JP2008243776A - Solid polymer electrolyte fuel cell and membrane electrode assembly thereof - Google Patents
Solid polymer electrolyte fuel cell and membrane electrode assembly thereof Download PDFInfo
- Publication number
- JP2008243776A JP2008243776A JP2007086838A JP2007086838A JP2008243776A JP 2008243776 A JP2008243776 A JP 2008243776A JP 2007086838 A JP2007086838 A JP 2007086838A JP 2007086838 A JP2007086838 A JP 2007086838A JP 2008243776 A JP2008243776 A JP 2008243776A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- polymer electrolyte
- layer
- platinum
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
この発明は、固体高分子電解質型燃料電池の膜電極接合体(以下、MEAと記述することがある。)に関し、アノードまたはカソード電極を複層構造とし、各層に含まれる触媒の種類を互いに異ならせて、セル性能を高めるようにしたものである。 The present invention relates to a membrane / electrode assembly (hereinafter sometimes referred to as MEA) of a solid polymer electrolyte fuel cell. In this way, the cell performance is improved.
図5は、固体高分子電解質型燃料電池の反応部であるMEAの一例を示すものである。図5において、符号1は、高分子電解質膜を示す。
この高分子電解質膜1の一方の表面には、厚さ10μ程度の膜状のアノード電極2が、他方の表面には厚さ10μm程度の膜状のカソード電極3とが接合、一体化されて設けられ、これらアノード電極2、カソード電極3の表面には図示しないカーボンペーパーなどからなる拡散層が設けられて、MEAとなっている。
FIG. 5 shows an example of an MEA that is a reaction part of a solid polymer electrolyte fuel cell. In FIG. 5, the code | symbol 1 shows a polymer electrolyte membrane.
A membrane-
前記高分子電解質膜1には、厚さ30〜70μm程度のパーフルオロスルホン酸系ポリマーなどからなるフィルムが用いられている。
また、前記アノード2およびカソード電極3には、径2〜5nm程度の白金微粒子などを径数十nmのカーボン粒子などに担持した担持触媒粒子を、アイオノマー、水、イソプロパノールなどからなる高分子電解質溶液に分散させ、この触媒分散液を拡散層となるカーボンペーパーなどの上に塗布し、乾燥したものが用いられている。
As the polymer electrolyte membrane 1, a film made of a perfluorosulfonic acid polymer having a thickness of about 30 to 70 μm is used.
The
このアノード2およびカソード電極3の高分子電解質膜1への接合は、アノード2およびカソード電極3の拡散層が外側となるように配置されて熱圧着などによって接合される。
また、アノードおよびカソード電極における触媒量は、出力密度とコストとの関係から1〜3mg/cm2程度となっているが、白金使用量の低減の努力がなされ、0.1〜0.5mg/cm2程度にまで減少させることができるとの提案もある。
The
The amount of catalyst in the anode and cathode electrodes is about 1 to 3 mg / cm 2 because of the relationship between the power density and cost. There is also a proposal that it can be reduced to about cm 2 .
また、燃料として、改質水素、メタノール、ジメチルエーテル(DME)などを用いる場合には、これら燃料に含まれる一酸化炭素による触媒の被毒の恐れがあることから、アノード電極2に含まれる触媒として、白金/ルテニウム合金触媒が用いられている。 Further, when reformed hydrogen, methanol, dimethyl ether (DME) or the like is used as the fuel, there is a risk of poisoning of the catalyst by carbon monoxide contained in these fuels. Platinum / ruthenium alloy catalysts are used.
