[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008127607A - Aluminum alloy clad plate - Google Patents

Aluminum alloy clad plate Download PDF

Info

Publication number
JP2008127607A
JP2008127607A JP2006311964A JP2006311964A JP2008127607A JP 2008127607 A JP2008127607 A JP 2008127607A JP 2006311964 A JP2006311964 A JP 2006311964A JP 2006311964 A JP2006311964 A JP 2006311964A JP 2008127607 A JP2008127607 A JP 2008127607A
Authority
JP
Japan
Prior art keywords
content
present
core material
aluminum alloy
sacrificial anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311964A
Other languages
Japanese (ja)
Other versions
JP5068981B2 (en
Inventor
Tokinori Onda
恩田時伯
Yoichi Kojima
兒島洋一
Nobuaki Ohara
大原伸昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2006311964A priority Critical patent/JP5068981B2/en
Publication of JP2008127607A publication Critical patent/JP2008127607A/en
Application granted granted Critical
Publication of JP5068981B2 publication Critical patent/JP5068981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy clad plate which can obtain sufficient corrosion prevention effect even when cooling water becomes a strong alkali environment, and in which through pitting corrosion is not caused at an early stage, and whose strength by heat treatment or the like can be easily controlled. <P>SOLUTION: An aluminum alloy clad plate obtained by performing thermal cycles where, after heating at 88°C for 8 hr in an etching fluid comprising 195 ppm Cl<SP>-</SP>, 60 ppm SO<SB>4</SB><SP>2-</SP>, 1 ppm Cu<SP>2+</SP>and 30 ppm Fe<SP>3+</SP>and whose pH is regulated to 11 upon the initial make-up of an electrolytic bath, radiation cooling for 16 hr is carried out for 3 cycles, and in which the potential difference between the surface of a sacrificial anode material and the surface of a core material reaches ≥150 mV at 88°C in the third cycle, and the potential difference between the surface of the sacrificial anode material and the surface of the core material reaches ≥400 mV at 40°C in the third cycle has excellent sacrificial corrosion preventability in corrosive environments on both the acidic side and alkaline side, and also has excellent corrosion resistance that pitting corrosion does not progress for a long time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱交換器等に用いられるアルミニウム合金クラッド材に関し、詳しくはフッ化物系フラックスを用いる不活性ガス雰囲気ろう付けあるいは真空ろう付けにより、自動車用ラジエーター、ヒーターコアなどのアルミニウム製熱交換器を製造する場合、その構成部材であるチューブ材(クラッド材の溶接管あるいは成型チューブ)などに適応でき、とくに等該熱交換器においてアルカリ腐食性環境に対して優れた耐食性を備えた熱交換器用アルミニウム合金クラッド材に関する。   TECHNICAL FIELD The present invention relates to an aluminum alloy clad material used for a heat exchanger and the like, and more particularly, an aluminum heat exchanger such as an automotive radiator and a heater core by brazing in an inert gas atmosphere or vacuum brazing using a fluoride flux. Can be applied to the tube material (clad welded tube or molded tube) that is a component of the heat exchanger, especially for heat exchangers with excellent corrosion resistance against alkaline corrosive environment in the heat exchanger The present invention relates to an aluminum alloy clad material.

従来のアルミニウム製熱交換器、例えば自動車用ラジエーターを図5(a),(b)に示す。図5(a)は自動車用熱交換器(ラジエーター)の正面図、図5(b)は図5(a)のA−A断面拡大図である。
この自動車用熱交換器は、冷却水を通すチューブ管(1)にフィン(2)を配置し、チューブ管(1)の両端にヘッダープレート(3)を取り付けて、コア(4)を組み立て、ろう付け後にヘッダープレート(3)にバッキング(6)を介して樹脂タンク(5A),(5B)を取り付けてなる。
A conventional aluminum heat exchanger, such as an automobile radiator, is shown in FIGS. Fig.5 (a) is a front view of the heat exchanger (radiator) for motor vehicles, FIG.5 (b) is AA cross-sectional enlarged view of Fig.5 (a).
In this automotive heat exchanger, fins (2) are arranged in a tube tube (1) through which cooling water passes, header plates (3) are attached to both ends of the tube tube (1), and a core (4) is assembled. After brazing, the resin tanks (5A) and (5B) are attached to the header plate (3) via the backing (6).

その材料としてフィン(2)にはJIS3003合金にZnを1.50%添加した厚さ0.1mm前後の板を用い、チューブ管(1)には冷却水からの貫通孔食の発生を防止するために、JIS3003合金を芯材とし、Znが添加されているJIS7072合金を犠牲陽極材として冷却水側にクラッドし、外気側にJIS4045合金をろう材としてクラッドした厚さ0.2〜0.4mmのアルミニウム合金複合材を用いる。   As the material for the fin (2), a plate having a thickness of about 0.1 mm obtained by adding 1.50% of Zn to JIS3003 alloy is used, and the tube tube (1) prevents the occurrence of through pitting corrosion from the cooling water. Therefore, a thickness of 0.2 to 0.4 mm in which JIS3003 alloy is used as a core material, Zn is added to JIS7072 alloy as a sacrificial anode material and clad on the cooling water side, and JIS4045 alloy is clad on the outside air as a brazing material. The aluminum alloy composite material is used.

またヘッダープレート(3)には、厚さ1.0〜1.3mmの厚さで、チューブ管(1)と同様の構成のアルミニウム合金複合材を用いる。   For the header plate (3), an aluminum alloy composite material having a thickness of 1.0 to 1.3 mm and the same configuration as that of the tube tube (1) is used.

チューブ管(1)、ヘッダープレート(3)に用いられているアルミニウム合金複合材は、ろう付け加熱時に600℃程度の雰囲気に曝される。このため、犠牲陽極材に添加されているZnは芯材中にZnの拡散層を形成する。このZn拡散層が存在するために、犠牲陽極材に発生した腐食は、芯材方向に進行せず、横広がりに進行するため長期の耐貫通孔食性を示すことが知られている。   The aluminum alloy composite material used for the tube tube (1) and the header plate (3) is exposed to an atmosphere of about 600 ° C. during brazing heating. For this reason, Zn added to the sacrificial anode material forms a diffusion layer of Zn in the core material. Since the Zn diffusion layer exists, it is known that the corrosion generated in the sacrificial anode material does not proceed in the direction of the core material but progresses sideways and exhibits long-term through-hole corrosion resistance.

これら犠牲陽極材としてはJIS7072合金の他に、特許文献1に示されたAl−Zn−Mg系合金、Al−Zn−In系合金が知られている。これらの合金もJIS7072合金と同様、アルミニウム合金複合材にした場合、犠牲陽極材の腐食は横広がりになることが知られている。   As these sacrificial anode materials, in addition to the JIS7072 alloy, Al—Zn—Mg based alloys and Al—Zn—In based alloys disclosed in Patent Document 1 are known. Similar to JIS7072 alloy, these alloys are also known to cause lateral corrosion of sacrificial anode materials when aluminum alloy composites are used.

上記チューブ管(1)および特許文献1に示されたAl−Zn−Mg系合金、Al−Zn−In系合金を犠牲陽極材としたアルミニウム合金複合材においては、芯材と犠牲陽極材に孔食電位差が存在し、そのため犠牲陽極材に腐食が発生し芯材が露出した場合においても、犠牲陽極材が優先的に腐食され、芯材の腐食が防止される。   In the aluminum tube composite material using the tube tube (1) and the Al—Zn—Mg alloy or Al—Zn—In alloy shown in Patent Document 1 as a sacrificial anode material, the core material and the sacrificial anode material have holes. Even when the corrosion potential difference exists and therefore the sacrificial anode material is corroded and the core material is exposed, the sacrificial anode material is preferentially corroded and the core material is prevented from corroding.

さらに、特許文献2には、アルミニウム合金よりなる芯材の片面にアルミニウム合金ろう材をクラッドし、他の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材において、犠牲陽極材が、Alと結合して犠牲陽極材のマトリックスより貴な化合物を形成する元素を含有し、残部Alおよび不純物からなるアルミニウム合金から構成され、マトリックス中に粒子径(円相当直径)1〜10μmの前記化合物が1mmあたり5×102〜5×104個均一に分布していることを特徴とするアルミニウム合金クラッド材を提案している。 Further, in Patent Document 2, in an aluminum alloy clad material in which an aluminum alloy brazing material is clad on one surface of a core material made of an aluminum alloy and a sacrificial anode material is clad on the other surface, the sacrificial anode material is bonded to Al. And an element that forms a noble compound from the matrix of the sacrificial anode material, and is composed of an aluminum alloy composed of the balance Al and impurities, and the compound having a particle diameter (equivalent circle diameter) of 1 to 10 μm per 1 mm 2 in the matrix An aluminum alloy clad material characterized by 5 × 10 2 to 5 × 10 4 uniform distribution is proposed.

