[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008245483A - Piezoelectric power plant - Google Patents

Piezoelectric power plant Download PDF

Info

Publication number
JP2008245483A
JP2008245483A JP2007086199A JP2007086199A JP2008245483A JP 2008245483 A JP2008245483 A JP 2008245483A JP 2007086199 A JP2007086199 A JP 2007086199A JP 2007086199 A JP2007086199 A JP 2007086199A JP 2008245483 A JP2008245483 A JP 2008245483A
Authority
JP
Japan
Prior art keywords
piezoelectric element
external force
piezoelectric
transmission rod
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086199A
Other languages
Japanese (ja)
Inventor
Shoichi Ogawa
彰一 小川
Rei Eriguchi
玲 江里口
Shinji Nagaoka
真二 長岡
Keiji Omori
啓至 大森
Yoshiro Tomikawa
義朗 富川
Yoshihiro Sato
芳弘 佐藤
Motoyasu Hanji
元康 判治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007086199A priority Critical patent/JP2008245483A/en
Publication of JP2008245483A publication Critical patent/JP2008245483A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric power plant for efficiently converting feeble rotational energy caused by natural force or artificial force into electric energy. <P>SOLUTION: The piezoelectric power plant has a piezoelectric plate and an elastic reinforcing plate. The power plant also has a piezoelectric element comprising the piezoelectric plate polarized, arranged and stuck in a thickness direction along a longitudinal direction of the reinforcing plate, a fixing member fixing one end in the longitudinal direction of the piezoelectric element, an external force translation rod which makes the piezoelectric element bend in the thickness direction, and a rotary part rotating by external force. One end of the external force translation rod is turnably held. The rotary part periodically depresses the rod and it moves. The rod transmits external force to the piezoelectric element and periodically bends it. Thus, power is generated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転による機械的エネルギーを電気エネルギーに変換する圧電発電装置に関する。 The present invention relates to a piezoelectric power generator that converts mechanical energy generated by rotation into electrical energy.

近年、二酸化炭素等による地球温暖化を抑制するために、化石燃料を用いず、風力、水力、等の自然力を利用した圧電発電装置が注目されている。例えば、実用化されている風力発電装置は、プロペラを風力で回転させてモータを回し、電磁誘導で発電する。しかし、これらは、装置が大型であってコストが高い、設置場所が限定される、所定の広さと設置間隔を必要とする等の問題があった。 In recent years, in order to suppress global warming due to carbon dioxide or the like, a piezoelectric power generation apparatus that uses natural forces such as wind power and hydraulic power without using fossil fuels has attracted attention. For example, a wind power generator that has been put into practical use generates electric power by electromagnetic induction by rotating a propeller with wind power and rotating a motor. However, these have problems that the apparatus is large and expensive, the installation location is limited, and a predetermined area and installation interval are required.

そこで、圧電素子による発電が注目される。この技術に関し、特許文献1には、外部からの水平の保持力によって、凸に屈曲した圧電素子と、前記圧電素子を屈曲自在に保持する保持部材と、弾性体部と、を有する発電素子で、前記圧電素子の凸状部分に外力を印加することにより弾性体が前記圧電素子から押圧されて縮み、凹に屈曲した圧電素子へと屈曲する際、および、前記圧電素子に印加されている外力が取り除かれて、前記弾性体が元の形状に戻るとともに該凹に屈曲した圧電素子が、凸に屈曲した圧電素子へと復元する際に、屈曲して発電することを特徴とする発電装置、が開示されている。 Therefore, power generation by a piezoelectric element is attracting attention. With respect to this technology, Patent Document 1 discloses a power generation element having a piezoelectric element bent in a convex shape by a horizontal holding force from the outside, a holding member that holds the piezoelectric element so as to be bent, and an elastic body portion. By applying an external force to the convex part of the piezoelectric element, the elastic body is pressed from the piezoelectric element to be contracted and bent into a concavely bent piezoelectric element, and the external force applied to the piezoelectric element Is removed, and when the elastic element returns to its original shape and the piezoelectric element bent in the concave is restored to the piezoelectric element bent in the convex, the power generation apparatus is bent to generate power, Is disclosed.

特許3768520号公報Japanese Patent No. 3768520

この発電装置は、ある閾値を持つ振動による機械的エネルギーに対して、瞬間的に大きな起電力を得られる利点があるが、回転力による比較的微弱な機械的エネルギーから、起電力を得にくいという不利な点があった。 This power generator has the advantage that a large electromotive force can be obtained instantaneously with respect to mechanical energy due to vibration having a certain threshold, but it is difficult to obtain an electromotive force from relatively weak mechanical energy due to rotational force. There were disadvantages.

本発明はかかる事情に鑑みてなされたものであり、自然の力または人為的な力によって発生する微弱な回転エネルギーから効率よく電気エネルギーに変換することができる圧電発電装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a piezoelectric power generation device that can efficiently convert weak rotational energy generated by natural force or artificial force into electrical energy. To do.

