JP2008241459A - Method and apparatus for measuring road surface condition - Google Patents
Method and apparatus for measuring road surface condition Download PDFInfo
- Publication number
- JP2008241459A JP2008241459A JP2007082486A JP2007082486A JP2008241459A JP 2008241459 A JP2008241459 A JP 2008241459A JP 2007082486 A JP2007082486 A JP 2007082486A JP 2007082486 A JP2007082486 A JP 2007082486A JP 2008241459 A JP2008241459 A JP 2008241459A
- Authority
- JP
- Japan
- Prior art keywords
- snow
- laser pattern
- measuring
- pattern
- quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本発明は例えば路面融雪、交通情報システムの分野への応用が期待される路面状況計測方法及びその装置に関するものである。 The present invention relates to a road surface condition measuring method and apparatus which are expected to be applied to the fields of road surface snow melting and traffic information systems, for example.
従来、この種の路面状況計測方法及びその装置として、路面に描かれた所定形状の各種認識マークを光源で照明し、この各種認識マークをカメラで撮影し、カメラで撮影された認識マークの画像を画像解析して路面の状況を計測しようとする構造のものが知られている。
しかしながらこれら従来構造の場合、計測すべき路面に各種認識マークを付しておく必要があったり、カラー画像を画像処理する必要があったりし、また、路面の乾燥、湿潤、積雪の有無などの検出については可能であるとしても、路面に多量の降雪があった場合における路面からの積雪深さたる積雪深、積雪面の凹凸状況、雪面の粗度や硬さなどの雪質についての計測までは困難であるという不都合を有している。 However, in the case of these conventional structures, it is necessary to put various recognition marks on the road surface to be measured, or to perform color image processing, and also whether the road surface is dry, wet, snowy, etc. Even if it is possible to detect, measurement of snow quality such as snow depth, snow surface unevenness, snow surface roughness and hardness when there is a lot of snow on the road surface Until then.
本発明はこれらの不都合を解決することを目的とするもので、本発明のうちで、請求項1記載の方法の発明は、積雪面に照射手段によりレーザーパターンを斜め上方から照射し、該積雪面に照射されたレーザーパターンを撮像手段により撮影し、該撮影されたレーザーパターンの位置の変化に基づいて積雪深計測手段積雪深さを計測し、かつ、該撮影されたレーザーパターンの形状に基づいて凹凸計測手段により積雪面の凹凸状況を計測し、更に、上記撮影されたレーザーパターンの形状の変化に基づいて雪質計測手段により積雪面の雪質を計測することを特徴とする路面状況計測方法にある。
The present invention aims to solve these disadvantages. Among the present inventions, the invention of the method according to
又、請求項2記載の装置の発明は、積雪面にレーザーパターンを斜め上方から照射する照射手段と、該積雪面に照射されたレーザーパターンを撮影する撮像手段と、該撮影されたレーザーパターンの位置の変化に基づいて積雪深さを計測する積雪深計測手段と、該撮影されたレーザーパターンの形状に基づいて積雪面の凹凸状況を計測する凹凸計測手段と、上記撮影されたレーザーパターンの形状の変化に基づいて積雪面の雪質を計測する雪質計測手段とを具備してなる路面状況計測装置にある。 According to a second aspect of the present invention, there is provided an apparatus for irradiating a snow pattern with a laser pattern obliquely from above, an imaging unit for photographing the laser pattern irradiated on the snow surface, Snow depth measuring means for measuring snow depth based on a change in position, unevenness measuring means for measuring the uneven state of the snow surface based on the shape of the photographed laser pattern, and shape of the photographed laser pattern The road surface condition measuring device comprises snow quality measuring means for measuring the snow quality of the snowy surface based on the change in the snow level.
