JP2008136928A - Method of driving droplet discharge head, droplet discharge device and electro-optical device - Google Patents
Method of driving droplet discharge head, droplet discharge device and electro-optical device Download PDFInfo
- Publication number
- JP2008136928A JP2008136928A JP2006325270A JP2006325270A JP2008136928A JP 2008136928 A JP2008136928 A JP 2008136928A JP 2006325270 A JP2006325270 A JP 2006325270A JP 2006325270 A JP2006325270 A JP 2006325270A JP 2008136928 A JP2008136928 A JP 2008136928A
- Authority
- JP
- Japan
- Prior art keywords
- droplet discharge
- data
- nozzles
- control signal
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Coating Apparatus (AREA)
- Liquid Crystal (AREA)
- Optical Filters (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
Description
æ¬çºæã¯ã液滎ååºãããã®é§åæ¹æ³ã液滎ååºè£ 眮ãåã³é»æ°å åŠè£ 眮ã«é¢ããã   The present invention relates to a droplet discharge head driving method, a droplet discharge device, and an electro-optical device.
äžè¬çã«ã液æ¶ãã£ã¹ãã¬ã€ã¯ãå€æ°ã®ç»çŽ ãæããã«ã©ãŒãã£ã«ã¿åºæ¿ãæèŒããŠã
ããã«ã©ãŒãã£ã«ã¿åºæ¿ã®åç»çŽ ã¯ãå
æºããã®å
ãåããŠç¹å®æ³¢é·ã®å
ãééããã液
æ¶ãã£ã¹ãã¬ã€ã«ãã«ã«ã©ãŒã®ç»åã衚瀺ããããã«ã©ãŒãã£ã«ã¿ã®è£œé å·¥çšã§ã¯ãçç£
æ§ã®åäžãçç£ã³ã¹ãã®äœæžãå³ãããã液滎ååºããããå©çšããã€ã³ã¯ãžã§ããæ³ã
æ¡çšãããŠããïŒäŸãã°ãç¹èš±æç®ïŒïŒã
In general, a liquid crystal display is equipped with a color filter substrate having a large number of pixels. Each pixel of the color filter substrate receives light from the light source, transmits light of a specific wavelength, and displays a full color image on the liquid crystal display. In the color filter manufacturing process, an inkjet method using a droplet discharge head is employed in order to improve productivity and reduce production costs (for example, Patent Document 1).
液滎ååºãããã¯ã液ç¶äœã貯çããè€æ°ã®ãã£ããã£ãšã該ãã£ããã£ã«é£éããŠäž
æ¹åã«é
åãããè€æ°ã®ããºã«ãšãåãã£ããã£å
ã®æ¶²ç¶äœãå å§ããè€æ°ã®ã¢ã¯ãã¥ãš
ãŒã¿ïŒäŸãã°ãããšãŸçŽ åãæµæå ç±çŽ åãªã©ïŒãšããæããã液滎ååºãããã¯ãæç»
ããŒã¿ã«åºã¥ããŠéžæãããã¢ã¯ãã¥ãšãŒã¿ã«å
±éããé§å波圢信å·ãå
¥åããåã¢ã¯ã
ã¥ãšãŒã¿ã«å¯Ÿå¿ããããºã«ãã液ç¶äœã®æ¶²æ»Žãååºããããã€ã³ã¯ãžã§ããæ³ã¯ããã£ã«
ã¿ææã液滎ååºãããã«äŸçµŠãããã£ã«ã¿ææã®æ¶²æ»Žãã«ã©ãŒãã£ã«ã¿åºæ¿ã«åããŠå
åºãããåºæ¿äžã«ç匟ãã液滎ã也ç¥ãããããšã«ããç»çŽ ã圢æãããã
The droplet discharge head includes a plurality of cavities for storing a liquid material, a plurality of nozzles arranged in one direction so as to communicate with the cavity, and a plurality of actuators (for example, piezo elements) that pressurize the liquid material in each cavity. And a resistance heating element). The droplet discharge head inputs a drive waveform signal common to the actuators selected based on the drawing data, and discharges liquid droplets from the nozzles corresponding to the actuators. In the inkjet method, a pixel is formed by supplying a filter material to a droplet discharge head, discharging droplets of the filter material toward a color filter substrate, and drying the droplets that have landed on the substrate.
ã€ã³ã¯ãžã§ããæ³ã¯ãæç»å¯Ÿè±¡ã®é«ç²Ÿåœ©åã«ãšããªã£ãŠãé調衚çŸã«åªããæç»ãæãŸ
ããŠãããç¹èš±æç®ïŒã¯ãã€ã³ã¯ã®ååºéã«å¯Ÿå¿ããè€æ°ã®é§åé»å§æ³¢åœ¢ãçæããå
±é
波圢çºçæ段ãèšããå
±é波圢çºçæ段ã®çæããé§åé»å§æ³¢åœ¢ã®ããããïŒã€ãé調ã
ãŒã¿ä¿¡å·ã«ããéžæãããŠã¢ã¯ãã¥ãšãŒã¿ã«äŸçµŠãããããã«ããã°ãç°ãªãé§å波圢信
å·ã«ãã液滎ã®ãµã€ãºãå€æŽãããããšãã§ããããºã«ã®å
åŸãããºã«ã®åœ¢æããããªã©
ã«èšèšå€æŽãå ããããšãªãåªããé調衚çŸãå¯èœãšãªãã
äžèšã€ã³ã¯ãžã§ããæ³ã¯ãã«ã©ãŒãã£ã«ã¿åºæ¿ãšæ¶²æ»Žååºããããšãæå®ã®èµ°æ»æ¹åã«
çžå¯Ÿç§»åãããåã¢ã¯ãã¥ãšãŒã¿ã«äžèšã®é§å波圢信å·ãæå®ã®ååºåšæ³¢æ°ã§å
¥åããã
ããã«ãããé
åãããããºã«åã®æ¶²æ»Žãæå®ã®ååºåšæ³¢æ°ã§é 次ååºããã液ç¶äœã®ã
ã¿ãŒã³ãã«ã©ãŒãã£ã«ã¿åºæ¿ã®èµ°æ»æ¹åã«æ²¿ã£ãŠé 次æç»ãããã
In the inkjet method, the color filter substrate and the droplet discharge head are relatively moved in a predetermined scanning direction, and the drive waveform signal is input to each actuator at a predetermined discharge frequency.
Thereby, the droplets for the arranged nozzles are sequentially ejected at a predetermined ejection frequency, and the liquid pattern is sequentially drawn along the scanning direction of the color filter substrate.
ããããäžèšæ¶²æ»Žååºãããã¯ãå
±éããïŒã€ã®ã¿ã³ã¯ããå
šãŠã®ããºã«ã«åããŠæ¶²ç¶
äœãå°åºãããããã®ããã以äžã®åé¡ãæããŠãããããªãã¡ã液滎ååºãããã¯ãå€
æ°ã®ããºã«ãåæã«æ¶²æ»Žãååºãããšããããºã«ããšã®æµè·¯æµæã液ç¶äœã®äŸçµŠå§ã«å€§ã
ãªåœ±é¿ãåãŒãïŒäŸãã°ãé£æ¥ããããºã«éã§ã¯ãã¹ããŒã¯ãæ¥ããïŒãããºã«ããšã®å
åºééã«å€§ããªãã©ãããæ¥ããããã®çµæãçžå¯Ÿçã«ãµã€ãºã®å€§ãã液滎ããããã¯ã
çžå¯Ÿçã«ãµã€ãºã®å°ãã液滎ãèµ°æ»æ¹åã«æ²¿ã£ãŠé£ç¶ãã液滎ååºãããã®èµ°æ»æ¹åã«æ²¿
ãèå段差ã圢æãããŠã液æ¶ãã£ã¹ãã¬ã€ã®è¡šç€ºç»è³ªãèããäœäžããã
However, the droplet discharge heads lead out the liquid material from one common tank toward all the nozzles. Therefore, the following problems were invited. That is, in a droplet discharge head, when a large number of nozzles discharge droplets at the same time, the flow resistance of each nozzle greatly affects the supply pressure of the liquid material (for example, crosstalk occurs between adjacent nozzles). This causes large variations in the discharge weight of each nozzle. This results in a relatively large droplet, or
The relatively small droplets continue along the scanning direction, and a film thickness step along the scanning direction of the droplet discharge head is formed, so that the display image quality of the liquid crystal display is significantly lowered.
æ¬çºæã¯ãäžèšåé¡ã解決ããããã«ãªããããã®ã§ããããã®ç®çã¯ã液滎ãååºã
ãŠåœ¢æããèãã¿ãŒã³ã®èååäžæ§ãåäžããã液滎ååºãããã®é§åæ¹æ³ã液滎ååºè£
眮ãåã³é»æ°å
åŠè£
眮ãæäŸããããšã§ããã
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for driving a droplet discharge head that improves the film thickness uniformity of a film pattern formed by discharging droplets. It is an object to provide a discharge device and an electro-optical device.
æ¬çºæã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã¯ãæå®ã®æ¹åã«é
åãããè€æ°ã®ããºã«ã®ãã¡ã
ã液滎ãååºããããã®è€æ°ã®é§åããºã«ãéžæçã«é§åããã液滎ååºãããã®é§åæ¹
æ³ã§ãã£ãŠãåèšè€æ°ã®ããºã«ãäºãå®ããè€æ°ã®ãããã¯ã«åå²ããåèšè€æ°ã®é§åã
ãºã«ã®åã
ã察å¿ããåèšãããã¯ããšã«äºãã«ç°ãªãã¿ã€ãã³ã°ã§é§åããã
The droplet discharge head driving method of the present invention is a droplet discharge head driving method that selectively drives a plurality of drive nozzles for discharging droplets from a plurality of nozzles arranged in a predetermined direction. The plurality of nozzles are divided into a plurality of predetermined blocks, and each of the plurality of drive nozzles is driven at a different timing for each corresponding block.
æ¬çºæã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã«ããã°ãåãããã¯ããããããç°ãªãã¿ã€ãã³
ã°ã§æ¶²æ»Žãååºããããããã£ãŠããããã¯ã®æ°éåã ããååºã¿ã€ãã³ã°ã®éè€ãäœæž
ãããããšãã§ããåæååºã«èµ·å ãã液滎ééã®ãã©ãããæå¶ãããããšãã§ããã
ãã®çµæãããºã«ããšã®æ¶²æ»Žééãåäžã«ãããããšãã§ããã²ããŠã¯ã液滎ãååºããŠ
圢æããèãã¿ãŒã³ã®èååäžæ§ãåäžãããããšãã§ããã
According to the droplet ejection head driving method of the present invention, each block ejects droplets at different timings. Accordingly, it is possible to reduce the overlap of the discharge timing by the number of blocks, and it is possible to suppress the variation in droplet weight caused by the simultaneous discharge.
As a result, the droplet weight for each nozzle can be made uniform, and as a result, the film thickness uniformity of the film pattern formed by discharging the droplets can be improved.
ãã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã§ãã£ãŠãæå®ã®ååºåšæ³¢æ°ããšã«ç°ãªãåèšãããã¯
ãé§åããæ§æã§ãã£ãŠãããã
ãã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã«ããã°ãåäžã®ãããã¯ãé¢æ£çã«æ¶²æ»Žãååºããã
ãããã£ãŠãåäžã®ãããã¯ãé£ç¶ããŠæ¶²æ»Žãååºããå Žåã«æ¯ã¹ã液滎ã®ååºååžãå
äžã«ãããããšãã§ãããã²ããŠã¯ãèãã¿ãŒã³ã®èååäžæ§ãåäžãããããšãã§ãã
ã
This droplet discharge head driving method may be configured to drive different blocks for each predetermined discharge frequency.
According to the driving method of the droplet discharge head, the same block discharges droplets discretely.
Therefore, compared to the case where the same block continuously discharges droplets, the droplet discharge distribution can be made uniform. As a result, the film thickness uniformity of the film pattern can be improved.
ãã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã§ãã£ãŠãé£æ¥ããããºã«ã®åã
ãç°ãªãåèšãããã¯
ã«åå²ãããæ§æã§ãã£ãŠãããã
ãã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã«ããã°ãé£æ¥ããããºã«ã®åã
ãç°ãªãã¿ã€ãã³ã°ã§
液滎ãååºããããããã£ãŠãããºã«éã®ã¯ãã¹ããŒã¯ãããã確å®ã«åé¿ãããããšã
ã§ãããã²ããŠã¯ã液滎ãååºããŠåœ¢æããèãã¿ãŒã³ã®èååäžæ§ãåäžãããããšã
ã§ããã
This droplet discharge head driving method may be configured such that each of adjacent nozzles is divided into different blocks.
According to this droplet discharge head driving method, each adjacent nozzle discharges droplets at different timings. Therefore, crosstalk between nozzles can be avoided more reliably. As a result, the film thickness uniformity of the film pattern formed by discharging droplets can be improved.
ãã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã§ãã£ãŠãè€æ°ã®ããºã«ã®åã
ã«å¯Ÿãååºããåèšæ¶²æ»Ž
ã®ééã«å¿ããã©ã³ã¯ã察å¿ä»ããåèšé§åããºã«ãé§åããŠåèšæ¶²æ»Žã®ééãäºãèŠå®
ããæå®ã®ééã«èŒæ£ããããã®é§å波圢信å·ãåèšã©ã³ã¯ããšã«çæããåèšé§åããº
ã«ã®åã
ã«åèšã©ã³ã¯ã«å¯Ÿå¿ããåèšé§å波圢信å·ãäŸçµŠããæ§æã§ãã£ãŠãããã
In this droplet discharge head driving method, a rank corresponding to the weight of the droplet discharged to each of a plurality of nozzles is associated, and the drive nozzle is driven to predefine the weight of the droplet. The drive waveform signal for calibrating to a predetermined weight may be generated for each rank, and the drive waveform signal corresponding to the rank may be supplied to each of the drive nozzles.
ãã®æ¶²æ»Žååºãããã®é§åæ¹æ³ã«ããã°ãå液滎ã®ééããããããäºãå®ããæå®ã®
ééã«å®ããããããããã£ãŠãããºã«ããšã®æ¶²æ»Žééãããã確å®ã«åäžã«ãããããš
ãã§ããã
According to this method for driving a droplet discharge head, the weight of each droplet is set to a predetermined weight. Therefore, it is possible to make the droplet weight for each nozzle more uniform.
æ¬çºæã®æ¶²æ»Žååºè£
眮ã¯ãæå®ã®æ¹åã«é
åãããè€æ°ã®ããºã«ã®ãã¡ããè€æ°ã®é§å
ããºã«ãéžæããããºã«éžæããŒã¿ãèšæ¶ããèšæ¶æ段ãšãåèšè€æ°ã®ããºã«ãäºãå®ã
ãè€æ°ã®ãããã¯ã«åå²ããåèšè€æ°ã®ãããã¯ã®ããããïŒã€ãéžæãããããã¯éžæ
ä¿¡å·ãåèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ããšã«çæããéžæä¿¡å·çææ段ãšãåèšæ¶²æ»Žã®ååºã¿
ã€ãã³ã°ããšã«ãåèšãããã¯éžæä¿¡å·ã«ããéžæãããåèšãããã¯å
ã®åèšããºã«ã§
ãã£ãŠããã€ãåèšããºã«éžæããŒã¿ã«ããéžæãããåèšé§åããºã«ã«å¯Ÿãåèšæ¶²æ»Žã
ååºãããããã®é§å波圢信å·ãåºåããåºåæ段ãšããåããã
The droplet discharge device according to the present invention includes a storage unit that stores nozzle selection data for selecting a plurality of drive nozzles from a plurality of nozzles arranged in a predetermined direction, and a plurality of blocks in which the plurality of nozzles are determined in advance. And a selection signal generating means for generating a block selection signal for selecting any one of the plurality of blocks at each droplet discharge timing, and the block selection signal at each droplet discharge timing. Output means for outputting a drive waveform signal for causing the droplets to be ejected to the drive nozzle that is the nozzle in the selected block and selected by the nozzle selection data.
æ¬çºæã®æ¶²æ»Žååºè£
眮ã«ããã°ãåãããã¯ããããããç°ãªãã¿ã€ãã³ã°ã§æ¶²æ»Žãå
åºããããããã£ãŠããããã¯ã®æ°éåã ããååºã¿ã€ãã³ã°ã®éè€ãäœæžãããããšã
ã§ããåæååºã«èµ·å ãã液滎ééã®ãã©ãããæå¶ãããããšãã§ããããã®çµæãã
ãºã«ããšã®æ¶²æ»Žééãåäžã«ãããããšãã§ããã²ããŠã¯ã液滎ãååºããŠåœ¢æããèã
ã¿ãŒã³ã®èååäžæ§ãåäžãããããšãã§ããã
According to the droplet discharge device of the present invention, each block discharges droplets at different timings. Accordingly, it is possible to reduce the overlap of the discharge timing by the number of blocks, and it is possible to suppress the variation in droplet weight caused by the simultaneous discharge. As a result, the droplet weight for each nozzle can be made uniform, and as a result, the film thickness uniformity of the film pattern formed by discharging the droplets can be improved.
ãã®æ¶²æ»Žååºè£
眮ã§ãã£ãŠãåèšéžæä¿¡å·çææ段ã¯ãåèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ã§ç
æãããã¯ããã¯ä¿¡å·ã®å
¥ååæ°ãã«ãŠã³ãããåèšè€æ°ã®ãããã¯ã®åã
ã«äºãåèšå
¥
ååæ°ã察å¿ä»ããåèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ããšã«ãåèšè€æ°ã®ãããã¯ã®ãã¡ããå
èšå
¥ååæ°ã«å¯Ÿå¿ä»ãããããããã¯ãéžæããããã®åèšãããã¯éžæä¿¡å·ãçæãã
æ§æã§ãã£ãŠãããã
In this liquid droplet ejection apparatus, the selection signal generation unit counts the number of times of input of a clock signal generated at the timing of ejection of the liquid droplet, and associates the number of times of input in advance with each of the plurality of blocks, The block selection signal for selecting a block associated with the number of times of input from the plurality of blocks may be generated at each droplet discharge timing.
ãã®æ¶²æ»Žååºè£
眮ã«ããã°ã液滎ãååºããããã®ãããã¯ããã¯ããã¯ä¿¡å·ã®å
¥åå
æ°ã«å¿ããŠéžæãããããããã£ãŠãè€æ°ã®ãããã¯ã«ããåæååºã確å®ã«åé¿ããã
ããšãã§ããããã®çµæã液滎ãååºããŠåœ¢æããèãã¿ãŒã³ã®èååäžæ§ãã確å®ã«å
äžãããããšãã§ããã
According to this droplet discharge device, a block for discharging a droplet is selected according to the number of clock signal inputs. Therefore, simultaneous discharge by a plurality of blocks can be reliably avoided. As a result, it is possible to reliably improve the film thickness uniformity of the film pattern formed by discharging the droplets.
ãã®æ¶²æ»Žååºè£
眮ã§ãã£ãŠãåèšèšæ¶æ段ã¯ãåèšãããã¯ã®æ°éãç°ãªãè€æ°ã®æç»
ã¢ãŒãã®ãã¡ããæå®ã®æç»ã¢ãŒããæå®ããã¢ãŒãéžæããŒã¿ãèšæ¶ããåèšéžæä¿¡å·
çææ段ã¯ãåèšæç»ã¢ãŒãã«å¯Ÿå¿ããåèšè€æ°ã®ãããã¯ã®åã
ã«äºãåèšå
¥ååæ°ã
察å¿ä»ããåèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ããšã«ãåèšã¢ãŒãéžæããŒã¿ã«ããæå®ãããå
èšæç»ã¢ãŒãã«åºã¥ããŠãåèšè€æ°ã®ãããã¯ã®ãã¡ããåèšå
¥ååæ°ã«å¯Ÿå¿ä»ãããã
ãããã¯ãéžæããããã®åèšãããã¯éžæä¿¡å·ãçæããæ§æã§ãã£ãŠãããã
In this droplet discharge apparatus, the storage unit stores mode selection data for designating a predetermined drawing mode from among a plurality of drawing modes having different numbers of blocks, and the selection signal generating unit is configured to store the drawing signal. The number of times of input is associated with each of the plurality of blocks corresponding to a mode in advance, and each of the plurality of blocks is selected based on the drawing mode specified by the mode selection data at each droplet discharge timing. The structure which produces | generates the said block selection signal for selecting the block matched with the said frequency | count of input may be sufficient.
ãã®æ¶²æ»Žååºè£
眮ã«ããã°ããããã¯ã®æ°éããã¢ãŒãéžæããŒã¿ã«ããéžæå¯èœãšãª
ãããããã£ãŠããããã¯ã®éžæç¯å²ãæ¡åŒµãããããšãã§ããã²ããŠã¯æç»å¯Ÿè±¡ã®ç¯å²
ãæ¡åŒµãããããšãã§ããã
According to this droplet discharge device, the number of blocks can be selected by mode selection data. Therefore, the block selection range can be expanded, and as a result, the drawing target range can be expanded.
ãã®æ¶²æ»Žååºè£
眮ã§ãã£ãŠãåèšéžæä¿¡å·çææ段ã¯ãé£æ¥ããããºã«ã®åã
ãç°ãªã
åèšãããã¯ã«åå²ããæ§æã§ãã£ãŠãããã
ãã®æ¶²æ»Žååºè£
眮ã«ããã°ãé£æ¥ããããºã«ã®åã
ãç°ãªãã¿ã€ãã³ã°ã§æ¶²æ»Žãååºã
ãããããã£ãŠãããºã«éã®ã¯ãã¹ããŒã¯ãããã確å®ã«åé¿ãããããšãã§ãããã²ã
ãŠã¯ã液滎ãååºããŠåœ¢æããèãã¿ãŒã³ã®èååäžæ§ãåäžãããããšãã§ããã
In this droplet discharge apparatus, the selection signal generation unit may be configured to divide each of adjacent nozzles into different blocks.
According to this droplet discharge device, each adjacent nozzle discharges droplets at different timings. Therefore, crosstalk between nozzles can be avoided more reliably. As a result, the film thickness uniformity of the film pattern formed by discharging droplets can be improved.
ãã®æ¶²æ»Žååºè£
眮ã§ãã£ãŠãåèšèšæ¶æ段ã¯ãåèšè€æ°ã®ããºã«ã®åã
ã«å¯Ÿãååºéé
ã«å¿ããã©ã³ã¯ã察å¿ä»ããããã®æ
å ±ãèšæ¶ããåèšåºåæ段ã¯ãåèšååºééãæå®
ã®ééã«èŒæ£ããé§å波圢信å·ãåèšã©ã³ã¯ããšã«çæããåèšèšæ¶æ段ã®èšæ¶ããåèš
æ
å ±ã«åºã¥ããŠãåèšé§åããºã«ã®åã
ã«å¯Ÿãåèšã©ã³ã¯ã«å¿ããåèšé§å波圢信å·ãåº
åããæ§æã§ãã£ãŠãããã
In this droplet discharge device, the storage unit stores information for associating each of the plurality of nozzles with a rank corresponding to the discharge weight, and the output unit sets the discharge weight to a predetermined weight. A drive waveform signal to be calibrated may be generated for each rank, and the drive waveform signal corresponding to the rank may be output to each of the drive nozzles based on the information stored in the storage unit. .
ãã®æ¶²æ»Žååºè£
眮ã«ããã°ãé§åããºã«ã®åã
ããæå®ã®ééãååºããããã®é§åæ³¢
圢信å·ã«ããé§åãããããããã£ãŠãããºã«ããšã®æ¶²æ»Žééããããã«åäžã«ãããã
ãšãã§ããã²ããŠã¯ã液滎ãååºããŠåœ¢æããèãã¿ãŒã³ã®èååäžæ§ããããã«åäžã
ããããšãã§ããã
According to this droplet discharge device, each drive nozzle is driven by a drive waveform signal for discharging a predetermined weight. Therefore, the droplet weight for each nozzle can be made more uniform, and as a result, the film thickness uniformity of the film pattern formed by discharging the droplets can be further improved.