圧電板と弾性補強板とを有する略矩形状圧電素子であって、前記補強板の長手方向に沿って、その厚み方向に分極されて配置され、貼着された圧電板を含む圧電素子と、
前記圧電素子の長手方向の一端を固定する固定部材と、
前記圧電素子を厚み方向に屈曲させる外力伝達棒と、
外力により回転する回転部と、
を有し、
前記外力伝達棒が一端を回動自在に保持され、前記回転部により周期的に押圧されて、移動して、前記圧電素子に外力を伝達して、これを周期的に屈曲させることにより、発電することを特徴とする圧電発電装置、
前記回転部が、回転軸とこれに固着された複数の回転体とを含み、
回転体が外力伝達棒を押圧する力点が、前記圧電素子を外力伝達棒が押圧する作用点より、外力伝達棒の支点である保持点から長距離にあり、前記圧電素子に外力を伝達して、これを周期的に屈曲する際、外力伝達棒が回転体から押圧される力が回転体から外れて急激になくなり、圧電素子の補強板の屈曲が弾性力で復元し、圧電素子が振動し、元の形状に戻る際に、圧電素子が変位することにより電気エネルギーが得られることを特徴とする前記の圧電発電装置、を提供する。
A substantially rectangular piezoelectric element having a piezoelectric plate and an elastic reinforcing plate, the piezoelectric element including a piezoelectric plate disposed and adhered in the thickness direction along the longitudinal direction of the reinforcing plate; and
A fixing member for fixing one end of the piezoelectric element in the longitudinal direction;
An external force transmission rod that bends the piezoelectric element in the thickness direction;
A rotating part that rotates by an external force;
Have
The external force transmission rod is rotatably held at one end, is periodically pressed and moved by the rotating portion, transmits an external force to the piezoelectric element, and is bent periodically to generate power. A piezoelectric power generator characterized by
The rotating part includes a rotating shaft and a plurality of rotating bodies fixed to the rotating shaft,
The force point at which the rotating body presses the external force transmission rod is at a longer distance from the holding point, which is the fulcrum of the external force transmission rod, than the action point at which the external force transmission rod presses the piezoelectric element, and transmits the external force to the piezoelectric element. When this is bent periodically, the force with which the external force transmission rod is pressed from the rotating body is suddenly removed from the rotating body, and the bending of the reinforcing plate of the piezoelectric element is restored by elastic force, and the piezoelectric element vibrates. The piezoelectric power generation apparatus is characterized in that electrical energy is obtained by displacing the piezoelectric element when returning to the original shape.

さらに、外力が風車からの力であり、前記回転部の回転軸が、前記風車の車軸と連動していることを特徴とする前期圧電発電装置、を提供する。 Furthermore, the piezoelectric power generation apparatus of the previous period is characterized in that the external force is a force from a windmill, and the rotation shaft of the rotating portion is interlocked with the axle of the windmill.

本発明に係る圧電発電装置によれば、外力である回転力が外力伝達棒を介して、周期的に矩形状圧電素子を屈曲変位することで、起電力が発生する。保持部は、圧電素子の一端を可動に支持し、圧電素子に長さ方向への応力を小さくするので、圧電素子自体の局部に応力が集中することが少なく、自然の力または人為的な力によって発生する微弱な回転の機械的エネルギーから比較的大きな回転エネルギーまで、広範囲の機械的エネルギーを効率よく電気エネルギーに変換することができる。しかも、部品点数が比較的少なく、組み立てが容易である。 According to the piezoelectric power generation device of the present invention, an electromotive force is generated by a rotational force that is an external force periodically bending and displacing the rectangular piezoelectric element via the external force transmission rod. Since the holding portion movably supports one end of the piezoelectric element and reduces the stress in the length direction of the piezoelectric element, the stress is less likely to concentrate on the local portion of the piezoelectric element itself, and natural force or artificial force A wide range of mechanical energy can be efficiently converted into electrical energy, from the weakly rotating mechanical energy generated by the above to a relatively large rotational energy. In addition, the number of parts is relatively small and assembly is easy.

また、本発明のシステムでは、風力を得る事ができる場所であれば、どこでもこの力を有効に利用でき、稼働率、発電効率がいっそう高まる。化石燃料、原子力等の資源に頼らない、未利用のエネルギーの有効活用が可能となる。電源設備のない場所での警告、案内表示用照明用のメンテナンスフリー発電機としても好適である。 Moreover, in the system of this invention, if it is a place which can obtain a wind force, this force can be utilized effectively anywhere, and an operation rate and power generation efficiency increase further. Effective use of unused energy is possible without relying on resources such as fossil fuels and nuclear power. It is also suitable as a maintenance-free power generator for warning and guidance display lighting in places where there is no power supply facility.

図1に圧電発電装置100の概略構造、図2に圧電素子10の変位状態を示す正面断面図を示す。圧電発電装置100は、矩形状の圧電板11と矩形状の補強板12とを貼り合わせてなる圧電素子10と、保持部20と、外力伝達部30と、回転部40とから構成される。矩形状の圧電素子10の一端を保持部20に固着する。矩形状の圧電素子10の他の一端は自由端である。外力伝達部30は、外力伝達棒31の一端を回転軸32で回動自在に保持する。外力伝達棒31は、回転部40の回転体41から押圧されて、圧電素子側に傾斜し、圧電素子を押圧し、屈曲させながら回動する。回転体41は、外力伝達棒31を押圧しながら回転(公転運動)する。回転体41は、外力伝達棒31との接触を失っても、回転をさらに持続し、再度、外力伝達棒31を押圧する動作を繰り返す。そして、この一連の動作が継続される。回転体41は、軸抜き部を有する円柱状であり、底面の円中心部分を通る軸状の空隙が設けられている。前期空隙に回転体回転軸43が挿入され回転体41を軸支し、自転可能に設置している。 FIG. 1 shows a schematic structure of the piezoelectric power generation apparatus 100, and FIG. 2 shows a front sectional view showing a displacement state of the piezoelectric element 10. As shown in FIG. The piezoelectric power generation device 100 includes a piezoelectric element 10 formed by bonding a rectangular piezoelectric plate 11 and a rectangular reinforcing plate 12, a holding unit 20, an external force transmitting unit 30, and a rotating unit 40. One end of the rectangular piezoelectric element 10 is fixed to the holding portion 20. The other end of the rectangular piezoelectric element 10 is a free end. The external force transmission unit 30 holds one end of the external force transmission rod 31 so as to be rotatable by a rotation shaft 32. The external force transmission rod 31 is pressed from the rotating body 41 of the rotating unit 40 and tilts toward the piezoelectric element, and rotates while pressing and bending the piezoelectric element. The rotating body 41 rotates (revolves) while pressing the external force transmission rod 31. Even if the rotating body 41 loses contact with the external force transmission rod 31, it continues to rotate and repeats the operation of pressing the external force transmission rod 31 again. Then, this series of operations is continued. The rotating body 41 has a columnar shape having a shaft punching portion, and is provided with a shaft-shaped gap passing through a circular center portion of the bottom surface. A rotating body rotating shaft 43 is inserted into the gap in the previous period, and the rotating body 41 is pivotally supported so that it can rotate.

