面内と垂直面内の2方向で偏向する手段を具備する。   In the present embodiment, the power transmission device 10 emits a low-power dummy light (power reception device detection dummy light) with a wide beam divergence angle in accordance with a predetermined operation of the user instructing the start of power supply. Check existence and direction. When the presence and direction of the power receiving device 40 can be confirmed, the power transmitting device 10 is directed toward the light receiving unit of the power receiving device 40 that has been confirmed with a high beam, for example, several tens of mW to a thin beam having an area of the light receiving unit. Several W of laser light (power transmission laser light) is emitted. Although details will be described later, the power transmission device 10 includes means for deflecting the emission direction of the power transmission laser light in two directions orthogonal to each other, for example, two directions in a horizontal plane and a vertical plane.

レーザダイオード12は、出力パワーを制御可能であり、駆動装置14により駆動されて、低パワーの受電装置検出用ダミー光又は高パワーの送電用レーザ光を出力する。レーザダイオード12の出力レーザ光は、レンズ16によりビーム拡がりを調整され、更にハーフミラー18により反射されて、送電装置10の外部に出射される。焦点制御装置20は、この段階では、送電装置10が広いビーム拡がり角の受電装置検出用ダミー光12aを外部に出力するように、レンズ16のフォーカスを調整する。例えば、焦点制御装置20は、レンズ16をデフォーカス状態に制御する。   The laser diode 12 can control the output power, and is driven by the drive device 14 to output a low-power receiving device detection dummy light or a high-power power transmission laser beam. The output laser beam of the laser diode 12 is adjusted in beam divergence by the lens 16, further reflected by the half mirror 18, and emitted outside the power transmission device 10. At this stage, the focus control device 20 adjusts the focus of the lens 16 so that the power transmission device 10 outputs the power receiving device detection dummy light 12a having a wide beam divergence angle to the outside. For example, the focus control device 20 controls the lens 16 to a defocused state.

受電装置40は、携帯機器、例えば、携帯電話機であり、送電装置10からの送電用レーザ光を受光して電気エネルギーに変換する受光素子42と、受光素子42の周囲に配置される4つのコーナーキューブリフレクタ(CCR)44,46,48,50を具備する。CCR44,46,48,50は、周知のごとく、入射光をそのまま入射方向に反射する反射器であり、本実施例では、送電装置10からの受電装置検出用ダミー光を反射するために設置される。受光素子42と4つのCCR44,46,48,50は、CCR44とCCR48を結ぶ線と、CCR46とCCR50を結ぶ線が交差する位置に受光素子42が位置するように、配置されている。後述するように、本実施例では、CCR44,46,48,50の反射光により、受光素子42の位置、より具体的には送電装置10から見た方向を特定するので、CCR44とCCR48を結ぶ線と、CCR46とCCR50を結ぶ線は、互いに直交しているのが好ましい。   The power receiving device 40 is a mobile device, for example, a mobile phone, and receives a laser beam for power transmission from the power transmitting device 10 and converts it into electric energy, and four corners arranged around the light receiving device 42. Cubic reflectors (CCR) 44, 46, 48, 50 are provided. As is well known, the CCRs 44, 46, 48, and 50 are reflectors that reflect incident light as it is in the incident direction. In this embodiment, the CCRs 44, 46, 48, and 50 are installed to reflect power reception device detection dummy light from the power transmission device 10. The The light receiving element 42 and the four CCRs 44, 46, 48, 50 are arranged such that the light receiving element 42 is located at a position where a line connecting the CCR 44 and the CCR 48 intersects a line connecting the CCR 46 and the CCR 50. As will be described later, in the present embodiment, the position of the light receiving element 42, more specifically, the direction viewed from the power transmission device 10, is specified by the reflected light of the CCRs 44, 46, 48, 50, so the CCR 44 and the CCR 48 are connected. The line and the line connecting the CCR 46 and the CCR 50 are preferably orthogonal to each other.