又、請求項3記載の装置の発明は、上記レーザーパターンは線幅をもつ直線状の線分パターンであることを特徴とするものであり、又、請求項4記載の発明は、上記線幅をもつ直線状の線分パターンであるレーザーパターンを道路の延長方向に交差する方向に照射することを特徴とするものであり、又、請求項5記載の発明は、上記雪質計測手段は、積雪面の雪質を把握する要素として、積雪面の粗度及び又は積雪面の硬さを計測することを特徴とするものである。
The invention of
本発明は上述の如く、請求項1記載の発明にあっては、積雪面に照射手段によりレーザーパターンを斜め上方から照射し、積雪面に照射されたレーザーパターンを撮像手段により撮影し、撮影されたレーザーパターンの位置の変化に基づいて積雪深計測手段により積雪深さを計測し、かつ、該撮影されたレーザーパターンの形状に基づいて凹凸計測手段により積雪面の凹凸状況を計測し、更に、上記撮影されたレーザーパターンの形状の変化に基づいて雪質計測手段により積雪面の雪質を計測することができ、このため、積雪深さ及び積雪面の凹凸状況に加えて雪質を計測することができ、路面融雪の効率化並びに交通情報システムの高精度化を図ることができる。 As described above, in the invention according to the first aspect, the laser pattern is irradiated from the obliquely upper side to the snow cover surface by the irradiating means, and the laser pattern irradiated to the snow cover surface is photographed by the image capturing means. The snow depth is measured by the snow depth measuring means based on the change in the position of the laser pattern, and the uneven state of the snow surface is measured by the unevenness measuring means based on the photographed laser pattern shape. The snow quality of the snow surface can be measured by the snow quality measuring means based on the change in the shape of the photographed laser pattern. For this reason, the snow quality is measured in addition to the snow depth and the uneven state of the snow surface. It is possible to improve the efficiency of melting snow on the road surface and to improve the accuracy of the traffic information system.
又、請求項3記載の発明にあっては、上記レーザーパターンは線幅をもつ直線状の線分パターンであるから、点状のスポット光に比べ、積雪面の微少な凹凸の影響による計測制度のばらつきを抑制することができると共に積雪深、積雪面の凹凸状況及び雪質を画像処理により容易に計測することができ、又、請求項4記載の発明にあっては、上記線幅をもつ直線状の線分パターンであるレーザーパターンを道路の延長方向に交差する方向に照射するようにしているから、道路横断方向の積雪深、積雪面及び雪質の情報を取り込むことができ、交通情報システムの高精度化を図ることができ、又、請求項5記載の発明にあっては、上記雪質計測手段は、積雪面の雪質を把握する要素として、積雪面の粗度及び又は積雪面の硬さを計測するようにしているから、交通情報システムの高精度化を図ることができる。
Further, in the invention described in
図1乃至図9は本発明の実施の形態例を示し、図1、図2の如く、1は照射手段であって、この場合、レーザー光を照射する半導体レーザーからなり、この照射手段1から積雪面SにレーザーパターンLを斜め上方から照射するように構成している。
1 to 9 show an embodiment of the present invention. As shown in FIGS. 1 and 2,
この場合、上記照射手段1として、線幅をもつ直線状の線分パターンからなるレーザーパターンLが斜め上方から照射される構造のものが用いられている。このレーザーパターンLとしては、線分パターンの他に、楕円状のレーザーパターン等が用いられ、但し、点状のスポット光は積雪面の微少な凹凸の影響を受け易く計測制度のばらつきが生ずることがあるので好ましくない。また、レーザーパターンLの波長は自動車運転者の視覚への影響を考慮すると赤外線領域が望ましい。 In this case, as the irradiating means 1, one having a structure in which a laser pattern L composed of a linear line segment pattern having a line width is irradiated obliquely from above is used. As the laser pattern L, an elliptical laser pattern or the like is used in addition to the line segment pattern. However, the spot-like spot light is easily affected by minute irregularities on the snowy surface, resulting in variations in measurement systems. This is not preferable. In addition, the wavelength of the laser pattern L is preferably in the infrared region in consideration of the influence on the driver's vision.
又、この場合、図2の如く、この線幅をもつ直線状の線分パターンからなるレーザーパターンLを道路の延長方向Qに交差する方向に照射するように配置して構成している。 In this case, as shown in FIG. 2, the laser pattern L composed of a straight line segment pattern having this line width is arranged so as to irradiate in a direction intersecting the road extending direction Q.