æ¬çºæã®é»æ°å
åŠè£
眮ã¯ãåºæ¿ã«ååºãã液滎ã也ç¥ãããŠåœ¢æããèèãæããé»æ°
å
åŠè£
眮ã§ãã£ãŠãåèšèèã¯ãäžèšæ¶²æ»Žååºè£
眮ã«ãã£ãŠåœ¢æãããããšãç¹åŸŽãšãã
é»æ°å
åŠè£
眮ã
The electro-optical device of the present invention is an electro-optical device having a thin film formed by drying droplets discharged onto a substrate, and the thin film is formed by the droplet discharging device. apparatus.
æ¬çºæã®é»æ°å
åŠè£
眮ã«ããã°ãåçš®èèã®èååäžæ§ãåäžãããããšãã§ãããã²
ããŠã¯ãé»æ°å
åŠè£
眮ã®å
åŠç¹æ§ãåäžãããããšãã§ããã
According to the electro-optical device of the present invention, the film thickness uniformity of various thin films can be improved. As a result, the optical characteristics of the electro-optical device can be improved.
以äžãæ¬çºæãå
·äœåããäžå®æœåœ¢æ
ãå³ïŒãå³ïŒïŒã«åŸã£ãŠèª¬æããããŸããé»æ°å
åŠè£
眮ãšããŠã®æ¶²æ¶è¡šç€ºè£
眮ïŒã«ã€ããŠèª¬æãããå³ïŒã¯ã液æ¶è¡šç€ºè£
眮ã®å
šäœã瀺ãæ
èŠå³ã§ãããå³ïŒã¯ã液æ¶è¡šç€ºè£
眮ã«åããããã«ã©ãŒãã£ã«ã¿åºæ¿ã瀺ãæèŠå³ã§ãã
ã
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. First, the liquid
å³ïŒã«ãããŠã液æ¶è¡šç€ºè£
眮ïŒã¯ãããã¯ã©ã€ãïŒãšæ¶²æ¶ããã«ïŒãšãæãããããã¯
ã©ã€ãïŒã¯ãå
æºïŒããåºå°ãããå
ã液æ¶ããã«ïŒã®å
šé¢ã«ç
§å°ãããã液æ¶ããã«ïŒ
ã¯ãçŽ ååºæ¿ïŒãšã«ã©ãŒãã£ã«ã¿åºæ¿ïŒãšãæãããããçŽ ååºæ¿ïŒãšã«ã©ãŒãã£ã«ã¿åº
æ¿ïŒãšããåè§æ ç¶ã®ã·ãŒã«æïŒã«ãã£ãŠè²ŒãåããããŠããã®ééã«æ¶²æ¶ïŒ¬ïŒ£ãå°å
¥ã
ãã液æ¶ïŒ¬ïŒ£ã¯ãããã¯ã©ã€ãïŒããã®å
ãå€èª¿ããŠææã®ç»åãã«ã©ãŒãã£ã«ã¿åºæ¿ïŒ
ã®äžé¢ã«è¡šç€ºãããã
In FIG. 1, the liquid
Includes an
Is displayed on the top surface.
å³ïŒã«ãããŠãã«ã©ãŒãã£ã«ã¿åºæ¿ïŒã®äžé¢ïŒå³ïŒã®äžé¢ïŒçŽ ååºæ¿ïŒãšçžå¯ŸåããåŽ
é¢ïŒã«ã¯ãæ Œåç¶ã®é®å
å±€ïŒãšã該é®å
å±€ïŒã«ãã£ãŠå²ãŸããå€æ°ã®ç©ºéïŒç»çŽ ïŒïŒãšã
ã圢æãããŠãããé®å
å±€ïŒã¯ãã¯ãã ãã«ãŒãã³ãã©ãã¯ãªã©ã®é®å
æ§ææãå«ãæš¹è
ã§åœ¢æããã液æ¶ïŒ¬ïŒ£ã®ééããå
ãé®å
ãããåç»çŽ ïŒå
ã«ã¯ãç¹å®æ³¢é·ã®å
ãééã
ãèèãšããŠã®ã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠã圢æãããŠãããã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠã¯ãäŸãã°ã
èµ€è²ã®å
ãééããèµ€è²ãã£ã«ã¿ïŒ£ïŒŠïŒ²ãšãç·è²ã®å
ãééããç·è²ãã£ã«ã¿ïŒ£ïŒŠïŒ§ãšã
éè²ã®å
ãééããéè²ãã£ã«ã¿ïŒ£ïŒŠïŒ¢ãšããæãããã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠã¯ãæ¬çºæã®
液滎ååºè£
眮ãå©çšããŠåœ¢æãããŠãããããªãã¡ãã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠã¯ãåãã£ã«ã¿
ææã®æ¶²æ»Žã察å¿ããç»çŽ ïŒå
ã«ååºããåç»çŽ ïŒå
ã«ç匟ãã液滎ã也ç¥ããããšã«ã
ã£ãŠåœ¢æãããŠããã
In FIG. 2, on the upper surface of the color filter substrate 6 (the lower surface in FIG. 1; the side surface facing the element substrate 5), a lattice-shaped
Is formed. The
A red filter CFR that transmits red light, a green filter CFG that transmits green light,
A blue filter CFB that transmits blue light. The color filter CF is formed using the droplet discharge device of the present invention. That is, the color filter CF is formed by discharging droplets of each filter material into the corresponding
ããã§ãã«ã©ãŒãã£ã«ã¿åºæ¿ïŒã®äžé¢ïŒå³ïŒã®äžé¢ïŒããååºé¢ïŒïœãšããã
次ã«ãäžèšã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠã圢æããããã®æ¶²æ»Žååºè£
眮ã«ã€ããŠèª¬æãããå³ïŒ
ã¯ã液滎ååºè£
眮ã瀺ãå
šäœæèŠå³ã§ããã
Here, the upper surface (the lower surface in FIG. 1) of the
Next, a droplet discharge device for forming the color filter CF will be described. FIG.
FIG. 3 is an overall perspective view showing a droplet discharge device.
å³ïŒã«ãããŠã液滎ååºè£
眮ïŒïŒã¯ãçŽæ¹äœåœ¢ç¶ã«åœ¢æãããåºå°ïŒïŒãæãããåºå°
ïŒïŒã®äžé¢ã«ã¯ããã®é·ææ¹åïŒïŒ¹æ¹åïŒã«æ²¿ã£ãŠå»¶ã³ãäžå¯Ÿã®æ¡å
æºïŒïŒã圢æããã
äžå¯Ÿã®æ¡å
æºïŒïŒã«ã¯ãåºæ¿ã¹ããŒãžïŒïŒãåçãããŠãããåºæ¿ã¹ããŒãžïŒïŒã¯ãåºå°
ïŒïŒã«èšããããã¹ããŒãžã¢ãŒã¿ã®åºå軞ã«é£çµãããŠãããåºæ¿ã¹ããŒãžïŒïŒã¯ãååº
é¢ïŒïœãäžåŽã«ããç¶æ
ã§ã«ã©ãŒãã£ã«ã¿åºæ¿ïŒãèŒçœ®ãã該ã«ã©ãŒãã£ã«ã¿åºæ¿ïŒãäœ
眮決ãåºå®ãããåºæ¿ã¹ããŒãžïŒïŒã¯ãã¹ããŒãžã¢ãŒã¿ãæ£è»¢åã¯é転ãããšããæ¡å
æº
ïŒïŒã«æ²¿ã£ãŠæå®ã®é床ã§èµ°æ»ãããã«ã©ãŒãã£ã«ã¿åºæ¿ïŒãæ¹åã«æ²¿ã£ãŠèµ°æ»ããã
ã
In FIG. 3, the
A
åºå°ïŒïŒã®äžåŽã«ã¯ãéåã«åœ¢æãããã¬ã€ãéšæïŒïŒãæ¹åãšçŽäº€ããæ¹åã«æ²¿
ã£ãŠæ¶èšãããŠãããã¬ã€ãéšæïŒïŒã®äžåŽã«ã¯ãã€ã³ã¯ã¿ã³ã¯ïŒïŒãé
èšãããŠããã
ã€ã³ã¯ã¿ã³ã¯ïŒïŒã¯ããã£ã«ã¿ææãå«ã液ç¶äœïŒãã£ã«ã¿çšã€ã³ã¯ïŒ©ïœïŒã貯çããã
ã£ã«ã¿çšã€ã³ã¯ïŒ©ïœãæå®ã®å§åã§å°åºããã
On the upper side of the
The
ã¬ã€ãéšæïŒïŒã«ã¯ãæ¹åã«å»¶ã³ãäžäžäžå¯Ÿã®ã¬ã€ãã¬ãŒã«ïŒïŒã圢æãããäžäžäž
察ã®ã¬ã€ãã¬ãŒã«ïŒïŒã«ã¯ããã£ãªããžïŒïŒãåçãããŠããããã£ãªããžïŒïŒã¯ãã¬ã€
ãéšæïŒïŒã«èšãããããã£ãªããžã¢ãŒã¿ã®åºå軞ã«é£çµãããŠããããã£ãªããžïŒïŒã®
äžåŽã«ã¯ãæ¹åã«é
åãããè€æ°ã®æ¶²æ»ŽååºãããïŒïŒïŒä»¥äžåã«ãååºãããïŒïŒãš
ãããïŒãæèŒãããŠããããã£ãªããžïŒïŒã¯ããã£ãªããžã¢ãŒã¿ãæ£è»¢åã¯é転ãããš
ããã¬ã€ãã¬ãŒã«ïŒïŒã«æ²¿ã£ãŠèµ°æ»ãããåååºãããïŒïŒãæ¹åã«æ²¿ã£ãŠèµ°æ»ããã
ã
The
å³ïŒã¯ãååºãããïŒïŒãäžåŽïŒåºæ¿ã¹ããŒãžïŒïŒïŒããèŠãå³ã§ãããå³ïŒã¯ãå³ïŒ
ã®ïŒ¡âç·æé¢å³ã§ããã
å³ïŒã«ãããŠãååºãããïŒïŒã®äžåŽïŒå³ïŒã«ãããäžåŽïŒã«ã¯ãããºã«ãã¬ãŒãïŒïŒ
ãåããããŠãããããºã«ãã¬ãŒãïŒïŒã®äžé¢ïŒå³ïŒã«ãããäžé¢ïŒã«ã¯ãã«ã©ãŒãã£ã«
ã¿åºæ¿ïŒãšå¹³è¡ã®ããºã«åœ¢æé¢ïŒïŒïœã圢æããããã®ããºã«åœ¢æé¢ïŒïŒïœã«ã¯ãããºã«
圢æé¢ïŒïŒïœã®æ³ç·æ¹åã«è²«éããïŒïŒïŒåã®è²«éåïŒããºã«ïŒ®ïŒãæ¹åã«æ²¿ã£ãŠçé
éã«é
åãããŠãããååºãããïŒïŒã®äžåŽïŒå³ïŒã«ãããäžåŽïŒã«ã¯ããããåºæ¿ïŒïŒ
ãèšãããããã®ãããåºæ¿ïŒïŒã®äžåŽç«¯ã«ã¯ãå
¥å端åïŒïŒïœãèšããããŠãããå
¥å
端åïŒïŒïœã«ã¯ãååºãããïŒïŒãé§åããããã®åçš®ã®ä¿¡å·ãå
¥åãããã
4 is a view of the
It is AA sectional view taken on the line.
In FIG. 4, on the upper side (lower side in FIG. 3) of the
Is provided. A
And an input terminal 20a is provided at one end of the
ããã§ãæãç¢å°æ¹åã«äœçœ®ããããºã«ïŒ®ã第ïŒããºã«ïŒ®ïŒãšããåç¢å°æ¹åã«å
ãã£ãŠé ã«ã第ïŒããºã«ïŒ®ïŒãã»ã»ã»ã第ïŒïŒïŒããºã«ïŒ®ïŒïŒïŒã第ïŒïŒïŒããºã«ïŒ®ïŒïŒ
ïŒããšããã
Here, the nozzle N most positioned in the X arrow direction is defined as the first nozzle N1, and the second nozzle N2,..., The 179th nozzle N179, the 180th nozzle N18 are sequentially arranged in the opposite X arrow direction.
0.
å³ïŒã«ãããŠãåããºã«ïŒ®ã®äžåŽã«ã¯ãããããã€ã³ã¯ã¿ã³ã¯ïŒïŒã«é£éãããã£ãã
ã£ïŒïŒã圢æãããŠãããåãã£ããã£ïŒïŒã«ã¯ãããããå
±éããã€ã³ã¯ã¿ã³ã¯ïŒïŒã
ããã£ã«ã¿çšã€ã³ã¯ïŒ©ïœãäŸçµŠããããåãã£ããã£ïŒïŒã¯ããã£ã«ã¿çšã€ã³ã¯ïŒ©ïœã貯
çããŠå¯Ÿå¿ããããºã«ïŒ®ã«äŸçµŠãããåãã£ããã£ïŒïŒã®äžåŽã«ã¯ãäžäžæ¹åã«æ¯åå¯èœ
ãªæ¯åæ¿ïŒïŒã貌ãä»ããããŠã察å¿ãããã£ããã£ïŒïŒã®å®¹ç©ãæ¡å€§åã³çž®å°å¯èœã«ã
ããæ¯åæ¿ïŒïŒã®äžåŽã«ã¯ãããããã¢ã¯ãã¥ãšãŒã¿ãšããŠã®å§é»çŽ åãé
èšãããŠ
ãããåå§é»çŽ åã¯ãããããå§é»çŽ åãé§åããããã®ä¿¡å·ïŒé§å波圢信å·ïŒ£
ïŒïŒãå
¥åããããšããäžäžæ¹åã«åçž®åã³äŒžåŒµããŠå¯Ÿå¿ããæ¯åæ¿ïŒïŒãæ¯åããã
ã
In FIG. 5,
When OM) is input, the corresponding
åãã£ããã£ïŒïŒã¯ããããã察å¿ããæ¯åæ¿ïŒïŒãæ¯åãããšãã察å¿ããããºã«ïŒ®
ã®ã¡ãã¹ã«ã¹ãäžäžæ¹åã«æ¯åãããé§å波圢信å·ïŒ£ïŒ¯ïŒïŒé§åé»å§ïŒã«å¿ããæå®ã®é
éã®ãã£ã«ã¿çšã€ã³ã¯ïŒ©ïœã察å¿ããããºã«ïŒ®ãã液滎ãšããŠååºããããååºããã
液滎ã¯ãã«ã©ãŒãã£ã«ã¿åºæ¿ïŒã®ç¥æ³ç·ã«æ²¿ã£ãŠé£è¡ããããºã«ïŒ®ãšçžå¯Ÿåããååºé¢
ïŒïœäžã®äœçœ®ã«ç匟ããã
Each
The filter meniscus is vibrated in the vertical direction, and the filter ink Ik having a predetermined weight corresponding to the drive waveform signal COM (drive voltage) is ejected as a droplet D from the corresponding nozzle N. The ejected droplet D flies along a substantially normal line of the
å³ïŒã«ãããŠãåºå°ïŒïŒã®å·ŠåŽã«ã¯ã液滎ééè£
眮ïŒïŒãé
èšãããŠããã液滎ééè£
眮ïŒïŒã¯ã液滎ã®ééïŒååºééãšããŠã®å®ééïœïŒãããºã«ïŒ®ããšã«èšæž¬ãããã®
ã§ãã£ãŠãå
¬ç¥ã®ééèšæž¬è£
眮ãçšããããšãã§ããã液滎ééè£
眮ïŒïŒã«ã¯ãäŸãã°ã
ååºããã液滎ãåãç¿ã§åããŠæ¶²æ»ŽïŒ€ã秀éããé»å倩秀ãçšããããšãã§ããããŸ
ãã液滎ééè£
眮ïŒïŒã«ã¯ãé»æ¥µãæããå§é»æ¯ååãå©çšãã該é»æ¥µã«åããŠæ¶²æ»ŽïŒ€ã
ååºããã液滎ã®ç匟ã«ããå€åããå§é»æ¯ååã®å
±æ¯åšæ³¢æ°ã«åºã¥ããŠæ¶²æ»ŽïŒ€ã®å®é
éïœãæ€åºãããã®ãçšããããšãã§ããã
In FIG. 4, a
It is possible to use an electronic balance that receives the discharged droplets D in a receiving pan and measures the droplets D. Further, the
ããã§ãåå
ã®å
šãŠã®ããºã«ïŒ®ããååºããå液滎ã®å®ééïœã®å¹³åå€ããå¹³åå®
ééïœïœïœ
ïœãšããããªããå¹³åå®ééïœïœïœ
ïœã¯ãååºãã液滎ã®äžã§æ倧ãšãª
ãå®ééïœãïœïœïœïœãšããæå°ãšãªãå®ééïœãïœïœïœïœãšãããšãã«ãïœ
ïœïœ
ïœïŒïŒïŒ©ïœïœïœïœïŒïŒ©ïœïœïœïœïŒïŒïŒã«ããèŠå®ããããå¹³åå®ééïœïœïœ
ïœã¯ã
ãã£ãªããžïŒïŒã«æèŒãããè€æ°ã®ååºãããïŒïŒã®åã
ã«å¯ŸããŠèŠå®ãããã
Here, the average value of the actual weight Iw of each droplet D ejected from all the nozzles N in the row is referred to as an average actual weight Iwcen. In addition, the average actual weight Iwcen is calculated as Iwmax when the maximum actual weight Iw among the discharged droplets D is Iwmax and the minimum actual weight Iw is Iwmin.
It is defined by cen = (Iwmax + Iwmin) / 2. The average actual weight Iwcen is
It is defined for each of the plurality of ejection heads 18 mounted on the
次ã«ãäžèšæ¶²æ»Žååºè£
眮ïŒïŒã®é»æ°çæ§æãå³ïŒãå³ïŒïŒã«åŸã£ãŠèª¬æãããå³ïŒã¯ã
液滎ååºè£
眮ïŒïŒã®é»æ°çæ§æã瀺ããããã¯åè·¯å³ã§ããã
å³ïŒã«ãããŠãå¶åŸ¡è£
眮ïŒïŒã¯ã液滎ååºè£
眮ïŒïŒã«åçš®ã®åŠçåäœïŒäŸãã°ããéåžž
ã¢ãŒããã«ããæç»åŠçãããã¥ãŒãã£ïŒïŒ€ïŒµïŒŽïŒ¹ïŒã¢ãŒããã«ããæç»åŠçïŒãå®è¡ã
ãããã®ã§ããã
Next, the electrical configuration of the
4 is a block circuit diagram showing an electrical configuration of the
In FIG. 6, the control device 30 causes the
å¶åŸ¡è£
眮ïŒïŒã¯ãå€éšïŒ©ïŒïŒŠïŒïŒãšããªã©ãããªãå¶åŸ¡éšïŒïŒãšãïŒåã³
ïŒãããªãåçš®ã®ããŒã¿ãæ ŒçŽããèšæ¶æ段ãšããŠã®ïŒ²ïŒ¡ïŒïŒïŒãšãåçš®å¶åŸ¡ãã
ã°ã©ã ãæ ŒçŽããïŒïŒïŒãšããæããããŸããå¶åŸ¡è£
眮ïŒïŒã¯ãã¯ããã¯ä¿¡å·ãçæ
ããçºæ¯åè·¯ïŒïŒãšãé§å波圢信å·ïŒ£ïŒ¯ïŒãçæããé§å波圢信å·çææ段ãšããŠã®é§å
波圢çæåè·¯ïŒïŒãšã液滎ééè£
眮ïŒïŒãé§åããããã®ééè£
眮é§ååè·¯ïŒïŒãšãåºæ¿
ã¹ããŒãžïŒïŒããã£ãªããžïŒïŒãèµ°æ»ããããã®ã¢ãŒã¿é§ååè·¯ïŒïŒãšãåçš®ã®ä¿¡å·ãé
ä¿¡ããå
éšïŒ©ïŒïŒŠïŒïŒãšããæãããå¶åŸ¡è£
眮ïŒïŒã¯ãå€éšïŒ©ïŒïŒŠïŒïŒãä»ããŠå
¥åºåè£
眮ïŒïŒã«æ¥ç¶ãããŠããããŸããå¶åŸ¡è£
眮ïŒïŒã¯ãå
éšïŒ©ïŒïŒŠïŒïŒãä»ããŠåºæ¿ã¹ããŒãž
ïŒïŒããã£ãªããžïŒïŒåã³æ¶²æ»Žééè£
眮ïŒïŒã«æ¥ç¶ãããŠããããŸããå¶åŸ¡è£
眮ïŒïŒã¯ã
å
éšïŒ©ïŒïŒŠïŒïŒãä»ããŠååºãããïŒïŒã®åã
ã«å¯Ÿå¿ããè€æ°ã®ãããé§ååè·¯ïŒïŒã«æ¥
ç¶ãããŠããã
The control device 30 includes an external I /
It is connected to a plurality of
å
¥åºåè£
眮ïŒïŒã¯ãäŸãã°ïŒ£ïŒ°ïŒµãïŒãïŒãããŒããã£ã¹ã¯ã液æ¶ãã£ã¹ãã¬
ã€ãªã©ãæããå€éšã³ã³ãã¥ãŒã¿ã§ãããå
¥åºåè£
眮ïŒïŒã¯ãïŒåã¯ããŒããã£ã¹ã¯
ã«èšæ¶ãããå¶åŸ¡ããã°ã©ã ã«åŸã£ãŠæ¶²æ»Žååºè£
眮ïŒïŒãé§åãããããã®åçš®ã®å¶åŸ¡ä¿¡
å·ãåçš®ã®ããŒã¿ãå€éšïŒ©ïŒïŒŠïŒïŒã«åºåãããäŸãã°ãå
¥åºåè£
眮ïŒïŒã¯ãæç»ã¢ãŒã
ãéžæããããã®ã¢ãŒãããŒã¿ïŒ©ïœãæç»ããŒã¿ïŒ©ïœãåºæºé§åé»å§ããŒã¿ïŒ©ïœåã³ãã
ãããŒã¿ïŒ©ïœãå€éšïŒ©ïŒïŒŠïŒïŒã«åºåãããå€éšïŒ©ïŒïŒŠïŒïŒã¯ãå
¥åºåè£
眮ïŒïŒããå
¥å
ãããã¢ãŒãããŒã¿ïŒ©ïœãæç»ããŒã¿ïŒ©ïœãåºæºé§åé»å§ããŒã¿ïŒ©ïœåã³ãããããŒã¿ïŒ©
ïœãªã©ãåä¿¡ããã
The input /
h or the like is received.
ããã§ãæç»ã¢ãŒããšã¯ã液滎ã®ååºç¶æ
ãå¶åŸ¡ãã圢æ
ã§ããããéåžžã¢ãŒãããš
ããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ããšããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ããšããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ããšããïŒïŒïŒïŒ€ïŒµ
ããšããããªãïŒçš®é¡ã®ã¢ãŒãã§ããã
Here, the drawing mode is a mode for controlling the discharge state of the droplet D, and is ânormal modeâ, â1/1 DUTYâ, â1/2 DUTYâ, â1/3 DUTYâ, â1â. / 4DU
TY âand five types of modes.