これらは、犠牲陽極材表面の化合物が存在する個所で、皮膜成分である水酸化アルミニウムの沈着が妨げられ皮膜の生成が抑制されるから、皮膜欠陥が多くなって孔食が分散するため、皮膜欠陥が少ない場合のように孔食が局在化して深さ方向への進行が速くなることが少なく、アルカリ腐食環境においても、貫通孔食の発生が防止できるとしている。   These are the places where the compounds on the surface of the sacrificial anode material exist, because the deposition of aluminum hydroxide, which is a film component, is prevented and the formation of the film is suppressed, so that film defects increase and pitting corrosion disperses. It is said that the pitting corrosion is localized and the progress in the depth direction is not accelerated as in the case where the number of defects is small, and the occurrence of through pitting corrosion can be prevented even in an alkaline corrosion environment.

特開平9−97788号公報Japanese Patent Laid-Open No. 9-97788 特開平9−259239号公報JP 9-259239 A

熱交換器特にラジエーターの冷却水の仕様は、一部地域によって弱アルカリ仕様になっているものがある。近年、自動車を走行している環境によって冷却水が何らかの原因で劣化し、強アルカリ環境(pH=11)になることが判明した。
図5に示す自動車用ラジエーター関して説明したJIS3003合金を芯材とし、冷却水側にZnが添加されているJIS7072合金を犠牲陽極材としてクラッドし、外気側にJIS4045合金をろう材としてクラッドした厚さ0.2〜0.4mmのアルミニウム合金複合材を用いたチューブ(1)では、そのような環境では十分な防食効果が得られず、早期に貫通孔食を発生させてしまう問題を発生させていた。
Some cooling water specifications for heat exchangers, especially radiators, have weak alkali specifications in some areas. In recent years, it has been found that the cooling water deteriorates for some reason depending on the environment in which the vehicle is running, resulting in a strong alkaline environment (pH = 11).
Thickness in which the JIS3003 alloy described for the automobile radiator shown in FIG. 5 is used as a core, JIS7072 alloy with Zn added on the cooling water side is clad as a sacrificial anode material, and JIS4045 alloy is clad on the outside air as a brazing material In the tube (1) using the aluminum alloy composite material having a thickness of 0.2 to 0.4 mm, a sufficient anticorrosion effect cannot be obtained in such an environment, causing a problem of causing through pitting corrosion at an early stage. It was.

さらに特許文献2に明らかにされたアルミニウム合金クラッド材ではマトリックスに化合物を分散させることで貫通孔食の発生を抑制できるとしても、マトリックスに化合物が分散される必要があるため熱処理等による強度の調整が制限を受け、軽量化及び強度向上という自動車熱交換器材料に本来的に求められる要請に応えがたいという問題があった。   Further, in the aluminum alloy clad material disclosed in Patent Document 2, even if the generation of through pitting corrosion can be suppressed by dispersing the compound in the matrix, it is necessary to disperse the compound in the matrix. However, there is a problem that it is difficult to meet the demands inherently required for automotive heat exchanger materials for weight reduction and strength improvement.

本発明は以上の従来技術における問題に鑑み、自動車を走行している環境によって冷却水が強アルカリ環境となっても十分な防食効果が得られ、早期に貫通孔食を発生させるようなことがなく、かつ熱処理等による強度の調整が容易なアルミニウム合金クラッド材を提供することを目的とする。   In view of the above problems in the prior art, the present invention can provide a sufficient anticorrosion effect even if the cooling water becomes a strong alkaline environment depending on the environment in which the vehicle is running, and may cause through pitting corrosion at an early stage. An object of the present invention is to provide an aluminum alloy clad material that is easy to adjust the strength by heat treatment or the like.

本発明者は、アルカリ腐食液(pH=9〜11)を用い、88℃で8時間の加熱を行った後に16時間の放冷を行う熱サイクル試験中の自然電位を測定し、アルカリ環境下で早期に腐食貫通を示すクラッド材は、熱サイクル試験中の3サイクル後の88℃の自然電位が、犠牲材よりも芯材が卑になり、この様な熱サイクル中88℃の犠牲材の自然電位の値の変化は、特許文献2に示されるような化合物の存在に起因するものではなく、犠牲材に添加したZnがアルカリ溶液中でZnの水酸化皮膜を形成し、電位を貴化させることに起因し、犠牲材マトリックスにおける元素の固溶量に依存する現象であることが見出された。   The present inventor measured the natural potential during a heat cycle test in which an alkaline corrosion liquid (pH = 9 to 11) was used and heated at 88 ° C. for 8 hours and then allowed to cool for 16 hours. In the clad material that shows corrosion penetration at an early stage, the natural potential at 88 ° C. after three cycles during the thermal cycle test is lower in the core material than the sacrificial material. The change in the value of the natural potential is not due to the presence of the compound as shown in Patent Document 2, but Zn added to the sacrificial material forms a hydroxide film of Zn in an alkaline solution, and the potential is made noble. It has been found that the phenomenon depends on the amount of solid solution of the element in the sacrificial material matrix.

本発明者は係る知見に基づき、アルカリ腐食液中で良好な耐食性を示すアルミニウム合金クラッド材たる要件を明確にすべく検討を進め、アルカリ溶液中で熱サイクル試験中の自然電位を測定し、併せて実際のアルミニウム合金クラッド材の浸漬試験の結果とを比較検討した。その結果、熱サイクル試験中の犠牲陽極材と芯材の自然電位が、3サイクル後の88℃で150mV以上、3サイクル後の40℃で400mV以上を示すアルミニウム合金クラッド材がアルカリ腐食液中で良好な耐食性を示すことが見出され、この様なアルミニウム合金クラッド材の備えるべき要件は合金組成とクラッド材の製造工程により、犠牲材に添加した元素の固溶量を調整することにより実現することができることが明らかとなった。   Based on such knowledge, the present inventor has proceeded with studies to clarify the requirements for an aluminum alloy clad material exhibiting good corrosion resistance in an alkaline corrosion liquid, and measured the natural potential during a thermal cycle test in an alkaline solution. The results were compared with the results of an immersion test of an actual aluminum alloy clad material. As a result, an aluminum alloy clad material in which the natural potential of the sacrificial anode material and the core material during the thermal cycle test is 150 mV or more at 88 ° C. after 3 cycles and 400 mV or more at 40 ° C. after 3 cycles is in an alkaline corrosion liquid. It has been found that it exhibits good corrosion resistance, and the requirements for such an aluminum alloy clad material are realized by adjusting the solid solution amount of the element added to the sacrificial material according to the alloy composition and the production process of the clad material. It became clear that it was possible.

本発明のアルミニウム合金クラッド材は係る知見に基づき構成されたものであって、アルミニウム合金よりなる芯材の片面にろう材をクラッドし、前記芯材の前記ろう材をクラッドしていない他面にZn3wt%〜8wt%、Si0.4wt%〜1.0wt%、Fe0.25wt%〜1.0wt%、Mn0.4〜2.0wt%、Ti0.05〜0.20wt%、Zr0.05〜0.2wt%、V0.01〜0.2wt%を含有し残部Al及び不可避不純物よりなる犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、以下の(i)及び(ii)に示す前記犠牲陽極材表面と前記芯材表面の電位差構成を同時に備えて成ることを特徴とする。
(i)Cl195ppm、SO 2−60ppm、Cu2+1ppm、Fe3+30ppmを含有し、建浴時にpH=11に調整した腐食液中において、88℃で8時間の加熱を行った後に16時間の放冷を行う熱サイクルを3サイクル行い、3サイクル目の88℃の時点で犠牲陽極材表面と芯材表面との電位差が150mV以上となる電位差構成
(ii)Cl195ppm、SO 2−60ppm、Cu2+1ppm、Fe3+30ppmを含有し、建浴時にpH=11に調整した腐食液中において、88℃で8時間の加熱を行った後に16時間の放冷を行う熱サイクルを3サイクル行い、3サイクル目の40℃の時点で犠牲陽極材表面と芯材表面との電位差が400mV以上となる電位差構成。
The aluminum alloy clad material of the present invention is configured based on such knowledge, and brazing a brazing material on one side of a core material made of an aluminum alloy, and on the other side of the core material not clad with the brazing material Zn 3 wt% to 8 wt%, Si 0.4 wt% to 1.0 wt%, Fe 0.25 wt% to 1.0 wt%, Mn 0.4 to 2.0 wt%, Ti 0.05 to 0.20 wt%, Zr 0.05 to 0. An aluminum alloy clad material clad with a sacrificial anode material containing 2 wt%, V 0.01 to 0.2 wt%, and the balance Al and inevitable impurities, the sacrificial anode material shown in the following (i) and (ii) A potential difference configuration between the surface and the surface of the core material is provided at the same time.
(I) Cl - 195ppm, SO 4 2- 60ppm, Cu 2+ 1ppm, containing Fe 3+ 30 ppm, in the corrosion solution was adjusted to pH = 11 at initial make-up, after the heating for 8 hours at 88 ° C. 16 Three thermal cycles for cooling for a period of time were carried out, and a potential difference configuration in which the potential difference between the sacrificial anode material surface and the core material surface was 150 mV or more at the third cycle of 88 ° C. (ii) Cl - 195 ppm, SO 4 2 - 60 ppm, Cu 2+ 1 ppm, containing Fe 3+ 30 ppm, in the corrosion solution was adjusted to pH = 11 during initial make-up, 3 thermal cycles to perform cooling of 16 hours after the heating for 8 hours at 88 ° C. A potential difference configuration in which the potential difference between the sacrificial anode material surface and the core material surface is 400 mV or more at the time of 40 ° C. in the third cycle.