圧電素子10の駆動態様は、回転部40と圧電素子10の形状、寸法、保持部20に対する位置、外力伝達部30を固定すると、その振動態様が、大略決定する。即ち、外力伝達部30は、上記の通り、外力伝達棒31の一端を回転軸32で回動自在に保持され、回転部の回転体40から押圧されて、圧電素子側に傾斜し、圧電素子の一部に密接して押圧するが、この押圧する位置は、伝達棒30が比較的長く、最初に接触する位置が圧電素子の端部であれば、端部を押し続ける。一方、図1のように、伝達棒が比較的短く、最初に接触する位置が、端部でなく、圧電素子の端部から内側であったときは、伝達棒30の先端が圧電素子の内側を更に内側方向に移動しながら、圧電素子を押圧、屈曲させる。更に、回転中心42から外力伝達部までの距離、回転中心42から回転体41までの長さ、圧電素子10の保持部材20に対する角度、伝達棒31の長さ、圧電素子10と外力伝達棒31の接触位置等によって起電力に与える効果は大きく変化する。 The driving mode of the piezoelectric element 10 is substantially determined by the shape and dimensions of the rotating unit 40 and the piezoelectric element 10, the position relative to the holding unit 20, and the external force transmitting unit 30. That is, as described above, the external force transmission unit 30 is rotatably held at one end of the external force transmission rod 31 by the rotation shaft 32, is pressed from the rotating body 40 of the rotation unit, and is inclined to the piezoelectric element side. However, if the transmission rod 30 is relatively long and the first contact position is the end portion of the piezoelectric element, the end portion is continuously pressed. On the other hand, as shown in FIG. 1, when the transmission rod is relatively short and the first contact position is not the end but the inside of the end of the piezoelectric element, the tip of the transmission rod 30 is the inside of the piezoelectric element. The piezoelectric element is pressed and bent while moving inwardly. Further, the distance from the rotation center 42 to the external force transmission portion, the length from the rotation center 42 to the rotating body 41, the angle of the piezoelectric element 10 with respect to the holding member 20, the length of the transmission rod 31, the piezoelectric element 10 and the external force transmission rod 31. The effect on the electromotive force varies greatly depending on the contact position and the like.

図2は、回転体41の外力により、外力伝達棒31が、圧電素子に最大の屈曲変位を与える状態を図示する。この後、更に回転体41が、時計方向に回転すると、外力伝達棒31を外れる。押圧力が開放された圧電素子は、補強板12の弾性により、初期状態に復元しようとする。また、この復元を他の弾性体(例えば、コイルバネ、板バネ、ゴム等の弾性体で、押圧方向と反対に復元させるもの)によって補強して行っても良い。圧電素子10の形状は、補強板12が略矩形状であり、これに一回り小さな略矩形状の圧電体11を貼着したものである。圧電体11は補強板の片側に貼着されたモノモルフ構造のものでも良く、補強板の両側に貼着されたバイモルフ構造のものでも良い。また、略矩形状の補強板に限定されず、幅方向の長さ変化のある、扇形や、逆三角形等であっても良い。圧電素子の長手方向の一端は、保持部20で固着、固定される。保持部20は、外力伝達棒31の保持部を兼ねることができる。コイルバネ等の弾性体を付加したときは、外力伝達棒30の自由端近辺、圧電素子10の自由端近辺に弾性体の復元力が作用されるように設置する。このとき、回転体41が外力伝達棒31から離れると外力伝達棒31及び圧電素子10は、図1に示す初期状態に復帰する方向に動くことになる。 FIG. 2 illustrates a state in which the external force transmission rod 31 gives the maximum bending displacement to the piezoelectric element due to the external force of the rotating body 41. Thereafter, when the rotating body 41 further rotates in the clockwise direction, the external force transmission rod 31 is detached. The piezoelectric element released from the pressing force tends to be restored to the initial state by the elasticity of the reinforcing plate 12. This restoration may be reinforced by another elastic body (for example, an elastic body such as a coil spring, a leaf spring, or rubber that is restored in the direction opposite to the pressing direction). The shape of the piezoelectric element 10 is such that the reinforcing plate 12 has a substantially rectangular shape, and a substantially rectangular piezoelectric body 11 that is slightly smaller is attached to the reinforcing plate 12. The piezoelectric body 11 may have a monomorph structure attached to one side of the reinforcing plate, or may have a bimorph structure attached to both sides of the reinforcing plate. Moreover, it is not limited to a substantially rectangular reinforcing plate, and may be a fan shape, an inverted triangle, or the like having a length change in the width direction. One end of the piezoelectric element in the longitudinal direction is fixed and fixed by the holding unit 20. The holding part 20 can also serve as a holding part for the external force transmission rod 31. When an elastic body such as a coil spring is added, it is installed so that the restoring force of the elastic body acts on the vicinity of the free end of the external force transmission rod 30 and the free end of the piezoelectric element 10. At this time, when the rotating body 41 moves away from the external force transmission rod 31, the external force transmission rod 31 and the piezoelectric element 10 move in a direction to return to the initial state shown in FIG.

圧電板11は、矩形状の圧電セラミックスの表裏面に電極膜(図示せず)が形成された構造を有し、圧電板の圧電セラミックスは厚み方向に分極されている。圧電板11は樹脂接着剤を用いて、補強板12に接着されている。なお、圧電セラミックスの代わりに圧電ポリマーを用いてもよい。圧電セラミックス板と金属板、プラスチック等の補強板(以下、補強板12)とを貼り合わせた構造を有するもの(例えば、電気編み機の運針駆動部、圧電スピーカの圧電音響素子に相当するものや、これらをユニモルフ素子、バイモルフ素子として構成するもの)を用いることができる。バイモルフ素子にあっては、分極方向が同一のパラレルタイプまたは、逆向きのシリーズタイプの両タイプを好適に用いることができる。また、圧電素子の材質は、特に問わないが、チタン酸ジルコン酸鉛、チタン酸バリウム等のセラミックスを用いることができ、有機ポリマーの圧電材料、たとえば、ポリビリニデンジフルオライド、ポリフッ化ビニリデンを用いることもできる。さらに、圧電板は単板に限定されず、積層構造(積層コンデンサ型構造)を有しているものであってもよい。 The piezoelectric plate 11 has a structure in which electrode films (not shown) are formed on the front and back surfaces of a rectangular piezoelectric ceramic, and the piezoelectric ceramic of the piezoelectric plate is polarized in the thickness direction. The piezoelectric plate 11 is bonded to the reinforcing plate 12 using a resin adhesive. A piezoelectric polymer may be used instead of the piezoelectric ceramic. One having a structure in which a piezoelectric ceramic plate and a metal plate, a reinforcing plate such as plastic (hereinafter referred to as a reinforcing plate 12) are bonded together (for example, one corresponding to a needle driving unit of an electric knitting machine, a piezoelectric acoustic element of a piezoelectric speaker, These can be used as unimorph elements and bimorph elements). In the bimorph element, both the parallel type with the same polarization direction or the series type with the opposite direction can be preferably used. The material of the piezoelectric element is not particularly limited, but ceramics such as lead zirconate titanate and barium titanate can be used. It can also be used. Furthermore, the piezoelectric plate is not limited to a single plate, and may have a multilayer structure (multilayer capacitor type structure).