送電装置10からの受電装置検出用ダミー光がCCR44,46,48,50に入射すると、CCR44,46,48,50は、そのダミー光を送電装置10に向け反射する。反射されたダミー光は、その一部がハーフミラー18を透過し、レンズ22を介して、撮像素子24に入射する。   When the power receiving device detection dummy light from the power transmission device 10 enters the CCR 44, 46, 48, 50, the CCR 44, 46, 48, 50 reflects the dummy light toward the power transmission device 10. A portion of the reflected dummy light passes through the half mirror 18 and enters the image sensor 24 via the lens 22.

撮像素子24は、CCR44,46,48,50からの反射光を含む画像信号を出力する。画像表示装置26は、撮像素子24から出力される画像信号を画像として表示する。また、画像処理・認識装置28は、撮像素子24の出力画像信号から、CCR44,46,48,50からの反射光の位置とスポットサイズを検出し、検出結果を制御装置30に供給する。制御装置30は、画像処理・認識装置28からの反射光のスポットサイズが最小になるように、即ち、受電装置42にピントが合うように、焦点制御装置20によりレンズ22のフォーカスを調節させる。この調節より、撮像素子24の撮像視野内で、CCR44,46,48,50の位置を特定できる。オペレータ又はユーザは、画像表示装置26の表示画像から、送電装置10が受電装置40に適切に送電用レーザ光を照射しているかどうかを確認できる。   The image sensor 24 outputs an image signal including reflected light from the CCRs 44, 46, 48 and 50. The image display device 26 displays the image signal output from the image sensor 24 as an image. Further, the image processing / recognition device 28 detects the position and spot size of the reflected light from the CCR 44, 46, 48, 50 from the output image signal of the image sensor 24, and supplies the detection result to the control device 30. The control device 30 causes the focus control device 20 to adjust the focus of the lens 22 so that the spot size of the reflected light from the image processing / recognition device 28 is minimized, that is, so that the power receiving device 42 is in focus. By this adjustment, the positions of the CCRs 44, 46, 48, and 50 can be specified within the imaging field of the imaging device 24. The operator or user can confirm from the display image of the image display device 26 whether or not the power transmission device 10 appropriately irradiates the power reception device 40 with the power transmission laser light.

制御装置30は、CCR44,46,48,50の4つの反射スポットの中心が撮像素子24の撮像視野内で中央に位置するように、ダミー光12aの出射方向を変更する。この光軸調整のために、本実施例では、送電装置10の、レーザダイオード12,レンズ16,ハーフミラー18,レンズ22及び撮像素子24は、共通の台34(図2)上に設置される。光軸偏向装置32が、制御装置30からの指示に従い、台34を互いに直交する2方向(例えば、水平面内のパンと垂直面内のチルトの2方向)で回転させる。この動作により、光軸偏向装置32は、送電装置10から出射される出射レーザ光の光軸を、受電装置40の受光素子42に向けることができる。光軸偏向装置32は、図2に示すように、パンのためのモータ34aと、チルトのためのモータ34bを具備する。勿論、光学素子により、光軸を所望の方向に偏向しても良い。   The control device 30 changes the emission direction of the dummy light 12 a so that the centers of the four reflected spots of the CCRs 44, 46, 48 and 50 are located in the center in the imaging field of the imaging device 24. In order to adjust the optical axis, in this embodiment, the laser diode 12, the lens 16, the half mirror 18, the lens 22, and the image sensor 24 of the power transmission device 10 are installed on a common base 34 (FIG. 2). . The optical axis deflecting device 32 rotates the table 34 in two directions orthogonal to each other (for example, two directions of pan in a horizontal plane and tilt in a vertical plane) in accordance with an instruction from the control device 30. With this operation, the optical axis deflecting device 32 can direct the optical axis of the emitted laser light emitted from the power transmitting device 10 toward the light receiving element 42 of the power receiving device 40. As shown in FIG. 2, the optical axis deflecting device 32 includes a motor 34a for panning and a motor 34b for tilting. Of course, the optical axis may be deflected in a desired direction by an optical element.