尚、以上においてOY水はCl195ppm、SO 2−60ppm、Cu2+1ppm、Fe3+30ppmを含有し建浴時pH=3に調整した腐食液である。 Incidentally, OY water at above Cl - 195ppm, a SO 4 2- 60ppm, Cu 2+ 1ppm , etching solution was adjusted to bath preparation at pH = 3 contains Fe 3+ 30 ppm.

また犠牲陽極材に、さらにV0.01〜0.2wt%、Sn0.05〜0.2wt%、In0.05〜0.2wt%のうち1種または2種以上を含有する様にしても良い。   The sacrificial anode material may further contain one or more of V0.01 to 0.2 wt%, Sn0.05 to 0.2 wt%, and In0.05 to 0.2 wt%.

芯材が、Si0.4wt%〜1.0wt%、Fe0.15〜1.0wt%、Cu0.5〜1.0wt%、Mn1.0〜2.0wt%、Ti0.05〜0.2wt%を含有し残部Al及び不可避不純物よりなるアルミニウム合金クラッド材とするのが望ましい。   The core material is Si 0.4 wt% to 1.0 wt%, Fe 0.15 to 1.0 wt%, Cu 0.5 to 1.0 wt%, Mn 1.0 to 2.0 wt%, Ti 0.05 to 0.2 wt%. It is desirable to use an aluminum alloy clad material containing the remaining Al and inevitable impurities.

さらに芯材が、Zr0.05〜0.2wt%、Cr0.05〜0.2wt%、V0.05〜0.2wt%のうち1種または2種以上を含有する様にしても良い。   Furthermore, you may make it a core material contain 1 type (s) or 2 or more types among Zr0.05-0.2 wt%, Cr0.05-0.2 wt%, V0.05-0.2 wt%.

以上の本発明のアルミニウム合金複合材は、酸性側、アルカリ性側両方での腐食環境で優れた犠牲防食能を有し、かつ長時間にわたり腐食孔食が進行しない優れた耐食性を有し、犠牲陽極材の腐食溶解を必要以上に増大させないものである。   The aluminum alloy composite material of the present invention described above has excellent sacrificial anticorrosive ability in a corrosive environment on both the acidic side and the alkaline side, and has excellent corrosion resistance in which corrosion pitting corrosion does not proceed over a long period of time. It does not increase the corrosion and dissolution of the material more than necessary.

本発明によれば、自動車用熱交換器のアルミニウム合金配管材として、優れた強度、内部(酸性およびアルカリ性)耐食性、外部耐食性を有する犠牲陽極材及びアルミニウム合金複合材が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the sacrificial anode material and aluminum alloy composite which have the outstanding intensity | strength, internal (acidic and alkaline) corrosion resistance, and external corrosion resistance are obtained as an aluminum alloy piping material of the heat exchanger for motor vehicles.

本発明者は高温アルカリ熱サイクル環境下でのAl合金の自然電位の経時変化を測定し、犠牲防食効果の有効性を調べた。供試材の化学組成を表1に示す。   The present inventor measured the change over time of the natural potential of the Al alloy under a high-temperature alkaline thermal cycle environment, and examined the effectiveness of the sacrificial anticorrosive effect. Table 1 shows the chemical composition of the test material.

Figure 2008127607
Figure 2008127607

鋳造、熱間圧延、冷間圧延にて板厚1.0mmの冷延板とし、30×100mm2に切り出してリード線接続、裏面・端部をマスキングして測定に供した。試験液は、(i)OY水(Cl195ppm、SO 2−60ppm、Fe3+30ppm、Cu2+1ppm)(ii)イオン交換水を5Lを用い、水酸化ナトリウムを用いてpH=11に調製した。熱サイクル条件は88℃で8時間の加熱を行った後に16時間の放冷を行う熱サイクルとした。 A cold-rolled sheet having a thickness of 1.0 mm was formed by casting, hot rolling, and cold rolling, cut into 30 × 100 mm 2, connected to lead wires, and masked on the back and end portions for measurement. Test solution, (i) OY water - prepared (Cl 195ppm, SO 4 2- 60ppm , Fe 3+ 30ppm, Cu 2+ 1ppm) (ii) ion-exchanged water using a 5L, the pH = 11 with sodium hydroxide did. The heat cycle condition was a heat cycle in which heating was performed at 88 ° C. for 8 hours and then allowed to cool for 16 hours.

熱サイクル試験中の試験液温度の経時変化を図1(a)に、各供試材の自然電位のそれらを図1(b)、(c)にそれぞれ示す。   Changes in the test solution temperature over time during the thermal cycle test are shown in FIG. 1 (a), and those of the natural potential of each test material are shown in FIGS. 1 (b) and 1 (c).

図1(b)に示した純Alの自然電位は、1サイクル目に88℃では−1500mVより卑で、放冷中に貴化して2サイクル目の加熱直前に−1000mVに達した。以降のサイクルでも同様の挙動を繰り返した。図1(b)には、当該試験液のpHの経時変化も合わせて示した。試験液はpH=11に調整したが、Alのアルカリ溶解によりサイクルとともに減少し、3サイクルでは8.5付近に落ち着いた。   The natural potential of pure Al shown in FIG. 1B was lower than −1500 mV at 88 ° C. in the first cycle, became noble during cooling, and reached −1000 mV just before the second cycle of heating. Similar behavior was repeated in subsequent cycles. FIG. 1 (b) also shows the change over time of the pH of the test solution. The test solution was adjusted to pH = 11, but decreased with the cycle due to alkaline dissolution of Al, and settled around 8.5 in 3 cycles.

Alの25℃および100℃における電極電位−pH平衡図を図2(a)および(b)に、これらに基づいて作成したpHと温度に関する腐食形態マップを図2(c)にそれぞれ示す。熱サイクル試験における、pHと温度条件を図2(c)中に矢印で記入した。高温保持時にはアルカリ均一腐食領域、常温付近では不働体/孔食領域にそれぞれあることが判る。従って、図1(b)の自然電位の卑・貴化挙動は、高温弱アルカリ環境中の均一腐食電位・常温弱アルカリ孔食電位にそれぞれむかっており、温度変化に伴う“腐食形態”の変化を示していると考えられる。   Electrode potential-pH equilibrium diagrams of Al at 25 ° C. and 100 ° C. are shown in FIGS. 2 (a) and 2 (b), and a corrosion morphology map relating to pH and temperature created based on these is shown in FIG. 2 (c). The pH and temperature conditions in the thermal cycle test are entered with arrows in FIG. It can be seen that there is an alkali uniform corrosion region at a high temperature, and a passive body / pitting corrosion region near room temperature. Therefore, the base potential / noble behavior of the natural potential in FIG. 1 (b) is directed to the uniform corrosion potential in the high temperature weak alkaline environment and the normal temperature weak alkali pitting potential, respectively. It is thought that it shows.

図1(c)に示したAl−Zn合金の自然電位は、純Alと同様、加熱中は卑に、放冷中に貴化する傾向がある。しかし、pHが低下する2サイクル以降、高温時の自然電位に下がり幅が小さくなる。すなわち、Zn添加は高温弱アルカリ環境におけるAlの脱不働態化を抑制する。同図に示した3003合金の自然電位も、他合金と同様に温度変化に対応した挙動を示す。しかし、放冷時の貴化速度が早く、放冷中に孔食電位に達して孔食を起こしている。また2サイクル以降の高温時は約−950mVで純Alより貴である。すなわち、3003の添加元素は放冷中に不働態化を促進し、Znと同様、高温時の脱不動態化を抑制する。図1(c)の高温時には、3003合金の自然電位がAl−Zn合金のそれより卑になる期間がある。芯材が一部露出したクラッド材が、このような環境条件に曝されれば、犠牲材の防食効果はなく芯材の腐食が促進され深い侵食につながる。   The natural potential of the Al—Zn alloy shown in FIG. 1 (c) tends to be noble during heating and noble during cooling as in the case of pure Al. However, after two cycles when the pH decreases, the natural potential at high temperature decreases and the width decreases. That is, Zn addition suppresses depassivation of Al in a high temperature weak alkaline environment. The natural potential of the 3003 alloy shown in the figure also behaves in response to a temperature change like other alloys. However, the rate of preciousness at the time of cooling is high, and the pitting corrosion potential is reached during the cooling to cause pitting. Further, at a high temperature after 2 cycles, it is about -950 mV, which is noble than pure Al. That is, the additive element of 3003 promotes passivation during cooling and suppresses depassivation at high temperatures, similar to Zn. At the high temperature in FIG. 1C, there is a period in which the natural potential of the 3003 alloy is lower than that of the Al—Zn alloy. If the clad material with the core material partially exposed is exposed to such environmental conditions, the sacrificial material has no anticorrosive effect, and the core material is corroded, leading to deep erosion.