補強板12は、金属または樹脂の少なくとも一方からなり、圧電板11を装着するため、これより大きく、例えば、長い矩形状等、を有している。補強板12として樹脂からなるものを用いる場合には、圧電板11からの電極リード(図示せず)の取り出しを容易とするために、圧電板11と貼り合わされる面に、金属箔が設けられているものを用いることが好ましい。 The reinforcing plate 12 is made of at least one of metal and resin, and is larger than the reinforcing plate 12 for mounting the piezoelectric plate 11, for example, has a long rectangular shape. When a resin plate is used as the reinforcing plate 12, a metal foil is provided on the surface to be bonded to the piezoelectric plate 11 in order to easily take out electrode leads (not shown) from the piezoelectric plate 11. It is preferable to use what is.

図3、図4は、自然からの回転力を風車から得る本発明の実施形態の一例を示す。この実施形態を例に、更に詳細に実施態様の説明をおこなう。図3で、風車のプロペラの回転軸と、回転部40の回転軸42が、直結している。外力伝達棒31がその一端を回転軸32で回動自在に保持されている。風車による回転力は、回転体41に伝達され、外力伝達棒31が圧電素子10を屈曲させる。図3は、時計回りに回転する回転体41が、外力伝達棒31に接触する直前の状態を示す。外力伝達棒31は、初期状態では、直立した状態で設定されている。更に回転体41の回転が進むと、外力伝達棒31が、左側に振られ、図4(a)の状態となるまで、外力伝達棒31を押圧し、外力伝達棒31は、圧電素子10の補強板11の一端を押圧する。回転体41は、回転体回転軸43が挿入されて軸支され、自転しながら、外力伝達棒31を押圧するので、摩擦力が軽減されて、効率良く、外力を伝達できる。なお、外力伝達棒31が、円柱状のときは、回転体41との接触部は、点接触に近いものとなり、摩擦力を更に軽減することができる。 3 and 4 show an example of an embodiment of the present invention that obtains a natural rotational force from a windmill. The embodiment will be described in more detail by taking this embodiment as an example. In FIG. 3, the rotating shaft of the wind turbine propeller and the rotating shaft 42 of the rotating unit 40 are directly connected. One end of the external force transmission rod 31 is rotatably held by a rotation shaft 32. The rotational force generated by the windmill is transmitted to the rotating body 41 and the external force transmission rod 31 bends the piezoelectric element 10. FIG. 3 shows a state immediately before the rotating body 41 rotating in the clockwise direction contacts the external force transmission rod 31. The external force transmission rod 31 is set in an upright state in the initial state. When the rotating body 41 further rotates, the external force transmission rod 31 is swung to the left side and presses the external force transmission rod 31 until the state shown in FIG. One end of the reinforcing plate 11 is pressed. The rotating body 41 is pivotally supported by inserting the rotating body rotating shaft 43 and presses the external force transmitting rod 31 while rotating, so that the frictional force is reduced and the external force can be transmitted efficiently. In addition, when the external force transmission rod 31 is cylindrical, the contact portion with the rotating body 41 is close to point contact, and the frictional force can be further reduced.

図3に示す通り、外力伝達棒31の回転軸32中心である支点から回転体41との接触点である力点までの距離は、前記支点から圧電素子10までの接触点までの距離より短い。従って、てこの原理が働き、回転体40の小さな回転力を拡大して、圧電素子10に伝達してこれを屈曲させることとなる。図4の状態から更に時計方向の回転が進むと、回転体41が、伝達棒31を外れる。このとき、押圧力が開放された圧電素子10は、補強板12の弾性が十分であれば、一挙に初期状態に復元し、自由振動する。このとき補強板12の弾性に加えて、他の弾性体(例えば、コイルバネ、板バネ、ゴム等の弾性体を押圧方向と反対側に挿入するもの)によってこの復元を行っても良い。 As shown in FIG. 3, the distance from the fulcrum that is the center of the rotating shaft 32 of the external force transmission rod 31 to the force point that is the contact point with the rotating body 41 is shorter than the distance from the fulcrum to the contact point to the piezoelectric element 10. Therefore, the lever principle works, and the small rotational force of the rotating body 40 is expanded and transmitted to the piezoelectric element 10 to bend it. When the clockwise rotation further proceeds from the state of FIG. 4, the rotating body 41 comes off the transmission rod 31. At this time, if the elasticity of the reinforcing plate 12 is sufficient, the piezoelectric element 10 from which the pressing force has been released is restored to the initial state at once and freely vibrates. At this time, in addition to the elasticity of the reinforcing plate 12, this restoration may be performed by another elastic body (for example, an elastic body such as a coil spring, a leaf spring, or rubber inserted on the opposite side to the pressing direction).