2は撮像手段であって、この場合、上記積雪面Sに照射されたレーザーパターンLの撮影領域Rを撮影して撮影信号を出力するカメラにより構成されている。
3は積雪深計測手段であって、この場合、上記撮像手段2により撮影されたレーザーパターンLを画像処理して位置の変化を計測し、このレーザーパターンLの位置の変化に基づいて積雪深さを計測するように構成されている。
この場合、図3の如く、積雪により積雪面Sが路面Dから上に変化すると、レーザーパターンLの位置が低位置L1から高位置L2のように変化し、このレーザーパターンLの位置の変化、即ち、レーザーパターンLの変位と積雪深との相対関係は図4に示す関係であり、このため、図5の如く、この撮像手段2により撮影されたレーザーパターンLを画像処理により位置の変化εを計測し、レーザーパターンLの位置の変化εに基づいて積雪深さHを演算計測して位置計測信号を出力するように構成している。 In this case, as shown in FIG. 3, when the snow surface S changes from the road surface D due to snow, the position of the laser pattern L changes from the low position L 1 to the high position L 2 . The change, that is, the relative relationship between the displacement of the laser pattern L and the snow depth is the relationship shown in FIG. 4. Therefore, as shown in FIG. 5, the position of the laser pattern L photographed by the imaging means 2 is processed by image processing. The change ε is measured, the snow depth H is calculated and measured based on the change ε of the position of the laser pattern L, and a position measurement signal is output.
4は凹凸計測手段であって、この場合、上記撮像手段2により撮影されたレーザーパターンLの形状を画像処理により計測し、このレーザーパターンの形状に基づいて積雪面の凹凸状況を計測するように構成されている。 Reference numeral 4 denotes unevenness measuring means. In this case, the shape of the laser pattern L photographed by the imaging means 2 is measured by image processing, and the unevenness state of the snowy surface is measured based on the shape of the laser pattern. It is configured.
この場合、図6の如く、積雪面Sに凹凸があると、本来、直線状であるレーザーパターンLの形状に凹部Tや凸部Pの存在が撮影され、この撮影された凹凸を画像処理し、このレーザーパターンLの凹凸の形状に基づいて積雪面の凹凸状況を計測して凹凸計測信号を出力するように構成されている。 In this case, as shown in FIG. 6, if the snowy surface S has irregularities, the presence of the concave portions T and the convex portions P is photographed in the shape of the laser pattern L that is originally linear, and the photographed irregularities are subjected to image processing. Based on the uneven shape of the laser pattern L, the uneven state of the snowy surface is measured and an unevenness measurement signal is output.
5は雪質計測手段であって、上記撮像手段2により撮影されたレーザーパターンLの形状の変化を画像処理により計測し、このレーザーパターンLの形状の変化に基づいて積雪面の雪質を計測するように構成されている。
この場合、積雪面の粗度及び又は積雪面の硬さを、雪質を把握するための要素として計測するようにしており、即ち、図7(a)の如く、積雪面Sの空隙S1と雪粒子S2の割合たる空隙率が大きく、積雪面が粗の状態であると、レーザパターンLの輪郭、例えば、線幅をもつ直線状の線分パターンにあっては、レーザー光の積雪内部における散乱光が多くなり、このため、線分パターンの線幅は大きくなり、逆に、図7(b)の如く、積雪面Sの空隙率が小さく、積雪面Sが密の状態であると、レーザパターンLの輪郭、例えば、線幅をもつ直線状の線分パターンにあっては、レーザー光の積雪内部での散乱光が少なくなり、このため、線分パターンの線幅はレーザー光の線幅に近い小さいなものとなり、従って、これら撮像されたレーザーパターンLの線幅の輝度値の直線回帰を行って二値化し、得られた二値化線幅の切片(Y軸)が平均的積雪深を表しており、この二値化線幅と積雪面の粗度は図8の関係であり、この二値化線幅の大小により積雪面Sの粗、密の粗度を演算計測して粗度計測信号を出力するように構成されている。 In this case, the roughness of the snow cover and / or the hardness of the snow cover is measured as an element for grasping the snow quality, that is, the gap S 1 of the snow cover S as shown in FIG. If the void ratio, which is the ratio of the snow particles S 2 , is large and the snow surface is rough, the laser beam snow accumulation is present in the contour of the laser pattern L, for example, a linear line segment pattern having a line width. Scattered light increases in the interior, and therefore the line width of the line segment pattern increases. Conversely, as shown in FIG. 7B, the porosity of the snow cover surface S is small and the snow cover surface S is dense. In the case of the outline of the laser pattern L, for example, a linear line segment pattern having a line width, the scattered light inside the snow cover of the laser beam is reduced. For this reason, the line width of the line segment pattern is the laser beam. The line width of the laser is small, so these imaged lasers A linear regression of the luminance value of the line width of the pattern L is performed to binarize, and the obtained binarized line width intercept (Y axis) represents the average snow depth, and this binarized line width and snow cover The surface roughness is the relationship shown in FIG. 8, and the roughness and density roughness of the snow-covered surface S are calculated and measured according to the binarization line width, and a roughness measurement signal is output.