以上の熱サイクル試験中の3サイクル後の88℃(高温時)の自然電位が、犠牲材よりも芯材が卑になり、この様な熱サイクル中88℃の犠牲材の自然電位の値の変化は、化合物の存在に起因するものではなく、犠牲材に添加したZnがアルカリ溶液中でZnの水酸化皮膜を形成し、電位を貴化させることに起因し、犠牲材マトリックスにおける元素の固溶量に依存する現象である。したがって、犠牲材に添加したZn以外の元素(Si、Fe、Mn、Ti、Zr等)の固溶量を調整し、製造工程を制御することで犠牲材に生成するZnの水酸化皮膜の形成を調整することによってアルカリ腐食液中で良好な耐食性を示す本発明のアルミニウム合金クラッド材を実現できる。   The natural potential at 88 ° C. (at a high temperature) after 3 cycles in the above thermal cycle test is lower than the sacrificial material, and the natural potential value of the sacrificial material at 88 ° C. in such a thermal cycle is lower. The change is not due to the presence of the compound, but the Zn added to the sacrificial material forms a hydroxide film of Zn in an alkaline solution to make the potential noble, and the element solidification in the sacrificial material matrix. It is a phenomenon that depends on the amount of solution. Therefore, the formation of a Zn hydroxide film formed on the sacrificial material by adjusting the solid solution amount of elements other than Zn (Si, Fe, Mn, Ti, Zr, etc.) added to the sacrificial material and controlling the manufacturing process By adjusting the above, it is possible to realize the aluminum alloy clad material of the present invention exhibiting good corrosion resistance in an alkaline corrosion liquid.

すなわち本発明のアルミニウム合金クラッド材は、本発明成分のアルミニウム合金クラッド材の犠牲材を製造する際に、犠牲材に予め500℃〜600℃の均熱化処理を施し、中間焼鈍温度を400℃から500℃で1時間以上行い、最終冷間圧延率を30%から50%で実施することで製造することができる。   That is, the aluminum alloy clad material of the present invention is preliminarily subjected to a soaking treatment of 500 ° C. to 600 ° C. and an intermediate annealing temperature of 400 ° C. when the sacrificial material of the aluminum alloy clad material of the present invention is manufactured. To 500 ° C. for 1 hour or longer, and the final cold rolling rate is 30% to 50%.

500℃〜600℃の均熱化処理を施すことによって、犠牲材に添加したZn以外の元素(Si、Fe、Mn、Ti、Zr等)を十分に固溶させることができる。また、中間焼鈍時でのAl−Mn−FeあるいはAl−Mn−Si、Al−Mn−Si−Fe系の化合物の析出を抑制するために、これら化合物の析出ピーク温度である300℃〜400℃をはずした400℃〜500℃で実施し、最終冷間加工率を30%〜50%で実施する。このことで、熱サイクル時の犠牲材と芯材の電位差が、88℃で150mV、40℃で400mVであるという本発明のアルミニウム合金クラッド材の備える要件を具備することができる。   By performing a soaking treatment at 500 ° C. to 600 ° C., elements other than Zn added to the sacrificial material (Si, Fe, Mn, Ti, Zr, etc.) can be sufficiently dissolved. Moreover, in order to suppress precipitation of Al—Mn—Fe, Al—Mn—Si, and Al—Mn—Si—Fe compounds during intermediate annealing, the precipitation peak temperature of these compounds is 300 ° C. to 400 ° C. Is carried out at 400 ° C. to 500 ° C. with the final cold working rate of 30% to 50%. This can satisfy the requirement of the aluminum alloy clad material of the present invention that the potential difference between the sacrificial material and the core material during thermal cycling is 150 mV at 88 ° C. and 400 mV at 40 ° C.

以下に本発明のアルミニウム合金クラッド材を構成する犠牲陽極材の成分の限定理由について説明する。
Zn:Znは中性環境においては、アルミニウム合金に固溶し、犠牲材の自然電極電位を卑にして芯材を防食し、チューブの耐食性を向上させる。しかしながらアルカリ環境においては熱サイクル試験中において、加熱中の電位において犠牲材と芯材の電位の逆転を生じ、チューブに早期に貫通孔を生じてしまう。この酸性域の腐食とアルカリ域での腐食を両立させるためには、添加量3.0wt%未満ではアルカリ溶液での加熱中の電位逆転が生じ、8.0wt%を越えると酸性環境において過剰に溶解し、チューブの貫通寿命を短くする。従ってZnの添加量を3.0wt%以上8.0wt%以下と規定した。
The reasons for limiting the components of the sacrificial anode material constituting the aluminum alloy clad material of the present invention will be described below.
Zn: Zn is dissolved in an aluminum alloy in a neutral environment, and the corrosion resistance of the tube is improved by preventing the core material from corrosion by reducing the natural electrode potential of the sacrificial material. However, in an alkaline environment, during the thermal cycle test, the potential of the sacrificial material and the core material is reversed at the potential during heating, and a through-hole is formed early in the tube. In order to achieve both corrosion in the acidic region and corrosion in the alkaline region, if the addition amount is less than 3.0 wt%, the potential reversal during heating in the alkaline solution occurs, and if it exceeds 8.0 wt%, it is excessive in the acidic environment. Dissolve and shorten tube penetration life. Therefore, the addition amount of Zn is defined as 3.0 wt% or more and 8.0 wt% or less.

Si:Siはアルミニウム合金に添加すると、アルミに固溶またはAl−Si−Fe系の化合物を形成する。この化合物は中性環境においては孔食の起点となり、腐食点を分散させることにより犠牲腐食を横広がりにする効果がある。またアルカリ環境においては、上記のZn単独添加で発生する電位の逆転現象を抑制する効果を有する。この効果が0.4未満では十分でなく、1.0wt%を越えるとろう付け加熱時に溶けてしまう。従ってSiの添加量を0.4wt%以上、1.0wt%以下と規定した。   When Si: Si is added to an aluminum alloy, it forms a solid solution or an Al—Si—Fe-based compound in aluminum. This compound becomes a starting point of pitting corrosion in a neutral environment, and has an effect of spreading sacrificial corrosion by dispersing the corrosion points. Moreover, in an alkaline environment, it has the effect of suppressing the potential reversal phenomenon that occurs when Zn alone is added. If this effect is less than 0.4, it is not sufficient, and if it exceeds 1.0 wt%, it will melt during brazing heating. Therefore, the addition amount of Si is defined as 0.4 wt% or more and 1.0 wt% or less.

Fe:Feはアルミニウム合金に添加すると、アルミに固溶またはAl−Fe系の化合物を形成する。この化合物は中性環境においては孔食の起点となり、腐食点を分散させることにより犠牲腐食を横広がりにする効果がある。またアルカリ環境においては、上記のZn単独添加で発生する電位の逆転現象を抑制する効果を有する。この効果が0.25wt%未満では十分でなく、1.0wt%を越えると圧延加工でわれてしまう。従ってFeの添加量を0.25wt%以上、1.0wt%以下と規定した。   When Fe: Fe is added to an aluminum alloy, it forms a solid solution or an Al—Fe compound in aluminum. This compound becomes a starting point of pitting corrosion in a neutral environment, and has an effect of spreading sacrificial corrosion by dispersing the corrosion points. Moreover, in an alkaline environment, it has the effect of suppressing the potential reversal phenomenon that occurs when Zn alone is added. If this effect is less than 0.25 wt%, it is not sufficient, and if it exceeds 1.0 wt%, it will be broken by rolling. Therefore, the addition amount of Fe is defined as 0.25 wt% or more and 1.0 wt% or less.

Mn:Mnはアルミニウム合金に添加すると、アルミに固溶またはAl−Mn−Fe系の化合物を形成する。この化合物は中性環境において孔食の起点とならず、そのため腐食による減耗を抑制する効果を有する。またアルカリ環境においては、上記のZn単独添加で発生する電位の逆転現象を抑制する効果を有する。この効果が0.4wt%未満では十分でなく、2.0wt%を越えると圧延加工で割れてしまう。従ってMnの添加量を0.4wt%以上、2.0wt%以下と規定した。   Mn: When Mn is added to an aluminum alloy, it forms a solid solution in aluminum or an Al-Mn-Fe compound. This compound does not become a starting point of pitting corrosion in a neutral environment, and therefore has an effect of suppressing depletion due to corrosion. Moreover, in an alkaline environment, it has the effect of suppressing the potential reversal phenomenon that occurs when Zn alone is added. If this effect is less than 0.4 wt%, it is not sufficient, and if it exceeds 2.0 wt%, it will be cracked by rolling. Therefore, the amount of Mn added is defined as 0.4 wt% or more and 2.0 wt% or less.