æç»ããŒã¿ïŒ©ïœãšã¯ãã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠã®äœçœ®ãèåã«é¢ããæ
å ±ã液滎ã®ååºäœ
眮ã«é¢ããæ
å ±ãåºæ¿ã¹ããŒãžïŒïŒã®èµ°æ»é床ã«é¢ããæ
å ±ãªã©ãååºé¢ïŒïœã®åç»çŽ ïŒ
ã«æ¶²æ»ŽïŒ€ãååºãããããã®åçš®ã®ããŒã¿ã§ããã
The drawing data Ip is information about the position and film thickness of the color filter CF, information about the discharge position of the droplet D, information about the scanning speed of the
Various data for causing the droplets D to be discharged.
åºæºé§åé»å§ããŒã¿ïŒ©ïœãšã¯ãå¹³åå®ééïœïœïœ
ïœãäºãèŠå®ãããæå®ã®ééïŒåº
æºééïŒã«èŒæ£ããããã®é§åé»å§ïŒåºæºé§åé»å§ïŒ¶ïœïŒïŒã«é¢ããããŒã¿ã§ãããåºæº
é§åé»å§ããŒã¿ïŒ©ïœã¯ãåååºãããïŒïŒã®å¹³åå®ééïœïœïœ
ïœãç°ãªããããååºã
ããïŒïŒããšã«èŠå®ããããããªãã¡ãåºæºé§åé»å§ããŒã¿ïŒ©ïœãšã¯ãåååºãããïŒïŒ
ã®å¹³åå®ééïœïœïœ
ïœãå
±éããåºæºééã«èŒæ£ããããã®ããŒã¿ã§ããã
The reference drive voltage data Iv is data relating to a drive voltage (reference drive voltage Vh0) for calibrating the average actual weight Iwcen to a predetermined weight (reference weight). The reference drive voltage data Iv is defined for each
This is data for calibrating the average actual weight Iwcen of the reference weight to a common reference weight.
ãããããŒã¿ïŒ©ïœãšã¯ãããºã«ïŒ®ïŒå§é»çŽ åïŒã®åã
ãïŒçš®é¡ã®ãã©ã³ã¯ãã«åé¡
ããããŒã¿ã§ãããããºã«ïŒ®ã®åã
ã«å¯Ÿã液滎ã®ééã«åºã¥ãã©ã³ã¯ã察å¿ä»ããããŒ
ã¿ã§ããããããããŒã¿ïŒ©ïœã§ã¯ãäŸãã°ãå³ïŒã«ç€ºãããã«ãååºãã液滎ã®å®éé
ïœãïœïœïœ
ïœÃïŒïŒïŒïŒïŒïŒ©ïœâ§ïŒ©ïœïœïœ
ïœÃïŒïŒïŒïŒãæºããããºã«ïŒ®ã«å¯Ÿããã©
ã³ã¯ãïŒããèšå®ãããŠããããŸããååºãã液滎ã®å®ééïœãïœïœïœ
ïœÃïŒïŒïŒ
ïŒïŒïŒ©ïœâ§ïŒ©ïœïœïœ
ïœãæºããããºã«ïŒ®ã«å¯Ÿããã©ã³ã¯ãïŒããèšå®ãããååºãã液滎
ã®å®ééïœãïœïœïœ
ïœïŒïŒ©ïœâ§ïŒ©ïœïœïœ
ïœÃïŒïŒïŒïŒãæºããããºã«ïŒ®ã«å¯Ÿããã©
ã³ã¯ãïŒããèšå®ãããŠããããŸããååºãã液滎ã®å®ééïœãïœïœïœ
ïœÃïŒïŒïŒ
ïŒïŒïŒ©ïœâ§ïŒ©ïœïœïœ
ïœÃïŒïŒïŒïŒãæºããããºã«ïŒ®ã«å¯Ÿããã©ã³ã¯ãïŒãã«èšå®ãããŠã
ãã
The head data Ih is data in which each of the nozzles N (piezoelectric elements PZ) is classified into four types of âranksâ, and is data in which each nozzle N is associated with a rank based on the weight of the droplet D. . In the head data Ih, for example, as shown in FIG. 7, the rank â1â is set for the nozzle N where the actual weight Iw of the discharged droplet D satisfies Iwcen à 1.02> Iw ⧠Iwcen à 1.01. Has been. The actual weight Iw of the discharged droplet D is Iwcen à 1.0
Rank â2â is set for the nozzle N satisfying 1> Iw ⧠Iwcen, and rank â3â is set for the nozzle N satisfying Iwcen> Iw ⧠Iwcen à 0.99 as the actual weight Iw of the discharged droplet D. Is set. In addition, the actual weight Iw of the discharged droplet D is Iwcen à 0.9.
Rank â4â is set for the nozzle N satisfying 9> Iw ⧠Iwcen à 0.98.
å³ïŒã«ãããŠãïŒïŒïŒã¯ãåä¿¡ãããã¡ïŒïŒïœãäžéãããã¡ïŒïŒïœãåºåããã
ã¡ïŒïŒïœãšããŠå©çšãããã
ïŒïŒïŒã¯ãå¶åŸ¡éšïŒïŒãå®è¡ããåçš®ã®å¶åŸ¡ã«ãŒãã³ãšã該å¶åŸ¡ã«ãŒãã³ãå®è¡ã
ãããã®åçš®ã®ããŒã¿ãšããæ ŒçŽãããïŒïŒïŒã¯ãäŸãã°ããã®æã
ã®åããºã«ïŒ®ã«
察ããŠã©ã³ã¯ã«å¿ããé§å波圢信å·ïŒ£ïŒ¯ïŒã察å¿ä»ããããã®ã©ã³ã¯ããŒã¿ãæ ŒçŽããã
ã©ã³ã¯ããŒã¿ãšã¯ãå³ïŒã«ç€ºãããã«ãåã©ã³ã¯ïŒãïŒãããïŒãïŒãããããïŒçš®é¡ã®
ç°ãªãé§å波圢信å·ïŒ£ïŒ¯ïŒïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ïŒç¬¬
ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ£ïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ïŒã®ããããïŒã€ã«å¯Ÿå¿ä»ãããã
ã®ããŒã¿ã§ãããããªãã¡ãã©ã³ã¯ããŒã¿ãšã¯ãããºã«ïŒ®ã®åã
ã«å¯Ÿãã©ã³ã¯ã«å¿ããé§
å波圢信å·ïŒ£ïŒ¯ïŒã察å¿ä»ããããã®ããŒã¿ã§ããã
In FIG. 6, a
The
As shown in FIG. 7, the rank data means that each rank (â1â to â4â) is divided into four different drive waveform signals COM (first drive waveform signal COMA, second drive waveform signal COMB, third Data for associating with any one of the drive waveform signal COMC and the fourth drive waveform signal COMD). That is, the rank data is data for associating each of the nozzles N with the drive waveform signal COM corresponding to the rank.
å³ïŒã«ãããŠãçºæ¯åè·¯ïŒïŒã¯ãåçš®ã®ããŒã¿ãåçš®ã®é§åä¿¡å·ãåæãããããã®ã¯
ããã¯ä¿¡å·ãçæãããçºæ¯åè·¯ïŒïŒã¯ãäŸãã°ãåçš®ã®ããŒã¿ã®ã·ãªã¢ã«è»¢éæã«å©çš
ããã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ãçæãããçºæ¯åè·¯ïŒïŒã¯ãã·ãªã¢ã«è»¢éãããåçš®ã®ã
ãŒã¿ã®ãã©ã¬ã«å€ææã«å©çšãããã©ããä¿¡å·ïŒãã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ã
ã³ã¢ã³éžæããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¢ïŒãçæããããŸããçºæ¯åè·¯ïŒïŒã¯ã液滎ã®
ååºã¿ã€ãã³ã°ãèŠå®ããããã®ã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡ãçæããã
In FIG. 6, the
é§å波圢çæåè·¯ïŒïŒã¯ã波圢ã¡ã¢ãªïŒïŒïœãã©ããåè·¯ïŒïŒïœãïŒïŒ¡å€æåšïŒïŒïœ
ãå¢å¹
åšïŒïŒïœãæããã波圢ã¡ã¢ãªïŒïŒïœã¯ãåé§å波圢信å·ïŒ£ïŒ¯ïŒãçæããããã®
波圢ããŒã¿ãæå®ã®ã¢ãã¬ã¹ã«å¯Ÿå¿ãããŠæ ŒçŽãããã©ããåè·¯ïŒïŒïœã¯ãå¶åŸ¡éšïŒïŒã
波圢ã¡ã¢ãªããèªã¿åºãã波圢ããŒã¿ãæå®ã®ã¯ããã¯ä¿¡å·ã§ã©ãããããïŒïŒ¡å€æåš
ïŒïŒïœã¯ãã©ããåè·¯ïŒïŒïœãã©ãããã波圢ããŒã¿ãã¢ããã°ä¿¡å·ã«å€æããå¢å¹
åšïŒ
ïŒïœã¯ãïŒïŒ¡å€æåšïŒïŒïœãå€æããã¢ããã°ä¿¡å·ãå¢å¹
ããŠé§å波圢信å·ïŒ£ïŒ¯ïŒãå
æã«çæããã
The drive
And an
6d amplifies the analog signal converted by the D /
å¶åŸ¡éšïŒïŒã¯ãå
¥åºåè£
眮ïŒïŒãåºæºé§åé»å§ããŒã¿ïŒ©ïœãå
¥åãããšããé§å波圢ç
æåè·¯ïŒïŒãä»ããåºæºé§åé»å§ããŒã¿ïŒ©ïœãåç
§ããŠæ³¢åœ¢ã¡ã¢ãªïŒïŒïœã®æ³¢åœ¢ããŒã¿ã
èªã¿åºãããããŠãå¶åŸ¡éšïŒïŒã¯ãé§å波圢çæåè·¯ïŒïŒãä»ããååºåšæ³¢æ°ã«åæãã
ïŒçš®é¡ã®é§å波圢信å·ïŒ£ïŒ¯ïŒïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ïŒ
第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ£ïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ïŒãçæãããã
When the input /
The third drive waveform signal COMC and the fourth drive waveform signal COMD) are generated.
å¶åŸ¡éšïŒïŒã¯ãé§å波圢çæåè·¯ïŒïŒãä»ãã第ïŒã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒïŒ£ïŒ¯
ïŒïŒ¢ïŒïŒ£ïŒ¯ïŒïŒ£ïŒïŒ£ïŒ¯ïŒïŒ€ãããããã©ã³ã¯ãïŒãããïŒãã«å¿ããç°ãªãé§åé»å§ãã
ãªãä¿¡å·ãšããŠçæããããäŸãã°ãå³ïŒåã³å³ïŒã«ç€ºãããã«ãå¶åŸ¡éšïŒïŒã¯ã第ïŒé§
å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ãã©ã³ã¯ãïŒãã®ããºã«ïŒ®ã«å¿ããé§åé»å§ïŒç¬¬ïŒé§åé»å§ïŒ¶ïœïœïŒ
ãããªãä¿¡å·ãšããŠçæãããã第ïŒé§åé»å§ïŒ¶ïœïœã¯ãåºæºé§åé»å§ïŒ¶ïœïŒãããäœã
ã¬ãã«ã®é»å§ïŒäŸãã°ãïœïœïŒïŒ¶ïœïŒÃïŒïŒïŒïŒïŒïŒã§ãããããã«ãããã©ã³ã¯ãïŒ
ãã®ããºã«ïŒ®ã¯ã察å¿ããå§é»çŽ åã«ç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ãå
¥åããããšãã
第ïŒé§åé»å§ïŒ¶ïœïœã®åã ãã察å¿ããå§é»çŽ åã®é§åéïŒäŒžçž®éïŒãå°ãããããŠ
液滎ã®å®ééïœãèŒæ£ãã該液滎ã®å®ééïœãå¹³åå®ééïœïœïœ
ïœïŒåºæºéé
ïŒã«ããã
The
MB, COMC, and COMD are generated as signals having different drive voltages corresponding to the ranks â1â to â4â, respectively. For example, as illustrated in FIGS. 7 and 8, the
It generates as a signal consisting of The first drive voltage Vha is a voltage at a level lower than the reference drive voltage Vh0 (for example, Vha = Vh0 Ã 0.985). As a result, the rank â1â
When the first drive waveform signal COMA is input to the corresponding piezoelectric element PZ,
The drive amount (expansion / contraction amount) of the corresponding piezoelectric element PZ is reduced by the amount corresponding to the first drive voltage Vha to calibrate the actual weight Iw of the droplet D, and the actual weight Iw of the droplet D is calculated as the average actual weight Iwcen ( Reference weight).
åãããå¶åŸ¡éšïŒïŒã¯ãé§å波圢çæåè·¯ïŒïŒãä»ãã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ã第
ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ£ã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ãããããã©ã³ã¯ãïŒããã©ã³ã¯ã
ïŒããã©ã³ã¯ãïŒãã«å¿ããé§åé»å§ïŒç¬¬ïŒé§åé»å§ïŒ¶ïœïœã第ïŒé§åé»å§ïŒ¶ïœïœã第ïŒ
é§åé»å§ïŒ¶ïœïœïŒãããªãä¿¡å·ãšããŠçæãããã第ïŒé§åé»å§ïŒ¶ïœïœã第ïŒé§åé»å§ïŒ¶
ïœïœã第ïŒé§åé»å§ïŒ¶ïœïœã¯ãããããïœïœïŒïŒ¶ïœïŒÃïŒïŒïŒïŒïŒãïœïœïŒïŒ¶ïœïŒÃ
ïŒïŒïŒïŒïŒãïœïœïŒïŒ¶ïœïŒÃïŒïŒïŒïŒïŒã§ãããã©ã³ã¯ãïŒããã©ã³ã¯ãïŒããã©ã³ã¯
ãïŒãã®ããºã«ïŒ®ã¯ããããã察å¿ããå§é»çŽ åã«ç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ã第ïŒ
é§å波圢信å·ïŒ£ïŒ¯ïŒïŒ£ã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ãå
¥åããããšããã©ã³ã¯ã«å¿ããé§
åé»å§ã«ãã£ãŠæ¶²æ»ŽïŒ€ã®å®ééïœãèŒæ£ãã該液滎ã®å®ééïœãåºæºééã«ããã
Similarly, the
3 âand the drive voltage corresponding to the rankâ 4 â(second drive voltage Vhb, third drive voltage Vhc, fourth
It is generated as a signal consisting of drive voltage Vhd). Second drive voltage Vhb, third drive voltage V
hc and the fourth drive voltage Vhd are Vhb = Vh0 Ã 0.995 and Vhc = Vh0 Ã, respectively.
1.005, Vhd = Vh0 Ã 1.015. The nozzles N of rank â2â, rank â3â, and rank â4â are supplied to the corresponding piezoelectric element PZ by the second drive waveform signal COMB, the third
When the drive waveform signal COMC and the fourth drive waveform signal COMD are input, the actual weight Iw of the droplet D is calibrated by the drive voltage corresponding to the rank, and the actual weight Iw of the droplet D is set as the reference weight.
ããã«ãããå
šãŠã®ããºã«ïŒ®ïŒå§é»çŽ åïŒã¯ãããããã©ã³ã¯ã«å¯Ÿå¿ããé§å波圢
ä¿¡å·ïŒ£ïŒ¯ïŒãå
¥åããããšããå液滎ã®å®ééïœãããããå
±éããåºæºééã«èŠæ Œ
åããããšãã§ããã
As a result, all nozzles N (piezoelectric elements PZ) can normalize the actual weight Iw of each droplet D to a common reference weight when the drive waveform signal COM corresponding to the rank is input. .
å³ïŒã«ãããŠãå¶åŸ¡éšïŒïŒã¯ãééè£
眮é§ååè·¯ïŒïŒã«å¯Ÿå¿ããé§åå¶åŸ¡ä¿¡å·ãåºåã
ããééè£
眮é§ååè·¯ïŒïŒã¯ãå¶åŸ¡éšïŒïŒããã®é§åå¶åŸ¡ä¿¡å·ã«å¿çããå
éšïŒ©ïŒïŒŠïŒïŒ
ãä»ããŠæ¶²æ»Žééè£
眮ïŒïŒãé§åãããã
In FIG. 6, the
Then, the
å¶åŸ¡éšïŒïŒã¯ãã¢ãŒã¿é§ååè·¯ïŒïŒã«å¯Ÿå¿ããé§åå¶åŸ¡ä¿¡å·ãåºåãããã¢ãŒã¿é§åå
è·¯ïŒïŒã¯ãå¶åŸ¡éšïŒïŒããã®é§åå¶åŸ¡ä¿¡å·ã«å¿çããå
éšïŒ©ïŒïŒŠïŒïŒãä»ããŠåºæ¿ã¹ããŒ
ãžïŒïŒããã£ãªããžïŒïŒãèµ°æ»ãããã
The
å¶åŸ¡éšïŒïŒã¯ãå€éšïŒ©ïŒïŒŠïŒïŒãåä¿¡ãããããããŒã¿ïŒ©ïœãåä¿¡ãããã¡ïŒïŒïœã«äž
æçã«æ ŒçŽããããå¶åŸ¡éšïŒïŒã¯ããããããŒã¿ïŒ©ïœãäžéã³ãŒãã«å€æãäžéã³ãŒãã
ãŒã¿ãšããŠäžéãããã¡ïŒïŒïœã«æ ŒçŽããããå¶åŸ¡éšïŒïŒã¯ãäžéãããã¡ïŒïŒïœããäž
éã³ãŒãããŒã¿ãèªã¿åºããïŒïŒïŒå
ã®ã©ã³ã¯ããŒã¿ãåç
§ããŠã³ã¢ã³éžæããŒã¿ã«
å±éãã該ã³ã¢ã³éžæããŒã¿ãåºåãããã¡ïŒïŒïœã«æ ŒçŽãããã
The
ã³ã¢ã³éžæããŒã¿ãšã¯ãããããã¿ãŒã³æ Œåã®åæ Œåç¹ã«ããããïŒãããã®å€ïŒâïŒ
ïŒâãâïŒïŒâãâïŒïŒâãâïŒïŒâïŒã察å¿ä»ããããŒã¿ã§ãã£ãŠãïŒå€ã®åã
ã«å¯Ÿã
第ïŒã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒïŒ£ïŒ¯ïŒïŒ¢ïŒïŒ£ïŒ¯ïŒïŒ£ïŒïŒ£ïŒ¯ïŒïŒ€ã®ããããïŒã€ã察å¿
ä»ããããã®ããŒã¿ã§ããããªããããããã¿ãŒã³æ Œåãšã¯ãïŒæ¬¡å
ã®æç»å¹³é¢ã§ããå
åºé¢ïŒïœäžã«èŠå®ããã液滎ã®ååºåšæã§èŠå®ãããæå°ééã®æ Œåã§ããã
The common selection data is a 2-bit value (â0â) at each grid point of the dot pattern grid.
0 â,â 01 â,â 10 â,â 11 â), and any one of the first to fourth drive waveform signals COMA, COMB, COMC, COMD for each of the four values. The dot pattern grid is a grid with a minimum interval that is defined on the
å¶åŸ¡éšïŒïŒã¯ãåºæ¿ã¹ããŒãžïŒïŒã®ïŒã¹ãã£ã³åã«çžåœããã³ã¢ã³éžæããŒã¿ãåŸãã
ããšãã³ã¢ã³éžæããŒã¿ãå©çšããŠè»¢éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«åæããã·ãªã¢ã«ããŒã¿ãç
æããå
éšïŒ©ïŒïŒŠïŒïŒãä»ããŠè©²ã·ãªã¢ã«ããŒã¿ããããé§ååè·¯ïŒïŒã«ã·ãªã¢ã«è»¢éã
ãããå¶åŸ¡éšïŒïŒã¯ãïŒã¹ãã£ã³åã®ã³ã¢ã³éžæããŒã¿ãã·ãªã¢ã«è»¢éããããšãäžéã
ããã¡ã®å
容ãæ¶å»ãã次ã®äžéã³ãŒãããŒã¿ã«å¯ŸããŠå±éåŠçãå®è¡ããã
When the common selection data corresponding to one scan of the
ããã§ãã³ã¢ã³éžæããŒã¿ãå©çšããŠçæãããã·ãªã¢ã«ããŒã¿ããã·ãªã¢ã«ã³ã¢ã³éž
æããŒã¿ïŒ³ïŒ©ïŒ¢ãšãããã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã¯ãæç»ã¢ãŒãã«é¢ãããå
±é
ããŠå©çšãããããŒã¿ã§ããã
Here, the serial data generated using the common selection data is referred to as serial common selection data SIB. The serial common selection data SIB is data that is commonly used regardless of the drawing mode.
å³ïŒã«ãããŠãã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã¯ãïŒïŒïŒåã®ããºã«ïŒ®ã®åã
ã«ïŒã
ããã®å€ã察å¿ãããïŒïŒïŒãããã®äžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãšãïŒïŒïŒåã®ããºã«ïŒ®ã®å
ã
ã«ïŒãããã®å€ã察å¿ãããïŒïŒïŒãããã®äžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãšãïŒïŒãããã®å¶
埡ããŒã¿ïŒ£ïŒ²ãšããæããã
In FIG. 9, the serial common selection data SIB corresponds to 180-bit higher selection data SIH in which 1-bit value is associated with each of the 180 nozzles N, and 1-bit value is associated with each of the 180 nozzles N. 180-bit lower selection data SIL and 32-bit control data CR.
äžäœéžæããŒã¿ïŒ³ïŒžïŒšã¯ãé§å波圢信å·ïŒ£ïŒ¯ïŒã®çš®å¥ãéžæããããã®ïŒãããã®å€ã®
ãã¡ã®äžäœãããã§æ§æããããäžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ã¯ãé§å波圢信å·ïŒ£ïŒ¯ïŒãéžæã
ãããã®ïŒãããã®å€ã®ãã¡ã®äžäœãããã§æ§æãããã
The upper selection data SXH is composed of upper bits of a 2-bit value for selecting the type of the drive waveform signal COM. The lower selection data SXL is composed of lower bits of a 2-bit value for selecting the drive waveform signal COM.
å¶åŸ¡éšïŒïŒã¯ããããé§ååè·¯ïŒïŒãä»ããäžäœéžæããŒã¿ïŒ³ïŒžïŒšåã³äžäœéžæããŒã¿
ãçšããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãïŒïŒïŒåã®ããºã«ïŒ®ïŒå§é»çŽ åïŒã®
åã
ã«ããããé§å波圢信å·ïŒ£ïŒ¯ïŒã®çš®å¥ã察å¿ä»ãããäŸãã°ãå¶åŸ¡éšïŒïŒã¯ãããã
é§ååè·¯ïŒïŒãä»ããäžäœéžæããŒã¿ïŒ³ïŒžïŒšãâïŒâãäžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãâïŒâã®
ããºã«ïŒ®ïŒå§é»çŽ åïŒã«ãããã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ã察å¿ä»ãããå¶åŸ¡éšïŒ
ïŒã¯ãäžäœéžæããŒã¿ïŒ³ïŒžïŒšãšäžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãâïŒïŒâãâïŒïŒâãâïŒïŒâã®
ããºã«ïŒ®ïŒå§é»çŽ åïŒã«ããããã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ã第ïŒé§å波圢信å·ïŒ£
ïŒïŒ£ã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ã察å¿ä»ããã
The
2 shows that the second drive waveform signal COMB and the third drive waveform signal C are respectively applied to the nozzles N (piezoelectric elements PZ) of which the upper selection data SXH and the lower selection data SXL are â01â, â10â, â11â
The OMC is associated with the fourth drive waveform signal COMD.
å¶åŸ¡ããŒã¿ïŒ£ïŒ²ã¯ãïŒãããã®ã¢ãŒãéžæããŒã¿ïŒç¬¬ïŒã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒã第ïŒ
ã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒãåã³ç¬¬ïŒã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒãæããã第ïŒã第ïŒã¢ãŒ
ãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒã¯ãæç»ã¢ãŒããèŠå®ããããã®ããŒã¿ã§ããã
The control data CR is 3-bit mode selection data (first mode selection data AD1, second
Mode selection data AD2 and third mode selection data AD3). The first to third mode selection data AD1, AD2, AD3 are data for defining the drawing mode.