この固体高分子電解質型燃料電池の動作原理は、以下のようである。アノード電極2に供給された水素は、ここでの触媒反応により水素イオンとなって高分子電解質膜1中を移動し、カソード電極3に至り、カソード電極3での触媒反応によりここに供給された酸素と反応して水になる。アノード電極2において生成した電子は図示しないセパレータを介して外部回路に流れ、カソード電極3に移動する。
燃料としてメタノールやジメチルエーテルなどを用いた場合には、アノード電極2において触媒反応により直接メタノールやジメチルエーテルなどが酸化されて、二酸化炭素、水素イオン、電子が生成し、水素イオンが高分子電解質膜1中をカソード電極3に向けて移動する。
このような固体高分子電解質型燃料電池の出力密度などのセル性能を向上させる研究開発が盛んに進められており、多くの特許出願がなされている。
When methanol, dimethyl ether or the like is used as the fuel, methanol or dimethyl ether or the like is directly oxidized by a catalytic reaction at the
Research and development for improving the cell performance such as the output density of such a solid polymer electrolyte fuel cell has been actively promoted, and many patent applications have been filed.
本発明における課題は、固体高分子電解質型燃料電池のセル性能を向上させるための1つの解決策を提供することにあり、特にMEAのアノードおよびカソード電極での触媒特性を改善してセルの出力密度を高めるようにすることにある。 It is an object of the present invention to provide one solution for improving the cell performance of a solid polymer electrolyte fuel cell, and in particular, to improve the catalyst characteristics at the anode and cathode electrodes of the MEA to improve the cell output. The purpose is to increase the density.
かかる課題を解決するため、
請求項1にかかる発明は、高分子電解質膜と、この高分子電解質膜の表面に形成されたアノードおよびカソード電極を備えた膜電極接合体であって、
前記アノードおよびカソード電極のいずれか一方また両方が複層構造とされ、それぞれの層に含まれる触媒が互いに異なるものであることを特徴とする固体高分子電解質型燃料電池の膜電極接合体である。
To solve this problem,
The invention according to claim 1 is a membrane electrode assembly comprising a polymer electrolyte membrane and an anode and a cathode electrode formed on the surface of the polymer electrolyte membrane,
A membrane / electrode assembly for a solid polymer electrolyte fuel cell, wherein either one or both of the anode and cathode electrodes have a multilayer structure, and the catalysts contained in the respective layers are different from each other. .
請求項2にかかる発明は、前記アノード電極において、一の層には、白金/ルテニウム合金触媒を、他の層には白金触媒を用いたことを特徴とする請求項1記載の固体高分子電解質型燃料電池の膜電極接合体である。
The invention according to
請求項3にかかる発明は、前記アノード電極において、一の層が内側に、前記他の層が外側に配されたことを特徴とする請求項2記載の固体高分子電解質型燃料電池の膜電極接合体である。
請求項4にかかる発明は、請求項1ないし3のいずれかに記載の膜電極接合体を備えたことを特徴とする高分子電解質型燃料電池である。
The invention according to
The invention according to claim 4 is a polymer electrolyte fuel cell comprising the membrane electrode assembly according to any one of claims 1 to 3.
一般に、MEAにおいてはアノードまたはカソード電極に含まれる触媒の種類に応じて、その触媒特有の出力特性が得られることが知られている。このため、アノードまたはカソード電極を複層構造とし、それぞれの層に含まれる触媒の種類を互いに異なるようにすれば、個々の層はそれぞれ別の出力特性を発揮する。このため、アノードまたはカソード電極全体としては、これらの出力特性の和の出力特性が得られることになり、セル特性を向上させることができる。 In general, in MEA, it is known that output characteristics peculiar to a catalyst can be obtained according to the type of catalyst contained in the anode or the cathode electrode. For this reason, if the anode or cathode electrode has a multilayer structure and the types of catalysts contained in the respective layers are different from each other, each layer exhibits different output characteristics. For this reason, the overall output characteristics of these output characteristics can be obtained for the entire anode or cathode electrode, and the cell characteristics can be improved.