Ti:Tiはアルミニウム合金に添加するとアルミに固溶またはAl−Ti系の化合物を形成する。この化合物は中性環境においては孔食の起点となり、腐食点を分散させることにより犠牲腐食を横広がりにする効果がある。またアルカリ環境においては、上記のZn単独添加で発生する電位の逆転現象を抑制する効果を有する。この効果が0.01wt%未満では十分でなく、0.05wt%を越えると酸性および中性環境での孔食の起点が増える。従ってTiの添加量を0.01wt%以上0.05wt%以下と規定した。   Ti: When Ti is added to an aluminum alloy, it forms a solid solution or an Al-Ti compound in aluminum. This compound becomes a starting point of pitting corrosion in a neutral environment, and has an effect of spreading sacrificial corrosion by dispersing the corrosion points. Moreover, in an alkaline environment, it has the effect of suppressing the potential reversal phenomenon that occurs when Zn alone is added. If this effect is less than 0.01 wt%, it is not sufficient, and if it exceeds 0.05 wt%, the origin of pitting corrosion in acidic and neutral environments increases. Therefore, the amount of Ti added is defined as 0.01 wt% or more and 0.05 wt% or less.

Zr:Zrはアルミニウムに添加するとアルミに固溶またはAl−Zr系の化合物を形成する。この化合物は中性環境においては孔食の起点となり、腐食点を分散させることにより犠牲腐食を横広がりにする効果がある。また、アルカリ環境においては表面に強固な不導体皮膜を形成し、アルカリ環境での腐食溶解を防止する。この効果が0.05wt%未満では十分でなく、0,20wt%以上であると圧延割れを生じてしまう。従ってZrの添加量を0.05wt%〜0.20wt%に規定した。   Zr: When Zr is added to aluminum, it forms a solid solution or an Al-Zr compound in aluminum. This compound becomes a starting point of pitting corrosion in a neutral environment, and has an effect of spreading sacrificial corrosion by dispersing the corrosion points. Further, in an alkaline environment, a strong non-conductive film is formed on the surface to prevent corrosion and dissolution in an alkaline environment. If this effect is less than 0.05 wt%, it is not sufficient, and if it is 0.20 wt% or more, rolling cracks will occur. Therefore, the amount of Zr added is regulated to 0.05 wt% to 0.20 wt%.

V:Vはアルミニウムに添加するとアルミに固溶またはAl−V系の化合物を形成する。
また鋳造時において化合物とその周辺部にVの濃淡層を形成する。この濃淡層は圧延によって伸ばされ、板厚方向にVの濃淡層を形成する。Al−V系の化合物は中性環境においては孔食の起点となり、腐食点を分散させることにより犠牲腐食を横広がりにする効果がある。またアルカリ環境においてはこのVの濃淡により、Vが濃い部分が優先的に溶解して板厚方向への腐食を抑制する。またアルカリ環境においては上記のZn単独添加で発生する電位の逆転現象を抑制する効果を有する。この中性、アルカリ環境で耐食性を向上させるVの添加は、0.01wt%未満では十分でなく、0.2wt%を越えるとアルカリ環境での腐食溶解量が増大する従ってVの添加量を0.01wt%以上0.2wt%以下と規定した。
V: When V is added to aluminum, it forms a solid solution or an Al-V compound in aluminum.
Further, a V shade layer is formed on the compound and its peripheral part during casting. This light and dark layer is stretched by rolling to form a V light and dark layer in the thickness direction. The Al-V compound is a starting point of pitting corrosion in a neutral environment, and has an effect of spreading sacrificial corrosion by dispersing the corrosion points. Further, in an alkaline environment, the darker portion of V preferentially dissolves the portion where V is thicker and suppresses corrosion in the thickness direction. Moreover, in an alkaline environment, it has the effect of suppressing the potential reversal phenomenon that occurs when Zn alone is added. The addition of V for improving the corrosion resistance in a neutral or alkaline environment is not sufficient if it is less than 0.01 wt%, and if it exceeds 0.2 wt%, the amount of corrosion dissolution in an alkaline environment increases. .01 wt% to 0.2 wt%.

Sn、In:Sn、Inはアルミニウムに添加するとアルミに固溶または化合物を形成する。中性では犠牲材の電位を卑にする効果があり、犠牲腐食を横広がりにする効果がある。 アルカリ性では上記のZn単独添加で発生する電位の逆転現象を抑制する効果を有する。この効果が0.05wt%未満では十分でなく、0.2wt%以上では圧延割れを生じてしまう。従ってSn、Inの添加量を0.05wt%〜0.2wt%に規定した。   Sn, In: Sn and In form a solid solution or compound in aluminum when added to aluminum. Neutral has the effect of lowering the potential of the sacrificial material, and has the effect of spreading sacrificial corrosion. Alkaline has the effect of suppressing the potential reversal phenomenon that occurs when Zn alone is added. If this effect is less than 0.05 wt%, it is not sufficient, and if it is 0.2 wt% or more, rolling cracks will occur. Therefore, the addition amount of Sn and In is specified to be 0.05 wt% to 0.2 wt%.

次に本発明における芯材の限定理由を説明する。
Si:Siは、マトリックスに固溶およびFe、Mnと金属間化合物を形成し強度向上に寄与する。その含有量が0.40wt%未満であると強度向上効果が無く、1.0wt%を越えるとろう付け時の芯材の溶融および外部耐食性に劣る、従って本発明においてはSi含有量を0.40wt%以上1.00wt%以下と規定した。
Next, the reason for limiting the core material in the present invention will be described.
Si: Si contributes to strength improvement by forming a solid solution in the matrix and forming an intermetallic compound with Fe and Mn. If the content is less than 0.40 wt%, the effect of improving the strength is not obtained, and if it exceeds 1.0 wt%, the core material is inferior in melting and external corrosion resistance at the time of brazing. It was defined as 40 wt% or more and 1.00 wt% or less.

Fe:Feは、マトリックスに固溶およびSi、Mnと金属間化合物を形成し強度向上に寄与する。その含有量が0.15wt%未満であると強度向上効果がなく、1.0wt%を越えると複合材の芯材とした場合に、芯材の耐食性が劣化する。従って本発明においてはFe含有量を0.15wt%以上1.0wt%以下と規定した。   Fe: Fe contributes to improving the strength by forming a solid solution in the matrix and forming an intermetallic compound with Si and Mn. If the content is less than 0.15 wt%, the effect of improving the strength is not obtained. If the content exceeds 1.0 wt%, the corrosion resistance of the core material deteriorates when the core material is a composite material. Therefore, in the present invention, the Fe content is defined as 0.15 wt% or more and 1.0 wt% or less.

Cu:Cuは、マトリックスに固溶し強度向上に寄与する。その含有量が0.50wt%未満であると強度向上効果に乏しく、1.00wt%を越えるとろう付け時の芯材の溶融および芯材に粒界腐食が発生し外部耐食性に劣る、従って本発明においてはCuの含有量を0.50wt%以上1.00wt%以下と規定した。   Cu: Cu dissolves in the matrix and contributes to strength improvement. If the content is less than 0.50 wt%, the effect of improving the strength is poor, and if it exceeds 1.00 wt%, the core material melts at the time of brazing and intergranular corrosion occurs in the core material, resulting in poor external corrosion resistance. In the present invention, the Cu content is defined as 0.50 wt% or more and 1.00 wt% or less.

Mn:Mnはマトリックスに固溶およびSi、Feと金属間化合物を形成し強度向上に寄与する。その含有量が0.50wt%未満では強度向上効果が十分でなく、2.00wt%を越えると複合材の芯材とした場合に、圧延加工時に端部に割れが発生し圧延加工が困難になる。従って本発明においてはMn含有量を0.50wt%以上2.00wt%以下と規定した。   Mn: Mn forms a solid solution in the matrix and forms an intermetallic compound with Si and Fe, thereby contributing to the improvement of strength. If the content is less than 0.50 wt%, the effect of improving the strength is not sufficient, and if it exceeds 2.00 wt%, when it is used as the core material of the composite material, cracking occurs at the end during rolling, making rolling difficult. Become. Therefore, in the present invention, the Mn content is defined as 0.50 wt% or more and 2.00 wt% or less.