出射レーザ光の光軸が、受電装置40の受光素子42に合うと、制御装置30は、送電装置10が狭ビーム拡がり角の送電用レーザ光を出射するように、駆動装置14及び焦点制御装置20を制御する。具体的には、駆動装置14は、レーザダイオード12から高パワーのレーザ光を出射させ、焦点制御装置20は、送電装置10の出力レーザ光がぎりぎり受電装置40の受光素子42に入射する程度に、例えば受電装置10の受光素子42にフォーカスするように、レンズ16のフォーカスを制御する。これにより、高パワーの細いビームのレーザ光が受光素子42に入射しつつ、周囲の人の目にレーザビームが入ることは無い。   When the optical axis of the emitted laser light is aligned with the light receiving element 42 of the power receiving device 40, the control device 30 causes the power transmission device 10 to emit power transmission laser light having a narrow beam divergence angle and the focus control device. 20 is controlled. Specifically, the driving device 14 emits high-power laser light from the laser diode 12, and the focus control device 20 is such that the output laser light from the power transmission device 10 is incident on the light receiving element 42 of the power receiving device 40. For example, the focus of the lens 16 is controlled so as to focus on the light receiving element 42 of the power receiving device 10. As a result, a high-power thin beam of laser light is incident on the light receiving element 42, and the laser beam does not enter the eyes of the surrounding people.

受光素子42は、送電装置10からの送電用レーザ光のエネルギーを電気エネルギーに変換する。充電装置52は、受光素子42の出力電気エネルギーにより、二次電池54を充電する。   The light receiving element 42 converts the energy of the laser beam for power transmission from the power transmission device 10 into electric energy. The charging device 52 charges the secondary battery 54 with the output electric energy of the light receiving element 42.

制御装置30は、送電用レーザ光を出射する状態が所定時間、継続すると、レーザダイオード12の出力パワーを下げさせ、外部に出力されるレーザビームの拡がり角を広くする。即ち、受電装置40への給電を停止する。勿論、送電装置10は、レーザビームの出力を完全に停止しても良い。この場合、ユーザの所定の操作に応じて、送電装置10は、受電装置検出用ダミー光を出力して、受電装置40を探索し、受電装置40を発見できたら、上述のように、送電用レーザ光を出射する。   When the state of emitting power transmission laser light continues for a predetermined time, the control device 30 reduces the output power of the laser diode 12 and widens the divergence angle of the laser beam output to the outside. That is, the power supply to the power receiving device 40 is stopped. Of course, the power transmission device 10 may completely stop the output of the laser beam. In this case, according to the user's predetermined operation, the power transmission device 10 outputs the power reception device detection dummy light, searches for the power reception device 40, and if the power reception device 40 is found, as described above. A laser beam is emitted.

受電装置検出用ダミー光の拡がりは、送電装置10と受電装置40との間の想定される距離において、撮像素子24の撮影視野とほぼ同程度にしておくのが好ましい。   The spreading of the power receiving device detection dummy light is preferably approximately the same as the field of view of the imaging element 24 at the assumed distance between the power transmitting device 10 and the power receiving device 40.

CCRの位置と個数は、CCRの位置から受光素子の中心を決定できるように設定されていればよい。CCRの配置例を図3乃至図7に示す。図3は、受光素子42の中心に1個のCCR44aを配置した例を示す。図4は、受光素子42の左右にそれぞれ1個のCCR44b,46bを配置した例を示す。図5は、受光素子42の周囲に3個のCCR44c,46c,48cを等角度で配置した例を示す。図6は、受光素子42の周囲に4個のCCR44d,46d,48d,50dを等角度で配置した例を示す。図7は、図6に示す構成に加えて、受光素子42の中心にCCR50eを配置した例を示す。   The CCR position and number may be set so that the center of the light receiving element can be determined from the CCR position. Examples of CCR arrangement are shown in FIGS. FIG. 3 shows an example in which one CCR 44 a is arranged at the center of the light receiving element 42. FIG. 4 shows an example in which one CCR 44b and 46b are arranged on the left and right of the light receiving element 42, respectively. FIG. 5 shows an example in which three CCRs 44 c, 46 c, and 48 c are arranged at equal angles around the light receiving element 42. FIG. 6 shows an example in which four CCRs 44d, 46d, 48d, and 50d are arranged at an equal angle around the light receiving element. FIG. 7 shows an example in which a CCR 50 e is arranged at the center of the light receiving element 42 in addition to the configuration shown in FIG. 6.