図1は、本発明のMEAの一例を示すものである。この例のMEAにあっては、アノード電極2が2層構造となっている以外は、図5に示したMEAと同様の構造になっている。
すなわち、高分子電解質膜1の一方の表面に形成されたアノード電極2は、内層2Aと外層2Bとから構成されている。外層2Bの外側には拡散層をなすカーボンペーパーが存在する。
FIG. 1 shows an example of the MEA of the present invention. The MEA of this example has the same structure as the MEA shown in FIG. 5 except that the
That is, the
前記内層2Aでは触媒として白金/ルテニウム合金触媒が用いられ、外層2Bでは触媒として白金触媒が用いられている。
白金/ルテニウム合金触媒としては、白金10〜50wt%、残部ルテニウムからなる合金が用いられる。
これらの白金触媒および白金/ルテニウム合金触媒は、従来と同様に、径2〜5nm程度の触媒微粒子を径数十nmのカーボン粒子に担持した担持触媒とされて使用され、この担持触媒をアイオノマーなどからなる高分子電解質溶液に分散させ、この分散液を拡散層となるカーボンペーパーなどの上に塗布し、乾燥して、内層2A、外層2Bとされる。
In the
As the platinum / ruthenium alloy catalyst, an alloy composed of 10 to 50 wt% platinum and the remaining ruthenium is used.
These platinum catalysts and platinum / ruthenium alloy catalysts are used as supported catalysts in which catalyst fine particles having a diameter of about 2 to 5 nm are supported on carbon particles having a diameter of several tens of nm, as in the past, and this supported catalyst is used as an ionomer or the like. Is dispersed in a polymer electrolyte solution, and this dispersion is applied onto carbon paper or the like serving as a diffusion layer and dried to form the
また、触媒量は、従来と同様であるが、出力密度とコストとの関係から1〜3mg/cm2程度とされるが、この範囲に限定されることはない。現実的には、ジメチルエーテルを燃料とする場合には、コストと性能のバランスから、白金/ルテニウム合金触媒は、0.5mg/cm2以下が好ましく、白金触媒は1mg/cm2程度とすることが好ましい。 Moreover, although the catalyst amount is the same as that of the conventional art, it is set to about 1 to 3 mg / cm 2 from the relationship between the power density and the cost, but is not limited to this range. In reality, when dimethyl ether is used as a fuel, the platinum / ruthenium alloy catalyst is preferably 0.5 mg / cm 2 or less and the platinum catalyst is about 1 mg / cm 2 from the balance between cost and performance. preferable.
このようなMEAを備えた燃料電池セルでは、その出力密度が大きくなる。特に燃料としてジメチルエーテル、メタノールを用い、セル温度が80℃以下の場合には、その効果が大きくなる。
白金触媒にあっては、セルの出力特性において、低電流時には電圧は劣るが、高電流まで発電が可能である。一方、白金/ルテニウム合金触媒では、低電流では電圧は高いが高電流となると急激に電圧が低下する性質を有している。
In the fuel cell provided with such an MEA, the output density is increased. In particular, when dimethyl ether or methanol is used as the fuel and the cell temperature is 80 ° C. or lower, the effect is increased.
In the case of a platinum catalyst, in the cell output characteristics, the voltage is inferior when the current is low, but power generation is possible up to a high current. On the other hand, the platinum / ruthenium alloy catalyst has the property that the voltage is high at a low current, but the voltage is suddenly reduced at a high current.
これに対して、白金触媒を含む外層2Bと白金/ルテニウム合金触媒を含む内層2Aとの2層構造にあっては、低電流域では白金/ルテニウム合金触媒の効果が相対的に大きく作用し、高電流域では白金触媒の効果が相対的に大きく働く。
このため、このような2層構造とすることで、低電流域から高電流域にかけて高電圧を維持して発電を行うことが可能となる。
On the other hand, in the two-layer structure of the
For this reason, with such a two-layer structure, it is possible to generate power while maintaining a high voltage from a low current region to a high current region.