又、積雪面Sが柔らかい状態であると、レーザパターンLの輪郭、例えば、線幅をもつ直線状の線分パターンにあっては、レーザー光の積雪内部での散乱光が多くなり、このため、線分パターンの線幅は大きくなり、逆に、積雪面Sが硬い状態であると、レーザパターンLの輪郭、例えば、線幅をもつ直線状の線分パターンにあっては、レーザー光の積雪内部での散乱光が少なくなり、このため、線分パターンの線幅はレーザー光の線幅に近い小さいなものとなり、したがって、これら撮像されたレーザーパターンLの線幅の輝度値の直線回帰を行って二値化し、この二値化線幅の大小と積雪面の硬さとの関係は図9の関係であり、二値化線幅の大小により積雪面の硬さを演算計測して硬さ計測信号を出力するように構成されている。 Further, when the snow cover surface S is soft, the laser beam L has a large amount of scattered light inside the snow cover in the outline of the laser pattern L, for example, a linear line segment pattern having a line width. The line width of the line segment pattern increases, and conversely, if the snow-covered surface S is hard, the contour of the laser pattern L, for example, a linear line segment pattern having a line width, The scattered light inside the snow cover is reduced, and therefore, the line width of the line segment pattern is small and close to the line width of the laser light. Therefore, linear regression of the luminance values of the line widths of these captured laser patterns L is performed. The binarized line width and the snow surface hardness are related as shown in FIG. 9, and the snow surface hardness is calculated and measured according to the binarized line width. It is configured to output a measurement signal.
この実施の形態例は上記構成であるから、積雪面Sに照射手段1によりレーザーパターンLを斜め上方から照射し、積雪面Sに照射されたレーザーパターンLを撮像手段2により撮影し、撮影されたレーザーパターンPの位置の変化に基づいて積雪深計測手段3により積雪深さHを計測し、かつ、該撮影されたレーザーパターンLの形状に基づいて凹凸計測手段4により積雪面Sの凹凸状況を計測し、更に、上記撮影されたレーザーパターンLの形状の変化に基づいて雪質計測手段5により積雪面の雪質を計測することができ、このため、積雪深さH及び積雪面Sの凹凸状況に加えて雪質を計測することができ、路面融雪の効率化並びに交通情報システムの高精度化を図ることができる。 Since this embodiment is configured as described above, the laser pattern L is irradiated to the snow cover surface S by the irradiation means 1 from obliquely above, and the laser pattern L irradiated to the snow cover surface S is photographed by the image pickup means 2 and photographed. The snow depth H is measured by the snow depth measuring means 3 based on the change of the position of the laser pattern P, and the unevenness state of the snow surface S is measured by the unevenness measuring means 4 based on the photographed laser pattern L shape. And the snow quality of the snow surface can be measured by the snow quality measuring means 5 based on the change in the shape of the photographed laser pattern L. For this reason, the snow depth H and the snow surface S can be measured. In addition to unevenness, snow quality can be measured, so that the efficiency of snow melting on the road surface and high accuracy of the traffic information system can be improved.