単一の受光素子42を電力受信に使用する実施例を説明したが、複数の受光素子を併置しても良い。図8乃至図11は、複数の受光素子を併置する構成の例を示す。図8は、2つの受光素子42a,42aを横に並べた構成例を示す。図9は、3つの受光素子42b,42b,42bを横に並べた構成例を示す。図10は、4つの受光素子42c,42c,42c,42cを2×2のマトリクス状に配置した構成例を示す。図11は、多数の受光素子42dをマトリクス状に配置した構成例を示す。   Although the embodiment in which the single light receiving element 42 is used for power reception has been described, a plurality of light receiving elements may be juxtaposed. 8 to 11 show examples of a configuration in which a plurality of light receiving elements are juxtaposed. FIG. 8 shows a configuration example in which two light receiving elements 42a and 42a are arranged side by side. FIG. 9 shows a configuration example in which three light receiving elements 42b, 42b, and 42b are arranged side by side. FIG. 10 shows a configuration example in which four light receiving elements 42c, 42c, 42c, and 42c are arranged in a 2 × 2 matrix. FIG. 11 shows a configuration example in which a large number of light receiving elements 42d are arranged in a matrix.

上述の実施例は、例えば、次のように具体化される。即ち、受電装置40となる携帯電話機を置く台の上方に、送電装置10を配置する。ユーザが、受電装置40を、その受光素子42を上向きにその台上に置くと、送電装置10が、受電装置40の位置を自動認識し、送電用レーザ光を受電装置40の受光素子42に正しく照射する。ユーザが、受電装置40となる携帯電話機をある範囲内に適当に置くだけで良く、ユーザの使い勝手が向上する。   The above-described embodiment is embodied as follows, for example. In other words, the power transmission device 10 is disposed above a table on which a mobile phone serving as the power receiving device 40 is placed. When the user places the power receiving device 40 on the table with the light receiving element 42 facing upward, the power transmitting device 10 automatically recognizes the position of the power receiving device 40, and transmits the laser beam for power transmission to the light receiving element 42 of the power receiving device 40. Irradiate correctly. The user only needs to appropriately place the mobile phone serving as the power receiving device 40 within a certain range, and the usability of the user is improved.

レーザダイオードを光源とする実施例を説明したが、高輝度発光ダイオードを使用しても良い。   Although the embodiment using the laser diode as the light source has been described, a high-intensity light emitting diode may be used.

特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱しないで、上述の実施例に種々の変更・修整を施しうることは、本発明の属する分野の技術者にとって自明であり、このような変更・修整も本発明の技術的範囲に含まれる。   Although the invention has been described with reference to specific illustrative embodiments, various modifications and alterations may be made to the above-described embodiments without departing from the scope of the invention as defined in the claims. This is obvious to an engineer in the field to which the present invention belongs, and such changes and modifications are also included in the technical scope of the present invention.

本発明の第1実施例の概略構成ブロック図である。It is a schematic block diagram of the first embodiment of the present invention. 図1に示す実施例の光学系の概略構成図である。It is a schematic block diagram of the optical system of the Example shown in FIG. CCRの配置例である。It is an example of arrangement | positioning of CCR. CCRの配置例である。It is an example of arrangement | positioning of CCR. CCRの配置例である。It is an example of arrangement | positioning of CCR. CCRの配置例である。It is an example of arrangement | positioning of CCR. CCRの配置例である。It is an example of arrangement | positioning of CCR. 複数の受光素子を使う場合の受光素子の配置例である。It is the example of arrangement | positioning of the light receiving element in the case of using a some light receiving element. 複数の受光素子を使う場合の受光素子の配置例である。It is the example of arrangement | positioning of the light receiving element in the case of using a some light receiving element. 複数の受光素子を使う場合の受光素子の配置例である。It is the example of arrangement | positioning of the light receiving element in the case of using a some light receiving element. 複数の受光素子を使う場合の受光素子の配置例である。It is the example of arrangement | positioning of the light receiving element in the case of using a some light receiving element.

