JP2008241643A - 3次元形状測定装置 - Google Patents
3次元形状測定装置 Download PDFInfo
- Publication number
- JP2008241643A JP2008241643A JP2007086255A JP2007086255A JP2008241643A JP 2008241643 A JP2008241643 A JP 2008241643A JP 2007086255 A JP2007086255 A JP 2007086255A JP 2007086255 A JP2007086255 A JP 2007086255A JP 2008241643 A JP2008241643 A JP 2008241643A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- imaging
- imaging system
- measurement pattern
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
【課題】被測定面の形状変化が大きいような場合でも、三角測量の原理に基づき、被測定面の3次元形状を高精度かつ高速度に求めることが可能な3次元形状測定装置を得る。
【解決手段】一露光時間内に被測定面7の全域に亘って輝線を間欠的に投影、走査する投影走査系2と、被測定面7に投影されて変形した各輝線を互いに異なる方向から撮像する第1および第2の撮像系3,4と、各輝線の投影方向を検出する投影方向検出手段5とを備えることにより、第1の3次元座標取得部61によって得られたステレオ法による3次元座標データに基づく形状解析と、第2の3次元座標取得手段によって得られた光切断法による3次元座標データに基づく形状解析とを、適宜組み合わせて実施できるようにする。
【選択図】図1
【解決手段】一露光時間内に被測定面7の全域に亘って輝線を間欠的に投影、走査する投影走査系2と、被測定面7に投影されて変形した各輝線を互いに異なる方向から撮像する第1および第2の撮像系3,4と、各輝線の投影方向を検出する投影方向検出手段5とを備えることにより、第1の3次元座標取得部61によって得られたステレオ法による3次元座標データに基づく形状解析と、第2の3次元座標取得手段によって得られた光切断法による3次元座標データに基づく形状解析とを、適宜組み合わせて実施できるようにする。
【選択図】図1
Description
本発明は、三角測量の原理を用いて被測定面の3次元形状を求める3次元形状測定装置に関し、特に、形状の変化が大きい被測定面への適用が好適な3次元形状測定装置に関する。
従来、三角測量の原理を利用する3次元形状測定装置としては、被測定面を互いに異なる方向から2つの撮像系で撮像して視差の情報から形状を求めるステレオ法という手法を用いるものが知られている。ステレオ法では、2つの撮像系により撮像された画像間の対応点を求める対応点探索が必要となるが、これを精度良く行なうことができれば、高精度な測定結果を得ることが可能となる。下記特許文献1には、2つの画像間の対応点の判別を容易とするため、被測定面に点状や線状の測定用パターンを投影することが記載されている。
また、ステレオ法における2つの撮像系の一方を、光スポット(点状の測定用パターン)や、輝線(直線状の測定用パターン)の投影走査系に置き換えた光切断法という手法を用いるものも知られている(下記特許文献2参照)。光切断法は、被測定面に光スポットや輝線を投影、走査し、それを投影方向とは異なる方向から撮像するものであり、撮像時点における光スポットや輝線の投影方向を検出すること、および投影走査系と撮像系との距離(基線長)を求めておくことが必要であるが、一般的なステレオ法における対応点探索が不要なため解析が容易となる。
しかしながら、従来のステレオ法および光切断法においては、形状変化が大きい被測定面を測定する場合、被測定面に対する撮像系の向きによっては、被測定面の一部領域を観察することができないため、高精度な測定結果を得ることができないという問題がある。
ステレオ法の場合、異なる2方向から同時に撮像された画像が、被測定面の全領域に亘って必要となるが、被測定面に対する2つの撮像系の向きを固定すると、被測定面の一部領域については一方の撮像系でしか撮像できないことがある。上記特許文献1には、被測定面と2つの撮像系との位置関係を変化させることが開示されているが、位置関係の変動に伴う測定誤差が生じる虞がある。