この場合、上記レーザーパターンLは線幅をもつ直線状の線分パターンであるから、点状のスポット光に比べ、積雪面の微少な凹凸の影響による計測制度のばらつきを抑制することができると共に積雪深H、積雪面Sの凹凸状況及び雪質を画像処理により容易に計測することができ、又、この場合、上記線幅をもつ直線状の線分パターンであるレーザーパターンLを道路の延長方向Qに交差する方向に照射するようにしているから、道路横断方向の積雪深H、積雪面S及び雪質の情報を取り込むことができ、交通情報システムの高精度化を図ることができ、又、この場合、上記雪質計測手段5は、積雪面の雪質を把握する要素としての積雪面Sの粗度及び又は積雪面Sの硬さを計測するようにしているから、交通情報システムの高精度化を図ることができる。 In this case, since the laser pattern L is a linear line segment pattern having a line width, it is possible to suppress variations in the measurement system due to the influence of minute unevenness on the snowy surface as compared to the spot light spot. The snow depth H, the unevenness of the snow surface S, and the snow quality can be easily measured by image processing. In this case, the laser pattern L, which is a straight line segment pattern having the above-mentioned line width, is extended to the road. Since irradiation is performed in a direction crossing the direction Q, it is possible to capture information on snow depth H, snow surface S and snow quality in the direction across the road, and to improve the accuracy of the traffic information system, In this case, the snow quality measuring means 5 measures the roughness of the snow surface S and / or the hardness of the snow surface S as an element for grasping the snow quality of the snow surface. Increased accuracy It is possible.
尚、本発明は上記実施の形態例に限られるものではなく、照射手段1、撮像手段2の構造、積雪深計測手段3、凹凸計測手段4、雪質計測手段5の構成等は適宜設計して変更される。 The present invention is not limited to the above embodiment, and the structure of the irradiation means 1, the imaging means 2, the snow depth measurement means 3, the unevenness measurement means 4, the snow quality measurement means 5 and the like are appropriately designed. Changed.
以上、所期の目的を充分達成することができる。 As described above, the intended purpose can be sufficiently achieved.
S 積雪面
1 照射手段
2 撮像手段
3 積雪深計測手段
4 凹凸計測手段
5 雪質計測手段
Claims (5)
The said snow quality measurement means measures the roughness of a snow surface and / or the hardness of a snow surface as an element which grasps | ascertains the snow quality of a snow surface, The any one of Claims 2-4 characterized by the above-mentioned. Road surface condition measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007082486A JP2008241459A (en) | 2007-03-27 | 2007-03-27 | Method and apparatus for measuring road surface condition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007082486A JP2008241459A (en) | 2007-03-27 | 2007-03-27 | Method and apparatus for measuring road surface condition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008241459A true JP2008241459A (en) | 2008-10-09 |
Family
ID=39912991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007082486A Pending JP2008241459A (en) | 2007-03-27 | 2007-03-27 | Method and apparatus for measuring road surface condition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008241459A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010210324A (en) * | 2009-03-09 | 2010-09-24 | Nissan Motor Co Ltd | Road conditions estimating apparatus and method |
KR101388534B1 (en) | 2012-07-16 | 2014-04-23 | 지모 주식회사 | Optical snow meter using laser point |
JP2021015094A (en) * | 2019-07-16 | 2021-02-12 | 株式会社Subaru | Snow cover state observation system |
CN113534297A (en) * | 2021-07-16 | 2021-10-22 | 新疆林科院森林生态研究所 | Device and method capable of accurately monitoring accumulated snow depth of forest in real time |
CN114821361A (en) * | 2022-06-24 | 2022-07-29 | 成都信息工程大学 | Method and device for calculating snow depth, computer equipment and readable storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102109A (en) * | 1985-10-29 | 1987-05-12 | Mitsubishi Electric Corp | Instrument for measuring snow depth |
JPH0850182A (en) * | 1994-08-05 | 1996-02-20 | Nippon Giken:Kk | Optical snow depth measuring device |
JPH10268067A (en) * | 1997-03-25 | 1998-10-09 | Koito Ind Ltd | Snow coverage measuring device |
JPH11223675A (en) * | 1998-02-04 | 1999-08-17 | Japan Radio Co Ltd | Snowfall measuring method and device |
JPH11337662A (en) * | 1998-05-22 | 1999-12-10 | Japan Radio Co Ltd | Method and device for measuring snowfall |