Ti:Tiは鋳造時においてTiの濃淡部を形成する、この濃淡部が圧延加工により伸ばされTiの濃淡層を圧延方向に形成することで芯材自身の耐食性を向上させる。0.05wt%未満の添加量では上記効果が期待できず、0.20wt%以上ではTiの巨大晶出物を形成し、圧延時に割れの原因となる。従ってTiの添加量を0.05wt%以上0.20wt%以下と規定した。   Ti: Ti forms a light and dark portion of Ti at the time of casting, and this light and dark portion is extended by rolling to form a light and dark layer of Ti in the rolling direction, thereby improving the corrosion resistance of the core material itself. If the addition amount is less than 0.05 wt%, the above effect cannot be expected. If the addition amount is 0.20 wt% or more, a Ti giant crystallized product is formed, which causes cracking during rolling. Therefore, the amount of Ti added is specified to be 0.05 wt% or more and 0.20 wt% or less.

Zr:Zrは芯材に微細析出物を形成し強度向上に寄与する。この効果が0.05wt%未満では期待できず、0.20wt%を越えて添加すると圧延時に割れが発生し製品ができない。従ってZrの添加量を0.05wt%以上0.20wt%以下と規定した。   Zr: Zr forms fine precipitates in the core material and contributes to strength improvement. This effect cannot be expected if it is less than 0.05 wt%, and if it exceeds 0.20 wt%, cracking occurs during rolling, and a product cannot be produced. Therefore, the amount of Zr added is specified to be 0.05 wt% or more and 0.20 wt% or less.

Cr:Crは芯材に微細析出物を形成し強度向上に寄与する。この効果が0.05wt%未満では期待できず、0.20wt%を越えるとTiとの組み合わせで巨大晶出物を形成し圧延時に割れの原因となる、従ってCrの添加量を0.05wt%以上0.20wt%以下と規定した。   Cr: Cr forms fine precipitates in the core material and contributes to strength improvement. This effect cannot be expected if it is less than 0.05 wt%, and if it exceeds 0.20 wt%, a giant crystallized product is formed in combination with Ti and causes cracking during rolling. Therefore, the amount of Cr added is 0.05 wt%. It was specified as 0.20 wt% or less.

V:Vはアルミニウムに添加するとアルミに固溶またはAl−V系の化合物を形成する。また鋳造時において化合物とその周辺部にVの濃淡層を形成する。この濃淡層は圧延によって伸ばされ、板厚方向にVの濃淡層を形成し耐食性の向上に寄与する。この効果が0.05wt%未満では十分でなく、0.2wt%を越えるとアルカリ性での耐食性が劣る。従って0.05wt%〜0.2wt%と規定した。   V: When V is added to aluminum, it forms a solid solution or an Al-V compound in aluminum. Further, a V shade layer is formed on the compound and its peripheral part during casting. This light and dark layer is stretched by rolling, and forms a light and dark layer of V in the thickness direction, contributing to the improvement of corrosion resistance. If this effect is less than 0.05 wt%, it is not sufficient, and if it exceeds 0.2 wt%, the alkaline corrosion resistance is inferior. Therefore, it was specified as 0.05 wt% to 0.2 wt%.

本発明において複合材を形成する場合に、ろう材として使用される合金はJISに規定されているBA4343P、BA4045P、BA4047Pが用いられるが、本発明においては限定されるものではなく、熱交換器の形状および熱交換器を作成する時の加熱条件によって種々選択が可能である。   When forming the composite material in the present invention, the alloy used as the brazing material is BA4343P, BA4045P, or BA4047P specified in JIS, but is not limited in the present invention. Various selections are possible depending on the shape and the heating conditions when producing the heat exchanger.

[実施例]
表2に本発明例の芯材合金成分と本発明例を外れる比較例芯材合金を示す。表3に本発明例の犠牲材合金成分と本発明例を外れる比較例犠牲材合金を示す。これら芯材と犠牲材合金をろう材(BA4045P合金)と合わせて、表4に示すアルミニウムブレージング゛シートを作製した。尚、芯材、犠牲材合金成分には560℃×3時間の均質化処理を施し、中間焼鈍温度は400℃で1時間、最終冷間圧延率を30%で実施した。このような工程を経て0.20mmの板を得た。なお、製造工程の比較例として、芯材と犠牲材合金の成分は本発明例範囲内であるが、中間焼鈍温度を400℃ではなく330℃として1時間の中間焼鈍を行い、最終冷間圧延率を30%ではなく60%で実施して得られた比較例No.74を表5に併せて示す。これらのアルミニウムブレージングシートに関して以下の評価を行った。
[Example]
Table 2 shows the core alloy components of the inventive examples and comparative core alloys that deviate from the inventive examples. Table 3 shows a sacrificial material alloy component of the present invention example and a comparative example sacrificial material alloy that deviates from the present invention example. These core material and sacrificial material alloy were combined with a brazing material (BA4045P alloy) to produce an aluminum brazing sheet shown in Table 4. The core material and the sacrificial material alloy component were homogenized at 560 ° C. for 3 hours, the intermediate annealing temperature was 400 ° C. for 1 hour, and the final cold rolling rate was 30%. Through such a process, a 0.20 mm plate was obtained. As a comparative example of the manufacturing process, the components of the core material and the sacrificial material alloy are within the range of the present invention example, but the intermediate annealing temperature is set to 330 ° C. instead of 400 ° C., and the intermediate annealing is performed for 1 hour, and the final cold rolling is performed. Comparative Example No. 74 obtained by carrying out the rate at 60% instead of 30% is also shown in Table 5. The following evaluation was performed on these aluminum brazing sheets.

(1)引張り試験
表4の構成のブレージングシートをJIS5号の試験片に加工し、窒素雰囲気化でろう付け相当の加熱(600℃で3分)を行った後、室温で7日間放置した後、引張り試験を行い、強度を測定した。その結果を表4に示す。
(1) Tensile test After the brazing sheet having the structure shown in Table 4 was processed into a JIS No. 5 test piece and subjected to brazing equivalent heating in a nitrogen atmosphere (600 ° C. for 3 minutes), it was left at room temperature for 7 days. A tensile test was performed to measure the strength. The results are shown in Table 4.

Figure 2008127607
Figure 2008127607

Figure 2008127607
Figure 2008127607

Figure 2008127607
Figure 2008127607

Figure 2008127607
Figure 2008127607

表4に示す本発明例及び表5に示す比較例の各試験片の構成につき以下に説明する。
本発明例であるNo.1〜No.13試験片は表2に示す芯材の成分におけるS1組成の芯材を用いた複合材として構成された。
またNo.14及びNo.28試験片はS2組成、No.15及びNo.29試験片はS3組成、No.16及びNo.30試験片はS4組成、No.17及びNo.31試験片はS5組成、No.18及びNo.32試験片はS6組成、No.19及びNo.33試験片はS7組成、No.20及びNo.34試験片はS8組成、No.21及びNo.35試験片はS9組成、No.22及びNo.36試験片はS10組成、No.23及びNo.37試験片はS11組成、No.24及びNo.38試験片はS12組成、No.25及びNo.39試験片はS13組成、No.26及びNo.40試験片はS14組成、No.27及びNo.41試験片はS15組成の芯材を用いた複合材として構成された。
The configuration of each test piece of the present invention example shown in Table 4 and the comparative example shown in Table 5 will be described below.
The No. 1 to No. 13 test pieces, which are examples of the present invention, were constructed as composite materials using the core material having the S1 composition in the core material components shown in Table 2.
No. 14 and No. 28 specimens are S2 composition, No. 15 and No. 29 specimens are S3 composition, No. 16 and No. 30 specimens are S4 composition, No. 17 and No. 31 specimens are S5 composition, No.18 and No.32 specimens are S6 composition, No.19 and No.33 specimens are S7 composition, No.20 and No.34 specimens are S8 composition, No.21 and No.35 tests The specimen is S9 composition, No.22 and No.36 specimens are S10 composition, No.23 and No.37 specimens are S11 composition, No.24 and No.38 specimens are S12 composition, No.25 and No.25 specimens. The 39 specimens were composed as a composite material using a core material having the S13 composition, the No. 26 and No. 40 specimens were the S14 composition, and the No. 27 and No. 41 specimens were the S15 composition.

また犠牲陽極材については表3に示す各犠牲陽極材の組成の中で、No.1試験片にはG1、No.2試験片にはG2、No.3及びNo.14〜No.27試験片にはG3、No.4試験片にはG4、No.5及びNo.28〜No.41試験片にはG5、No.6試験片にはG6、No.7試験片にはG7、No.8試験片にはG8、No.9試験片にはG9、No.10試験片にはG10、No.11試験片にはG11、No.12試験片にはG12、No.13試験片にはG13の組成の犠牲陽極材がそれぞれ用いられた。   As for the sacrificial anode material, among the compositions of the sacrificial anode materials shown in Table 3, the No. 1 test piece is G1, the No. 2 test piece is G2, No. 3, and No. 14 to No. 27 tests. G3 for No.4 specimen, G4 for No.5 and No.28-No.41 specimens, G6 for No.6 specimens, G7 for No.7 specimens, No G8 for No.8 test piece, G9 for No.9 test piece, G10 for No.10 test piece, G11 for No.11 test piece, G12 for No.12 test piece, and No.13 test piece The sacrificial anode material having a composition of G13 was used.