å¶åŸ¡éšïŒïŒã¯ã第ïŒã第ïŒã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒãçšããå³ïŒïŒã«
瀺ãççå€è¡šã«åŸã£ãŠããããé§ååè·¯ïŒïŒã«å¯Ÿãæç»ã¢ãŒããèŠå®ãããäŸãã°ãå¶åŸ¡
éšïŒïŒã¯ã第ïŒã第ïŒåã³ç¬¬ïŒã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒãâïŒïŒžïŒžâïŒ
ã¯âïŒâãããã¯âïŒâïŒã§ãããšãããããé§ååè·¯ïŒïŒã«å¯Ÿãæç»ã¢ãŒããéåžžã¢
ãŒãã§ããïŒïŒ€ïŒµïŒŽïŒ¹ã¢ãŒããªãã§ããïŒããšãèŠå®ãããå¶åŸ¡éšïŒïŒã¯ã第ïŒã第ïŒå
ã³ç¬¬ïŒã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒãâïŒïŒïŒâãâïŒïŒïŒâãâïŒïŒïŒâ
ãïŒïŒïŒâã§ãããšãããããé§ååè·¯ïŒïŒã«å¯Ÿãããããæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽ
ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãïŒïŒ€ïŒµïŒŽïŒ¹ã¢ãŒã
ããªã³ïŒã§ããããšãèŠå®ããã
The
When X is â0â or â1â), the
, 111 â, the drawing mode isâ 1/1 DUT âfor the
Y â,â 1/2 DUTY â,â 1/3 DUTY â,â 1/4 DUTY â(DUTY mode is on).
å³ïŒã«ãããŠãå¶åŸ¡éšïŒïŒã¯ãå€éšïŒ©ïŒïŒŠïŒïŒãåä¿¡ããæç»ããŒã¿ïŒ©ïœãåä¿¡ããã
ã¡ïŒïŒïœã«äžæçã«æ ŒçŽããããå¶åŸ¡éšïŒïŒã¯ãã¢ãŒãããŒã¿ïŒ©ïœã«å¿ããŠæç»ããŒã¿ïŒ©
ïœãäžéã³ãŒãã«å€æãäžéã³ãŒãããŒã¿ãšããŠäžéãããã¡ïŒïŒïœã«æ ŒçŽãããã
In FIG. 6, the
p is converted into an intermediate code and stored in the intermediate buffer 33b as intermediate code data.
å¶åŸ¡éšïŒïŒã¯ãæç»ã¢ãŒãããéåžžã¢ãŒããã§ãããšããäžéãããã¡ïŒïŒïœããäžé
ã³ãŒãããŒã¿ãèªã¿åºããŠããããã¿ãŒã³ããŒã¿ã«å±éãã該ããããã¿ãŒã³ããŒã¿ãåº
åãããã¡ïŒïŒïœã«æ ŒçŽãããã
When the drawing mode is the ânormal modeâ, the
äžæ¹ãå¶åŸ¡éšïŒïŒã¯ãæç»ã¢ãŒããåãã¢ãŒããïŒãïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒ
ïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãïŒã§ãããšããäžéãããã¡
ïŒïŒïœããäžéã³ãŒãããŒã¿ãèªã¿åºãããã¢ãŒããã«å¯Ÿå¿ããããããã¿ãŒã³
ããŒã¿ã«å±éãã該ããããã¿ãŒã³ããŒã¿ãåºåãããã¡ïŒïŒïœã«æ ŒçŽãããã
On the other hand, the
/ 2 DUTY â,â 1/3 DUTY â,â 1/4 DUTY â), the intermediate code data is read from the intermediate buffer 33b, expanded into dot pattern data corresponding to theâ DUTY mode â, and the dot pattern data is output. The data is stored in the
ããããã¿ãŒã³ããŒã¿ã¯ãïŒæ¬¡å
æç»å¹³é¢ïŒååºé¢ïŒïœïŒã®åäœçœ®ïŒããããã¿ãŒã³æ Œ
åã®åæ ŒåïŒã«ãããã液滎ãååºããããåŠãïŒååºã»éååºïŒã察å¿ä»ããããŒã¿
ã§ãããããããã¿ãŒã³ããŒã¿ã¯ãããããã¿ãŒã³æ Œåã®åæ Œåã«ããããïŒãããã®å€
ïŒâïŒâãããã¯âïŒâïŒã察å¿ã¥ããããã®ããŒã¿ã§ããããªããããããã¿ãŒã³æ Œå
ã¯ã液滎ã®ååºåšæã§èŠå®ãããæå°ééã®æ Œåã§ããã
The dot pattern data is data associating whether or not the droplet D is ejected (ejection / non-ejection) to each position (each grid of the dot pattern grid) on the two-dimensional drawing plane (
å¶åŸ¡éšïŒïŒã¯ãåºæ¿ã¹ããŒãžïŒïŒã®ïŒã¹ãã£ã³åã«çžåœããããããã¿ãŒã³ããŒã¿ãå±
éãããšã該ããããã¿ãŒã³ããŒã¿ãå©çšããŠè»¢éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«åæããã·ãªã¢ã«
ããŒã¿ãçæããå
éšïŒ©ïŒïŒŠïŒïŒãä»ããŠã該ã·ãªã¢ã«ããŒã¿ããããé§ååè·¯ïŒïŒã«ã·
ãªã¢ã«è»¢éããããå¶åŸ¡éšïŒïŒã¯ãïŒã¹ãã£ã³åã®ããããã¿ãŒã³ããŒã¿ãã·ãªã¢ã«è»¢é
ããããšãäžéãããã¡ïŒïŒïœã®å
容ãæ¶å»ãã次ã®äžéã³ãŒãããŒã¿ã«å¯ŸããŠå±éåŠç
ãå®è¡ããã
When the dot pattern data corresponding to one scan of the
ããã§ãããããã¿ãŒã³ããŒã¿ãå©çšããŠçæãããã·ãªã¢ã«ããŒã¿ããã·ãªã¢ã«ãã¿
ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ãšããã
å³ïŒïŒã«ãããŠãã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ã¯ãïŒïŒïŒåã®ããºã«ïŒ®ã®åã
ã«ïŒã
ããã®å€ã察å¿ãããïŒïŒïŒãããã®äžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãšãïŒïŒïŒåã®ããºã«ïŒ®ã®å
ã
ã«ïŒãããã®å€ã察å¿ãããïŒïŒïŒãããã®äžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãšãïŒïŒãããã®ã
ã¿ãŒã³ããŒã¿ïŒ³ïŒ°ãšããæãããå¶åŸ¡éšïŒïŒã¯ãæç»ã¢ãŒãããéåžžã¢ãŒããã§ããå Žå
ãšããã¢ãŒããã§ããå Žåãšã«å¿ããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãäžäœéžæããŒã¿ïŒ³
ãåã³ãã¿ãŒã³ããŒã¿ïŒ³ïŒ°ã®å
容ã以äžã®ããã«å€æŽããã
Here, the serial data generated using the dot pattern data is referred to as serial pattern data SIA.
In FIG. 12, the serial pattern data SIA includes 180-bit upper selection data SIH in which 1-bit value is associated with each of the 180 nozzles N, and 1-bit value is associated with each of the 180 nozzles N. 180-bit lower-order selection data SIL and 32-bit pattern data SP. The
The contents of IL and pattern data SP are changed as follows.
æç»ã¢ãŒãããéåžžã¢ãŒããã§ãããšããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšã¯ããããã®é調ãéž
æããããã®ïŒãããã®å€ã®ãã¡ã®äžäœãããã§æ§æããããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ã¯ã
ãããã®é調ãéžæããããã®ïŒãããã®å€ã®ãã¡ã®äžäœãããã§æ§æãããããã¿ãŒã³
ããŒã¿ïŒ³ïŒ°ã¯ãå³ïŒïŒã«ç€ºãããã«ãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãšäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãšã«
ããèŠå®ãããïŒå€ïŒâïŒïŒâãâïŒïŒâãâïŒïŒâãâïŒïŒâïŒã®åã
ã«ïŒãããã察
å¿ãããïŒïŒãããã®ããŒã¿ïŒåã¹ã€ããããŒã¿ïŒ°ïœïœïŒïœïœïŒïŒïŒãïŒïŒãïŒïŒãïŒïŒ
ãã»ã»ã»ãïŒïŒãïŒïŒïŒã§æ§æããããåã¹ã€ããããŒã¿ïŒ°ïœïœïŒâïŒâãããã¯âïŒâ
ã®ãããããŒã¿ïŒã¯ãå§é»çŽ åã®ãªã³ãããã¯ãªããèŠå®ããããã®ããŒã¿ã§ããã
When the drawing mode is the ânormal modeâ, the upper selection data SIH is composed of upper bits of a 2-bit value for selecting a dot gradation. The lower selection data SIL is
It is composed of lower bits of a 2-bit value for selecting a dot gradation. As shown in FIG. 13, the pattern data SP has 8 bits for each of four values (â00â, â01â, â10â, â11â) defined by the upper selection data SIH and the lower selection data SIL. 32 bit data (each switch data Pnm (nm = 00-03, 10-13)
,..., 70 to 73). Each switch data Pnm ("0" or "1"
Are bit data for defining whether the piezoelectric element PZ is on or off.
å³ïŒïŒã«ãããŠãã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡ã¯ã液滎ã®ååºã¿ã€ãã³ã°ãèŠå®ããã
ãã®ãã«ã¹ä¿¡å·ã§ããã液滎ã®ååºåšæ³¢æ°ã§çæããããããã§ãã¹ããŒãåæ¿ãä¿¡å·
ã®ãã«ã¹ããšã«èŠå®ãããç¶æ
ãããã¹ããŒãããšãããã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒš
ã¯ãå
è¡ãããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãçæãããŠåŸç¶ãããã¿ãŒã³ããŒ
ã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãçæããããŸã§ã®éã®ç¶æ
ãè€æ°ã®ã¹ããŒãïŒäŸãã°ããïŒã
ããïŒãã®åã¹ããŒãïŒã«åºåããã
In FIG. 13, the state switching signal CHA is a pulse signal for defining the discharge timing of the droplet D, and is generated at the discharge frequency of the droplet D. Here, a state defined for each pulse of the state switching signal CHA is referred to as a âstateâ. State switching signal CH
A is a plurality of states (for example, â0â) from when the preceding pattern data latch signal LATA is generated until the subsequent pattern data latch signal LATA is generated.
To "7" states).
æç»ã¢ãŒãããéåžžã¢ãŒããã§ãããšããå¶åŸ¡éšïŒïŒã¯ããããé§ååè·¯ïŒïŒãä»ãã
å³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãã¿ãŒã³ããŒã¿ïŒ³ïŒ°ã®åããŒã¿ïŒåã¹ã€ããããŒã¿ïŒ°ïœïœ
ïŒãããããåã¹ããŒãã«å¯Ÿå¿ä»ãããäŸãã°ãå¶åŸ¡éšïŒïŒã¯ããããé§ååè·¯ïŒïŒãä»
ããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãâïŒâãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãâïŒâã®ããºã«ïŒ®ïŒå§é»çŽ
åïŒã«å¯Ÿããã¹ã€ããããŒã¿ïŒ°ïŒïŒãïŒïŒãã»ã»ã»ãïŒïŒã察å¿ä»ãããå¶åŸ¡éš
ïŒïŒã¯ãã¹ã€ããããŒã¿ïŒ°ïŒïŒãïŒïŒãã»ã»ã»ãïŒïŒããããããïŒãããïŒãã®å
ã¹ããŒãã«å¯Ÿå¿ä»ããããããŠãå¶åŸ¡éšïŒïŒã¯ããããé§ååè·¯ïŒïŒãä»ããâïŒâã«èš
å®ãããã¹ã€ããããŒã¿ïŒ°ïŒïŒãïŒïŒã®ã¹ããŒãã§è©²å§é»çŽ åã«é§å波圢信å·ïŒ£ïŒ¯
ïŒãäŸçµŠãããäŸãã°ãïŒïŒãïŒïŒãâïŒâã§ãããïŒïŒãâïŒâã§ãããšããå¶
埡éšïŒïŒã¯ãã¹ããŒãããïŒãããïŒãã®éãå§é»çŽ åããªãããã¹ããŒãããïŒã
ã«ãªãã¿ã€ãã³ã°ã§è©²å§é»çŽ åããªã³ããã
When the drawing mode is the ânormal modeâ, the
Each data of the pattern data SP (each switch data Pnm) according to the truth table shown in FIG.
) To each state. For example, the
M is supplied. For example, when P00 to P60 are â0â and P70 is â1â, the
At this timing, the piezoelectric element PZ is turned on.
å¶åŸ¡éšïŒïŒã¯ãåæ§ã«ãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãšäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ããããããâ
ïŒïŒâãâïŒïŒâãâïŒïŒâã®ããºã«ïŒ®ïŒå§é»çŽ åïŒã«å¯Ÿããå³ïŒïŒã«ç€ºãççå€è¡š
ã«åŸã£ãŠãããããã¹ã€ããããŒã¿ïŒ°ïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒã
察å¿ä»ãããå¶åŸ¡éšïŒïŒã¯ãã¹ã€ããããŒã¿ïŒ°ïŒïŒãïŒïŒãïŒïŒãïŒïŒãïŒïŒã
ïŒïŒããããããïŒãããïŒãã®åã¹ããŒãã«å¯Ÿå¿ä»ããããããŠãå¶åŸ¡éšïŒïŒã¯ãã
ããé§ååè·¯ïŒïŒãä»ããâïŒâã«èšå®ãããã¹ã€ããããŒã¿ïŒ°ïŒïŒãïŒïŒãïŒïŒã
ïŒïŒãïŒïŒãïŒïŒã®ã¹ããŒãã§å¯Ÿå¿ããå§é»çŽ åã«é§å波圢信å·ïŒ£ïŒ¯ïŒãäŸçµŠ
ããã
Similarly, the
The switch data P01 to P71, P02 to P72, and P03 to P73 are associated with the nozzles N (piezoelectric elements PZ) of â01â, â10â, and â11â according to the truth table shown in FIG. Are switch data P01-P71, P02-P72, P03-
P73 is associated with each state â0â to â7â. Then, the
The drive waveform signal COM is supplied to the corresponding piezoelectric element PZ in the states of P72 and P03 to P73.
ããã«ãããæç»ã¢ãŒãããéåžžã¢ãŒããã§ãããšããå
šãŠã®ããºã«ïŒ®ã¯ãäžäœéžæã
ãŒã¿ïŒ³ïŒ©ïŒšåã³äžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ã§èŠå®ãããé§åãã«ã¹ã®ãã¿ãŒã³ã§æ¶²æ»ŽïŒ€ãååº
ãããææã®é調ãå®çŸãããããšãã§ããã
As a result, when the drawing mode is the ânormal modeâ, all the nozzles N discharge the droplets D with the drive pulse pattern defined by the upper selection data SIH and the lower selection data SIL, and achieve a desired gradation. Can be realized.
äžæ¹ãæç»ã¢ãŒãããã¢ãŒããã§ãããšããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšåã³ãã¿ãŒ
ã³ããŒã¿ïŒ³ïŒ°ã¯ãããããã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«ãã
転éå¯èœã«ããããã®ãããŒããŒã¿ã§ãããç¡å¹ãšãªãããŒã¿ã§æ§æããããäžäœéžæã
ãŒã¿ïŒ³ïŒ©ïŒ¬ã¯ã液滎ãååºããããºã«ïŒ®ãéžæããããã®ããºã«éžæããŒã¿ã§ãã£ãŠã
å§é»çŽ åã®ãªã³ãããã¯ãªããïŒãããã®å€ïŒâïŒâãããã¯âïŒâïŒã§èŠå®ããïŒ
ïŒïŒãããã§æ§æãããã
On the other hand, when the drawing mode is the âDUTY modeâ, the upper selection data SIH and the pattern data SP are dummy data for enabling the serial pattern data SIA to be transferred by the transfer clock SCLK, and are composed of invalid data. Is done. The lower selection data SIL is nozzle selection data for selecting the nozzle N that discharges the droplet D.
1 that specifies whether the piezoelectric element PZ is turned on or off by a 1-bit value ("1" or "0")
It consists of 80 bits.
æç»ã¢ãŒãããã¢ãŒããã§ãããšããå¶åŸ¡éšïŒïŒã¯ããããé§ååè·¯ïŒïŒãä»
ããã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ã®äžã§äžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ã®ã¿ãçšãæç»åŠçãå®
è¡ãããã
When the drawing mode is the âDUTY modeâ, the
次ã«ããããé§ååè·¯ïŒïŒã«ã€ããŠä»¥äžã«èª¬æããã
å³ïŒïŒã«ãããŠããããé§ååè·¯ïŒïŒã¯ãã³ã¢ã³éžæå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒãšãåºåå¶
埡信å·çæåè·¯ïŒïŒãšããæããããŸãããããé§ååè·¯ïŒïŒã¯ãåºååæåè·¯ïŒïŒïŒç¬¬
ïŒã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ïŒãšãããžãã¯ç³»ã®ä¿¡å·ã
æå§ããŠã¢ããã°ã¹ã€ããã®é§åé»å§ã¬ãã«ã«æå§ããã¬ãã«ã·ãã¿ïŒïŒïŒç¬¬ïŒã第ïŒã³
ã¢ã³çšã¬ãã«ã·ãã¿ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ïŒãšããæããããŸãããããé§å
åè·¯ïŒïŒã¯ãå§é»çŽ åã«åé§å波圢信å·ïŒ£ïŒ¯ïŒãäŸçµŠããããã®ã¢ããã°ã¹ã€ããã
åããïŒç³»çµ±ã®ã¹ã€ããåè·¯ïŒïŒïŒç¬¬ïŒã第ïŒã³ã¢ã³çšã¹ã€ããåè·¯ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒ
ïŒïŒ£ïŒïŒïŒïŒ€ïŒãæããã
Next, the
In FIG. 14, the
2C, 72D).
ãŸããåã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ïŒïŒ°ïŒžïŒ¢ïŒïŒ°ïŒžïŒ£ïŒïŒ°ïŒžïŒ€ãçæããããã®ã³ã¢ã³
éžæå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã«ã€ããŠä»¥äžã«èª¬æããã
å³ïŒïŒã«ãããŠãã³ã¢ã³éžæå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãã·ããã¬ãžã¹ã¿ïŒïŒãšãã©ãã
ïŒïŒãšãã³ã¢ã³éžæããŒã¿ãã³ãŒãåè·¯ïŒïŒãšããæããã
First, the common selection control
In FIG. 15, the common selection control
ã·ããã¬ãžã¹ã¿ïŒïŒã¯ãå¶åŸ¡ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ãšãäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¢
ãšãäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ£ãšããæããå¶åŸ¡è£
眮ïŒïŒããã·ãªã¢ã«ã³ã¢ã³éžæã
ãŒã¿ïŒ³ïŒ©ïŒ¢ãšè»¢éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ãšãå
¥åãããã
The
And the upper selection data register 51C, and the serial common selection data SIB and the transfer clock SCLK are input from the control device 30.
å¶åŸ¡ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ã¯ãã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã®ãã¡ã®å¶åŸ¡ããŒã¿ïŒ£
ãã·ãªã¢ã«è»¢éããã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«ãã£ãŠé 次ã·ããããŠïŒïŒãããã®å¶åŸ¡
ããŒã¿ïŒ£ïŒ²ãæ ŒçŽãããå¶åŸ¡ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ã¯ãæ ŒçŽããå¶åŸ¡ããŒã¿ïŒ£ïŒ²ã®ãã¡ã
ã第ïŒã第ïŒã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒãèªã¿åºãå¯èœã«ããã
The control data register 51A is the control data C of the serial common selection data SIB.
R is serially transferred and sequentially shifted by the transfer clock SCLK to store 32-bit control data CR. The control data register 51A makes it possible to read the first to third mode selection data AD1, AD2, AD3 from the stored control data CR.
äžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¢ã¯ãã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã®ãã¡äžäœéžæã
ãŒã¿ïŒ³ïŒžïŒ¬ãã·ãªã¢ã«è»¢éããã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«ãã£ãŠé 次ã·ããããŠïŒïŒïŒã
ããã®äžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãæ ŒçŽãããäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ£ã¯ãã·ãªã¢ã«ã³
ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã®ãã¡äžäœéžæããŒã¿ïŒ³ïŒžïŒšãã·ãªã¢ã«è»¢éããã転éã¯ããã¯ïŒ³
ã«ãã£ãŠé 次ã·ããããŠïŒïŒïŒãããã®äžäœéžæããŒã¿ïŒ³ïŒžïŒšãæ ŒçŽããã
The lower selection data register 51B serially transfers the lower selection data SXL among the serial common selection data SIB, and sequentially shifts by the transfer clock SCLK to store 180-bit lower selection data SXL. The upper selection data register 51C serially transfers the upper selection data SXH out of the serial common selection data SIB.
The 180-bit higher-order selection data SXH is stored by sequentially shifting with CLK.
ã©ããïŒïŒã¯ãå¶åŸ¡ããŒã¿ã©ããïŒïŒïŒ¡ãšãäžäœéžæããŒã¿ã©ããïŒïŒïŒ¢ãšãäžäœéžæ
ããŒã¿ã©ããïŒïŒïŒ£ãšãæããå¶åŸ¡è£
眮ïŒïŒããã³ã¢ã³éžæããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¢
ãå
¥åãããã
The
Is entered.
å¶åŸ¡ããŒã¿ã©ããïŒïŒïŒ¡ã¯ãã³ã¢ã³éžæããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¢ãå
¥åããããšã
ãå¶åŸ¡ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ã®ããŒã¿ãããªãã¡å¶åŸ¡ããŒã¿ïŒ£ïŒ²ãã©ããããã©ãããã
ããŒã¿ãæå®ã®å¶åŸ¡åè·¯ã«åºåãããäžäœéžæããŒã¿ã©ããïŒïŒïŒ¢ã¯ãã³ã¢ã³éžæããŒã¿
çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¢ãå
¥åããããšããäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¢ã®ããŒã¿ãããª
ãã¡äžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãã©ãããããäžäœéžæããŒã¿ã©ããïŒïŒïŒ£ã¯ãã³ã¢ã³éžæã
ãŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¢ãå
¥åããããšããäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ£ã®ããŒã¿ã
ããªãã¡äžäœéžæããŒã¿ïŒ³ïŒžïŒšãã©ããããã
When the common selection data latch signal LATB is input, the control data latch 52A latches the data in the control data register 51A, that is, the control data CR, and outputs the latched data to a predetermined control circuit. The lower selection data latch 52B latches the data of the lower
That is, the upper selection data SXH is latched.