符号の説明Explanation of symbols

10:送電装置
12:レーザダイオード
12a:受電装置検出用ダミー光
14:駆動装置
16:レンズ
18:ハーフミラー
20:焦点制御装置
22:レンズ
24:撮像素子
26:画像表示装置
28:画像処理・認識装置
30:制御装置
32:光軸偏向装置
34:台
34a:パン用モータ
34b:チルト用モータ
40:受電装置
42:受光素子
44,46,48,50:コーナーキューブリフレクタ(CCR)
52:充電装置
54:二次電池
10: Power transmission device 12: Laser diode 12a: Dummy light for detecting power reception device 14: Drive device 16: Lens 18: Half mirror 20: Focus control device 22: Lens 24: Image sensor 26: Image display device 28: Image processing / recognition Device 30: Control device 32: Optical axis deflection device 34: Stand 34a: Pan motor 34b: Tilt motor 40: Power receiving device 42: Light receiving elements 44, 46, 48, 50: Corner cube reflector (CCR)
52: Charging device 54: Secondary battery

Claims (4)

送電装置から受電装置に電力を空間伝送する電力伝送システムであって、
当該送電装置が、
広いビーム拡がり角で低パワーの受電装置検出用ダミー光と細いビームで高パワーの送電用レーザ光を選択的に出力可能なレーザ出射装置(12,16)と、
当該レーザ出射装置の出力レーザ光の出射方向を偏向可能な光軸偏向装置(32)と、
当該受電装置検出用ダミー光の当該受電装置からの反射光に従い、当該光軸偏向装置を制御する制御装置(30)
とを具備し、
当該受電装置は、
当該送電装置からの当該受電装置検出用ダミー光を入射方向に反射する反射器(44,46,48,50)と、
当該送電装置からの当該送電用レーザ光を光電変換する受光器(42)
とを具備することを特徴とする電力伝送システム。
A power transmission system for spatially transmitting power from a power transmission device to a power reception device,
The power transmission device
A laser emitting device (12, 16) capable of selectively outputting a power receiving device detection dummy light with a wide beam divergence angle and a high power power transmission laser light with a narrow beam;
An optical axis deflecting device (32) capable of deflecting the emitting direction of the output laser beam of the laser emitting device;
A control device (30) for controlling the optical axis deflecting device according to the reflected light from the power receiving device of the power receiving device detection dummy light
And
The power receiving device is
A reflector (44, 46, 48, 50) for reflecting the power receiving device detection dummy light from the power transmitting device in the incident direction;
Photoreceiver (42) that photoelectrically converts the laser beam for power transmission from the power transmission device
An electric power transmission system comprising:
当該レーザ出射装置が、出力パワーを選択可能なレーザ発生装置(12)と、当該レーザ発生装置の出力レーザ光のビーム拡がりを調節するビーム調節装置(16,20)とを具備することを特徴とする電力伝送システム。   The laser emitting device includes a laser generator (12) capable of selecting an output power and a beam adjusting device (16, 20) for adjusting the beam spread of the output laser light of the laser generator. Power transmission system. 当該受電装置は更に、二次電池(54)と、当該受光器(42)の出力電気信号に従い、当該二次電池を充電する受電装置52とを具備することを特徴とする請求項1又は2に記載の電力伝送システム。   The said power receiving apparatus is further equipped with the secondary battery (54) and the power receiving apparatus 52 which charges the said secondary battery according to the output electric signal of the said light receiver (42), The characterized by the above-mentioned. The power transmission system described in 1. 当該反射器が、1以上のコーナーキューブリフレクタ(44,46,48,50)からなることを特徴とする請求項1乃至3の何れか1項に記載の電力伝送システム。
The power transmission system according to any one of claims 1 to 3, wherein the reflector includes one or more corner cube reflectors (44, 46, 48, 50).
JP2007081268A 2007-03-27 2007-03-27 Power transmitting system Pending JP2008245404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081268A JP2008245404A (en) 2007-03-27 2007-03-27 Power transmitting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081268A JP2008245404A (en) 2007-03-27 2007-03-27 Power transmitting system