JP2000180357A (en) * | 1998-12-11 | 2000-06-30 | Omron Corp | Road surface state distinguishing apparatus |
JP2005076402A (en) * | 2003-09-03 | 2005-03-24 | Sekisui Jushi Co Ltd | Light-emitting vane and snow depth monitoring device and snow depth measuring device using the same |
-
2007
- 2007-03-27 JP JP2007082486A patent/JP2008241459A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62102109A (en) * | 1985-10-29 | 1987-05-12 | Mitsubishi Electric Corp | Instrument for measuring snow depth |
JPH0850182A (en) * | 1994-08-05 | 1996-02-20 | Nippon Giken:Kk | Optical snow depth measuring device |
JPH10268067A (en) * | 1997-03-25 | 1998-10-09 | Koito Ind Ltd | Snow coverage measuring device |
JPH11223675A (en) * | 1998-02-04 | 1999-08-17 | Japan Radio Co Ltd | Snowfall measuring method and device |
JPH11337662A (en) * | 1998-05-22 | 1999-12-10 | Japan Radio Co Ltd | Method and device for measuring snowfall |
JP2000180357A (en) * | 1998-12-11 | 2000-06-30 | Omron Corp | Road surface state distinguishing apparatus |
JP2005076402A (en) * | 2003-09-03 | 2005-03-24 | Sekisui Jushi Co Ltd | Light-emitting vane and snow depth monitoring device and snow depth measuring device using the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010210324A (en) * | 2009-03-09 | 2010-09-24 | Nissan Motor Co Ltd | Road conditions estimating apparatus and method |
KR101388534B1 (en) | 2012-07-16 | 2014-04-23 | 지모 주식회사 | Optical snow meter using laser point |
JP2021015094A (en) * | 2019-07-16 | 2021-02-12 | 株式会社Subaru | Snow cover state observation system |
JP7222837B2 (en) | 2019-07-16 | 2023-02-15 | 株式会社Subaru | Snow condition observation system |
CN113534297A (en) * | 2021-07-16 | 2021-10-22 | 新疆林科院森林生态研究所 | Device and method capable of accurately monitoring accumulated snow depth of forest in real time |
CN114821361A (en) * | 2022-06-24 | 2022-07-29 | 成都信息工程大学 | Method and device for calculating snow depth, computer equipment and readable storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4635657B2 (en) | Trolley wire wear measuring device by image processing | |
JP6206957B2 (en) | Trolley wire measuring device and trolley wire measuring method | |
KR101214645B1 (en) | Trolley wire wear measuring device | |
JP2008241459A (en) | Method and apparatus for measuring road surface condition | |
KR101625320B1 (en) | Shape measuring method and shape measuring device | |
JP5287177B2 (en) | Trolley wire wear and displacement measuring device by image processing | |
KR100928792B1 (en) | Flaw Detection Device on Slab Surface | |
JP5162874B2 (en) | Trolley wire wear measuring device | |
JP4779770B2 (en) | Trolley wire wear measuring device by image processing | |
JP6436664B2 (en) | Substrate inspection apparatus and substrate inspection method | |
JP2001188008A (en) | Height measuring device | |
JP2017062181A (en) | Surface flaw checkup apparatus, and surface flaw checkup method | |
JP2009294033A (en) | Horn monitor of pantograph | |
JP2008051759A (en) | Device and method for measuring distance | |
JP3629568B2 (en) | Overhead wire inspection method and overhead wire inspection apparatus | |
JP2009292351A (en) | Wear measurement apparatus and wear measurement method | |
JPH11321650A (en) | Measuring device and measuring method of ground shoe mounting position | |
JP2006349432A (en) | Slider inspection device of pantograph | |
JP2008064637A (en) | Engraved mark inspecting apparatus | |
US7777807B2 (en) | On-board object detector and on-board object detection method | |
JP5200872B2 (en) | Slab surface defect detection method and slab surface defect detection apparatus | |
JP2015200604A (en) | Defect detection method and defect detection apparatus | |
JP4532372B2 (en) | Road marking line detection device | |
FR3073806A1 (en) | DEVICE FOR MEASURING CONTACT BRUSHES | |
JP2006078355A (en) | Pantograph slider inspection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A02 | Decision of refusal |
Effective date: 20120403 Free format text: JAPANESE INTERMEDIATE CODE: A02 |