ã³ã¢ã³éžæããŒã¿ãã³ãŒãåè·¯ïŒïŒã¯ãäžäœéžæããŒã¿ã©ããïŒïŒïŒ¢ãã©ããããäžäœ
éžæããŒã¿ïŒ³ïŒžïŒ¬ãšãäžäœéžæããŒã¿ã©ããïŒïŒïŒ£ãã©ããããäžäœéžæããŒã¿ïŒ³ïŒžïŒšãš
ããèªã¿åºããã³ã¢ã³éžæããŒã¿ãã³ãŒãåè·¯ïŒïŒã¯ãäžäœéžæããŒã¿ïŒ³ïŒžïŒ¬åã³äžäœéž
æããŒã¿ïŒ³ïŒžïŒšãçšããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãïŒã€ã®ç°ãªãé§å波圢信å·ïŒ£ïŒ¯
ïŒã®åã
ã«ã€ããŠäœ¿çšãããåŠãïŒéžæã»ééžæïŒãèŠå®ãããã³ã¢ã³éžæããŒã¿ãã³ãŒ
ãåè·¯ïŒïŒã¯ãïŒïŒïŒåã®ããºã«ïŒ®ã®åã
ã«å¯Ÿããåé§å波圢信å·ïŒ£ïŒ¯ïŒã®éžæã»ééžæ
ãèŠå®ããããŒã¿ãçæããã
The common selection
Whether to use each of M (selection / non-selection) is defined. The common selection
ããã§ã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ã®éžæã»ééžæã«ã€ããŠèŠå®ããããŒã¿ãã第ïŒã³
ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ãšããããŸãã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ã第ïŒé§å波圢信å·ïŒ£
ïŒïŒ£ã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ã®éžæã»ééžæã«ã€ããŠèŠå®ããããŒã¿ãããããã
第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¢ã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ£ã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡
å·ïŒ°ïŒžïŒ€ãšããã
Here, the data defining the selection / non-selection of the first drive waveform signal COMA is referred to as a first common selection control signal PXA. Further, the second drive waveform signal COMB, the third drive waveform signal C
Data that defines the selection / non-selection of the OMC and the fourth drive waveform signal COMD are referred to as a second common selection control signal PXB, a third common selection control signal PXC, and a fourth common selection control signal PXD, respectively.
次ãã§ãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãçæããããã®åºåå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã«ã€ããŠä»¥äžã«
説æããã
å³ïŒïŒã«ãããŠãåºåå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãã·ããã¬ãžã¹ã¿ïŒïŒãšãã©ããïŒïŒãš
ãã¹ããŒãã«ãŠã³ã¿ïŒïŒãšããã¿ãŒã³ããŒã¿éžæåè·¯ïŒïŒãšãå¶åŸ¡ä¿¡å·çæåè·¯
ïŒïŒãšããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒãšããæããã
Next, the output control
16, the output control
ãªããã·ããã¬ãžã¹ã¿ïŒïŒãã©ããïŒïŒïŒã©ããïŒïŒãåã³ïŒ²ïŒ¡ïŒïŒïŒã«ãã£ãŠèšæ¶æ
段ãæ§æãããããŸããã¹ããŒãã«ãŠã³ã¿ïŒïŒãšãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒãšãã«
ãã£ãŠãéžæä¿¡å·çææ段ãæ§æãããããŸããåèšã³ã¢ã³éžæå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã
åºååæåè·¯ïŒïŒãã¬ãã«ã·ãã¿ïŒïŒãã¹ã€ããåè·¯ïŒïŒããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒ
ã«ãã£ãŠåºåæ段ãæ§æãããã
The
The output means is configured by.
ã·ããã¬ãžã¹ã¿ïŒïŒã¯ããã¿ãŒã³ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ãšãäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒ
ïŒïŒ¢ãšãäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ£ãšããæããå¶åŸ¡è£
眮ïŒïŒããã·ãªã¢ã«ãã¿ãŒã³
ããŒã¿ïŒ³ïŒ©ïŒ¡ãšè»¢éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ãšãå
¥åãããã
The shift register 61 includes a
1B and upper selection data register 61C, and serial pattern data SIA and transfer clock SCLK are input from control device 30.
ãã¿ãŒã³ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ã¯ãã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ã®ãã¡ã®ãã¿ãŒã³ã
ãŒã¿ïŒ³ïŒ°ãã·ãªã¢ã«è»¢éããã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«ãã£ãŠé 次ã·ããããŠïŒïŒããã
ã®ãã¿ãŒã³ããŒã¿ïŒ³ïŒ°ãæ ŒçŽãããäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¢ã¯ãã·ãªã¢ã«ãã¿ãŒã³
ããŒã¿ïŒ³ïŒ©ïŒ¡ã®ãã¡äžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãã·ãªã¢ã«è»¢éããã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«
ãã£ãŠé 次ã·ããããŠïŒïŒïŒãããã®äžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãæ ŒçŽãããäžäœéžæããŒã¿
ã¬ãžã¹ã¿ïŒïŒïŒ£ã¯ãã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ã®ãã¡äžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãã·ãªã¢
ã«è»¢éããã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«ãã£ãŠé 次ã·ããããŠïŒïŒïŒãããã®äžäœéžæããŒ
ã¿ïŒ³ïŒ©ïŒšãæ ŒçŽããã
In the pattern data register 61A, the pattern data SP of the serial pattern data SIA is serially transferred and sequentially shifted by the transfer clock SCLK to store 32-bit pattern data SP. The lower selection data register 61B serially transfers the lower selection data SIL in the serial pattern data SIA, and sequentially shifts by the transfer clock SCLK to store 180-bit lower selection data SIL. The upper selection data register 61C serially transfers the upper selection data SIH out of the serial pattern data SIA and sequentially shifts by the transfer clock SCLK to store 180-bit upper selection data SIH.
ã©ããïŒïŒã¯ããã¿ãŒã³ããŒã¿ã©ããïŒïŒïŒ¡ãšãäžäœéžæããŒã¿ã©ããïŒïŒïŒ¢ãšãäžäœ
éžæããŒã¿ã©ããïŒïŒïŒ£ãšããæããå¶åŸ¡è£
眮ïŒïŒãããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡
ãå
¥åãããã
The
TA is input.
ãã¿ãŒã³ããŒã¿ã©ããïŒïŒïŒ¡ã¯ããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãå
¥åããããš
ãããã¿ãŒã³ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ã®ããŒã¿ãããªãã¡ãã¿ãŒã³ããŒã¿ïŒ³ïŒ°ãã©ãããã
ãäžäœéžæããŒã¿ã©ããïŒïŒïŒ¢ã¯ããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãå
¥åããããš
ããäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¢ã®ããŒã¿ãããªãã¡äžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãã©ããã
ããäžäœéžæããŒã¿ã©ããïŒïŒïŒ£ã¯ããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãå
¥åããã
ãšããäžäœéžæããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ£ã®ããŒã¿ãããªãã¡äžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãã©ãã
ããã
When the pattern data latch signal LATA is input, the pattern data latch 62A latches the data in the pattern data register 61A, that is, the pattern data SP. When the pattern data latch signal LATA is input, the lower selection data latch 62B latches the data in the lower selection data register 61B, that is, the lower selection data SIL. When the pattern data latch signal LATA is input, the upper selection data latch 62C latches the data in the upper selection data register 61C, that is, the upper selection data SIH.
ã¹ããŒãã«ãŠã³ã¿ïŒïŒã¯ãïŒãããã®ã«ãŠã³ã¿åè·¯ã§ãããã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡
ã®ç«ã¡äžãããšããžã«ãã£ãŠã«ãŠã³ãããã¹ããŒããå€åããããã¹ããŒãã«ãŠã³ã¿ïŒïŒ
ã¯ãã¹ããŒãããïŒããããïŒããŸã§ã«ãŠã³ãããåŸãã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡ãå
¥å
ãããããšã«ããã¹ããŒãããïŒãã«æ»ãããŸããã¹ããŒãã«ãŠã³ã¿ïŒïŒã¯ã信
å·ãââã¬ãã«ïŒé«ãé»äœã®ã¬ãã«ïŒã«ãªããšãã«ãªã»ãããããã¹ããŒãããïŒãã«
æ»ããã¹ããŒãã«ãŠã³ã¿ïŒïŒã¯ãå¶åŸ¡è£
眮ïŒïŒããã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡ãšãã¿ãŒã³
ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãšãå
¥åããããšããã¹ããŒãã®å€ãã«ãŠã³ãããŠãã¿ãŒã³
ããŒã¿éžæåè·¯ïŒïŒãšïŒ€ïŒµïŒŽïŒ¹å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒãšã«åºåããã
The
The state is changed by counting at the rising edge of.
After counting the state from â0â to â7â, the state is returned to â0â by inputting the state switching signal CHA. The
ãã¿ãŒã³ããŒã¿éžæåè·¯ïŒïŒã¯ãå¶åŸ¡ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ãã第ïŒã第ïŒã¢ãŒãéžæ
ããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒãèªã¿åºããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãæç»ã¢ãŒã
ã®çš®å¥ãå€æããã
The pattern
ãã¿ãŒã³ããŒã¿éžæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããéåžžã¢ãŒããã§ãããšå€æãããšãã
ã¹ããŒãã«ãŠã³ã¿ïŒïŒãåºåããã¹ããŒãã®å€ãšããã¿ãŒã³ããŒã¿ã©ããïŒïŒïŒ¡ãã©ãã
ãããã¿ãŒã³ããŒã¿ïŒ³ïŒ°ãšãã«åºã¥ããŠããã®æã
ã§ãã¹ããŒãã®å€ã«å¯Ÿå¿ããã¹ã€ãã
ããŒã¿ïŒ°ïœïŒãïœïŒãéžæããããã¿ãŒã³ããŒã¿éžæåè·¯ïŒïŒã¯ãéžæããã¹ã€ããã
ãŒã¿ïŒ°ïœïŒãïœïŒããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã«åºåãããããªãã¡ããã¿ãŒã³ããŒ
ã¿éžæåè·¯ïŒïŒã¯ããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ããã¿ãŒã³ããŒã¿ã©ããïŒïŒïŒ¡
ã«å
¥åããããšãããã¿ãŒã³ããŒã¿ã©ããïŒïŒïŒ¡ã«ã©ããããããã¿ãŒã³ããŒã¿ïŒ³ïŒ°ãèª
ã¿èŸŒã¿ãå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãã¹ããŒãã®å€ãïœãã«å¿ããã¹ã€ããããŒã¿ïŒ°
ïœïŒãïœïŒãéžæãããäŸãã°ããã¿ãŒã³ããŒã¿éžæåè·¯ïŒïŒã¯ãã¹ããŒãã«ãŠã³ã¿ïŒ
ïŒã®ã¹ããŒãããïŒãã®ãšããã¹ããŒããïŒãã«å¿ãããã¿ãŒã³ããŒã¿ïŒ³ïŒ°ãããªãã¡ã
å³ïŒïŒã«ç€ºãã¹ã€ããããŒã¿ïŒ°ïŒïŒãïŒïŒããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã«åºåããã
When the pattern
Based on the value of the state output by the
The pattern data SP latched by the pattern data latch 62A is read, and the switch data P corresponding to the state value ânâ is read according to the truth table shown in FIG.
Select n0 to Pn3. For example, the pattern
When the
The switch data P00 to P03 shown in FIG. 13 are output to the pattern
ãã¿ãŒã³ããŒã¿éžæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããã¢ãŒããã§ãããšå€æãããš
ããäžèšã®åŠçãç¡å¹ã«ããŠæç»ã¢ãŒãããéåžžã¢ãŒããã«ãªããŸã§åŸ
æ©ããã
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãå¶åŸ¡ããŒã¿ã¬ãžã¹ã¿ïŒïŒïŒ¡ãã第ïŒã第ïŒã¢ãŒãéž
æããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒãèªã¿åºããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãæç»ã¢ãŒ
ãã®çš®å¥ãå€æããã
When determining that the drawing mode is the âDUTY modeâ, the pattern
The DUTY control
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããã¢ãŒããã§ãããšå€æãã
ãšããã¹ããŒãã«ãŠã³ã¿ïŒïŒãåºåããã¹ããŒãããšã«ãããã¯éžæä¿¡å·ãšããŠã®ïŒïŒçš®
é¡ã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãçæããïŒïŒçš®é¡ã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ããã¿ãŒã³ã
ãŒã¿åæåè·¯ïŒïŒã«åºåããã
When determining that the drawing mode is the âDUTY modeâ, the DUTY control
åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãšã¯ãäºã察å¿ä»ããããè€æ°ã®ããºã«ïŒ®ã«å¯Ÿããã®ååºã¿ã€
ãã³ã°ãåãã¿ã€ãã³ã°ã«ãããããã®ä¿¡å·ã§ãããåºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ã¯ãæç»ã¢
ãŒãïŒãïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽ
ãïŒã«å¿ããŠçæãããïŒïŒçš®é¡ã®ä¿¡å·ã§ãã£ãŠãå³ïŒïŒã«ç€ºãããã«ãïŒïŒïŒå¶åŸ¡ä¿¡
å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšããå«ã
ããŸããåºåã¿ã€ãã³ã°ä¿¡å·ã¯ãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€
ïŒïŒ®ïŒãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšããå«ããããã«ãåºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ã¯ã
ïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€
ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬åå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšããå«ãã
The output timing control signal is a signal for causing the plurality of nozzles N associated in advance to have the same discharge timing. The output timing control signal is displayed in the drawing mode (â1/1 DUTYâ, â1/2 DUTYâ, â1/3 DUTYâ, â1/4 DUTYâ).
Y "), and the 10 types of signals generated as shown in FIG. 12, as shown in FIG. 12, 1/1 control signal D1N0, 1/2 first control signal D2N0, and 1/2 second control signal D2N1. And including. The output timing signals are 1/3 first control signal D3N0 and 1/3 second control signal D.
3N1, 1/3 third control signal D3N2. Furthermore, the output timing control signal is
1/4 first control signal D4N0, 1/4 second control signal D4N1, and 1/4 third control signal D
4N2 and 1/4 fourth control signal D4N3.
ååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ã«ã¯ãããããå¶åŸ¡å¯Ÿè±¡ãšãªãè€æ°ã®ããºã«ïŒ®ïŒãããã¯ïŒ
ãäºã察å¿ä»ããããŠãããå³ïŒïŒã«ãããâââå°ã¯ãåºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ã®åã
ã«äºã察å¿ä»ããããããºã«ïŒ®ã瀺ããäŸãã°ãïŒïŒïŒå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒã«ã¯ãäºãå
šãŠ
ã®ããºã«ïŒ®ã察å¿ä»ããããŠããã
Each output timing control signal includes a plurality of nozzles N (blocks) to be controlled.
Are associated in advance. In FIG. 12, ââ¯â marks indicate the nozzles N that are associated in advance with the output timing control signals. For example, all the nozzles N are associated with the 1/1 control signal D1N0 in advance.
ïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšã«ã¯ãããããå¥æ°çªç®
ã®ããºã«ïŒ®ãšå¶æ°çªç®ã®ããºã«ïŒ®ãšã察å¿ä»ããããŠãããããªãã¡ãå
šãŠã®ããºã«ïŒ®ã¯
ãããããïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒã®ããããïŒæ¹ã«
察å¿ä»ããããŠããã
The odd-numbered nozzles N and the even-numbered nozzles N are associated with the 1/2 first control signal D2N0 and the 1/2 second control signal D2N1, respectively. That is, all the nozzles N are associated with one of the 1/2 first control signal D2N0 and the 1/2 second control signal D2N1, respectively.
ïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒã«ã¯ã第ïŒïŒïœïŒïŒãïŒãïŒãïŒïŒçªç®ã®ããºã«ïŒ®ïŒïŒïŒ
ïŒç¬¬ïŒããºã«çŸ€ïŒã察å¿ä»ããããŠããããŸããïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒ
第äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšã«ã¯ããããã第ïŒïŒïœïŒïŒãïŒãïŒãïŒïŒçªç®ã®ããºã«ïŒ®ïŒïŒ
ïŒïŒç¬¬ïŒããºã«çŸ€ïŒãšã第ïŒïŒïœïŒïŒãïŒãïŒãïŒïŒçªç®ã®ããºã«ïŒ®ïŒïŒïŒïŒç¬¬ïŒããºã«
矀ïŒãšã察å¿ä»ããããŠãããããªãã¡ãå
šãŠã®ããºã«ïŒ®ã¯ãããããïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡
å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒã®ãããã
ïŒã€ã«å¯Ÿå¿ä»ããããŠããã
The 1/3 first control signal D3N0 includes the 12n + 1, 4, 7, and 10th nozzles N (1 /
3 first nozzle groups) are associated with each other. Also, 1/3 second control signal D3N1 and 1/3
The third control signal D3N2 includes the 12n + 2, 5, 8, and 11th nozzles N (1
/ 3 2nd nozzle group) and 12n + 3, 6, 9, and 12th nozzle N (1/3 third nozzle group) are associated with each other. That is, all the nozzles N are associated with any one of the 1/3 first control signal D3N0, the 1/3 second control signal D3N1, and the 1/3 third control signal D3N2.
ïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšã«ã¯ããããã第ïŒïŒïœ
ïŒïŒãïŒãïŒçªç®ã®ããºã«ïŒ®ïŒïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒãšã第ïŒïŒïœïŒïŒãïŒãïŒïŒçªç®ã®
ããºã«ïŒ®ïŒïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒãšã察å¿ä»ããããŠããããŸããïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€
ïŒïŒ®ïŒãšïŒïŒïŒç¬¬åå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšã«ã¯ããããã第ïŒïŒïœïŒïŒãïŒãïŒïŒçªç®ã®ã
ãºã«ïŒ®ïŒïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒãšã第ïŒïŒïœïŒïŒãïŒãïŒïŒçªç®ã®ããºã«ïŒ®ïŒïŒïŒïŒç¬¬ïŒ
ããºã«çŸ€ïŒãšã察å¿ä»ããããŠãããããªãã¡ãå
šãŠã®ããºã«ïŒ®ã¯ãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·
ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãïŒïŒïŒç¬¬
åå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒã®ããããïŒã€ã«å¯Ÿå¿ä»ããããŠããã
The Œ 1st control signal D4N0 and the Œ second control signal D4N1 have the 12th
The +1, 5, and 9th nozzles N (1/4 first nozzle group) are associated with the 12n + 3, 7, and 11th nozzles N (1/4 second nozzle group). Also, 1/4 third control signal D
4N2 and 1/4 fourth control signal D4N3 include 12n + 2, 6, 10th nozzle N (1/4 third nozzle group) and 12n + 4, 8th, 12th nozzle N (1/4), respectively. 4th
Nozzle group). That is, all the nozzles N are any one of the 1/4 first control signal D4N0, the 1/4 second control signal D4N1, the 1/4 third control signal D4N2, and the 1/4 fourth control signal D4N3. Are associated with each other.
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãããšå€æãã
ãšããå³ïŒïŒã«ç€ºãããã«ãã¹ããŒãã«ãŠã³ã¿ïŒïŒãåºåããã¹ããŒãããšã«ãïŒïŒïŒå¶
埡信å·ïŒ€ïŒïŒ®ïŒãââã¬ãã«ïŒååºã¿ã€ãã³ã°ã§ããããšã瀺ãã¬ãã«ïŒã«ããããã®
éãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãïŒïŒïŒå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãé€ãä»ã®åºåã¿ã€ãã³
ã°å¶åŸ¡ä¿¡å·ã®å
šãŠãââã¬ãã«ïŒéååºã¿ã€ãã³ã°ã§ããããšã瀺ãã¬ãã«ïŒã«ããã
When the DUTY control
ããªãã¡ãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãã
ãšå€æãããšããã¹ããŒãããšã«ååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãåºåããå
šãŠã®ããºã«ïŒ®ã®
ååºã¿ã€ãã³ã°ãåã¹ããŒãã«åæãããã
That is, when determining that the drawing mode is â1/1 DUTYâ, the DUTY control
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãããšå€æãã
ãšããå³ïŒïŒã«ç€ºãããã«ãïŒïŒïŒç¬¬äžåã³ç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒãã¹ããŒã
ããšã«äº€äºã«ââã¬ãã«ã«åæ¿ããããã®éãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãïŒïŒ
ïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãšãé€ãä»ã®åºåã¿ã€ãã³ã°å¶åŸ¡
ä¿¡å·ã®å
šãŠãââã¬ãã«ã«ç¶æããã
When the DUTY control
(2) All the output timing control signals other than the first control signal D2N0 and the 1/2 second control signal D2N1 are maintained at the âLâ level.
ããªãã¡ãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãã
ãšå€æãããšããã¹ããŒãããšã«ååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãåºåããå¶æ°çªç®ã®ããºã«
ã®ååºã¿ã€ãã³ã°ãšãå¥æ°çªç®ã®ããºã«ïŒ®ã®ååºã¿ã€ãã³ã°ãšããããããå¶æ°çªç®ã®
ã¹ããŒããšãå¥æ°çªç®ã®ã¹ããŒããšã«åæãããã
That is, when determining that the drawing mode is â1/2 DUTYâ, the DUTY control
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãããšå€æãã
ãšããå³ïŒïŒã«ç€ºãããã«ãïŒïŒïŒç¬¬äžã第äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒã
ããããé£ç¶ããïŒã€ã®ã¹ããŒãã®äžã®ç°ãªãã¹ããŒãã§ââã¬ãã«ã«åæ¿ããããã®
éãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãïŒïŒïŒç¬¬äžã第äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒïŒ
ïŒïŒ®ïŒãé€ãä»ã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ã®å
šãŠãââã¬ãã«ã«ç¶æããã
When the DUTY control
All of the output timing control signals other than D3N2 are maintained at the âLâ level.
ããªãã¡ãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãã
ãšå€æãããšããã¹ããŒãããšã«ååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãåºåããïŒïŒïŒç¬¬äžã第ïŒ
ããºã«çŸ€ã®ååºã¿ã€ãã³ã°ã®åã
ãé£ç¶ããïŒã€ã®ã¹ããŒãã®äžã®ç°ãªãã¹ããŒãã«åæ
ããããäŸãã°ãå³ïŒïŒã«ãããŠãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãïŒïŒïŒç¬¬ïŒããºã«
矀ã®ååºã¿ã€ãã³ã°ããã¹ããŒããïŒãããïŒãããïŒãã«åæãããïŒïŒïŒç¬¬ïŒããºã«
矀ã®ååºã¿ã€ãã³ã°ããã¹ããŒããïŒãããïŒãããïŒãã«åæãããããŸãã
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãïŒïŒïŒç¬¬ïŒããºã«çŸ€ã®ååºã¿ã€ãã³ã°ããã¹ããŒããïŒããã
ïŒãããïŒãã«åæãããã
That is, when it is determined that the drawing mode is â1/3 DUTYâ, the DUTY control
Each of the ejection timings of the nozzle group is synchronized with a different state among three consecutive states. For example, in FIG. 18, the DUTY control
The control
5 âandâ 0 â.
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãããšå€æãã
ãšããå³ïŒïŒã«ç€ºãããã«ãïŒïŒïŒç¬¬äžã第åå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒïŒ
ïŒïŒ®ïŒãããããé£ç¶ããïŒã€ã®ã¹ããŒãã®äžã®ç°ãªãã¹ããŒãã§ââã¬ãã«ã«åæ¿
ããããã®éãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãïŒïŒïŒç¬¬äžã第åå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒïŒ
ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒïŒïŒ€ïŒïŒ®ïŒãé€ãä»ã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ã®å
šãŠãââã¬ãã«
ã«ç¶æããã
When the DUTY control
D4N3 is switched to the âHâ level in a different state among the four consecutive states. At this time, the DUTY control
All of the output timing control signals other than D4N1, D4N2, and D4N3 are maintained at the âLâ level.