また、ジメチルエーテルを燃料とした場合には、内層に白金触媒を、外層に白金/ルテニウム合金触媒を用いても同様の作用効果を得ることができる。
さらに、前記例では、アノード電極2を2層構造としているが、3層以上として、それぞれの層に異なる触媒を含有させてもよい。このような触媒としては、前述の白金触媒、白金/ルテニウム合金触媒以外に、白金/クロム合金触媒、白金/ニッケル合金触媒、白金/コバルト合金触媒、白金/鉄合金触媒などがある。
また、カソード電極3も多層構造とし、それぞれの層に互いに異なる触媒を含有させても同様の効果が得られる。
When dimethyl ether is used as a fuel, the same effect can be obtained even if a platinum catalyst is used for the inner layer and a platinum / ruthenium alloy catalyst is used for the outer layer.
Furthermore, in the above example, the
Also, the
以下、具体例を示す。
(実施例1)
・平均粒径3nmの白金粒子を平均一次粒径30nmのケッチェンブラックに50質量%担時させた担持触媒粒子(田中貴金属社製)を用い、この担持触媒粒子とパーフルオロカーボンスルホン酸イオノマーをイソプロパノールと水(質量比1:2)の分散媒に分散して、触媒分散液(1)を作製した。
Specific examples are shown below.
Example 1
-Using supported catalyst particles (manufactured by Tanaka Kikinzoku Co., Ltd.) in which 50% by mass of platinum particles having an average particle size of 3 nm are supported on ketjen black having an average primary particle size of 30 nm, this supported catalyst particle and perfluorocarbon sulfonate ionomer are mixed with isopropanol. And a water dispersion (mass ratio 1: 2) to prepare a catalyst dispersion (1).
・平均粒径3nmの白金/ルテニウム合金粒子(白金27質量%、ルテニウム13質量%)を平均一次粒径30nmのケッチェンブラックに50質量%担時させた担持触媒粒子(田中貴金属社製)を用い、この担持触媒粒子とパーフルオロカーボンスルホン酸イオノマーをイソプロパノールと水の分散媒に分散して、触媒分散液(2)を作製した。 ・ Supported catalyst particles (manufactured by Tanaka Kikinzoku Co., Ltd.) in which platinum / ruthenium alloy particles having an average particle size of 3 nm (27% by mass of platinum and 13% by mass of ruthenium) are loaded on 50% by mass of ketjen black having an average primary particle size of 30 nm. Using this supported catalyst particle and perfluorocarbonsulfonic acid ionomer in a dispersion medium of isopropanol and water, a catalyst dispersion liquid (2) was prepared.
離型紙となるポリテトラフルオロエチレンシート上に、前記触媒分散液をドクターブレードを用いて複数回塗布、乾燥して厚さ10μmの膜状物を作製した。この膜状物を厚さ50μmの高分子電解質膜となるパーフルオロカーボンスルホン酸ポリマーシート表面に転写して積層物を得た。
ついで、拡散層となるカーボンペーパー(東レ社製:TGP−H−060)をこの積層物の表面に重ね合わせ、ホットプレスにより接合した。
On the polytetrafluoroethylene sheet | seat used as a release paper, the said catalyst dispersion liquid was apply | coated several times using the doctor blade, and it dried and produced the 10-micrometer-thick film-form thing. This membrane was transferred to the surface of a perfluorocarbon sulfonic acid polymer sheet to be a polymer electrolyte membrane having a thickness of 50 μm to obtain a laminate.
Next, carbon paper (Toray Industries, Inc .: TGP-H-060) serving as a diffusion layer was superposed on the surface of this laminate and joined by hot pressing.
このように作製したMEAをカーボン製のセパレータで挟み込み、セルとした。セパレータには、燃料および酸化剤が流れる流路が刻み込まれた構造のものである。
このセルは、前記触媒分散液(1)〜(2)を使用することで3種類を作製した。
・セル1:触媒分散液(1)からなる膜状物を高分子電解質膜の両面に転写してアノードおよびカソード電極が白金触媒を含むもの。
・セル2:触媒分散液(1)からなる膜状物を高分子電解質膜の一方の面に転写して白金触媒を含むカソード電極とし、触媒分散液(2)からなる膜状物を他方の面に転写して白金・ルテニウム合金触媒を含むアノード電極としたもの。
The MEA produced in this way was sandwiched between carbon separators to form a cell. The separator has a structure in which a flow path through which fuel and oxidant flow is engraved.