光切断法の場合でも、光スポットや輝線(の一部)を観察することができない領域が被測定面上に生じることがあり、そのような領域については、被測定面の3次元データを求めることが困難となる。例えば、輝線の一部が欠けて観察された場合において、輝線が直線であることを利用して、欠けた領域の3次元データを補完する手法も存在するが、精度が低下することは否めない。
また、光切断法の場合、被測定面の全域に亘って光スポットや輝線を投影、走査する間に、被測定面を複数回撮像する必要があるので(例えば、輝線を1本分走査する毎に1回撮像する)、1つの測定に要する時間が長いという問題もある。
本発明は、このような事情に鑑みなされたものであり、被測定面の形状変化が大きいような場合でも、三角測量の原理に基づき、被測定面の3次元形状を高精度に求めることが可能であり、かつ撮像回数を低減して、1つの測定に要する時間を短縮し得る3次元形状測定装置を提供することを目的とする。
上記課題を解決するため本発明の3次元形状測定装置では、ステレオ法による形状解析と光切断法による形状解析とを、適宜組み合わせて行なえるようにしている。
すなわち、本発明に係る3次元形状測定装置は、被測定面に測定用パターンを投影、走査する投影走査系と、
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、任意に組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、を備えてなり、
前記投影走査系は、前記第1の撮像系および前記第2の撮像系の一露光時間内に、前記被測定面の全域に亘って前記測定用パターンを投影、走査するように構成されていることを特徴とする。
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、任意に組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、を備えてなり、
前記投影走査系は、前記第1の撮像系および前記第2の撮像系の一露光時間内に、前記被測定面の全域に亘って前記測定用パターンを投影、走査するように構成されていることを特徴とする。
本発明の3次元形状測定装置において、第2の3次元座標取得手段は、第1および第2の撮像系のうちいずれか一方の撮像系のみが測定用パターンを撮像可能であった場合に、該一方の撮像系により撮像された測定用パターンの画像上における座標と、前記第2および第3基線長のうち該一方の撮像系に対応する方の基線長と、前記投影方向とに基づき、該一方の撮像系により撮像された測定用パターンが投影された位置における被測定面の3次元座標を求めるように構成されている、とすることができる。
また、投影走査系は、回動する反射ミラーを介して測定用パターンを被測定面に投影、走査するように構成することができ、この場合、第1および第2の撮像系は、反射ミラーの回動中心を挟んで互いに対称に配置されていることが好ましい。
本発明の3次元形状測定装置によれば、上記構成を備えていることにより、第1の3次元座標取得手段によって得られた3次元座標データに基づく形状解析(ステレオ法による形状解析)と、第2の3次元座標取得手段によって得られた3次元座標データに基づく形状解析(光切断法による形状解析)とを、適宜組み合わせて実施することが可能となる。
これにより、例えば、2つの撮像系により同時に測定用パターンを撮像可能であった場合には、ステレオ法による形状解析を行ない、2つの撮像系のうちいずれか一方の撮像系のみが測定用パターンを撮像可能であった場合には、光切断法による形状解析を行なうことができる。
被測定面の形状変化が大きい場合でも、投影走査系により被測定面に投影、走査された測定用パターンを、2つの撮像系により互いに異なる方向から撮像することによって、被測定面の各領域について、少なくとも一方の撮像系においては測定用パターンを撮像し得る確率は高くなる。したがって、本発明の3次元形状測定装置によれば、被測定面と撮像系との相対的位置を変化させなくとも、形状変化が大きい被測定面の3次元座標データを略全域に亘って得ることができるので、その3次元形状を高精度に測定することが可能となる。
また、第1および第2の撮像系の一露光時間内に、被測定面の全域に亘って測定用パターンを投影、走査する構成としたことにより、測定時の撮像回数を1回のみとすることができるので、1つの測定に要する時間を大幅に短縮することが可能となる。
以下、本発明の実施形態について図面を参照しつつ詳細に説明する。図1は本発明の一実施形態に係る3次元形状測定装置の全体構成を示す図であり、図2はその測定原理を示す概略図である。
図1に示す3次元形状測定装置は、三角測量の原理を用いて被測定面7の3次元形状を測定解析するものであり、図示せぬ三脚に支持された装置本体1と、コンピュータ等からなる解析装置6とを備えてなる。