Publications (1)

Publication Number Publication Date
JP2008245404A true JP2008245404A (en) 2008-10-09

Family

ID=39916075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081268A Pending JP2008245404A (en) 2007-03-27 2007-03-27 Power transmitting system

Country Status (1)

Country Link
JP (1) JP2008245404A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197316B1 (en) * 2010-07-22 2012-11-05 한국과학기술원 Apparatus and method for wireless power transmission by beam-control
CN103124108A (en) * 2013-01-31 2013-05-29 天津大学 Method and device for transmitting energy wirelessly by coherent light
JP2013541234A (en) * 2010-05-11 2013-11-07 シーレイト リミテッド ライアビリティー カンパニー Optical power transmission system and method having multiple optical power forms
WO2014075103A1 (en) * 2012-11-09 2014-05-15 California Institute Of Technology Smart rf lensing: efficient, dynamic and mobile wireless power transfer
JP5536209B2 (en) * 2010-06-14 2014-07-02 富士通テレコムネットワークス株式会社 Optical transmission system
CN105009406A (en) * 2012-12-05 2015-10-28 空中客车防卫和太空有限责任公司 Wireless remote energy supply for unmanned aerial vehicles
US9197329B2 (en) 2010-05-11 2015-11-24 The Invention Science Fund I, Llc Optical power transmission packeting systems and methods
JP2016051166A (en) * 2014-08-29 2016-04-11 京東方科技集團股▲ふん▼有限公司 Micro projector device, magnetic floating base and micro projector facility
US9325206B2 (en) 2010-05-11 2016-04-26 Deep Science, Llc Optical power transmission system and method having counter-propagating control signal
JP2016096707A (en) * 2014-11-17 2016-05-26 市川 雅英 Laser beam power generator
US9711998B2 (en) 2013-03-27 2017-07-18 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10003278B2 (en) 2013-11-22 2018-06-19 California Institute Of Technology Active CMOS recovery units for wireless power transmission
WO2018135774A1 (en) * 2017-01-20 2018-07-26 엘지전자 주식회사 Wireless power transmission apparatus and method
US10090714B2 (en) 2013-11-12 2018-10-02 California Institute Of Technology Wireless power transfer
US10720797B2 (en) 2017-05-26 2020-07-21 California Institute Of Technology Method and apparatus for dynamic RF lens focusing and tracking of wireless power recovery unit
JP2021515532A (en) * 2018-02-23 2021-06-17 ファイオン・テクノロジーズ・リミテッド・ライアビリティ・カンパニーPhion Technologies LLC Transmitter assembly for free space power transfer and data communication systems
JP2021525996A (en) * 2018-05-23 2021-09-27 ワイ−チャージ リミテッド Wireless power system with identifiable receiver
US11146113B2 (en) 2013-11-22 2021-10-12 California Institute Of Technology Generator unit for wireless power transfer
JP2021192430A (en) * 2015-07-16 2021-12-16 ワイ−チャージ リミテッド System for transferring power wirelessly
US11616520B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology RF receiver
JP2023519823A (en) * 2020-03-20 2023-05-15 エンオーシャン ゲーエムベーハー System and method for wireless transmission of energy
US11843260B2 (en) 2012-11-09 2023-12-12 California Institute Of Technology Generator unit for wireless power transfer
JP7495965B2 (en) 2022-08-31 2024-06-05 ソフトバンク株式会社 POWER SUPPLY DEVICE, PROGRAM, SYSTEM, AND CONTROL METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349945A (en) * 2000-06-08 2001-12-21 Communication Research Laboratory Optical catching method for laser communications for movable body, and optical tracking method
JP2004159032A (en) * 2002-11-06 2004-06-03 Communication Research Laboratory Spatial optical communication system
JP2007006558A (en) * 2005-06-21 2007-01-11 Kddi Corp Power transferring system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349945A (en) * 2000-06-08 2001-12-21 Communication Research Laboratory Optical catching method for laser communications for movable body, and optical tracking method
JP2004159032A (en) * 2002-11-06 2004-06-03 Communication Research Laboratory Spatial optical communication system
JP2007006558A (en) * 2005-06-21 2007-01-11 Kddi Corp Power transferring system and method