This cell produced three types by using the said catalyst dispersion liquid (1)-(2).
Cell 1: A film-like material composed of the catalyst dispersion (1) is transferred to both surfaces of the polymer electrolyte membrane, and the anode and cathode electrodes contain a platinum catalyst.
Cell 2: The membrane-like material comprising the catalyst dispersion (1) is transferred to one surface of the polymer electrolyte membrane to form a cathode electrode containing a platinum catalyst, and the membrane-like material comprising the catalyst dispersion (2) is used as the other An anode electrode containing a platinum / ruthenium alloy catalyst transferred onto the surface.
・セル3:触媒分散液(1)からなる膜状物を高分子電解質膜の一方の面に転写して白金触媒を含むカソード電極とし、触媒分散液(1)と触媒分散液(2)とからなる2層構造の膜状物を他方の面に転写して白金/ルテニウム合金触媒からなる層と白金触媒からなる層との2層構造のアノード電極としたもの。
これら3種のセルの出力密度を測定した。測定には、セル温度、燃料の種類、触媒使用量を変化させてその影響を見た。
Cell 3: A membrane comprising the catalyst dispersion (1) is transferred to one surface of the polymer electrolyte membrane to form a cathode electrode containing a platinum catalyst, and the catalyst dispersion (1) and the catalyst dispersion (2) A two-layered film-like material consisting of 2 is transferred to the other surface to form a two-layered anode electrode composed of a platinum / ruthenium alloy catalyst layer and a platinum catalyst layer.
The power density of these three types of cells was measured. The measurement was performed by changing the cell temperature, fuel type, and catalyst usage.
図2に示すものは、セル温度を80℃とし、燃料にジメチルエーテルを用い、触媒量を2mg/cm2とした場合の出力密度を示す。
図2のグラフにおいて、曲線Aは、本発明のセル3の特性を示し、曲線Bは、セル2の特性を、曲線Cはセル1の特性を示す。
2 shows the output density when the cell temperature is 80 ° C., dimethyl ether is used as the fuel, and the catalyst amount is 2 mg / cm 2 .
In the graph of FIG. 2, the curve A shows the characteristics of the
図3に示すものは、セル温度を25℃とし、燃料にメタノールを用い、触媒量を1mg/cm2とした場合の出力密度を示す。
図3のグラフにおいて、曲線Aは、本発明のセル3の特性を示し、曲線Bは、セル2の特性を、曲線Cはセル1の特性を示す。
FIG. 3 shows the power density when the cell temperature is 25 ° C., methanol is used as the fuel, and the amount of catalyst is 1 mg / cm 2 .
In the graph of FIG. 3, the curve A shows the characteristics of the
図4に示すものは、セル温度を50℃とし、燃料にメタノールを用い、触媒量を1mg/cm2とした場合の出力密度を示す。
図4のグラフにおいて、曲線Aは、本発明のセル3の特性を示し、曲線Bは、セル2の特性を、曲線Cはセル1の特性を示す。
4 shows the output density when the cell temperature is 50 ° C., methanol is used as the fuel, and the amount of catalyst is 1 mg / cm 2 .