ããªãã¡ãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãã
ãšå€æãããšããã¹ããŒãããšã«ååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãåºåããïŒïŒïŒç¬¬ïŒã第ïŒ
ããºã«çŸ€ã®ååºã¿ã€ãã³ã°ã®åã
ãé£ç¶ããïŒã€ã®ã¹ããŒãã®äžã®ç°ãªãã¹ããŒãã«åæ
ããããäŸãã°ãå³ïŒïŒã«ãããŠãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãïŒïŒïŒç¬¬ïŒããºã«
矀ã®ååºã¿ã€ãã³ã°ããã¹ããŒããïŒãããïŒãããïŒãã«åæãããïŒïŒïŒç¬¬ïŒããºã«
矀ã®ååºã¿ã€ãã³ã°ããã¹ããŒããïŒãããïŒãã«åæãããããŸããå¶åŸ¡ä¿¡å·
çæåè·¯ïŒïŒã¯ãïŒïŒïŒç¬¬ïŒããºã«çŸ€ã®ååºã¿ã€ãã³ã°ããã¹ããŒããïŒãããïŒãã«å
æãããïŒïŒïŒç¬¬ïŒããºã«çŸ€ã®ååºã¿ã€ãã³ã°ããã¹ããŒããïŒãããïŒãã«åæããã
ã
That is, when determining that the drawing mode is â1/4 DUTYâ, the DUTY control
Each of the ejection timings of the nozzle group is synchronized with a different state among four consecutive states. For example, in FIG. 18, the DUTY control
å³ïŒïŒã«ãããŠããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã«ã¯ãäžäœéžæããŒã¿ã©ããïŒïŒïŒ¢ãã©
ããããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãšãäžäœéžæããŒã¿ã©ããïŒïŒïŒ£ãã©ããããäžäœéžæã
ãŒã¿ïŒ³ïŒ©ïŒšãšããå
¥åãããããŸãããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã«ã¯ããã¿ãŒã³ããŒã¿
éžæåè·¯ïŒïŒãåºåããåã¹ã€ããããŒã¿ïŒ°ïœïŒãïœïŒãšãå¶åŸ¡ä¿¡å·çæåè·¯
ïŒïŒãåºåããååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãšããå
¥åãããã
In FIG. 16, the pattern
ãã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãã¹ããŒãããšã®å
šãŠã®ããºã«ïŒ®ã«å¯ŸããŠæ¶²æ»ŽïŒ€ãååº
ããããåŠãïŒåãããã®å€ïŒâïŒâãããã¯âïŒâïŒãèŠå®ããïŒïŒïŒãããã®ããŒã¿
ïŒåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ïŒãçæããã
The pattern
æç»ã¢ãŒãããéåžžã¢ãŒããã§ãããšãããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãäžäœéžæã
ãŒã¿ïŒ³ïŒ©ïŒ¬ãšãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãšãåã¹ã€ããããŒã¿ïŒ°ïœïŒãïœïŒãšããçšãã
å³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãçæããã
When the drawing mode is ânormal modeâ, the pattern
The output control signal PI is generated according to the truth table shown in FIG.
ãã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãäŸãã°ãå³ïŒïŒã«ç€ºãããã«ãïŒã€ã®ããºã«ïŒ®ã«å¯Ÿå¿
ããïŒåã®ïŒ¡ïŒ®ïŒ€ã²ãŒãïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœãšããããã®ïŒ¡ïŒ®ïŒ€ã²ãŒãïŒïŒ
ïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœã®åºåãå
¥åãããã²ãŒãïŒïŒïœ
ãšãã«ããæ§æããã
ãã²ãŒãïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœã«ã¯ãããããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãš
ãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãšã察å¿ããã¹ã€ããããŒã¿ïŒ°ïœïŒãïœïŒãšããå
¥åãããã
äžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãšäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãâïŒïŒâã§ããå Žåãã²ãŒãïŒïŒ
ïœã®ã¿ãæå¹ãšãªããã¹ã€ããããŒã¿ïŒ°ïœïŒïŒâïŒâãããã¯âïŒâïŒãã察å¿ããããº
ã«ïŒ®ã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšããŠåºåãããããŸããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãšäžäœéžæããŒ
ã¿ïŒ³ïŒ©ïŒ¬ãâïŒïŒâãâïŒïŒââïŒïŒâã§ããå Žåãããããã²ãŒãïŒïŒïœãïŒïŒ
ïœãïŒïŒïœã®ã¿ãæå¹ãšãªããã¹ã€ããããŒã¿ïŒ°ïœïŒãïœïŒãïœïŒïŒâïŒâãããã¯
âïŒâïŒãã察å¿ããããºã«ïŒ®ã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšããŠåºåããããããã«ãããå³ïŒ
ïŒã«ç€ºãççå€è¡šã«å¯Ÿå¿ããã¹ã€ããããŒã¿ïŒ°ïœïœãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšããŠåºåããã
ã
For example, as shown in FIG. 19, the pattern
and an
When the upper selection data SIH and the lower selection data SIL are â00â, the AND
Only a is valid, and the switch data Pn0 (â0â or â1â) is output as the output control signal PI of the corresponding nozzle N. When the upper selection data SIH and the lower selection data SIL are â01â, â10â, â00â, AND
Only c and 66d are valid, and switch data Pn1, Pn2, and Pn3 (â0â or â1â) are output as the output control signal PI of the corresponding nozzle N. As a result, FIG.
The switch data Pnm corresponding to the truth table shown in 3 is output as the output control signal PI.
æç»ã¢ãŒãããã¢ãŒããã§ãããšãããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãäžäœéž
æããŒã¿ïŒ³ïŒ©ïŒ¬ãšååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãšãçšãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãçæãããããª
ãã¡ããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ã«ããéžæãããããºã«ïŒ®
ã«å¯Ÿããååºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ã«ããèŠå®ãããã¿ã€ãã³ã°ïŒã¹ããŒãïŒã§æ¶²æ»ŽïŒ€ã
ååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãçæããã
When the drawing mode is the âDUTY modeâ, the pattern
On the other hand, an output control signal PI for discharging the droplet D is generated at a timing (state) defined by each output timing control signal.
ãã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãäŸãã°ãå³ïŒïŒã«ç€ºãããã«ãïŒã€ã®ããºã«ïŒ®ã«å¯Ÿå¿
ããïŒåã®ïŒ¡ïŒ®ïŒ€ã²ãŒãïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœãšããããã®ïŒ¡ïŒ®ïŒ€ã²ãŒãïŒïŒ
ïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœã®åºåãå
¥åãããã²ãŒãïŒïŒïœ
ãšãã«ããæ§æããã
ãåã²ãŒãïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœã«ã¯ãããããå
±éããäžäœéžæããŒ
ã¿ïŒ³ïŒ©ïŒ¬ãå
¥åãããããŸããåã²ãŒãïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœïŒïŒïŒïœã«ã¯ãã
ããã該ããºã«ïŒ®ã«å¯Ÿå¿ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãçšããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãçšããïŒïŒïŒïŒ€
ãçšããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãçšã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãå
¥åãããã
For example, as shown in FIG. 20, the pattern
and an
Output timing control signals for âUTYâ and â1/4 DUTYâ are input.
äŸãã°ã第ïŒïŒïœïŒïŒçªç®ã®ããºã«ïŒ®ã«å¯Ÿå¿ããåã²ãŒãã«ã¯ãå³ïŒïŒã«åŸã£ãŠ
ãããããïŒïŒïŒå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·
ïŒïŒ®ïŒãïŒïŒïŒç¬¬äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãå
¥åãããããŸãã第ïŒïŒïœïŒïŒçªç®ã®ããºã«
ã«å¯Ÿå¿ããåã²ãŒãã«ã¯ãããããïŒïŒïŒå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡
å·ïŒ€ïŒïŒ®ïŒãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãå
¥åãããã
For example, each AND gate corresponding to the (12n + 1) th nozzle N has a 1/1 control signal D1N0, a 1/2 first control signal D2N0, a 1/3 first control signal D3N0, 1/4 according to FIG. The first control signal D4N0 is input. In addition, each AND gate corresponding to the 12n + 2nd nozzle N has a 1/1 control signal D1N0, a 1/2 second control signal D2N1, a 1/3 second control signal D3N1, and a 1/4 second control signal. D4N1 is input.
æç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãããšããå
šãŠã®ããºã«ïŒ®ã«å¯Ÿå¿ããã²ãŒã
ã§ã¯ãããããã²ãŒãïŒïŒïœã®ã¿ãæå¹ãšãªãã
第ïŒïŒïœïŒïŒçªç®ïŒå¥æ°çªç®ïŒã®ããºã«ïŒ®ã«å¯Ÿå¿ããã²ãŒãïŒïŒïœã¯ãïŒïŒïŒç¬¬
äžå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãââã¬ãã«ïŒãããå€ãâïŒâïŒã®ãšãïŒã¹ããŒãããïŒããã
ïŒãããïŒãããïŒãã®ãšãïŒæå¹ãšãªããããªãã¡ããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ã
該ããºã«ïŒ®ã«å¯Ÿå¿ããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãâïŒâã§ãã£ãŠããã€ãã¹ããŒãããïŒã
ããïŒãããïŒãããïŒãã®ãšãã該ããºã«ïŒ®ãã液滎ãååºãããããã®ä¿¡å·ïŒãã
ãã®å€ãâïŒâã®ä¿¡å·ïŒãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšããŠåºåããã
When the drawing mode is â1/2 DUTYâ, only the AND
The AND
2), â4â, â6â). That is, the pattern
The lower selection data SIL corresponding to the nozzle N is â1â, and the state is â0â.
, â2â, â4â, and â6â, a signal for discharging the droplet D from the nozzle N (a signal having a bit value of â1â) is output as the output control signal PI.
äžæ¹ã第ïŒïŒïœïŒïŒçªç®ïŒå¶æ°çªç®ïŒã®ããºã«ïŒ®ã«å¯Ÿå¿ããåã²ãŒãïŒïŒïœã¯ã
ïŒïŒïŒç¬¬äºå¶åŸ¡ä¿¡å·ïŒ€ïŒïŒ®ïŒãââã¬ãã«ïŒãããå€ãâïŒâïŒã®ãšãïŒã¹ããŒããã
ïŒãããïŒãããïŒãããïŒãã®ãšãïŒæå¹ãšãªããããªãã¡ããã¿ãŒã³ããŒã¿åæåè·¯
ïŒïŒã¯ã該ããºã«ïŒ®ã«å¯Ÿå¿ããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãâïŒâã§ãã£ãŠããã€ãã¹ããŒã
ããïŒãããïŒãããïŒãããïŒãã®ãšãã該ããºã«ïŒ®ãã液滎ãååºãããããã®ä¿¡
å·ïŒãããã®å€ãâïŒâã®ä¿¡å·ïŒãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšããŠåºåããã
On the other hand, each AND
1/2 When the second control signal D2N1 is at âHâ level (bit value is â1â) (state is â
1), â3â, â5â, â7â). That is, the pattern
ããã«ããããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãã
ãšããéžæãããå¥æ°çªç®ã®ããºã«ïŒ®ãã液滎ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãš
ãéžæãããå¶æ°çªç®ã®ããºã«ïŒ®ãã液滎ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšãã
ã¹ããŒãããšã«äº€äºã«åºåããã
Accordingly, the pattern
åæ§ã«ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ã
ã§ãããšããå
šãŠã®ããºã«ïŒ®ã«å¯Ÿå¿ããã²ãŒãã§ã¯ãããããã²ãŒãïŒïŒïœ
ãã²ãŒãïŒïŒïœïŒïŒ¡ïŒ®ïŒ€ã²ãŒãïŒïŒïœã®ã¿ãæå¹ãšãªãã
Similarly, the drawing mode is â1/1 DUTYâ, â1/3 DUTYâ, â1/4 DUTYâ.
In the AND gates corresponding to all the nozzles N, the AND gates 67a are respectively provided.
Only the AND
ããã«ããããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãã
ãšããéžæãããå
šãŠã®ããºã«ïŒ®ãã液滎ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãã¹ã
ãŒãããšã«åºåããã
As a result, the pattern
ãŸãããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãããšãã
é£ç¶ããïŒã€ã®ã¹ããŒãã§ãããããïŒïŒïŒç¬¬ïŒããºã«çŸ€ãïŒïŒïŒç¬¬ïŒããºã«çŸ€ãïŒïŒïŒ
第ïŒããºã«çŸ€ãã液滎ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãåºåããã
Further, the pattern
In three consecutive states, 1/3 first nozzle group, 1/3 second nozzle group, 1/3, respectively.
An output control signal PI for discharging the droplet D from the third nozzle group is output.
ãŸãããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒã¯ãæç»ã¢ãŒãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã§ãããšãã
é£ç¶ããïŒã€ã®ã¹ããŒãã§ãããããïŒïŒïŒç¬¬ïŒããºã«çŸ€ãïŒïŒïŒç¬¬ïŒããºã«çŸ€ãïŒïŒïŒ
第ïŒããºã«çŸ€ãïŒïŒïŒç¬¬ïŒããºã«çŸ€ãã液滎ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãåº
åããã
Further, the pattern
In four consecutive states, 1/4 first nozzle group, 1/4 second nozzle group, 1/4, respectively.
An output control signal PI for discharging the droplet D from the third nozzle group and the 1/4 fourth nozzle group is output.
å³ïŒïŒã«ãããŠãåºååæåè·¯ïŒïŒã¯ã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¡ãšã第ïŒã³ã¢ã³
åºååæåè·¯ïŒïŒïŒ¢ãšã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ£ãšã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒ
ãšããæãããååºååæåè·¯ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ã«ã¯ãããããåºåå¶
埡信å·çæåè·¯ïŒïŒããïŒïŒïŒãããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãå
±éã«å
¥åãããããŸããå
åºååæåè·¯ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ã«ã¯ãããããã³ã¢ã³éžæå¶åŸ¡ä¿¡å·çæå
è·¯ïŒïŒãã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¢ã第ïŒã³ã¢ã³
éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ£ã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ€ãå
¥åãããã
In FIG. 14, the
D. A 180-bit output control signal PI is commonly input from the output control
第ïŒã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ã¯ãããããïŒã€ã®ã
ãºã«ïŒ®ã«å¯Ÿå¿ããã²ãŒãã«ããæ§æãããã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¡ã®å
ã²ãŒãã«ã¯ããããã察å¿ããåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšã察å¿ãã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡
å·ïŒ°ïŒžïŒ¡ãšããå
¥åãããã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¡ã®åã²ãŒãã¯ãããã
ã察å¿ããå§é»çŽ åã«ç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ãäŸçµŠãããåŠãïŒäŸçµŠã»éäŸçµŠïŒ
ãèŠå®ããä¿¡å·ïŒç¬¬ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ¡ïŒãåºåããã第ïŒã³ã¢ã³åºååæ
åè·¯ïŒïŒïŒ¢ã®åã²ãŒãã«ã¯ããããã察å¿ããåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšã察å¿ãã第ïŒ
ã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¢ãšããå
¥åãããã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¢ã®å
ã²ãŒãã¯ããããã察å¿ããå§é»çŽ åã«å¯Ÿã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ã®äŸçµŠã»éäŸ
絊ãèŠå®ããä¿¡å·ïŒç¬¬ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ¢ïŒãåºåããã第ïŒã³ã¢ã³åºåå
æåè·¯ïŒïŒïŒ£ã®åã²ãŒãã«ã¯ããããã察å¿ããåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšã察å¿ãã第
ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ£ãšããå
¥åãããã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ£ã®å
ã²ãŒãã¯ããããã察å¿ããå§é»çŽ åã«å¯Ÿã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ£ã®äŸçµŠã»é
äŸçµŠãèŠå®ããä¿¡å·ïŒç¬¬ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ£ïŒãåºåããããŸãã第ïŒã³ã¢
ã³åºååæåè·¯ïŒïŒïŒ€ã®åã²ãŒãã«ã¯ããããã察å¿ããåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšã察
å¿ãã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ€ãšããå
¥åãããã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ€
ã®åã²ãŒãã¯ã察å¿ããå§é»çŽ åã«å¯Ÿã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ã®äŸçµŠã»é
äŸçµŠãèŠå®ããä¿¡å·ïŒç¬¬ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ£ïŒãåºåããã
The first to fourth common
A corresponding output control signal PI and a corresponding first common selection control signal PXA are input to the ND gates. Whether each AND gate of the first common
Is output (first selected common output control signal CPA). Each AND gate of the second common output synthesis circuit 70B has a corresponding output control signal PI and a corresponding second.
The common selection control signal PXB is input. Each AND of the second common output synthesis circuit 70B
The gate outputs a signal (second selection common output control signal CPB) defining supply / non-supply of the second drive waveform signal COMB to the corresponding piezoelectric element PZ. A corresponding output control signal PI and a corresponding third common selection control signal PXC are input to each AND gate of the third common output combining circuit 70C. Each AN of the third common output synthesis circuit 70C
The D gates output a signal (third selection common output control signal CPC) defining supply / non-supply of the third drive waveform signal COMC to the corresponding piezoelectric element PZ. The corresponding output control signal PI and the corresponding fourth common selection control signal PXD are input to each AND gate of the fourth common
Each of the AND gates outputs a signal (third selection common output control signal CPC) defining supply / non-supply of the fourth drive waveform signal COMD to the corresponding piezoelectric element PZ.
第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¡ã¯ãäŸãã°ãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãâïŒâã§ããããã€ã
第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ãâïŒâã®å Žåã察å¿ããå§é»çŽ åã«ç¬¬ïŒé§å波圢信
å·ïŒ£ïŒ¯ïŒïŒ¡ãäŸçµŠããããã®ç¬¬ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ¡ïŒãããå€ãâïŒâã®ä¿¡
å·ïŒãåºåãããéã«ã第ïŒã³ã¢ã³åºååæåè·¯ïŒïŒïŒ¡ã¯ãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãâïŒâã
ãããã¯ã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ãâïŒâã®å Žåã該å§é»çŽ åã«å¯Ÿã第ïŒé§
å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ãäŸçµŠããªãããã®ç¬¬ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ¡ïŒãããå€ã
âïŒâã®ä¿¡å·ïŒãåºåããã
In the first common
When the first common selection control signal PXA is â1â, the first selection common output control signal CPA (the signal whose bit value is â1â) for supplying the first drive waveform signal COMA to the corresponding piezoelectric element PZ is used. Output. Conversely, in the first common
Alternatively, when the first common selection control signal PXA is â0â, the first selection common output control signal CPA (the signal whose bit value is â0â) for not supplying the first drive waveform signal COMA to the piezoelectric element PZ. ) Is output.
ããã«ãããïŒïŒïŒåã®åããºã«ïŒ®ïŒå§é»çŽ åïŒã¯ãããããåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ã«
ãã£ãŠæ¶²æ»ŽïŒ€ã®ååºã»éååºã決å®ããã第ïŒã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ïŒïŒ°ïŒžïŒ¢
ïŒïŒ°ïŒžïŒ£ïŒïŒ°ïŒžïŒ€ã«ãã£ãŠåé§å波圢信å·ïŒ£ïŒ¯ïŒã®äŸçµŠã»éäŸçµŠã決å®ãããã
As a result, each of the 180 nozzles N (piezoelectric elements PZ) determines whether or not the droplet D is ejected or not based on the output control signal PI, and the first to fourth common selection control signals PXA and PXB.
, PXC, and PXD determine the supply / non-supply of each drive waveform signal COM.
ã¬ãã«ã·ãã¿ïŒïŒã¯ã第ïŒã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒïŒ£ïŒ¯ïŒïŒ¢ïŒïŒ£ïŒ¯ïŒïŒ£ïŒïŒ£ïŒ¯ïŒ
çšã®ïŒç³»çµ±ã®ã¬ãã«ã·ãã¿ïŒç¬¬ïŒã³ã¢ã³çšã¬ãã«ã·ãã¿ïŒïŒïŒ¡ïŒç¬¬ïŒã³ã¢ã³çšã¬ãã«ã·
ãã¿ïŒïŒïŒ¢ïŒç¬¬ïŒã³ã¢ã³çšã¬ãã«ã·ãã¿ïŒïŒïŒ£ïŒç¬¬ïŒã³ã¢ã³çšã¬ãã«ã·ãã¿ïŒïŒïŒ€ïŒãæ
ããã第ïŒã第ïŒã³ã¢ã³çšã¬ãã«ã·ãã¿ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ã«ã¯ããããã
察å¿ããåºååæåè·¯ïŒïŒãã第ïŒã第ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ¡ïŒïŒ£ïŒ°ïŒ¢ïŒïŒ£ïŒ°
ïŒïŒ£ïŒ°ïŒ€ãå
¥åãããã第ïŒã第ïŒã³ã¢ã³çšã¬ãã«ã·ãã¿ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒ
ïŒïŒ€ã¯ããããã第ïŒã第ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ¡ïŒïŒ£ïŒ°ïŒ¢ïŒïŒ£ïŒ°ïŒ£ïŒïŒ£ïŒ°ïŒ€ã
ã¢ããã°ã¹ã€ããã®é§åé»å§ã¬ãã«ã«æå§ããïŒïŒïŒåã®å§é»çŽ åã«å¯Ÿå¿ããééä¿¡
å·ãåºåããã
The
There are four D level shifters (first
C and CPD are input. First to fourth
1D boosts the first to fourth selected common output control signals CPA, CPB, CPC, and CPD to the drive voltage level of the analog switch, and outputs open / close signals corresponding to the 180 piezoelectric elements PZ.
ã¹ã€ããåè·¯ïŒïŒã¯ã第ïŒã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒïŒ£ïŒ¯ïŒïŒ¢ïŒïŒ£ïŒ¯ïŒïŒ£ïŒïŒ£ïŒ¯ïŒ
çšã®ïŒç³»çµ±ã®ã¹ã€ããåè·¯ïŒç¬¬ïŒã³ã¢ã³çšã¹ã€ããåè·¯ïŒïŒïŒ¡ïŒç¬¬ïŒã³ã¢ã³çšã¹ã€ãã
åè·¯ïŒïŒïŒ¢ïŒç¬¬ïŒã³ã¢ã³çšã¹ã€ããåè·¯ïŒïŒïŒ£ïŒç¬¬ïŒã³ã¢ã³çšã¹ã€ããåè·¯ïŒïŒïŒ€ïŒãæ
ããã第ïŒã第ïŒã³ã¢ã³çšã¹ã€ããåè·¯ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ã¯ãããããå§
é»çŽ åã«å¯Ÿå¿ããïŒïŒïŒåã®ã¢ããã°ã¹ã€ãããæããã第ïŒã第ïŒã³ã¢ã³çšã¹ã€ã
ãåè·¯ïŒïŒïŒ¡ïŒïŒïŒïŒ¢ïŒïŒïŒïŒ£ïŒïŒïŒïŒ€ã«ã¯ããããã察å¿ããã¬ãã«ã·ãã¿ïŒïŒããé
éä¿¡å·ãå
¥åããããïŒç³»çµ±ã®åã¢ããã°ã¹ã€ããã®å
¥å端ã«ã¯ããããã察å¿ããé§å
波圢信å·ïŒ£ïŒ¯ïŒãå
¥åãããïŒç³»çµ±ã®åã¢ããã°ã¹ã€ããã®åºå端ã«ã¯ããããã察å¿ã
ãå§é»çŽ åãå
±éæ¥ç¶ãããŠãããåã¢ããã°ã¹ã€ããã¯ããããã察å¿ããã¬ãã«
ã·ãã¿ïŒïŒããééä¿¡å·ãå
¥åããã該ééä¿¡å·ãââã¬ãã«ã®ãšãã察å¿ããå§é»çŽ
åã«å¯Ÿå¿ããé§å波圢信å·ïŒ£ïŒ¯ïŒãåºåããã
The
4 D switch circuits (first
ããã«ãããïŒïŒïŒåã®åããºã«ïŒ®ïŒå§é»çŽ åïŒã¯ãããããåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ã«
ãã液滎ã®ååºåäœãéžæããããšãã第ïŒã第ïŒéžæã³ã¢ã³åºåå¶åŸ¡ä¿¡å·ïŒ£ïŒ°ïŒ¡ïŒïŒ£
ïŒïŒ£ïŒ°ïŒ£ïŒïŒ£ïŒ°ïŒ€ã«ããã©ã³ã¯ã«å¿ãã第ïŒã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒïŒ£ïŒ¯ïŒïŒ¢
ïŒïŒ£ïŒ¯ïŒïŒ£ïŒïŒ£ïŒ¯ïŒïŒ€ã®ããããïŒã€ãäŸçµŠãããã
Thereby, each of the 180 nozzles N (piezoelectric elements PZ) is selected by the first to fourth selected common output control signals CPA, C when the discharge operation of the droplet D is selected by the output control signal PI.