装置本体1は、被測定面7に輝線(直線状の測定用パターン)K(図2参照)を投影、走査する投影走査系2と、被測定面7に投影されて変形した輝線K0(図2参照)を互いに異なる方向から撮像する第1および第2の撮像系3,4と、輝線Kの投影方向を検出する投影方向検出手段5と、を備えてなる。
上記投影走査系2は、半導体レーザ装置等からなる光源部21と、投影レンズ22と、回動可能な反射ミラーからなる走査ミラー23を有してなる。光源部21からは直進性の高い光が投影レンズ22に向けて間欠的に出力されるように構成されており(例えば、光源部21と投影レンズ22との間に間欠的に開放されるシャッタ(図示略)を配置し、該シャッタが開放される間のみ投影レンズ22に向けて光が出力されるように構成したり、間欠的に光を出力し得るパルスレーザを光源部21として用いたりする)、投影レンズ22は、光源部21からの出力光を輝線生成用の光束に変換して走査ミラー23の回動中心(走査ミラー23の回動軸C(図2参照)と、投影走査系2の光軸L1との交点に位置する。以下「基点P1」と称す)に向けて出射するように構成されている。また、上記走査ミラー23は、図示せぬ回動装置を介して装置筺体に支持されており、該回動装置により、上記投影レンズ22から間欠的に出力される光の各出力タイミングに同期して所定角度ずつ回動せしめられながら、投影レンズ22からの光束を反射することにより、上記輝線Kを、その投影方向を上記所定角度ずつ変化させながら、上記被測定面7の全域に亘って間欠的に投影、走査するようになっている。
上記第1の撮像系3は、被測定面7に投影、走査された輝線K0を、輝線K0の投影方向とは異なる方向から撮像するものであり、図1に示すように、撮像レンズ31と撮像カメラ32とを有してなる。撮像カメラ32は、CCDやCMOS等の撮像面で形成される撮像面33を備えており、撮像レンズ31は、被測定面7に投影、走査された輝線K0の像を、撮像面33上に結像させるように構成されている。また、撮像カメラ32は、撮像面33上に結像された画像情報を画像信号に変換し、解析装置6に出力するようになっている。
上記第2の撮像系4は、被測定面7に投影、走査された輝線K0を、輝線K0の投影方向および第1の撮像系3とは異なる方向から撮像するものであり、図1に示すように、撮像レンズ41と撮像カメラ42とを有してなる。撮像カメラ42は、CCDやCMOS等の撮像面で形成される撮像面43を備えており、撮像レンズ41は、被測定面7に投影、走査された輝線K0の像を、撮像面43上に結像させるように構成されている。また、撮像カメラ42は、撮像面43上に結像された画像情報を画像信号に変換し、解析装置6に出力するようになっている。
本実施形態において、第1および第2の撮像系3,4は、上記基点P1(走査ミラー23の回動中心)を挟んで互いに対称に配置されている。すなわち、図1において、第1の撮像系3における撮像レンズ31の入射瞳の中心(以下「基点P2」と称す)と、第2の撮像系4における撮像レンズ41の入射瞳の中心(以下「基点P3」と称す)とは、上記基点P1を挟んで左右対称に配置されている。また、第1および第2の撮像系3,4の各光軸L2,L3の向きが、互いに左右対称となるように配置されている。これにより、第1および第2の撮像系3,4の収差等に起因する測定誤差を左右対称とすることができるので、誤差補正が容易となるという利点がある。
また、第1および第2の撮像系3,4の相互間と、これらと上記投影走査系2との間には、被測定面7の形状解析の際に行なわれる演算において、その長さが重要なパラメータとなる基線長がそれぞれ設定されている。本実施形態においては、上述の基点P2,P3間に第1基線長d1が設定されており、基点P1,P2間に第2基線長d2が、基点P1,P3間に第3基線長d3が、それぞれ設定されている。なお、上述した対称性により、本実施形態においては、d2=d3であり、またd1=d2+d3となっている。
上記投影方向検出手段5は、ロータリーエンコーダ等を有してなり、上記走査ミラー23の回動角度に基づき輝線Kの投影方向を検出し、その検出信号を解析装置6に出力するようになっている。
一方、上記解析装置6は、メモリに格納された処理プログラムや、CPU、演算回路等によりそれぞれ構成される第1の3次元座標取得部61、第2の3次元座標取得部62、および3次元形状解析部63を備えてなる。
第1の3次元座標取得部61は、第1の3次元座標取得手段を構成するものであり、第1の撮像系3により撮像された画像上における輝線KL(図2参照)の座標と、第1の撮像系3と同じタイミングで第2の撮像系4により撮像された画像上における輝線KR(図2参照)の座標との対応関係、および第1および第2の撮像系3,4の間に設定された第1基線長d1に基づき、輝線K0が投影された位置における被測定面7の3次元座標を求めるように構成されている。