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325206B2 (en) 2010-05-11 2016-04-26 Deep Science, Llc Optical power transmission system and method having counter-propagating control signal
JP2013541234A (en) * 2010-05-11 2013-11-07 シーレイト リミテッド ライアビリティー カンパニー Optical power transmission system and method having multiple optical power forms
US9838143B2 (en) 2010-05-11 2017-12-05 Deep Science, Llc Optical power source modulation system
US9614624B2 (en) 2010-05-11 2017-04-04 Deep Science, Llc Optical power source modulation system
US9197329B2 (en) 2010-05-11 2015-11-24 The Invention Science Fund I, Llc Optical power transmission packeting systems and methods
JP5536209B2 (en) * 2010-06-14 2014-07-02 富士通テレコムネットワークス株式会社 Optical transmission system
KR101197316B1 (en) * 2010-07-22 2012-11-05 한국과학기술원 Apparatus and method for wireless power transmission by beam-control
US11616520B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology RF receiver
US10320242B2 (en) 2012-11-09 2019-06-11 California Institute Of Technology Generator unit for wireless power transfer
US11616401B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology Smart RF lensing: efficient, dynamic and mobile wireless power transfer
WO2014075103A1 (en) * 2012-11-09 2014-05-15 California Institute Of Technology Smart rf lensing: efficient, dynamic and mobile wireless power transfer
US11502552B2 (en) 2012-11-09 2022-11-15 California Institute Of Technology Smart RF lensing: efficient, dynamic and mobile wireless power transfer
US11616402B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology Smart RF lensing: efficient, dynamic and mobile wireless power transfer
US11843260B2 (en) 2012-11-09 2023-12-12 California Institute Of Technology Generator unit for wireless power transfer
US10367380B2 (en) 2012-11-09 2019-07-30 California Institute Of Technology Smart RF lensing: efficient, dynamic and mobile wireless power transfer
CN105009406A (en) * 2012-12-05 2015-10-28 空中客车防卫和太空有限责任公司 Wireless remote energy supply for unmanned aerial vehicles
US9837859B2 (en) 2012-12-05 2017-12-05 Airbus Defence and Space GmbH Wireless remote energy supply for unmanned aerial vehicles
CN103124108A (en) * 2013-01-31 2013-05-29 天津大学 Method and device for transmitting energy wirelessly by coherent light
US10008885B2 (en) 2013-03-27 2018-06-26 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10903689B2 (en) 2013-03-27 2021-01-26 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US9711998B2 (en) 2013-03-27 2017-07-18 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10020689B2 (en) 2013-03-27 2018-07-10 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10069347B2 (en) 2013-03-27 2018-09-04 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10014727B2 (en) 2013-03-27 2018-07-03 International Business Machines Corporation Power transmitting device, power receiving device, power supply system, and power supply method
US10090714B2 (en) 2013-11-12 2018-10-02 California Institute Of Technology Wireless power transfer
US11146113B2 (en) 2013-11-22 2021-10-12 California Institute Of Technology Generator unit for wireless power transfer
US10673351B2 (en) 2013-11-22 2020-06-02 California Institute Of Technology Active CMOS recovery units for wireless power transmission
US10003278B2 (en) 2013-11-22 2018-06-19 California Institute Of Technology Active CMOS recovery units for wireless power transmission
US11095164B2 (en) 2014-08-19 2021-08-17 California Institute Of Technology Wireless power transfer
US10938231B2 (en) 2014-08-29 2021-03-02 Boe Technology Group Co., Ltd. Microprojection device and magnetic suspension base
JP2016051166A (en) * 2014-08-29 2016-04-11 京東方科技集團股▲ふん▼有限公司 Micro projector device, magnetic floating base and micro projector facility
JP2016096707A (en) * 2014-11-17 2016-05-26 市川 雅英 Laser beam power generator
JP2021192430A (en) * 2015-07-16 2021-12-16 ワイ−チャージ リミテッド System for transferring power wirelessly
JP7277519B2 (en) 2015-07-16 2023-05-19 ワイ-チャージ リミテッド A system that transmits power wirelessly
US11031825B2 (en) 2017-01-20 2021-06-08 Lg Electronics Inc. Wireless power transmission apparatus and method
WO2018135774A1 (en) * 2017-01-20 2018-07-26 엘지전자 주식회사 Wireless power transmission apparatus and method
US10720797B2 (en) 2017-05-26 2020-07-21 California Institute Of Technology Method and apparatus for dynamic RF lens focusing and tracking of wireless power recovery unit
JP2021515532A (en) * 2018-02-23 2021-06-17 ファイオン・テクノロジーズ・リミテッド・ライアビリティ・カンパニーPhion Technologies LLC Transmitter assembly for free space power transfer and data communication systems
US11616087B2 (en) 2018-02-23 2023-03-28 Phion Technologies Corp. Transceiver assembly for free space power transfer and data communication system
US11600643B2 (en) 2018-02-23 2023-03-07 Phion Technologies Corp. Assembly for optical to electrical power conversion transfer
JP7291412B2 (en) 2018-02-23 2023-06-15 ファイオン・テクノロジーズ・コーポレイション Transmitter assembly for free space power transmission and data communication systems
US11876105B2 (en) 2018-02-23 2024-01-16 Phion Technologies Llc Laser light collecting assembly for a wireless power receiver
US12132059B2 (en) 2018-02-23 2024-10-29 Phion Technologies Corp. Method for safe and secure free space power and data transfer
JP2021525996A (en) * 2018-05-23 2021-09-27 ワイ−チャージ リミテッド Wireless power system with identifiable receiver
JP7423553B2 (en) 2018-05-23 2024-01-29 ワイ-チャージ リミテッド Methods, systems and optical signs for wireless power supply
US12003118B2 (en) 2018-05-23 2024-06-04 Wi-Charge Ltd. Wireless power system having identifiable receivers
JP2023519823A (en) * 2020-03-20 2023-05-15 エンオーシャン ゲーエムベーハー System and method for wireless transmission of energy
JP7495965B2 (en) 2022-08-31 2024-06-05 ソフトバンク株式会社 POWER SUPPLY DEVICE, PROGRAM, SYSTEM, AND CONTROL METHOD