保持部20及び回転体支持部材21は、プラスチック、金属等、ある程度剛性があり、耐久性にすぐれた部材で作成することが望ましい。なお、保持部材に金属材料を用い、かつ、圧電素子10を構成する補強板12にも金属材料を用いた場合において、保持部材20として、機械的強度が大きく、かつ、絶縁性を有するセラミックス材料(例えば、アルミナ、ジルコニア、ムライト等)を用いることができる。保持部20及び回転体支持部材21が金属性の場合は、導体であるので、配線の一部としても利用可能である。電気配線系統と接触が不利の場合は、絶縁被覆を考慮する。これらを一体成形してもよい。圧電素子10の補強板12、外力伝達板30の回転軸32、回転部40の回転軸42を一体として保持してもよい。 The holding unit 20 and the rotating body support member 21 are desirably made of a material such as plastic or metal that has some rigidity and excellent durability. In the case where a metal material is used for the holding member and a metal material is also used for the reinforcing plate 12 constituting the piezoelectric element 10, a ceramic material having high mechanical strength and insulation as the holding member 20. (For example, alumina, zirconia, mullite, etc.) can be used. When the holding part 20 and the rotating body support member 21 are metallic, they are conductors and can be used as part of the wiring. If contact with the electrical wiring system is disadvantageous, consider insulation. These may be integrally formed. The reinforcing plate 12 of the piezoelectric element 10, the rotating shaft 32 of the external force transmitting plate 30, and the rotating shaft 42 of the rotating unit 40 may be held together.

また、図示しない弾性体部は、コイルバネ等と、これを保持するために結合部端を保持部20及び回転体支持部材21に設けて構成することができる。コイルバネ等の一部を保持部材の端面に固定して当接部材を省略することもできる。弾性体が保持部に加えられた外力に抗して反発力を与え圧電素子の屈曲の復元を加速させる。 Further, the elastic body portion (not shown) can be configured by providing a coil spring or the like and a coupling portion end to the holding portion 20 and the rotating body support member 21 in order to hold the spring. A part of the coil spring or the like can be fixed to the end face of the holding member and the contact member can be omitted. The elastic body applies a repulsive force against the external force applied to the holding portion to accelerate the bending recovery of the piezoelectric element.

圧電発電装置200は、図3に示すとおり、回転体支持部材21に回転体41と外力伝達棒31がとりつけられている。圧電素子10は、保持部20に、回転体支持部材側に傾斜した状態で取り付けられている。この傾斜により、回動し、傾斜する外力伝達棒31からの力を効率の良い方向で伝達可能となる。圧電素子10が屈曲していない初期状態では、外力伝達棒31は、回転体支持部材とほぼ重なる状態で保持される。図4(b)は、回転部40の回転軸42が風車のシャフトと直結し、回転体41は、回転(公転)する円軌道の直径方向に二つ取り付けられているものを図示する。 As shown in FIG. 3, the piezoelectric power generation apparatus 200 includes a rotating body 41 and an external force transmission rod 31 attached to a rotating body support member 21. The piezoelectric element 10 is attached to the holding unit 20 in a state of being inclined toward the rotating body support member. By this inclination, the force from the external force transmission rod 31 that is rotated and inclined can be transmitted in an efficient direction. In an initial state in which the piezoelectric element 10 is not bent, the external force transmission rod 31 is held in a state of substantially overlapping with the rotating body support member. FIG. 4B illustrates a rotating unit 42 in which a rotating shaft 42 is directly connected to a windmill shaft, and two rotating bodies 41 are attached in the diameter direction of a rotating orbiting circular orbit.

図3に例示されたニュートラル状態の圧電発電装置200に対し、外力が、回転体41
を回転し、回転体41の一方が外力伝達棒31の一端を押圧し、外力伝達棒31が、回転軸32を中心に紙面左方向に回動する。このとき、圧電素子10の補強板12の最端部が外力伝達棒31によって押圧される。前記最端部は、外力の力点である回転体40と外力伝達棒の接触点より、回転軸に対して近距離にあるため、てこの原理により、比較的大きな外力として圧電素子10に外力を伝達可能である。
With respect to the neutral state piezoelectric power generation apparatus 200 illustrated in FIG.
, One of the rotating bodies 41 presses one end of the external force transmission rod 31, and the external force transmission rod 31 rotates around the rotation shaft 32 in the left direction of the drawing. At this time, the outermost end portion of the reinforcing plate 12 of the piezoelectric element 10 is pressed by the external force transmission rod 31. The outermost end portion is closer to the rotation axis than the contact point between the rotating body 40 and the external force transmission rod, which is a force point of external force. Therefore, according to the lever principle, the external force is applied to the piezoelectric element 10 as a relatively large external force. It can be transmitted.

外力伝達棒31は、エンジニアリングプラスチック、セラミックス、金属等、軽量で剛性がある耐久性部材で作成する。特に、軽量で剛性のある金属中空管構造のものを用いることが望ましい。復元を速やかに、容易にするためである。例示する圧電発電体200では、アルミニウム合金の中空管を用いている。図4(a)は、外部伝達棒31が、一番左方に回動している状態である。圧電素子10の補強板12の最端部は、外力を受けて、圧電素子10全体が最も屈曲している。回転部が、この状態から更に時計方向に回転して、回転体41が、外力伝達棒31から離れると、外力が急激に失われる。すると、補強板11の弾性力により、圧電素子10は、図3の状態に復元しようとする。このとき、外力伝達棒31は、この復元しようとする力により、図3の初期状態に戻ることとなる。外力伝達棒が、過度に右方向に回動しないように、回転体支持部材21にストッパー(図示せず)を設けて回動をとめることができる。 The external force transmission rod 31 is made of a lightweight and rigid durable member such as engineering plastic, ceramics, metal or the like. In particular, it is desirable to use a lightweight and rigid metal hollow tube structure. This is because the restoration can be made promptly and easily. In the illustrated piezoelectric power generator 200, a hollow tube of aluminum alloy is used. FIG. 4A shows a state in which the external transmission rod 31 is rotated to the leftmost. The outermost end portion of the reinforcing plate 12 of the piezoelectric element 10 receives the external force, and the entire piezoelectric element 10 is bent most. When the rotating portion further rotates clockwise from this state and the rotating body 41 moves away from the external force transmission rod 31, the external force is lost rapidly. Then, the piezoelectric element 10 tries to restore the state of FIG. 3 by the elastic force of the reinforcing plate 11. At this time, the external force transmission rod 31 returns to the initial state of FIG. 3 due to the force to be restored. In order to prevent the external force transmission rod from excessively rotating in the right direction, the rotation support member 21 can be provided with a stopper (not shown) to stop the rotation.