第2の3次元座標取得部62は、第2の3次元座標取得手段を構成するものであり、第1の撮像系3により撮像された画像上における輝線KLの座標と、第1の撮像系3と投影走査系2との間に設定された第2基線長d2と、輝線K0の投影方向とに基づき、および/または、第2の撮像系4により撮像された画像上における輝線KRの座標と、第2の撮像系4と投影走査系2との間に設定された第3基線長d3と、輝線K0の投影方向とに基づき、輝線K0が投影された位置における被測定面7の3次元座標を求めるように構成されている。
3次元形状解析部63は、3次元形状解析手段を構成するものであり、輝線K0が被測定面7を走査する過程において、第1および第2の3次元座標取得部61,62によりそれぞれ求められた3次元座標データを、適宜組み合わせて被測定面7の3次元形状を求めるように構成されている。
次に、本実施形態に係る3次元形状測定装置の作用、および測定解析手順について説明する。
(1)3次元形状測定装置の略正面に設置された被測定面7に対し、投影走査系2は、第1および第2の撮像系3,4の一露光時間内(撮像カメラ32,42に搭載されるCCDやCMOS等の撮像素子における一蓄積時間内)に、被測定面7の全域に亘って輝線Kを、その投影方向を上記所定角度ずつ変化させながら、間欠的に投影、走査する。図2に示すように、輝線Kは鉛直方向に延びる直線状のパターンであり、走査方向は水平方向とされている。
具体的には、例えば、第1および第2の撮像系3,4の一露光時間を33ミリ秒(1/30(秒))とし、この間に、パルスレーザを用いて被測定面7の全域に50本分の輝線Kを投影する。この場合、パルスレーザのオン・オフのデューティ比を1:1とすると、各輝線Kの投影時間はそれぞれ0.33ミリ秒となる。また、上記一露光時間内に、輝線Kの投影方向を全体として30度変化させる場合、各輝線Kの投影方向の変化は0.6度ずつとなる。
(2)第1および第2の撮像系3,4の一露光時間内に、輝線Kが被測定面7の全域に亘って間欠的に投影、走査された被測定面7を、第1および第2の撮像系3,4によって、互いに異なる方向から同時に撮像する。第1および第2の撮像系3,4によって撮像された各々の画像は、被測定面7の形状に応じて変形した複数の輝線K0(図2では簡便化のため1本の輝線K0のみを示す)が、互いに所定間隔を置いて被測定面7の全域に亘って写し出されたものとなっており、この撮像された各画像情報は、共に第1および第2の3次元座標取得部61,62へと送られる。なお、第1および第2の撮像系3,4においては、各撮像面33,43上の複数の画素に跨って各輝線K0が結像されるように、予め撮像倍率等の調整が行なわれている。
(3)投影方向検出手段5により、被測定面7上における各輝線K0の投影方向が検出され、その情報が第2の3次元座標取得部62へと送られる。
(4)第1の撮像系3から送られてきた画像情報に基づき、第1の3次元座標取得部61において、第1の撮像系3により撮像された画像上における各輝線KL(本来は、複数の輝線K0それぞれと対応した複数の輝線KLが撮像されるが、図2では簡便化のため1本の輝線KLのみを示す)上の各点の座標(図2において(xi,yi)と例示)を求める。この座標の特定に際しては、画像上における各輝線KLの線幅中心を求める必要があるが、線幅中心の特定方法としては、2値化処理による方法や、強度分布がガウス分布に従うとして、線幅内で強度がピークとなる位置を求める方法などを用いることができる。
(5)第2の撮像系4から送られてきた画像情報に基づき、第1の3次元座標取得部61において、第2の撮像系4により撮像された画像上における各輝線KR(本来は、複数の輝線K0それぞれと対応した複数の輝線KRが撮像されるが、図2では簡便化のため1本の輝線KRのみを示す)上の各点の座標(図2において(x´p,y´q)と例示)を求める。この座標の特定方法は、上述したのと同様である。
(6)第1の3次元座標取得部61において、各輝線KL上の各点が各輝線KR上のどこに位置するのかを求める対応点探索を行ない、これにより、第1の撮像系3により撮像された画像上における各輝線KLの座標と、第1の撮像系3と同じタイミングで第2の撮像系4により撮像された画像上における各輝線KRの座標との対応関係を求める。なお、対応点探索の手法としては、一方の画像上における視線を他方の画像上に投影した線(「エピポーラ線」と称される)の上において、パターンマッチング等の手法を用いて対応点を探索する手法を用いることができる。