In the graph of FIG. 4, the curve A shows the characteristics of the
図2〜図4のグラフから明らかなように、本発明に相当する2層構造のセル3では、その出力密度が向上していることがわかる。
As is apparent from the graphs of FIGS. 2 to 4, it can be seen that the output density of the
1・・高分子電解質膜、2・・アノード電極、2A・・内層触媒層、2B・・外層触媒層、3・・カソード電極 1 ·· Polymer electrolyte membrane, 2 ·· Anode electrode, 2A ·· Inner catalyst layer, 2B ·· Outer catalyst layer, 3 ·· Cathode electrode
Claims (4)
前記アノードおよびカソード電極のいずれか一方または両方が複層構造とされ、それぞれの層に含まれる触媒が互いに異なるものであることを特徴とする固体高分子電解質型燃料電池の膜電極接合体。 A membrane electrode assembly comprising a polymer electrolyte membrane and an anode and a cathode formed on the surface of the polymer electrolyte membrane,
One or both of the anode and cathode electrodes have a multilayer structure, and the catalyst contained in each layer is different from each other, and the membrane electrode assembly of a solid polymer electrolyte fuel cell,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007086838A JP2008243776A (en) | 2007-03-29 | 2007-03-29 | Solid polymer electrolyte fuel cell and membrane electrode assembly thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007086838A JP2008243776A (en) | 2007-03-29 | 2007-03-29 | Solid polymer electrolyte fuel cell and membrane electrode assembly thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008243776A true JP2008243776A (en) | 2008-10-09 |
Family
ID=39914829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007086838A Pending JP2008243776A (en) | 2007-03-29 | 2007-03-29 | Solid polymer electrolyte fuel cell and membrane electrode assembly thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008243776A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0927326A (en) * | 1995-04-05 | 1997-01-28 | Johnson Matthey Plc | Improved electrode |
JP2004022503A (en) * | 2002-06-20 | 2004-01-22 | Tanaka Kikinzoku Kogyo Kk | Fuel electrode of solid polymer electrolyte fuel cell |
JP2007257970A (en) * | 2006-03-23 | 2007-10-04 | Sanyo Electric Co Ltd | Fuel cell |
-
2007
- 2007-03-29 JP JP2007086838A patent/JP2008243776A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0927326A (en) * | 1995-04-05 | 1997-01-28 | Johnson Matthey Plc | Improved electrode |
JP2004022503A (en) * | 2002-06-20 | 2004-01-22 | Tanaka Kikinzoku Kogyo Kk | Fuel electrode of solid polymer electrolyte fuel cell |
JP2007257970A (en) * | 2006-03-23 | 2007-10-04 | Sanyo Electric Co Ltd | Fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7771860B2 (en) | Catalyst of a fuel cell, and membrane-electrode assembly and fuel cell system including catalyst | |
US20070231675A1 (en) | Membrane-electrode assembly for fuel cell and fuel cell system comprising same | |
JP2023126365A (en) | Electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell | |
JP2006019261A (en) | Electrolyte membrane for fuel cell, and fuel cell including the same | |
JP4553861B2 (en) | Fuel cell | |
JP2006339124A (en) | Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this | |
JP2001076742A (en) | Solid polymer fuel cell | |
JPH11265721A (en) | Fuel cell | |
WO2011118138A1 (en) | Direct oxidation fuel cell | |
JP2009009724A (en) | Fuel cell | |
US11145873B2 (en) | Membrane electrode assembly and fuel cell comprising core-shell catalyst | |
JP2006049115A (en) | Fuel cell | |
JP2005222720A (en) | Fuel cell | |
JP2008269847A (en) | Ink for fuel cell catalyst layer, its manufacturing method, and membrane electrode assembly for fuel cell | |
JP2008243776A (en) | Solid polymer electrolyte fuel cell and membrane electrode assembly thereof | |
JP2010073419A (en) | Electrolyte membrane-electrode assembly for fuel cell | |
JP2008004402A (en) | Anode for direct methanol fuel cell, and direct methanol fuel cell using it | |
JP2005174836A (en) | Solid polymer fuel cell | |
JP2009129667A (en) | Fuel cell | |
JP2009152128A (en) | Membrane-electrode assembly | |
EP4439744A1 (en) | Membrane-electrode assembly and fuel cell comprising same | |
JP2008288068A (en) | Fuel cell, anode of fuel cell, and membrane electrode assembly | |
JP5272314B2 (en) | Membrane / electrode assembly for direct methanol fuel cell and direct methanol fuel cell using the same | |
JP5535117B2 (en) | Membrane electrode assembly and fuel cell | |
JP2008065986A (en) | Direct methanol type fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120925 |