更に、補強板12の弾性力を補強するために、他の弾性体(例えば、コイルバネ、板バネ、ゴム等の弾性体を押圧方向と反対側に挿入するもの)を設置することができる。このとき、圧電素子10の屈曲がとれ、さらに、外力伝達棒31と圧電素子10の間には、間隙が生ずると、圧電素子10は、屈曲が急速に復元してさらに振動をおこなう。この振動は、無負荷状態が維持される間、次に回転体41が外力伝達棒31を通して補強板12を押圧するまで持続して、減衰振動を持続することとなる。引き続き、外力が印加されると、一定周期で圧電素子の減衰振動が繰り返され、圧電素子は、周期的な変位を繰り返す。このとき、圧電板11が長さ方向に所定周期で伸縮する。圧電板11が伸縮変位すると、圧電板の圧電セラミックスは厚み方向に分極されているので、起電力が発生する。図5に圧電発電装置200から電気エネルギーを回収するための回路構成例を示す。 Furthermore, in order to reinforce the elastic force of the reinforcing plate 12, another elastic body (for example, an elastic body such as a coil spring, a leaf spring, or rubber inserted on the side opposite to the pressing direction) can be installed. At this time, if the piezoelectric element 10 is bent and a gap is generated between the external force transmission rod 31 and the piezoelectric element 10, the bending of the piezoelectric element 10 is rapidly restored and further vibration occurs. While the unloaded state is maintained, this vibration continues until the rotating body 41 next presses the reinforcing plate 12 through the external force transmission rod 31 and continues the damped vibration. Subsequently, when an external force is applied, the damped vibration of the piezoelectric element is repeated at a constant period, and the piezoelectric element repeats periodic displacement. At this time, the piezoelectric plate 11 expands and contracts in the length direction at a predetermined cycle. When the piezoelectric plate 11 expands and contracts, an electromotive force is generated because the piezoelectric ceramics of the piezoelectric plate are polarized in the thickness direction. FIG. 5 shows a circuit configuration example for recovering electrical energy from the piezoelectric power generation apparatus 200.

例えば、圧電発電装置200では、圧電板11は、外力に対して、図3及び図4に示されるような外力を変換して得られた外力伝達棒31の回動する方向及びその逆方向に屈曲して凹凸を繰り返す周期的変位をすることとなる。圧電板の反対面に配置した圧電板は、互いに伸縮方向が逆となり、分極方向を補強板の厚み方向でパラレルとしておくと、振幅方向が全く逆の周期的変位をおこない、起電力の向きが逆となる。 For example, in the piezoelectric power generation apparatus 200, the piezoelectric plate 11 is rotated in the direction in which the external force transmission rod 31 obtained by converting the external force shown in FIGS. It will be a periodic displacement that bends and repeats unevenness. Piezoelectric plates placed on the opposite side of the piezoelectric plate have opposite directions of expansion and contraction, and if the polarization direction is parallel to the thickness direction of the reinforcing plate, the amplitude direction is completely reversed and the direction of the electromotive force is The reverse is true.

補強板12の上下に配置する圧電板11の分極方向をパラレルとするバイモルフ型の圧電素子にあっては、圧電板11の接着面側の電極膜と反対面の圧電板の接着面側の電極膜とを短絡させる構造でよい。このため、補強板12として金属箔・金属板を用いることが出来る。一方、両圧電板の分極方向が逆方向のときは、補強板12は、圧電板11の接着面側の電極膜と反対面の圧電板の接着面側の電極膜とを短絡させない構造とする必要がある。このため、補強板12として金属箔・金属板を用いる場合には、上下に配置する圧電板の一方を、この金属箔・金属板と短絡しないように、絶縁膜を介して金属箔・金属板に接着する等の工夫が必要となる。また、補強板12としてプリント配線基板のように樹脂基板に金属箔を取り付けてなるものを用いる場合には、上下に配置する圧電板が絶縁されるように、その金属箔を内周側部と外周側部とに分かれたパターンとしておけばよい。 In the bimorph type piezoelectric element in which the polarization directions of the piezoelectric plates 11 arranged above and below the reinforcing plate 12 are parallel, the electrode on the bonding surface side of the piezoelectric plate opposite to the electrode film on the bonding surface side of the piezoelectric plate 11 is used. The structure which short-circuits a film | membrane may be sufficient. For this reason, a metal foil / metal plate can be used as the reinforcing plate 12. On the other hand, when the polarization directions of both piezoelectric plates are opposite, the reinforcing plate 12 has a structure that does not short-circuit the electrode film on the bonding surface side of the piezoelectric plate 11 and the electrode film on the bonding surface side of the piezoelectric plate on the opposite surface. There is a need. For this reason, when a metal foil / metal plate is used as the reinforcing plate 12, the metal foil / metal plate is interposed via an insulating film so that one of the upper and lower piezoelectric plates is not short-circuited with the metal foil / metal plate. It is necessary to devise such as adhering to. In addition, when using a reinforcing plate 12 having a metal substrate attached to a resin substrate, such as a printed circuit board, the metal foil is connected to the inner peripheral side portion so that the piezoelectric plates disposed above and below are insulated. What is necessary is just to set it as the pattern divided | segmented into the outer peripheral side part.