(7)第1の3次元座標取得部61において、互いに対応付けられた各輝線KL,KRの各座標情報と、上記第1基線長d1とに基づき、各輝線K0が投影された位置における被測定面7の3次元座標(図2において(X,Y,Z)と例示)を、三角測量の原理を用いて求める。なお、この3次元座標(以下「第1手法による3次元座標」と称す)を求める手法としては、ステレオ法において用いられる一般的な算定手法を用いることができる。
(8)第2の3次元座標取得部62において、第1の撮像系3から送られてきた画像情報に基づき、第1の撮像系3により撮像された画像上における各輝線KL上の各点の座標を求めるとともに、第2の撮像系4から送られてきた画像情報に基づき、第2の撮像系4により撮像された画像上における各輝線KR上の各点の座標を求める。
(9)第2の3次元座標取得部62において、求められた各輝線KLの座標と、上記第2基線長d2と、各輝線K0の投影方向とに基づき、各輝線K0が投影された位置における被測定面7の3次元座標(以下「第2手法による3次元座標」と称す)を求めるとともに、同じく求められた各輝線KRの座標と、上記第3基線長d3と、各輝線K0の投影方向とに基づき、各輝線K0が投影された位置における被測定面7の3次元座標(以下「第3手法による3次元座標」と称す)を、三角測量の原理を用いて求める。なお、これら第2手法および第3手法による3次元座標を求める手法としては、光切断法において用いられる一般的な算定手法を用いることができる。
(10)上記(4)〜(9)の手順により、上述した第1手法による3次元座標から第3手法による3次元座標までの、被測定面7の全域に係る計3組の3次元座標が得られることになる。
(11)3次元形状解析部63において、第1および第2の3次元座標取得部61,62によりそれぞれ求められた被測定面7の全域に係る3組の3次元座標データを、適宜組み合わせて被測定面7の3次元形状を求める。このデータの組合せは、例えば、次のように行なう。すなわち、第1手法による3次元座標は、第1および第2の撮像系3,4の双方が同一の輝線K0を撮像し得た被測定面7上の領域に対してのみ求めることができる。一方、第2手法による3次元座標は、第1の撮像系3だけが輝線K0を撮像し得た被測定面7上の領域に対しても求めることができ、第3手法による3次元座標は、第2の撮像系3だけが輝線K0を撮像し得た被測定面7上の領域に対しても求めることができる。そこで、基本的には、第1手法による3次元座標に基づき、被測定面7の3次元形状を求め、第1手法による3次元座標が得られない被測定面7上の領域については、第2手法による3次元座標(第1の撮像系3だけが輝線K0を撮像し得た場合)、または第3手法による3次元座標(第2の撮像系3だけが輝線K0を撮像し得た場合)を、補完的に用いて3次元形状を求めるようにする。
なお、上述した手順では、第2の3次元座標取得部62において、第2手法による3次元座標と第3手法による3次元座標との双方を常時求めるようにしているが、第1および第2の撮像系3,4の双方が同一の輝線K0を撮像し得た被測定面7上の領域については、第2手法および第3手法による3次元座標の算定は行なわず、第1および第2の撮像系3,4のうちいずれか一方の撮像系のみが輝線K0を撮像し得た被測定面7上の領域については、撮像し得た方の撮像系の画像情報に基づく3次元座標(第1の撮像系3のみが撮像し得た場合は第2手法による3次元座標、第2の撮像系3のみが撮像し得た場合は第3手法による3次元座標)を求めるようにしてもよい。
また、本実施形態では、第1および第2の撮像系3,4の2つの撮像系を備えているが、3つ以上の撮像系を備えるようにしてもよい。さらに、本実施形態では、1つの直線状の測定用パターン(輝線K)を被測定面7に投影し、これを走査するようにしているが、複数の直線状の測定用パターンを被測定面7に投影、走査するようにしたり、点状の投影用パターンを被測定面7に投影、走査するようにしたり、他の図形からなる投影用パターンを被測定面7に投影、走査するようにしたりすることも可能である。
1 装置本体
2 投影走査系
3 第1の撮像系
4 第2の撮像系
5 投影方向検出手段
6 解析装置
7 被測定面
21 光源部
22 投影レンズ
23 走査ミラー
31,41 撮像レンズ
32,42 撮像カメラ
33,43 撮像面
61 第1の3次元座標取得部
62 第2の3次元座標取得部
63 3次元形状解析部
L1〜L3 光軸
P1〜P3 基点
d1 第1基線長
d2 第2基線長
d3 第3基線長
K 輝線
K0 (投影されて変形した)輝線
KL (第1の撮像系により撮像された画像上における)輝線
KR (第2の撮像系により撮像された画像上における)輝線
C 回動軸
2 投影走査系
3 第1の撮像系
4 第2の撮像系