また、表4に示す本発明例であるNo.42試験片にはS2(芯材)−G1(犠牲陽極材)、No.43試験片にはS3−G2、No.44試験片にはS4−G3、No.45試験片にはS5−G4という構成が適用されている。   Further, the No. 42 test piece of the present invention shown in Table 4 is S2 (core material) -G1 (sacrificial anode material), the No. 43 test piece is S3-G2, and the No. 44 test piece is S4. The configuration of S5-G4 is applied to the -G3 and No. 45 test pieces.

したがって以上のNo.1〜No.13試験片にあってはそのアルミニウム合金芯材におけるSi含有量は0.41%、Fe含有量が0.16%、Cu含有量が0.53%、Mn含有量が1.12%、Ti含有量が0.06%であった(S1)。   Therefore, in the above No. 1 to No. 13 test pieces, the Si content in the aluminum alloy core material is 0.41%, the Fe content is 0.16%, the Cu content is 0.53%, Mn The content was 1.12% and the Ti content was 0.06% (S1).

またNo.14、No.28及びNo.42試験片のアルミニウム合金芯材におけるSi含有量は0.42%、Fe含有量が0.16%、Cu含有量が0.51%、Mn含有量が1.95%、Ti含有量が0.18%であった(S2)。またNo.15、No.29及びNo.43試験片にあってはアルミニウム合金芯材におけるSi含有量は0.43%、Fe含有量が0.95%、Cu含有量が0.97%、Mn含有量が1.05%、Ti含有量が0.05%であった(S3)。   In addition, the Si content in the aluminum alloy core material of No. 14, No. 28 and No. 42 test pieces is 0.42%, Fe content is 0.16%, Cu content is 0.51%, and Mn content. Was 1.95% and the Ti content was 0.18% (S2). In the No. 15, No. 29 and No. 43 test pieces, the Si content in the aluminum alloy core material is 0.43%, the Fe content is 0.95%, the Cu content is 0.97%, The Mn content was 1.05% and the Ti content was 0.05% (S3).

さらにNo.16、No.30及びNo.44試験片にあってはそのアルミニウム合金芯材におけるSi含有量は0.42%、Fe含有量が0.97%、Cu含有量が0.95%、Mn含有量が1.95%、Ti含有量が0.19%であった(S4)。またNo.17、No.31及びNo.45試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.99%、Fe含有量が0.15%、Cu含有量が0.55%、Mn含有量が1.11%、Ti含有量が0.20%であった(S5)。   Further, in the No. 16, No. 30 and No. 44 test pieces, the Si content in the aluminum alloy core material is 0.42%, the Fe content is 0.97%, and the Cu content is 0.95%. The Mn content was 1.95% and the Ti content was 0.19% (S4). In the No. 17, No. 31 and No. 45 test pieces, the Si content in the aluminum alloy core material is 0.99%, the Fe content is 0.15%, and the Cu content is 0.55%. The Mn content was 1.11% and the Ti content was 0.20% (S5).

さらにNo.18及びNo.32試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.90%、Fe含有量が0.18%、Cu含有量が0.51%、Mn含有量が1.98%、Ti含有量が0.06%であった(S6)。またNo.19及びNo.33試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.95%、Fe含有量が0.90%、Cu含有量が0.90%、Mn含有量が1.20%、Ti含有量が0.18%であった(S7)。   Further, in the No. 18 and No. 32 test pieces, the Si content in the aluminum alloy core material is 0.90%, the Fe content is 0.18%, the Cu content is 0.51%, and the Mn content. Was 1.98% and the Ti content was 0.06% (S6). In the No. 19 and No. 33 test pieces, the aluminum content of the aluminum alloy core is 0.95%, the Fe content is 0.90%, the Cu content is 0.90%, and the Mn content. Was 1.20% and the Ti content was 0.18% (S7).

またNo.20及びNo.34試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.94%、Fe含有量が0.95%、Cu含有量が0.99%、Mn含有量が1.90%、Ti含有量が0.06%であった(S8)。No.21及びNo.35試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.45%、Fe含有量が0.18%、Cu含有量が0.54%、Mn含有量が1.13%、Ti含有量が0.07%、Cr含有量が0.18%であった(S9)。   In the No. 20 and No. 34 specimens, the aluminum content of the aluminum alloy core is 0.94%, Fe content is 0.95%, Cu content is 0.99%, and Mn content. Was 1.90% and the Ti content was 0.06% (S8). In the No. 21 and No. 35 test pieces, the Si content in the aluminum alloy core material is 0.45%, the Fe content is 0.18%, the Cu content is 0.54%, and the Mn content is 1.13%, Ti content was 0.07%, and Cr content was 0.18% (S9).

No.22及びNo.36試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.43%、Fe含有量が0.17%、Cu含有量が0.54%、Mn含有量が1.90%、Ti含有量が0.18%、Zr含有量が0.18%であって(S10)、No.23及びNo.37試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.41%、Fe含有量が0.94%、Cu含有量が0.90%、Mn含有量が1.30%、Ti含有量が0.06%、V含有量が0.18%であった(S11)。   In the No. 22 and No. 36 test pieces, the Si content in the aluminum alloy core material is 0.43%, the Fe content is 0.17%, the Cu content is 0.54%, and the Mn content is 1.90%, Ti content is 0.18%, Zr content is 0.18% (S10), and in No. 23 and No. 37 test pieces, Si content in the aluminum alloy core material Amount 0.41%, Fe content 0.94%, Cu content 0.90%, Mn content 1.30%, Ti content 0.06%, V content 0.18% % (S11).

No.24及びNo.38試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.43%、Fe含有量が0.93%、Cu含有量が0.97%、Mn含有量が1.96%、Ti含有量が0.19%、Cr含有量が0.06%、Zr含有量が0.06%であった(S12)。またNo.25及びNo.39試験片はSi含有量が0.97%、Fe含有量が0.18%、Cu含有量が0.95%、Mn含有量が1.16%、Ti含有量が0.19%、Zr含有量が0.06%、V含有量が0.08%であった(S13)。   In the No. 24 and No. 38 test pieces, the Si content in the aluminum alloy core material is 0.43%, the Fe content is 0.93%, the Cu content is 0.97%, and the Mn content is 1.96%, Ti content was 0.19%, Cr content was 0.06%, and Zr content was 0.06% (S12). The No. 25 and No. 39 test pieces have a Si content of 0.97%, a Fe content of 0.18%, a Cu content of 0.95%, a Mn content of 1.16%, and a Ti content. Was 0.19%, the Zr content was 0.06%, and the V content was 0.08% (S13).

またNo.26及びNo.40試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.95%、Fe含有量が0.16%、Cu含有量が0.97%、Mn含有量が1.92%、Ti含有量が0.06%、Cr含有量が0.19%、Zr含有量が0.18%であった(S14)。またNo.27及びNo.41試験片にあってはそのアルミニウム合金芯材におけるSi含有量が0.94%、Fe含有量が0.92%、Cu含有量が0.52%、Mn含有量が1.18%、Ti含有量が0.18%、Cr含有量が0.06%、Zr含有量が0.05%、V含有量が0.06%であった(S15)。   In the No. 26 and No. 40 specimens, the aluminum content of the aluminum alloy core is 0.95%, the Fe content is 0.16%, the Cu content is 0.97%, and the Mn content. Was 1.92%, Ti content was 0.06%, Cr content was 0.19%, and Zr content was 0.18% (S14). In the No.27 and No.41 test pieces, the aluminum content of the aluminum alloy core material is 0.94%, Fe content is 0.92%, Cu content is 0.52%, and Mn content. Was 1.18%, Ti content was 0.18%, Cr content was 0.06%, Zr content was 0.05%, and V content was 0.06% (S15).

したがって以上のNo.1試験片〜No.45試験片にあってはそのアルミニウム合金芯材の組成(S1〜S15)はSi0.4wt%〜1.0wt%、Fe0.15〜1.0wt%、Cu0.5〜1.0wt%、Mn1.0〜2.0wt%、Ti0.05〜0.2wt%を含有し残部Al及び不可避不純物よりなるとする本発明のアルミニウム合金複合材(請求項3)の条件を充足する。   Therefore, in the above No. 1 test piece to No. 45 test piece, the composition of the aluminum alloy core material (S1 to S15) is Si 0.4 wt% to 1.0 wt%, Fe 0.15 to 1.0 wt%, Of the aluminum alloy composite material of the present invention (Claim 3) containing 0.5 to 1.0 wt% Cu, 1.0 to 2.0 wt% Mn, 0.05 to 0.2 wt% Ti and the balance being Al and inevitable impurities Satisfy the conditions.