従って、この起電力を図5に例示するように、正負を考慮した結線で取り出すことが出来る。こうして得られる電気エネルギーは交流電力であるために、図6に示されるように、整流回路を通して直流電力に変換し、コンデンサや二次電池等の蓄電装置に充電するか、または直接に「負荷」に供給して負荷を駆動することもできる。又、複数の圧電素子を用いるときは、圧電素子毎の整流回路を介することにより、若しくは、圧電素子群ごとの整流回路を入れることにより、直流電力を得ることもできる。図7に、図5の回路で得られた圧電発電装置200に、風車の回転力で発生した起電力の状況の例を具体的に示す。これは、3回測定した結果を重ねがきしたものである。起電力の発生の再現性は比較的良い。第一ピークは、例示装置固有のもので、圧電素子の減衰振動に乱れによるものと思われる。 Therefore, this electromotive force can be taken out by connection considering positive and negative as illustrated in FIG. Since the electric energy thus obtained is AC power, as shown in FIG. 6, it is converted to DC power through a rectifier circuit and charged in a power storage device such as a capacitor or a secondary battery, or directly “load”. The load can also be driven by supplying to When a plurality of piezoelectric elements are used, direct current power can be obtained through a rectifier circuit for each piezoelectric element or by inserting a rectifier circuit for each piezoelectric element group. FIG. 7 specifically shows an example of the state of electromotive force generated by the rotational force of the windmill in the piezoelectric power generation apparatus 200 obtained by the circuit of FIG. This is an overlay of the results of three measurements. The reproducibility of the generation of electromotive force is relatively good. The first peak is unique to the example device, and is thought to be due to disturbance in the damping vibration of the piezoelectric element.

こうして、効率良く得られた電気エネルギーは、コンデンサや二次電池等の蓄電装置に充電するか、または直接に負荷に供給して負荷を駆動することができる。負荷が、発光ダイオードのときは、これを発光させることになる。 Thus, the electric energy obtained efficiently can be charged in a power storage device such as a capacitor or a secondary battery, or directly supplied to the load to drive the load. When the load is a light emitting diode, it emits light.

圧電素子10の変位量は、補強板の材質や厚さ、圧電素子の形状や数を変えることによって調整することができるので、弱い力でも変位する圧電素子を用いた圧電発電装置を実現することもできれば、強い力で小さく変位する圧電素子を用いた圧電発電装置を実現することもでき、その場合でも、圧電素子を用いることで、十分に大きな電気エネルギーを得ることができる。 Since the displacement amount of the piezoelectric element 10 can be adjusted by changing the material and thickness of the reinforcing plate and the shape and number of the piezoelectric elements, a piezoelectric power generation apparatus using a piezoelectric element that displaces even with a weak force is realized. If possible, a piezoelectric power generation apparatus using a piezoelectric element that is displaced by a strong force can be realized. Even in such a case, sufficiently large electric energy can be obtained by using the piezoelectric element.

また、圧電発電装置100から取り出された電気エネルギーは、バッテリーやコンデンサ等の蓄電装置の充電にも用いることができる。 The electrical energy extracted from the piezoelectric power generation device 100 can also be used for charging a power storage device such as a battery or a capacitor.

本発明に係る圧電発電装置は、コンパクトで大きな起電力及び大電流が得られ、メンテナンスの容易な発電装置となる。電力供給のない場所での標示機、警報機に用いることもできる。 The piezoelectric power generator according to the present invention is a compact power generator capable of obtaining a large electromotive force and large current and easy to maintain. It can also be used for signage and alarms in places where there is no power supply.

本発明に係る圧電発電装置100のニュートラル状態の概略構造を示す正面断面図。1 is a front sectional view showing a schematic structure of a neutral state of a piezoelectric power generation apparatus 100 according to the present invention. 本発明に係る圧電発電装置100の押圧時の概略構造を示す正面断面図。FIG. 2 is a front sectional view showing a schematic structure when the piezoelectric power generation apparatus 100 according to the present invention is pressed. 本発明に係る圧電発電装置200のニュートラル状態の概略構造を示す正面断面図。1 is a front sectional view showing a schematic structure of a neutral state of a piezoelectric power generation apparatus 200 according to the present invention. 本発明に係る圧電発電装置200の押圧時の概略構造を示す正面断面図。FIG. 3 is a front sectional view showing a schematic structure when the piezoelectric power generation apparatus 200 according to the present invention is pressed. 回路図の一例。An example of a circuit diagram. 別の回路図の一例。An example of another circuit diagram. 圧電発電装置200の風車による回転力で発生する起電力の例。An example of an electromotive force generated by a rotational force generated by a windmill of the piezoelectric power generation apparatus 200.

符号の説明Explanation of symbols

100・200;圧電発電装置
10;圧電素子
11;圧電板
12;補強板
20;保持部
21;回転体支持部材
30;外力伝達部
31;外力伝達棒
40;回転部
41;回転体
42;回転部回転軸
43;回転体回転軸
100 ・ 200; Piezoelectric generator
10: Piezoelectric element
11: Piezoelectric plate
12; Reinforcing plate
20; Holding part
21; Rotating body support member
30; External force transmission
31; External force transmission rod
40; rotating part
41; Rotating body
42; rotating part rotating shaft
43; Rotating body rotation axis

Claims (3)

圧電板と弾性補強板とを有する略矩形状圧電素子であって、前記補強板の長手方向に沿って、その厚み方向に分極されて配置され、貼着された圧電板を含む圧電素子と、
前記圧電素子の長手方向の一端を固定する固定部材と、
前記圧電素子を厚み方向に屈曲させる外力伝達棒と、
外力により回転する回転部と、
を有し、
前記外力伝達棒が一端を回動自在に保持され、前記回転部により周期的に押圧されて、移動して、前記圧電素子に外力を伝達して、これを周期的に屈曲させることにより、発電することを特徴とする圧電発電装置。
A substantially rectangular piezoelectric element having a piezoelectric plate and an elastic reinforcing plate, the piezoelectric element including a piezoelectric plate disposed and adhered in the thickness direction along the longitudinal direction of the reinforcing plate; and
A fixing member for fixing one end of the piezoelectric element in the longitudinal direction;
An external force transmission rod that bends the piezoelectric element in the thickness direction;
A rotating part that rotates by an external force;
Have
The external force transmission rod is rotatably held at one end, is periodically pressed and moved by the rotating portion, transmits an external force to the piezoelectric element, and is bent periodically to generate power. A piezoelectric power generation device characterized by:
前記回転部が、回転軸とこれに固着された複数の回転体とを含み、
回転体が外力伝達棒を押圧する力点が、前記圧電素子を外力伝達棒が押圧する作用点より、外力伝達棒の支点である保持点から長距離にあり、前記圧電素子に外力を伝達して、これを周期的に屈曲する際、外力伝達棒が回転体から押圧される力が回転体から外れて急激になくなり、圧電素子の補強板の屈曲が弾性力で復元し、圧電素子が振動し、元の形状に戻る際に、圧電素子が変位することにより電気エネルギーが得られることを特徴とする請求項1記載の圧電発電装置。
The rotating part includes a rotating shaft and a plurality of rotating bodies fixed to the rotating shaft,
The force point at which the rotating body presses the external force transmission rod is at a longer distance from the holding point, which is the fulcrum of the external force transmission rod, than the action point at which the external force transmission rod presses the piezoelectric element, and transmits the external force to the piezoelectric element. When this is bent periodically, the force with which the external force transmission rod is pressed from the rotating body is suddenly removed from the rotating body, and the bending of the reinforcing plate of the piezoelectric element is restored by elastic force, and the piezoelectric element vibrates. The piezoelectric power generator according to claim 1, wherein when the piezoelectric element returns to its original shape, electric energy is obtained by displacing the piezoelectric element.
外力が風車からの力であり、前記回転部の回転軸が、前記風車の車軸と連動していることを特徴とする請求項1乃至2のいずれかに記載の圧電発電装置。 3. The piezoelectric power generator according to claim 1, wherein an external force is a force from a windmill, and a rotation shaft of the rotating portion is interlocked with an axle of the windmill.
JP2007086199A 2007-03-29 2007-03-29 Piezoelectric power plant Pending JP2008245483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086199A JP2008245483A (en) 2007-03-29 2007-03-29 Piezoelectric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086199A JP2008245483A (en) 2007-03-29 2007-03-29 Piezoelectric power plant