5 投影方向検出手段
6 解析装置
7 被測定面
21 光源部
22 投影レンズ
23 走査ミラー
31,41 撮像レンズ
32,42 撮像カメラ
33,43 撮像面
61 第1の3次元座標取得部
62 第2の3次元座標取得部
63 3次元形状解析部
L1〜L3 光軸
P1〜P3 基点
d1 第1基線長
d2 第2基線長
d3 第3基線長
K 輝線
K0 (投影されて変形した)輝線
KL (第1の撮像系により撮像された画像上における)輝線
KR (第2の撮像系により撮像された画像上における)輝線
C 回動軸
Claims (4)
- 被測定面に測定用パターンを投影、走査する投影走査系と、
前記被測定面に投影、走査された前記測定用パターンを互いに異なる方向から撮像する第1および第2の撮像系と、
前記測定用パターンの投影方向を検出する投影方向検出手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と同じタイミングで前記第2の撮像系により撮像された画像上における前記測定用パターンの座標との対応関係、および前記第1および第2の撮像系の間に設定された第1基線長に基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第1の3次元座標取得手段と、
前記第1の撮像系により撮像された画像上における前記測定用パターンの座標と、該第1の撮像系と前記投影走査系との間に設定された第2基線長と、前記投影方向とに基づき、および/または、前記第2の撮像系により撮像された画像上における前記測定用パターンの座標と、該第2の撮像系と前記投影走査系との間に設定された第3基線長と、前記投影方向とに基づき、前記測定用パターンが投影された位置における前記被測定面の3次元座標を求める第2の3次元座標取得手段と、
前記測定用パターンが前記被測定面を走査する過程において、前記第1および第2の3次元座標取得手段によりそれぞれ求められた3次元座標データを、任意に組み合わせて前記被測定面の3次元形状を求める3次元形状解析手段と、を備えてなり、
前記投影走査系は、前記第1の撮像系および前記第2の撮像系の一露光時間内に、前記被測定面の全域に亘って前記測定用パターンを投影、走査するように構成されていることを特徴とする3次元形状測定装置。 - 前記第2の3次元座標取得手段は、前記第1および第2の撮像系のうちいずれか一方の撮像系のみが前記測定用パターンを撮像可能であった場合に、該一方の撮像系により撮像された前記測定用パターンの画像上における座標と、前記第2および第3基線長のうち該一方の撮像系に対応する方の基線長と、前記投影方向とに基づき、該一方の撮像系により撮像された前記測定用パターンが投影された位置における前記被測定面の3次元座標を求めるように構成されている、ことを特徴とする3次元形状測定装置。
- 前記投影走査系は、回動する反射ミラーを介して前記測定用パターンを前記被測定面に投影、走査するように構成されている、ことを特徴とする請求項1または2記載の3次元形状測定装置。
- 前記第1および第2の撮像系は、前記反射ミラーの回動中心を挟んで互いに対称に配置されている、ことを特徴とする請求項3記載の3次元形状測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007086255A JP2008241643A (ja) | 2007-03-29 | 2007-03-29 | 3次元形状測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007086255A JP2008241643A (ja) | 2007-03-29 | 2007-03-29 | 3次元形状測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008241643A true JP2008241643A (ja) | 2008-10-09 |
Family
ID=39913163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007086255A Withdrawn JP2008241643A (ja) | 2007-03-29 | 2007-03-29 | 3次元形状測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008241643A (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012037186A2 (en) * | 2010-09-15 | 2012-03-22 | Perceptron, Inc. | Non-contact sensing system having mems-based light source |