The first to fourth drive waveform signals COMA, COMB corresponding to the rank by PB, CPC, CPD
, COMC, COMD are supplied.
次ã«ã液滎ååºè£
眮ïŒïŒã«æèŒãã液滎ååºãããïŒïŒã®é§åæ¹æ³ã«ã€ããŠä»¥äžã«èª¬æ
ãããå³ïŒïŒã¯ãåå§é»çŽ åã«äŸçµŠãããé§å波圢信å·ïŒ£ïŒ¯ïŒã説æããããã®ã¿ã€
ãã³ã°ãã£ãŒãã§ããã
Next, a method for driving the
ãŸããå³ïŒã«ç€ºãããã«ãã«ã©ãŒãã£ã«ã¿åºæ¿ïŒãããã®ååºé¢ïŒïœãäžåŽã«ããŠåºæ¿
ã¹ããŒãžïŒïŒã«èŒçœ®ãããããã®ãšããåºæ¿ã¹ããŒãžïŒïŒã¯ãã«ã©ãŒãã£ã«ã¿åºæ¿ïŒãã
ã£ãªããžïŒïŒã®åç¢å°æ¹åã«é
眮ããããã®ç¶æ
ãããå
¥åºåè£
眮ïŒïŒã¯ãã¢ãŒãããŒ
ã¿ïŒ©ïœãšãæç»ããŒã¿ïŒ©ïœãšãåºæºé§åé»å§ããŒã¿ïŒ©ïœãšããããããŒã¿ïŒ©ïœãšããå¶åŸ¡
è£
眮ïŒïŒã«å
¥åããããã®éãã¢ãŒãããŒã¿ïŒ©ïœã¯ããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ããéžæãããã
ã®ããŒã¿ã§ãããåºæºé§åé»å§ããŒã¿ïŒ©ïœåã³ãããããŒã¿ïŒ©ïœã¯ããããã液滎ééè£
眮ïŒïŒã«ãã£ãŠèšæž¬ããå液滎ã®å®ééïœã«åºã¥ããŠçæããããã®ã§ããã
First, as shown in FIG. 3, the
ãªãããããããŒã¿ïŒ©ïœã¯ãæãç¢å°æ¹åã«äœçœ®ãã第ïŒããºã«ïŒ®ïŒåã³ç¬¬ïŒããºã«
ïŒããïŒãã®ã©ã³ã¯ã«åé¡ãã第ïŒããºã«ïŒ®ïŒåã³ç¬¬ïŒããºã«ïŒ®ïŒããïŒãã®ã©ã³ã¯ã«
åé¡ãã第ïŒããºã«ïŒ®ïŒåã³ç¬¬ïŒããºã«ïŒ®ïŒããïŒãã®ã©ã³ã¯ã«åé¡ããããŸãã第ïŒã
第ïŒããºã«ïŒ®ïŒãïŒã«å¯Ÿå¿ããå§é»çŽ åãããããã第ïŒå§é»çŽ åïŒã第ïŒå§
é»çŽ åïŒã第ïŒå§é»çŽ åïŒã第ïŒå§é»çŽ åïŒã第ïŒå§é»çŽ åïŒã第ïŒå§
é»çŽ åïŒãšããã
In the head data Ih, the first nozzle N1 and the second nozzle N2 located in the X arrow direction are classified into a rank â1â, and the third nozzle N3 and the fourth nozzle N4 are classified into a rank â2â. Then, the fifth nozzle N5 and the sixth nozzle N6 are classified into a rank of â3â. Also, first to first
The piezoelectric elements PZ corresponding to the sixth nozzles N1 to N6 are respectively the first piezoelectric element PZ1, the second piezoelectric element PZ2, the third piezoelectric element PZ3, the fourth piezoelectric element PZ4, the fifth piezoelectric element PZ5, and the sixth piezoelectric element PZ6. That's it.
å¶åŸ¡è£
眮ïŒïŒã¯ãã¢ãŒã¿é§ååè·¯ïŒïŒãä»ããŠãã£ãªããžïŒïŒãèµ°æ»ããã«ã©ãŒãã£ã«
ã¿åºæ¿ïŒãç¢å°æ¹åã«èµ°æ»ããããšãã«åååºãããïŒïŒãã«ã©ãŒãã£ã«ã¿åºæ¿ïŒäžã
ééããããã«ãã£ãªããžïŒïŒãé
眮ãããå¶åŸ¡è£
眮ïŒïŒã¯ããã£ãªããžïŒïŒãé
眮ãã
ãšã¢ãŒã¿é§ååè·¯ïŒïŒãä»ããŠåºæ¿ã¹ããŒãžïŒïŒã®èµ°æ»ãéå§ããã
The control device 30 scans the
å¶åŸ¡è£
眮ïŒïŒã¯ãå
¥åºåè£
眮ïŒïŒããå
¥åããããããããŒã¿ïŒ©ïœãã³ã¢ã³éžæããŒã¿
ã«å±éãããå¶åŸ¡è£
眮ïŒïŒã¯ãåºæ¿ã¹ããŒãžïŒïŒã®ïŒã¹ãã£ã³åã«çžåœããã³ã¢ã³éžæã
ãŒã¿ãå±éãããšãå³ïŒïŒã«ç€ºãããã«ãã³ã¢ã³éžæããŒã¿ãçšããŠã·ãªã¢ã«ã³ã¢ã³éžæ
ããŒã¿ïŒ³ïŒ©ïŒ¢ãçæãã該ã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã転éã¯ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«å
æãããŠãããé§ååè·¯ïŒïŒã«ã·ãªã¢ã«è»¢éããã
The control device 30 expands the head data Ih input from the input /
å¶åŸ¡è£
眮ïŒïŒã¯ãã³ã¢ã³éžæããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¢ããããé§ååè·¯ïŒïŒã«åºå
ãããããé§ååè·¯ïŒïŒã«ã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ãã©ãããããããããé§å
åè·¯ïŒïŒã¯ãã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã®å¶åŸ¡ããŒã¿ïŒ£ïŒ²ã«å«ãŸãã第ïŒã第ïŒã¢
ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒãèªã¿åºããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãæ
ç»ã¢ãŒããå€æããã
The control device 30 outputs a common selection data latch signal LATB to the
次ãã§ãå¶åŸ¡è£
眮ïŒïŒã¯ãå
¥åºåè£
眮ïŒïŒããå
¥åãããæç»ããŒã¿ïŒ©ïœãããããã¿
ãŒã³ããŒã¿ã«å±éãããå¶åŸ¡è£
眮ïŒïŒã¯ãåºæ¿ã¹ããŒãžïŒïŒã®ïŒã¹ãã£ã³åã«çžåœããã
ãããã¿ãŒã³ããŒã¿ãå±éãããšãããããã¿ãŒã³ããŒã¿ãçšããŠïŒ€ïŒµïŒŽïŒ¹ã¢ãŒãã«å¯Ÿå¿
ããã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ãçæãã該ã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ã転éã¯
ããã¯ïŒ³ïŒ£ïŒ¬ïŒ«ã«åæãããŠãããé§ååè·¯ïŒïŒã«ã·ãªã¢ã«è»¢éããã
Next, the control device 30 develops the drawing data Ip input from the input /
å¶åŸ¡è£
眮ïŒïŒã¯ãåºæ¿ã¹ããŒãžïŒïŒãæå®ã®æç»éå§äœçœ®ã«å°éãããšããå³ïŒïŒã«ç€º
ãããã«ããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ããããé§ååè·¯ïŒïŒã«åºåããããã
é§ååè·¯ïŒïŒã«ã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ïŒäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšãäžäœéžæããŒã¿
ãåã³ãã¿ãŒã³ããŒã¿ïŒ³ïŒ°ïŒãã©ãããããã
When the
å¶åŸ¡è£
眮ïŒïŒã¯ããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãåºåããŠã·ãªã¢ã«ãã¿ãŒã³ã
ãŒã¿ïŒ³ïŒ©ïŒ¡ãã©ããããããšãã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡ããããé§ååè·¯ïŒïŒã«é 次åº
åããŠã¹ããŒãããïŒããããïŒãããïŒãããïŒãããïŒããã»ã»ã»ã®é ã«åæ¿ããã
ãããŸããå¶åŸ¡è£
眮ïŒïŒã¯ãåºæºé§åé»å§ããŒã¿ïŒ©ïœãåç
§ããŠé§å波圢çæåè·¯ïŒïŒã«
ïŒçš®é¡ã®é§å波圢信å·ïŒ£ïŒ¯ïŒïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ïŒ
第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ£ïŒç¬¬ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ€ïŒãçæããããå¶åŸ¡è£
眮ïŒïŒã¯
ã第ïŒã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ïŒïŒ£ïŒ¯ïŒïŒ¢ïŒïŒ£ïŒ¯ïŒïŒ£ïŒïŒ£ïŒ¯ïŒïŒ€ããããããã¿ãŒã³
ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡ãšã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡ãšã«åæãããããé§ååè·¯ïŒ
ïŒã«å¯Ÿãã¹ããŒãããšã«åºåããã
When the control device 30 outputs the pattern data latch signal LATA to latch the serial pattern data SIA, the control device 30 sequentially outputs the state switching signal CHA to the
The third drive waveform signal COMC and the fourth drive waveform signal COMD) are generated. The control device 30 synchronizes the first to fourth drive waveform signals COMA, COMB, COMC, COMD with the pattern data latch signal LATA and the state switching signal CHA, respectively, and the
1 for each state.
ãããé§ååè·¯ïŒïŒã¯ãã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ãã©ããããããšã第ïŒã第ïŒ
ã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒã«åºã¥ããŠãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒšåã³ãã¿ãŒ
ã³ããŒã¿ïŒ³ïŒ°ãç¡å¹ã«ããããŸãããããé§ååè·¯ïŒïŒã¯ã第ïŒã第ïŒã¢ãŒãéžæããŒã¿
ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒã«åºã¥ããŠããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã«å¯Ÿå¿ããååºåã¿ã€ãã³ã°å¶
埡信å·ãçæããã
When the
Based on the mode selection data AD1, AD2, AD3, the upper selection data SIH and the pattern data SP are invalidated. Further, the
ããªãã¡ããããé§ååè·¯ïŒïŒã¯ãäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ã«åºã¥ããŠéžæãããããºã«
ã®ãã¡å¥æ°çªç®ã®ããºã«ïŒ®ãã液滎ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšãå¶æ°çª
ç®ã®ããºã«ïŒ®ãã液滎ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãšããã¹ããŒãããšã«äº€äº
ã«çæããããããŠããããé§ååè·¯ïŒïŒã¯ãå¥æ°çªç®ã®ããºã«ïŒ®ã«ããååºåäœãšãå¶
æ°çªç®ã®ããºã«ïŒ®ã«ããååºåäœãšããã¹ããŒãããšã«èŠå®ããã
That is, the
äŸãã°ãå³ïŒïŒã«ç€ºãããã«ãå¥æ°çªç®ã®ããºã«ïŒ®ã«å¯Ÿå¿ãã第ïŒå§é»çŽ åïŒã第
ïŒå§é»çŽ åïŒã第ïŒå§é»çŽ åïŒã«ã¯ããããããïŒãããïŒãããïŒãããïŒã
ã®å¶æ°ã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®ãããããŸããå¶æ°çªç®ã®ããºã«ïŒ®ã«å¯Ÿå¿ãã
第ïŒå§é»çŽ åïŒã第ïŒå§é»çŽ åïŒã第ïŒå§é»çŽ åïŒã«ã¯ããïŒãããïŒãã
ãïŒãããïŒãã®å¥æ°ã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®ãããã
For example, as shown in FIG. 21, the first piezoelectric element PZ1, the third piezoelectric element PZ3, and the fifth piezoelectric element PZ5 corresponding to the odd-numbered nozzles N have â0â, â2â, â4â, â6â
The even-numbered state defines the discharge operation of the droplet D. Further, the second piezoelectric element PZ2, the fourth piezoelectric element PZ4, and the sixth piezoelectric element PZ6 corresponding to the even-numbered nozzles N have â1â, â3â,
The ejection operation of the droplet D is defined by the odd states â5â and â7â.
ãŸãããããé§ååè·¯ïŒïŒã¯ãã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ãã©ãããããšãäžäœ
éžæããŒã¿ïŒ³ïŒžïŒšåã³äžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãšãå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠãïŒïŒïŒ
åã®åããºã«ïŒ®ïŒå§é»çŽ åïŒã«ããããé§å波圢信å·ïŒ£ïŒ¯ïŒã®çš®å¥ãèŠå®ããã
Further, when the
The type of the drive waveform signal COM is defined for each nozzle N (piezoelectric element PZ).
äŸãã°ã第ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒïŒ°ïŒºïŒã¯ã察å¿ããäžäœéžæããŒã¿ïŒ³ïŒžïŒšåã³
äžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãâïŒïŒâã§ãããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠã第ïŒé§å波圢
ä¿¡å·ïŒ£ïŒ¯ïŒïŒ¡ãèŠå®ããããããªãã¡ããïŒãã®ã©ã³ã¯ã«åé¡ããã第ïŒåã³ç¬¬ïŒå§é»çŽ
åïŒïŒïŒ°ïŒºïŒã«ã¯ã該ã©ã³ã¯ã«å¯Ÿå¿ãã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¡ãäŸçµŠãããã
For example, in the first and second piezoelectric elements PZ1, PZ2, the corresponding upper selection data SXH and lower selection data SXL are â00â, and the first drive waveform signal COMA is defined according to the truth table shown in FIG. The That is, the first drive waveform signal COMA corresponding to the rank is supplied to the first and second piezoelectric elements PZ1, PZ2 classified in the rank of â1â.
ãŸãã第ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒïŒ°ïŒºïŒã¯ããããã察å¿ããäžäœéžæããŒã¿ïŒ³ïŒž
åã³äžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãâïŒïŒâã§ãããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠã第ïŒé§
å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ãèŠå®ããããããªãã¡ããïŒãã®ã©ã³ã¯ã«åé¡ããã第ïŒåã³ç¬¬ïŒ
å§é»çŽ åïŒïŒïŒ°ïŒºïŒã«ã¯ã該ã©ã³ã¯ã«å¯Ÿå¿ãã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ãäŸçµŠãã
ãã
Further, the third and fourth piezoelectric elements PZ3 and PZ4 have corresponding upper selection data SX.
H and lower selection data SXL are â01â, and the second drive waveform signal COMB is defined according to the truth table shown in FIG. That is, the third and fourth classified in the rank of â2â
The piezoelectric element PZ3, PZ4 is supplied with the second drive waveform signal COMB corresponding to the rank.
ãŸãã第ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒïŒ°ïŒºïŒã¯ããããã察å¿ããäžäœéžæããŒã¿ïŒ³ïŒž
åã³äžäœéžæããŒã¿ïŒ³ïŒžïŒ¬ãâïŒïŒâã§ãããå³ïŒïŒã«ç€ºãççå€è¡šã«åŸã£ãŠã第ïŒé§
å波圢信å·ïŒ£ïŒ¯ïŒïŒ£ãèŠå®ããããããªãã¡ããïŒãã®ã©ã³ã¯ã«åé¡ããã第ïŒåã³ç¬¬ïŒ
å§é»çŽ åïŒïŒïŒ°ïŒºïŒã«ã¯ã該ã©ã³ã¯ã«å¯Ÿå¿ãã第ïŒé§å波圢信å·ïŒ£ïŒ¯ïŒïŒ¢ãäŸçµŠãã
ãã
Further, the fifth and sixth piezoelectric elements PZ5 and PZ6 are respectively provided with corresponding upper selection data SX.
H and lower selection data SXL are â11â, and the third drive waveform signal COMC is defined according to the truth table shown in FIG. That is, the fifth and sixth classified in the rank of â3â
The piezoelectric element PZ5, PZ6 is supplied with the second drive waveform signal COMB corresponding to the rank.
ããã«ããã液滎ãååºããå
šãŠã®ããºã«ïŒ®ã¯ãããããã©ã³ã¯ã«å¿ããé§å波圢信
å·ïŒ£ïŒ¯ïŒãåããç¥åºæºééã®æ¶²æ»ŽïŒ€ãååºãããããããã液滎ãååºããå
šãŠã®ã
ãºã«ïŒ®ã¯ããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã®æç»ã¢ãŒãã«ãããããããè¿æ¥ããããºã«ïŒ®ã®åæå
åºãåé¿ã§ããããããã£ãŠã液滎ãååºããå
šãŠã®ããºã«ïŒ®ã¯ãããé«ã粟床ã®äžã§
åºæºééã®æ¶²æ»ŽïŒ€ãååºãããã
As a result, all the nozzles N that eject the droplets D receive the drive waveform signal COM corresponding to the rank, and eject the droplets D having a substantially reference weight. In addition, all the nozzles N that discharge the droplets D can avoid the simultaneous discharge of the adjacent nozzles N by the drawing mode of â1/2 DUTYâ. Accordingly, all the nozzles N that discharge the droplet D discharge the droplet D having a reference weight with higher accuracy.
次ã«ãäžèšã®ããã«æ§æããæ¬å®æœåœ¢æ
ã®å¹æã以äžã«èšèŒããã
ïŒïŒïŒäžèšå®æœåœ¢æ
ã«ããã°ããããé§ååè·¯ïŒïŒã¯ãã©ããïŒïŒãä»ããŠäžäœéžæã
ãŒã¿ïŒ³ïŒ©ïŒ¬ãã©ãããã液滎ãååºããããã®ããºã«ïŒ®ã«é¢ããããŒã¿ãèšæ¶ãããã
ããé§ååè·¯ïŒïŒã¯ãã¹ããŒãã«ãŠã³ã¿ïŒïŒåã³ïŒ€ïŒµïŒŽïŒ¹å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒãä»ããŠ
ãã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒãïŒã«åºã¥ãæç»ã¢ãŒããå€æããæç»ã¢ãŒããã
ã¢ãŒããã§ãããšãããã¢ãŒããã«å¯Ÿå¿ããããºã«çŸ€ã®ããããïŒã€ãéžæã
ãããã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãã¹ããŒãããšã«çæããããããŠããããé§ååè·¯ïŒ
ïŒã¯ããã¿ãŒã³ããŒã¿åæåè·¯ïŒïŒãä»ãã液滎ãååºããããºã«ïŒ®ã®åã
ã«å¯Ÿãã察
å¿ããããºã«çŸ€ã«èŠå®ãããã¹ããŒãã§æ¶²æ»ŽïŒ€ãååºãããããã®åºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãç
æããã
Next, effects of the present embodiment configured as described above will be described below.
(1) According to the above embodiment, the
When the âY modeâ is selected, an output timing control signal for selecting any one of the nozzle groups corresponding to the âDUTY modeâ is generated for each state. The
1 generates an output control signal PI for causing each of the nozzles N that eject the droplet D to eject the droplet D in a state defined in the corresponding nozzle group via the pattern
ãããã£ãŠãåããºã«çŸ€ããããããç°ãªãã¹ããŒãã§æ¶²æ»ŽïŒ€ãååºããããããã£ãŠ
ãããºã«çŸ€ã®æ°éåã ããååºã¿ã€ãã³ã°ã®éè€ãäœæžãããããšãã§ããåæååºã«èµ·
å ãã液滎ééã®ãã©ãããæå¶ãããããšãã§ããããã®çµæãããºã«ïŒ®ããšã®æ¶²æ»Žé
éãåäžã«ãããããšãã§ããã²ããŠã¯ã液滎ãååºããŠåœ¢æããã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠ
ã®èååäžæ§ãåäžãããããšãã§ããã
Accordingly, each nozzle group discharges the droplet D in a different state. Accordingly, it is possible to reduce the overlap of the discharge timing by the number of nozzle groups, and it is possible to suppress variations in droplet weight due to simultaneous discharge. As a result, the weight of the droplets for each nozzle N can be made uniform, and as a result, the color filter CF formed by discharging the droplets D.
The film thickness uniformity can be improved.
ïŒïŒïŒäžèšå®æœåœ¢æ
ã«ããã°ãã¹ããŒãã«ãŠã³ã¿ïŒïŒã¯ã液滎ã®ååºã¿ã€ãã³ã°ã§ç
æãããã¹ããŒãåæ¿ãä¿¡å·ïŒ£ïŒšïŒ¡ã®å
¥ååæ°ãã«ãŠã³ããã¹ããŒããåæ¿ããã
å¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãè€æ°ã®ããºã«çŸ€ã®åã
ã«äºãã¹ããŒãã®å€ã察å¿ä»ãããã
ããŠãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãã¹ããŒãã«ãŠã³ã¿ïŒïŒã®åºåå€ã«å¿ãããã®æ
ã
ã®ã¹ããŒãã«å¯Ÿå¿ããããºã«çŸ€ãéžæããããã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãçæããã
(2) According to the above embodiment, the
The Y control
ãããã£ãŠã液滎ãååºããããã®ããºã«çŸ€ããã¹ããŒãã«å¿ããŠéžæãããããã®
çµæãè€æ°ã®ããºã«çŸ€ã«ããåæååºã確å®ã«åé¿ãããããšãã§ãããã²ããŠã¯ã液滎
ãååºããŠåœ¢æããã«ã©ãŒãã£ã«ã¿ïŒ£ïŒŠã®èååäžæ§ãã確å®ã«åäžãããããšãã§ã
ãã
Therefore, the nozzle group for discharging the droplet D is selected according to the state. As a result, simultaneous discharge by a plurality of nozzle groups can be reliably avoided. As a result, the film thickness uniformity of the color filter CF formed by discharging the droplets D can be reliably improved.
ïŒïŒïŒäžèšå®æœåœ¢æ
ã«ããã°ãã·ããã¬ãžã¹ã¿ïŒïŒã¯ãæç»ã¢ãŒããå€æããããã®ã¢
ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒãïŒãæ ŒçŽãããå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãã¢ãŒãéž
æããŒã¿ïŒ¡ïŒ€ïŒãïŒã«ããæå®ããããã¢ãŒããã®åããºã«çŸ€ã«äºãã¹ããŒ
ãã®å€ã察å¿ä»ããããããŠãå¶åŸ¡ä¿¡å·çæåè·¯ïŒïŒã¯ãæå®ãããã
ã¢ãŒããã®åããºã«çŸ€ã®ãã¡ãããã®æã
ã®ã¹ããŒãã«å¯Ÿå¿ä»ããããããºã«çŸ€ãéžæã
ãããã®åºåã¿ã€ãã³ã°å¶åŸ¡ä¿¡å·ãçæããã
(3) According to the above embodiment, the
An output timing control signal for selecting a nozzle group associated with the current state from among the nozzle groups of âmodeâ is generated.
ãããã£ãŠãããºã«çŸ€ã®æ°éããã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒãïŒã«ããéžæå¯èœãšãª
ãããã®ãããããºã«çŸ€ã®éžæç¯å²ãæ¡åŒµãããããšãã§ããã²ããŠã¯ãæç»å¯Ÿè±¡ã®ç¯å²
ãæ¡åŒµãããããšãã§ããã
Accordingly, the number of nozzle groups can be selected by the mode selection data AD1 to AD3. Therefore, the selection range of the nozzle group can be expanded, and as a result, the range to be drawn can be expanded.