Publications (1)

Publication Number Publication Date
JP2008245483A true JP2008245483A (en) 2008-10-09

Family

ID=39916139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086199A Pending JP2008245483A (en) 2007-03-29 2007-03-29 Piezoelectric power plant

Country Status (1)

Country Link
JP (1) JP2008245483A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175890A (en) * 2011-02-24 2012-09-10 Murata Mfg Co Ltd Piezoelectric power generator
JP2013541203A (en) * 2010-09-15 2013-11-07 ボルトン大学 Piezoelectric polymer element, piezoelectric polymer element manufacturing method, and piezoelectric polymer element manufacturing apparatus
JP2021061961A (en) * 2019-10-11 2021-04-22 Toto株式会社 Paper winding device
KR20220087315A (en) * 2020-12-17 2022-06-24 재단법인 경북하이브리드부품연구원 Piezoelectric energy harvesting devices
KR20220134862A (en) * 2021-03-29 2022-10-06 한국세라믹기술원 Lever type piezoelectric power generation structure using wind power
JP2023156228A (en) * 2022-04-12 2023-10-24 エーエーシー マイクロテック(チャンヂョウ)カンパニー リミテッド Multifunctional sounding device and electronic device
WO2024146243A1 (en) * 2023-01-03 2024-07-11 西安热工研究院有限公司 Wind power generation apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541203A (en) * 2010-09-15 2013-11-07 ボルトン大学 Piezoelectric polymer element, piezoelectric polymer element manufacturing method, and piezoelectric polymer element manufacturing apparatus
JP2012175890A (en) * 2011-02-24 2012-09-10 Murata Mfg Co Ltd Piezoelectric power generator
JP2021061961A (en) * 2019-10-11 2021-04-22 Toto株式会社 Paper winding device
JP7325718B2 (en) 2019-10-11 2023-08-15 Toto株式会社 paper roll
KR20220087315A (en) * 2020-12-17 2022-06-24 재단법인 경북하이브리드부품연구원 Piezoelectric energy harvesting devices
KR102517133B1 (en) 2020-12-17 2023-03-31 재단법인 경북하이브리드부품연구원 Piezoelectric energy harvesting devices
KR20220134862A (en) * 2021-03-29 2022-10-06 한국세라믹기술원 Lever type piezoelectric power generation structure using wind power
KR102549439B1 (en) * 2021-03-29 2023-06-29 한국세라믹기술원 Lever type piezoelectric power generation structure using wind power
JP2023156228A (en) * 2022-04-12 2023-10-24 エーエーシー マイクロテック(チャンヂョウ)カンパニー リミテッド Multifunctional sounding device and electronic device
JP7401644B2 (en) 2022-04-12 2023-12-19 エーエーシー マイクロテック(チャンヂョウ)カンパニー リミテッド Multifunctional sound device and electronic equipment
WO2024146243A1 (en) * 2023-01-03 2024-07-11 西安热工研究院有限公司 Wind power generation apparatus

Similar Documents

Publication Publication Date Title
JP2008211925A (en) Piezoelectric power generation device
JP2008245483A (en) Piezoelectric power plant
JP4354909B2 (en) Near resonance electromechanical motor
TWI439039B (en) Piezoelectric power generator module
JP2009536709A (en) Wave power generation using electroactive polymer
US8476783B2 (en) Wind energy generator using piezoelectric material and auxiliary mechanism thereof
JP2003189641A (en) Power generating equipment
JP3759945B2 (en) Wind power generator and wind power generation system
JP4865385B2 (en) Power generation device, light emitting device, and flashlight using the same
JP2012200077A (en) Piezoelectric generator and electronic apparatus provided with the same
JP2004266033A (en) Piezoelectric apparatus
JPWO2002015378A1 (en) Folding type piezoelectric stator, folding type piezoelectric actuator and their applications
TWI590578B (en) Piezoelectric pumping device
JP2008099489A (en) Energy converter
JP2009159664A (en) Generating set using electric field responsive high polymer
JP2006291842A (en) Wind power generation device
US20220255466A1 (en) Method and apparatus for generating energy from fluid flow
JP2008295275A (en) Piezoelectric power generation device
KR101722326B1 (en) A modular unit piezoelectric energy harvester and piezoelectric energy harvesting system comprising the same for road
JP2008067451A (en) Energy conversion equipment
JP2010263750A (en) Power generation device using electric field responsive polymer
KR102288498B1 (en) Self powered delieator comprising lighting part
JP2002366072A (en) Indication device
Samal et al. Energy harvesting using piezoelectric transducers: a review
KR20140145931A (en) Piezoelectric Energy Harvester using air flow by running train in tunnel