JP2015501938A (ja) * | 2011-12-16 | 2015-01-19 | フリードリヒ−シラー−ユニバーシタット イエナ | 深さが制限された物体の3次元測定方法 |
US9013711B2 (en) | 2008-04-01 | 2015-04-21 | Perceptron, Inc. | Contour sensor incorporating MEMS mirrors |
US9170097B2 (en) | 2008-04-01 | 2015-10-27 | Perceptron, Inc. | Hybrid system |
CN105313126A (zh) * | 2014-07-29 | 2016-02-10 | 精工爱普生株式会社 | 控制系统、机器人系统、以及控制方法 |
CN107014312A (zh) * | 2017-04-25 | 2017-08-04 | 西安交通大学 | 一种振镜式线激光扫描三维测量系统的整体标定方法 |
JP2018109541A (ja) * | 2016-12-28 | 2018-07-12 | 株式会社キーエンス | 光走査高さ測定装置 |
JP2018109540A (ja) * | 2016-12-28 | 2018-07-12 | 株式会社キーエンス | 光走査高さ測定装置 |
JP2018109543A (ja) * | 2016-12-28 | 2018-07-12 | 株式会社キーエンス | 光走査高さ測定装置 |
CN113375616A (zh) * | 2020-03-10 | 2021-09-10 | 昆山华复精密金属有限公司 | 一种产品三维辅助扫描系统及其方法 |
CN114080535A (zh) * | 2019-06-28 | 2022-02-22 | 佳能株式会社 | 测量设备、摄像设备、测量系统、控制方法以及程序 |
WO2022157993A1 (ja) * | 2021-01-20 | 2022-07-28 | オムロン株式会社 | 計測システム、検査システム、計測装置、計測方法、検査方法、及びプログラム |
-
2007
- 2007-03-29 JP JP2007086255A patent/JP2008241643A/ja not_active Withdrawn
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9013711B2 (en) | 2008-04-01 | 2015-04-21 | Perceptron, Inc. | Contour sensor incorporating MEMS mirrors |
US9170097B2 (en) | 2008-04-01 | 2015-10-27 | Perceptron, Inc. | Hybrid system |
WO2012037186A2 (en) * | 2010-09-15 | 2012-03-22 | Perceptron, Inc. | Non-contact sensing system having mems-based light source |
WO2012037186A3 (en) * | 2010-09-15 | 2012-05-31 | Perceptron, Inc. | Non-contact sensing system having mems-based light source |
CN103180689A (zh) * | 2010-09-15 | 2013-06-26 | 视感控器有限公司 | 具有基于mems的光源的非接触式传感系统 |
US9204129B2 (en) | 2010-09-15 | 2015-12-01 | Perceptron, Inc. | Non-contact sensing system having MEMS-based light source |
JP2015501938A (ja) * | 2011-12-16 | 2015-01-19 | フリードリヒ−シラー−ユニバーシタット イエナ | 深さが制限された物体の3次元測定方法 |
JP2016031284A (ja) * | 2014-07-29 | 2016-03-07 | セイコーエプソン株式会社 | 制御システム、ロボットシステム、及び制御方法 |
CN105313126A (zh) * | 2014-07-29 | 2016-02-10 | 精工爱普生株式会社 | 控制系统、机器人系统、以及控制方法 |