å°ãäžèšå®æœåœ¢æ
ã¯ä»¥äžã®ããã«å€æŽããŠãããã
ã»äžèšå®æœåœ¢æ
ã§ã¯ãã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒãïŒã«ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ããæ
å®ããæ§æã«ãããããã«éãããäŸãã°ãã¢ãŒãéžæããŒã¿ïŒ¡ïŒ€ïŒãïŒã«ãããïŒ
ïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ããæå®ããæ§æã«ããŠãããã
In addition, you may change the said embodiment as follows.
In the above embodiment, âÂœ DUTYâ is designated by the mode selection data AD1 to AD3. For example, â1â is set by the mode selection data AD1 to AD3.
/ 3DUTY "or" 1/4 DUTY "may be designated.
ãããŠãå³ïŒïŒã«ç€ºãããã«ãïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒç¬¬ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒïŒ°
ïŒïŒã«ã¯ããïŒãããïŒãããïŒããã»ã»ã»ãã®åã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®
ããããŸããïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒç¬¬ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒïŒ°ïŒºïŒïŒã«ã¯ããïŒã
ããïŒãããïŒããã»ã»ã»ãã®åã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®ãããïŒïŒïŒç¬¬ïŒã
ãºã«çŸ€ïŒç¬¬ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒïŒ°ïŒºïŒïŒã«ã¯ããïŒãããïŒãããïŒããã»ã»ã»
ãã®åã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®ããæ§æã§ãã£ãŠãããã
Then, as shown in FIG. 22, 1/3 first nozzle group (first and fourth piezoelectric elements PZ1, P
Z4) defines the discharge operation of the droplet D in each of the states â0â, â3â, â6â,. Further, â1â is applied to the 1/3 second nozzle group (second and fifth piezoelectric elements PZ2, PZ5).
, â4â, â7â,..., The discharge operation of the droplet D is defined. For the 1/3 third nozzle group (third and sixth piezoelectric elements PZ3, PZ6), â2â, â5â, â0â,...
The configuration may be such that the discharge operation of the droplet D is defined in each state.
ãããã¯ãå³ïŒïŒã«ç€ºãããã«ãïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒç¬¬ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒ
ïŒïŒã«ã¯ããïŒãããïŒãããïŒããã»ã»ã»ãã®åã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠ
å®ããããŸããïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒç¬¬ïŒåã³ç¬¬ïŒå§é»çŽ åïŒïŒïŒ°ïŒºïŒïŒã«ã¯ããïŒ
ãããïŒãããïŒããã»ã»ã»ãã®åã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®ããããŸããïŒïŒ
ïŒç¬¬ïŒããºã«çŸ€ïŒç¬¬ïŒå§é»çŽ åïŒïŒã«ã¯ããïŒãããïŒãããïŒããã»ã»ã»ãã®åã¹
ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®ããããŸããïŒïŒïŒç¬¬ïŒããºã«çŸ€ïŒç¬¬ïŒå§é»çŽ åïŒ
ïŒã«ã¯ããïŒãããïŒãããïŒããã»ã»ã»ãã®åã¹ããŒãã§æ¶²æ»ŽïŒ€ã®ååºåäœãèŠå®ãã
æ§æã§ãã£ãŠãããã
Alternatively, as shown in FIG. 23, a 1/4 first nozzle group (first and fifth piezoelectric elements PZ1,
In PZ5), the discharge operation of the droplet D is defined in each of the states â0â, â4â, â0â,. In addition, the 1/4 second nozzle group (second and sixth piezoelectric elements PZ2 and PZ6) includes â1
â,â 5 â,â 1 â,..., The discharge operation of the droplet D is defined. Also, 1 /
4 For the third nozzle group (third piezoelectric element PZ3), the discharge operation of the droplet D is defined in each state of â2â, â6â, â2â,. Also, a 1/4 fourth nozzle group (fourth piezoelectric element PZ4
) May be configured to define the discharge operation of the droplet D in each of the states â3â, â7â, â3â,.
ã»äžèšå®æœåœ¢æ
ã§ã¯ãæç»ã¢ãŒããããéåžžã¢ãŒããããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒ
ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã«å
·äœåãããããã«éãããäŸ
ãã°ããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãããïŒïŒïŒïŒ€ïŒµïŒŽïŒ¹ãã«å
·äœåããŠããããæ¬çºæã®æç»ã¢ãŒ
ãã¯ãããºã«çŸ€ã®åå²æ°ãéå®ãããã®ã§ã¯ãªãã
In the above embodiment, the drawing mode is set to ânormal modeâ, â1/1 DUTYâ, â1/2â.
It is embodied in âDUTYâ, â1/3 DUTYâ, â1/4 DUTYâ. For example, the present invention may be embodied as â1/5 DUTYâ or â1/6 DUTYâ, and the drawing mode of the present invention does not limit the number of nozzle group divisions.
ã»äžèšå®æœåœ¢æ
ã§ã¯ãå¶åŸ¡è£
眮ïŒïŒããã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã®ã¿ãå
è¡ã
ãŠè»¢éããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãæ ŒçŽãããæ§æã«ããããããŠããããé§ååè·¯ïŒïŒ
ãã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ãã©ããããŠåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãçæãããã³ã«ãå
è¡
ããŠæ ŒçŽããäžäœéžæããŒã¿ïŒ³ïŒ©ïŒ¬ãå©çšãã第ïŒã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ïŒïŒ°
ïŒïŒ°ïŒžïŒ£ïŒïŒ°ïŒžïŒ€ãçæããæ§æã«ããã
In the above embodiment, the control device 30 is configured to transfer only the serial common selection data SIB in advance and store the lower selection data SIL. Then, the
Each time the serial pattern data SIA is latched to generate the output control signal PI, the first to fourth common selection control signals PXA, P are used by using the lower-order selection data SIL stored in advance.
XB, PXC, and PXD are generated.
ããã«éãããäŸãã°ãå¶åŸ¡è£
眮ïŒïŒããã·ãªã¢ã«ãã¿ãŒã³ããŒã¿ïŒ³ïŒ©ïŒ¡ã転éããã
ã³ã«ãã·ãªã¢ã«ã³ã¢ã³éžæããŒã¿ïŒ³ïŒ©ïŒ¢ã転éãããã¿ãŒã³ããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¡
ãåºåãããã³ã«ãã³ã¢ã³éžæããŒã¿çšã©ããä¿¡å·ïŒ¬ïŒ¡ïŒŽïŒ¢ãåºåããæ§æã«ããŠããã
ããããŠãåºåå¶åŸ¡ä¿¡å·ïŒ°ïŒ©ãçæãããã³ã«ãé§å波圢信å·ïŒ£ïŒ¯ïŒã®éžæã»ééžæãèŠ
å®ããããã®ç¬¬ïŒã第ïŒã³ã¢ã³éžæå¶åŸ¡ä¿¡å·ïŒ°ïŒžïŒ¡ïŒïŒ°ïŒžïŒ¢ïŒïŒ°ïŒžïŒ£ïŒïŒ°ïŒžïŒ€ãçæãã
ãæ§æã«ããŠãããã
For example, every time the control device 30 transfers the serial pattern data SIA, the control device 30 transfers the serial common selection data SIB and the pattern data latch signal LATA.
Alternatively, the common selection data latch signal LATB may be output each time. Then, every time the output control signal PI is generated, the first to fourth common selection control signals PXA, PXB, PXC, and PXD for defining selection / non-selection of the drive waveform signal COM may be generated. .
ããã«ããã°ã液滎ã®ååºåäœãèšå®ãããã³ã«ãå
šãŠã®ããºã«ïŒ®ã®åã
ã«å¯Ÿãã©ã³
ã¯ã«å¯Ÿå¿ããé§å波圢信å·ïŒ£ïŒ¯ïŒã察å¿ä»ããããããããã£ãŠãããºã«ïŒ®ããšã®ååºé
éã®ãã©ããããããã«äœæžãããããšãã§ããã
According to this, every time the ejection operation of the droplet D is set, the drive waveform signal COM corresponding to the rank is associated with each of all the nozzles N. Therefore, the variation in the discharge weight for each nozzle N can be further reduced.
ã»äžèšå®æœåœ¢æ
ã§ã¯ãå¶åŸ¡éšïŒïŒãæç»ããŒã¿ïŒ©ïœãããããã¿ãŒã³ããŒã¿ã«å±éåŠç
ããæ§æã«ãããããã«éãããäŸãã°ãå
¥åºåè£
眮ïŒïŒãæç»ããŒã¿ïŒ©ïœãããããã¿
ãŒã³ããŒã¿ã«å±éããå
¥åºåè£
眮ïŒïŒãããããã¿ãŒã³ããŒã¿ãå¶åŸ¡è£
眮ïŒïŒã«å
¥åãã
æ§æã«ããŠãããã
In the above embodiment, the
ã»äžèšå®æœåœ¢æ
ã§ã¯ãã¢ã¯ãã¥ãšãŒã¿ãå§é»çŽ åã«å
·äœåãããããã«éãããäŸ
ãã°ãã¢ã¯ãã¥ãšãŒã¿ãæµæå ç±çŽ åã«å
·äœåããŠããããæå®ã®é§å波圢信å·ïŒ£ïŒ¯ïŒã
åããŠæ¶²æ»ŽïŒ€ãååºããããã®ã§ããã°ããã
In the above embodiment, the actuator is embodied in the piezoelectric element PZ. For example, the actuator may be embodied as a resistance heating element as long as it receives a predetermined drive waveform signal COM and discharges the droplet D.
ã»äžèšå®æœåœ¢æ
ã§ã¯ãåååºãããïŒïŒãïŒïŒïŒåã®ããºã«ïŒ®ãïŒåã ãåããæ§æã«
ãããããã«éãããäŸãã°ãåååºãããïŒïŒãïŒïŒïŒåã®ããºã«ïŒ®ãïŒå以äžåãã
æ§æã«ããŠããããããã«ã¯ãåå
ã®ããºã«æ°ãïŒïŒïŒåãããå€ãæ°éã§å
·äœåããŠã
ããã
In the above embodiment, each
ã»äžèšå®æœåœ¢æ
ã§ã¯ãé»æ°å
åŠè£
眮ã液æ¶è¡šç€ºè£
眮ïŒã«å
·äœåãã液滎ã«ãã£ãŠã«ã©
ãŒãã£ã«ã¿ïŒ£ïŒŠã補é ããæ§æã«ãããããã«éãããäŸãã°ã液滎ã«ãã£ãŠæ¶²æ¶è¡šç€º
è£
眮ïŒã®é
åèã補é ããæ§æã«ããŠãããããããã¯ãé»æ°å
åŠè£
眮ããšã¬ã¯ããã«ã
ããã»ã³ã¹è¡šç€ºè£
眮ãšããŠå
·äœåããçºå
çŽ å圢æææãå«ã液滎ãååºããŠçºå
çŽ å
ã補é ããæ§æã«ããŠãããã
In the above embodiment, the electro-optical device is embodied in the liquid
ïŒïŒïŒ¡ïŒ€ïŒïŒïŒ¡ïŒ€ïŒâŠã¢ãŒãéžæããŒã¿ãâŠèèãšããŠã®ã«ã©ãŒãã£ã«ã¿ã
ïŒïŒïŒ£ïŒ¯ïŒïŒ¡ïŒïŒ£ïŒ¯ïŒïŒ¢ïŒïŒ£ïŒ¯ïŒïŒ£ïŒïŒ£ïŒ¯ïŒïŒ€âŠé§å波圢信å·ãâŠæ¶²æ»ŽãâŠããºã«
ãïŒïŒâŠæ¶²æ»Žååºè£
眮ãïŒïŒâŠèšæ¶æ段ãæ§æããïŒãïŒïŒâŠåºåæ段ãæ§æããã³
ã¢ã³éžæå¶åŸ¡ä¿¡å·çæåè·¯ãïŒïŒïŒïŒïŒâŠèšæ¶æ段ãæ§æããã©ãããïŒïŒâŠéžæä¿¡å·ç
ææ段ãæ§æããã¹ããŒãã«ãŠã³ã¿ãïŒïŒâŠéžæä¿¡å·çææ段ãæ§æããå¶åŸ¡ä¿¡
å·çæåè·¯ãïŒïŒâŠåºåæ段ãæ§æãããã¿ãŒã³ããŒã¿åæåè·¯ã
AD1, AD2, AD3 ... mode selection data, CF ... color filter as a thin film, C
OM, COMA, COMB, COMC, COMD ... drive waveform signal, D ... droplet, N ... nozzle, 10 ... droplet discharge device, 33 ... RAM constituting storage means, 50 ... common selection control signal constituting output means
Claims (10)
ã液滎ååºãããã®é§åæ¹æ³ã§ãã£ãŠã
åèšè€æ°ã®ããºã«ãäºãå®ããè€æ°ã®ãããã¯ã«åå²ãã
åèšè€æ°ã®é§åããºã«ã®åã ã察å¿ããåèšãããã¯ããšã«äºãã«ç°ãªãã¿ã€ãã³ã°ã§
é§åããããšã
ãç¹åŸŽãšãã液滎ååºãããã®é§åæ¹æ³ã A method of driving a droplet discharge head for selecting and driving a plurality of drive nozzles from a plurality of nozzles arranged in a predetermined direction,
Dividing the plurality of nozzles into a plurality of predetermined blocks;
Driving each of the plurality of drive nozzles at different timing for each corresponding block;
A method of driving a droplet discharge head characterized by the above.
æå®ã®ååºåšæ³¢æ°ããšã«ç°ãªãåèšãããã¯ãé§åããããšã
ãç¹åŸŽãšãã液滎ååºãããã®é§åæ¹æ³ã A method for driving a droplet discharge head according to claim 1,
Driving the different blocks for each predetermined ejection frequency;
A method of driving a droplet discharge head characterized by the above.
é£æ¥ããããºã«ã®åã ãç°ãªãåèšãããã¯ã«åå²ããããšã
ãç¹åŸŽãšãã液滎ååºãããã®é§åæ¹æ³ã A method for driving a droplet discharge head according to claim 1 or 2,
Dividing each adjacent nozzle into different said blocks;
A method of driving a droplet discharge head characterized by the above.
åèšè€æ°ã®ããºã«ã®åã ã«å¯Ÿãååºééã«å¿ããã©ã³ã¯ã察å¿ä»ãã
åèšååºééãæå®ã®ééã«èŒæ£ããé§å波圢信å·ãåèšã©ã³ã¯ããšã«çæãã
åèšé§åããºã«ã®åã ã«åèšã©ã³ã¯ã«å¯Ÿå¿ããåèšé§å波圢信å·ãäŸçµŠããããšã
ãç¹åŸŽãšãã液滎ååºãããã®é§åæ¹æ³ã A method for driving a droplet discharge head according to any one of claims 1 to 3,
Associating a rank corresponding to the discharge weight to each of the plurality of nozzles,
A drive waveform signal for calibrating the discharge weight to a predetermined weight is generated for each rank,
Supplying the drive waveform signal corresponding to the rank to each of the drive nozzles;
A method of driving a droplet discharge head characterized by the above.
æããŒã¿ãèšæ¶ããèšæ¶æ段ãšã
åèšè€æ°ã®ããºã«ãäºãå®ããè€æ°ã®ãããã¯ã«åå²ããåèšè€æ°ã®ãããã¯ã®ããã
ãïŒã€ãéžæãããããã¯éžæä¿¡å·ã液滎ã®ååºã¿ã€ãã³ã°ããšã«çæããéžæä¿¡å·çæ
æ段ãšã
åèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ããšã«ãåèšãããã¯éžæä¿¡å·ã«ããéžæãããåèšããã
ã¯å ã®åèšããºã«ã§ãã£ãŠããã€ãåèšããºã«éžæããŒã¿ã«ããéžæãããåèšé§åããº
ã«ã«å¯Ÿãåèšæ¶²æ»Žãååºãããããã®é§å波圢信å·ãåºåããåºåæ段ãšã
ãåããããšãç¹åŸŽãšãã液滎ååºè£ 眮ã Storage means for storing nozzle selection data for selecting a plurality of drive nozzles from a plurality of nozzles arranged in a predetermined direction;
A selection signal generating unit that divides the plurality of nozzles into a plurality of predetermined blocks and generates a block selection signal for selecting any one of the plurality of blocks at each droplet discharge timing;
For discharging the droplets to the nozzles in the block selected by the block selection signal and the driving nozzles selected by the nozzle selection data at each droplet discharge timing. An output means for outputting a drive waveform signal;
A droplet discharge apparatus comprising:
åèšéžæä¿¡å·çææ段ã¯ã
åèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ã§çæãããã¯ããã¯ä¿¡å·ã®å ¥ååæ°ãã«ãŠã³ãããåèšè€
æ°ã®ãããã¯ã®åã ã«äºãåèšå ¥ååæ°ã察å¿ä»ããåèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ããšã«ã
åèšè€æ°ã®ãããã¯ã®ãã¡ããåèšå ¥ååæ°ã«å¯Ÿå¿ä»ãããããããã¯ãéžæããããã®
åèšãããã¯éžæä¿¡å·ãçæããããšã
ãç¹åŸŽãšãã液滎ååºè£ 眮ã The droplet discharge device according to claim 5,
The selection signal generating means includes
Counting the number of clock signal inputs generated at the droplet discharge timing, associating the number of inputs in advance with each of the plurality of blocks, for each droplet discharge timing,
Generating the block selection signal for selecting a block associated with the input count from the plurality of blocks;
A droplet discharge device characterized by the above.
åèšèšæ¶æ段ã¯ã
åèšãããã¯ã®æ°éãç°ãªãè€æ°ã®æç»ã¢ãŒãã®ãã¡ããæå®ã®æç»ã¢ãŒããæå®ãã
ã¢ãŒãéžæããŒã¿ãèšæ¶ãã
åèšéžæä¿¡å·çææ段ã¯ã
åèšæç»ã¢ãŒãã«å¯Ÿå¿ããåèšè€æ°ã®ãããã¯ã®åã ã«äºãåèšå ¥ååæ°ã察å¿ä»ãã
åèšæ¶²æ»Žã®ååºã¿ã€ãã³ã°ããšã«ãåèšã¢ãŒãéžæããŒã¿ã«ããæå®ãããåèšæç»ã¢ãŒ
ãã«åºã¥ããŠãåèšè€æ°ã®ãããã¯ã®ãã¡ããåèšå ¥ååæ°ã«å¯Ÿå¿ä»ãããããããã¯ã
éžæããããã®åèšãããã¯éžæä¿¡å·ãçæããããšã
ãç¹åŸŽãšãã液滎ååºè£ 眮ã The droplet discharge device according to claim 6,
The storage means
Storing mode selection data for designating a predetermined drawing mode from a plurality of drawing modes having different numbers of blocks;
The selection signal generating means includes
Associating the number of inputs in advance with each of the plurality of blocks corresponding to the drawing mode,
The block selection signal for selecting a block associated with the input count from the plurality of blocks based on the drawing mode specified by the mode selection data at each droplet discharge timing. Generating,
A droplet discharge device characterized by the above.
åèšéžæä¿¡å·çææ段ã¯ã
é£æ¥ããããºã«ã®åã ãç°ãªãåèšãããã¯ã«åå²ããããšã
ãç¹åŸŽãšãã液滎ååºè£ 眮ã A droplet discharge device according to any one of claims 5 to 7,
The selection signal generating means includes
Dividing each adjacent nozzle into different said blocks;
A droplet discharge device characterized by the above.
åèšèšæ¶æ段ã¯ã
åèšè€æ°ã®ããºã«ã®åã ã«å¯Ÿãååºééã«å¿ããã©ã³ã¯ã察å¿ä»ããããã®æ å ±ãèšæ¶
ãã
åèšåºåæ段ã¯ã
åèšååºééãæå®ã®ééã«èŒæ£ããé§å波圢信å·ãåèšã©ã³ã¯ããšã«çæããåèšèš
æ¶æ段ã®èšæ¶ããåèšæ å ±ã«åºã¥ããŠãåèšé§åããºã«ã®åã ã«å¯Ÿãåèšã©ã³ã¯ã«å¿ãã
åèšé§å波圢信å·ãåºåããããšã
ãç¹åŸŽãšãã液滎ååºè£ 眮ã A droplet discharge device according to any one of claims 5 to 8,
The storage means
Storing information for associating each of the plurality of nozzles with a rank corresponding to the discharge weight;
The output means includes
A drive waveform signal for calibrating the discharge weight to a predetermined weight is generated for each rank, and the drive waveform signal corresponding to the rank is generated for each of the drive nozzles based on the information stored in the storage unit. Output,
A droplet discharge device characterized by the above.
åèšèèã¯ã
è«æ±é ïŒãïŒã®ããããïŒã€ã«èšèŒã®æ¶²æ»Žååºè£ 眮ã«ãã£ãŠåœ¢æãããããšãç¹åŸŽãšã
ãé»æ°å åŠè£ 眮ã An electro-optical device having a thin film formed by drying droplets discharged onto a substrate,
The thin film is
An electro-optical device formed by the droplet discharge device according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006325270A JP2008136928A (en) | 2006-12-01 | 2006-12-01 | Method of driving droplet discharge head, droplet discharge device and electro-optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006325270A JP2008136928A (en) | 2006-12-01 | 2006-12-01 | Method of driving droplet discharge head, droplet discharge device and electro-optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008136928A true JP2008136928A (en) | 2008-06-19 |
Family
ID=39598949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006325270A Withdrawn JP2008136928A (en) | 2006-12-01 | 2006-12-01 | Method of driving droplet discharge head, droplet discharge device and electro-optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008136928A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10933630B2 (en) | 2018-08-28 | 2021-03-02 | Toshiba Tec Kabushiki Kaisha | Liquid ejection device and multi-nozzle liquid ejection device |
-
2006
- 2006-12-01 JP JP2006325270A patent/JP2008136928A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10933630B2 (en) | 2018-08-28 | 2021-03-02 | Toshiba Tec Kabushiki Kaisha | Liquid ejection device and multi-nozzle liquid ejection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008136926A (en) | Method of driving droplet discharge head, droplet discharge device and electro-optical device | |
JP6136796B2 (en) | Printing apparatus and printing apparatus control method | |
US8991957B2 (en) | Liquid ejecting apparatus | |
US8186791B2 (en) | Liquid ejecting apparatus and control method thereof | |
US7182421B2 (en) | Inkjet device and method capable of providing highly accurate positioning of ink injection | |
JP6264830B2 (en) | Liquid ejecting apparatus and method for controlling liquid ejecting apparatus | |
US7726761B2 (en) | Pattern forming method, droplet ejecting device, and electro-optic device | |
JP2012081624A (en) | Liquid ejecting apparatus, and control method therefor | |
JP4765577B2 (en) | Droplet discharge apparatus and droplet discharge method | |
JP5605185B2 (en) | Liquid ejecting apparatus and control method thereof | |
JP4905092B2 (en) | Driving method of droplet discharge head | |
JP7302326B2 (en) | Liquid ejection device and liquid ejection head | |
JP2006061795A (en) | Drop discharge method and drop discharger | |
JP2008136928A (en) | Method of driving droplet discharge head, droplet discharge device and electro-optical device | |
JP2012006239A (en) | Liquid jetting apparatus and method of controlling the same | |
JP2006240048A (en) | Liquid droplet ejecting head and liquid droplet ejector | |
TW201722743A (en) | Liquid ejecting device and ejection selection signal generation circuit | |
JP2011126220A (en) | Liquid jetting device and method for controlling the liquid jetting device | |
JP6471797B2 (en) | Liquid ejector | |
JP2011235459A (en) | Liquid ejecting apparatus and its control method | |
JP4736475B2 (en) | Droplet discharge device | |
JP2007054759A (en) | Droplet discharge method and droplet discharger | |
JP2023150053A (en) | liquid discharge device | |
JP2014111362A (en) | Liquid discharge device | |
JP2008284697A (en) | Test ejection method and test ejection pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100202 |