Similar Documents

Publication Publication Date Title
JP2008245404A (en) Power transmitting system
JP5495051B2 (en) Illumination optical system, light source device and projector
EP3392549B1 (en) Light source system and illumination system
CN104460203A (en) Luminescent light emitting device having luminescent material plate that is caused to be luminous by excitation light source and projector including same luminescent light emitting device
CN101155545B (en) Endoscope apparatus
KR20130105498A (en) Light source unit and projector
JP4572754B2 (en) Power transmission system and method
JP6112333B2 (en) Light source device and projector
JP3823976B2 (en) Optical wireless transmission system and optical wireless transmission device
US11145191B2 (en) Flash light emitter with remote communication function
EP1720342A3 (en) Wireless communication terminal having function of automatically controlling intensity of radiation of light emitting unit and method thereof
JP5812136B2 (en) Illumination optical system, light source device and projector
JP6701531B2 (en) Light source device and projection device
JP2020184014A (en) Light source device, optical scanner, display system, and movable body
JP2007194923A (en) Optical space transmission system
KR101868417B1 (en) A searchlight using blue laserdiode
KR101842189B1 (en) A searchlight using rgb laserdiode
JP2011257644A (en) Projector
US10708997B2 (en) Light projecting apparatus
JP2004165957A (en) Optical transmitter
KR101842188B1 (en) A device for lighting white light with a rectangular shape
KR20090122313A (en) Infrared laser diode night vision
CN218647293U (en) Light source module and projection equipment
CN211952281U (en) Emergency lighting device and system
CN220921249U (en) Power switching laser engraving module and laser engraving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110727