CN105313126B (zh) * | 2014-07-29 | 2019-01-01 | 精工爱普生株式会社 | 控制系统、机器人系统、以及控制方法 |
JP2018109541A (ja) * | 2016-12-28 | 2018-07-12 | 株式会社キーエンス | 光走査高さ測定装置 |
JP2018109540A (ja) * | 2016-12-28 | 2018-07-12 | 株式会社キーエンス | 光走査高さ測定装置 |
JP2018109543A (ja) * | 2016-12-28 | 2018-07-12 | 株式会社キーエンス | 光走査高さ測定装置 |
CN107014312A (zh) * | 2017-04-25 | 2017-08-04 | 西安交通大学 | 一种振镜式线激光扫描三维测量系统的整体标定方法 |
CN114080535A (zh) * | 2019-06-28 | 2022-02-22 | 佳能株式会社 | 测量设备、摄像设备、测量系统、控制方法以及程序 |
US20220113131A1 (en) * | 2019-06-28 | 2022-04-14 | Canon Kabushiki Kaisha | Measurement apparatus, image capturing apparatus, measurement system, control method, and storage medium |
CN113375616A (zh) * | 2020-03-10 | 2021-09-10 | 昆山华复精密金属有限公司 | 一种产品三维辅助扫描系统及其方法 |
WO2022157993A1 (ja) * | 2021-01-20 | 2022-07-28 | オムロン株式会社 | 計測システム、検査システム、計測装置、計測方法、検査方法、及びプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008241643A (ja) | 3次元形状測定装置 | |
JP4760391B2 (ja) | 測距装置及び測距方法 | |
JP2006514739A5 (ja) | ||
JP2003130621A (ja) | 3次元形状計測方法およびその装置 | |
JP2002139304A (ja) | 距離測定装置、及び距離測定方法 | |
WO2022050279A1 (ja) | 三次元計測装置 | |
KR20190074841A (ko) | 옵티컬 트래킹 시스템 및 옵티컬 트래킹 방법 | |
JP2017531258A (ja) | カメラ画像で投影構造パターンの構造要素を特定する方法および装置 | |
US9594028B2 (en) | Method and apparatus for determining coplanarity in integrated circuit packages | |
JP2015072197A (ja) | 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム | |
JP2007093412A (ja) | 3次元形状測定装置 | |
JP2002099902A (ja) | 両眼立体視によって物体の3次元情報を計測する画像処理装置およびその方法又は計測のプログラムを記録した記録媒体 | |
JP3941631B2 (ja) | 三次元撮像装置および方法 | |
JP2017198470A (ja) | 計測装置、計測方法、システム及び物品の製造方法 | |
JP2000205821A (ja) | 三次元形状計測装置及びその三次元形状計測方法 | |
JP2007240197A (ja) | 三次元形状計測システム | |
JP2010014505A (ja) | 三次元形状測定装置及び三次元形状測定方法 | |
JP2003329418A (ja) | 3次元計測装置 | |
JP2007333525A (ja) | 距離測定装置 | |
JP5280918B2 (ja) | 形状測定装置 | |
JP2504944B2 (ja) | 3次元情報処理方法 | |
JP2006078291A (ja) | 全方位三次元計測装置 | |
JP2001183120A (ja) | 3次元入力方法及び3次元入力装置 | |
KR100395773B1 (ko) | 두 장의 사진을 이용한 광 삼각법 삼차원 측정 장치 | |
JPS6129704A (ja) | 計測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100601 |