ただしNo.1〜No.20試験片、No.28〜No.34試験片及びNo.42〜No.45試験片にあってはそのアルミニウム合金芯材にCr及びZrの含有は認められず(S1〜S8)、したがって、アルミニウム合金芯材がZr0.05〜0.2wt%、Cr0.05〜0.2wt%、V0.05〜0.2wt%のうち1種または2種以上を含有するとする本発明請求項4のアルミニウム合金複合材の条件は充足しない。   However, in the case of the No. 1 to No. 20 test piece, the No. 28 to No. 34 test piece and the No. 42 to No. 45 test piece, the aluminum alloy core material does not contain Cr and Zr ( Therefore, the aluminum alloy core material contains one or more of Zr 0.05 to 0.2 wt%, Cr 0.05 to 0.2 wt%, and V 0.05 to 0.2 wt%. The condition of the aluminum alloy composite material according to claim 4 of the present invention is not satisfied.

一方、No.21、No.35試験片の芯材は本発明(請求項4)の上限値を下廻る0.18%のCrを含有し(S9)、一方、No.22、No.36試験片の芯材は本発明(請求項4)の上限値を下廻る0.18%のZrを含有し(S10)、No.23、No.37試験片の芯材は本発明(請求項4)の上限値を下廻る0.18%のVを含有する(S11)。   On the other hand, the core materials of No. 21 and No. 35 test pieces contain 0.18% Cr which is lower than the upper limit of the present invention (Claim 4) (S9), while No. 22 and No. 36 are included. The core material of the test piece contains 0.18% Zr below the upper limit of the present invention (Claim 4) (S10), and the core materials of No. 23 and No. 37 test pieces are the present invention (Claim). It contains 0.18% V which is below the upper limit of 4) (S11).

No.24、No.38試験片の芯材は本発明(請求項4)の下限値を越える0.06%のCr及びZrを含有し(S12)、一方、No.25、No.39試験片の芯材は本発明(請求項4)の下限値を越えるである0.06%のZr及び0.08%のVを含有する(S13)。   The core material of No. 24 and No. 38 test pieces contains 0.06% Cr and Zr exceeding the lower limit of the present invention (Claim 4) (S12), while No. 25 and No. 39 tests. The core material of the piece contains 0.06% of Zr and 0.08% of V which exceed the lower limit of the present invention (Claim 4) (S13).

No.26、No.40試験片の芯材は本発明(請求項4)の上限値を下廻る0.19%のCr及び0.18%Zr量を含有し(S14)、一方、No.27、No.41試験片の芯材は本発明(請求項4)の下限値を越える0.06%のCr、下限値である0.06%のZr及び下限値を越える0.06%のVを含有する(S15)。   The core materials of No. 26 and No. 40 test pieces contain 0.19% Cr and 0.18% Zr amount below the upper limit of the present invention (Claim 4) (S14), while No. 27, the core material of No. 41 test piece is 0.06% Cr exceeding the lower limit of the present invention (Claim 4), 0.06% Zr being the lower limit, and 0.06% exceeding the lower limit. V is contained (S15).

したがってNo.21〜No.27及びNo.35〜No.41試験片については、アルミニウム合金芯材がZr0.05〜0.2wt%、Cr0.05〜0.2wt%、V0.05〜0.2wt%のうち1種または2種以上を含有するとする本発明のアルミニウム合金複合材(請求項4)の条件を充足する。   Therefore, for the No. 21 to No. 27 and No. 35 to No. 41 test pieces, the aluminum alloy core material is Zr 0.05 to 0.2 wt%, Cr 0.05 to 0.2 wt%, V 0.05 to 0.00. The condition of the aluminum alloy composite material of the present invention (Claim 4) satisfying one or more of 2 wt% is satisfied.

次に本発明各実施例の犠牲陽極材について説明する。
No.1及びNo.42試験片にあってはその犠牲陽極材におけるZn含有量は3.14%、Si含有量が0.41%、Fe含有量が0.26%、Mn含有量が1.95%、Ti含有量が0.05%、Zr含有量が0.08%であった(G1)。またNo.2及びNo.43試験片にあってはその犠牲陽極材におけるZn含有量は7.78%、Si含有量が0.41%、Fe含有量が0.27%、Mn含有量が1.90%、Ti含有量が0.19%、Zr含有量が0.18%であった(G2)。
Next, the sacrificial anode material of each example of the present invention will be described.
In the No. 1 and No. 42 test pieces, the Zn content in the sacrificial anode material was 3.14%, the Si content was 0.41%, the Fe content was 0.26%, and the Mn content was 1. .95%, Ti content was 0.05%, and Zr content was 0.08% (G1). In the No. 2 and No. 43 test pieces, the Zn content in the sacrificial anode material was 7.78%, the Si content was 0.41%, the Fe content was 0.27%, and the Mn content was 1.90%, Ti content was 0.19%, and Zr content was 0.18% (G2).

またNo.3及びNo.14〜No.27及びNo.44試験片にあってはその犠牲陽極材におけるZn含有量は3.17%、Si含有量が0.43%、Fe含有量が0.95%、Mn含有量が0.46%、Ti含有量が0.07%、Zr含有量が0.18%であった(G3)。またNo.4及びNo.45試験片にあってはその犠牲陽極材におけるZn含有量は7.82%、Si含有量が0.42%、Fe含有量が0.97%、Mn含有量が0.41%、Ti含有量が0.18%、Zr含有量が0.06%であった(G4)。   In the No. 3 and No. 14 to No. 27 and No. 44 test pieces, the Zn content in the sacrificial anode material was 3.17%, the Si content was 0.43%, and the Fe content was 0. .95%, Mn content was 0.46%, Ti content was 0.07%, and Zr content was 0.18% (G3). In the No. 4 and No. 45 specimens, the Zn content in the sacrificial anode material was 7.82%, the Si content was 0.42%, the Fe content was 0.97%, and the Mn content was The content was 0.41%, the Ti content was 0.18%, and the Zr content was 0.06% (G4).

さらにNo.5及びNo.28〜No.41試験片にあってはその犠牲陽極材におけるZn含有量は3.22%、Si含有量が0.95%、Fe含有量が0.27%、Mn含有量が0.42%、Ti含有量が0.12%、Zr含有量が0.08%であった(G5)。またNo.6試験片にあってはその犠牲陽極材におけるZn含有量は7.78%、Si含有量が0.96%、Fe含有量が0.28%、Mn含有量が0.44%、Ti含有量が0.06%、Zr含有量が0.17%であった(G6)。   Further, in the No. 5 and No. 28 to No. 41 specimens, the Zn content in the sacrificial anode material is 3.22%, the Si content is 0.95%, the Fe content is 0.27%, The Mn content was 0.42%, the Ti content was 0.12%, and the Zr content was 0.08% (G5). In the No. 6 test piece, the Zn content in the sacrificial anode material is 7.78%, the Si content is 0.96%, the Fe content is 0.28%, and the Mn content is 0.44%. The Ti content was 0.06% and the Zr content was 0.17% (G6).

またNo.7試験片あってはその犠牲陽極材におけるZn含有量は3.12%、Si含有量が0.94%、Fe含有量が0.97%、Mn含有量が1.92%、Ti含有量が0.18%、Zr含有量が0.18%、V含有量が0.01%であった(G7)。加えてNo.8試験片にあってはその犠牲陽極材におけるZn含有量は7.78%、Si含有量が0.98%、Fe含有量が0.92%、Mn含有量が1.82%、Ti含有量が0.06%、Zr含有量が0.08%、V含有量が0.17%であった(G8)。   In the No. 7 test piece, the Zn content in the sacrificial anode material was 3.12%, the Si content was 0.94%, the Fe content was 0.97%, the Mn content was 1.92%, The Ti content was 0.18%, the Zr content was 0.18%, and the V content was 0.01% (G7). In addition, in the No. 8 specimen, the Zn content in the sacrificial anode material was 7.78%, the Si content was 0.98%, the Fe content was 0.92%, and the Mn content was 1.82. %, Ti content was 0.06%, Zr content was 0.08%, and V content was 0.17% (G8).

さらにNo.9試験片にあってはその犠牲陽極材におけるZn含有量は3.12%、Si含有量が0.42%、Fe含有量が0.99%、Mn含有量が0.43%、Ti含有量が0.07%、Zr含有量が0.17%、V含有量が0.18%であり、さらに0.06%のSnを含有した(G9)。さらにNo.10試験片にあってはその犠牲陽極材におけるZn含有量は3.08%、Si含有量が0.41%、Fe含有量が0.95%、Mn含有量が0.41%、Ti含有量が0.06%、Zr含有量が0.19%、V含有量が0.02%であり、さらに0.15%のSnを含有した(G10)。   Further, in the No. 9 test piece, the Zn content in the sacrificial anode material is 3.12%, the Si content is 0.42%, the Fe content is 0.99%, and the Mn content is 0.43%. The Ti content was 0.07%, the Zr content was 0.17%, the V content was 0.18%, and 0.06% Sn was further contained (G9). Furthermore, in the No. 10 test piece, the Zn content in the sacrificial anode material is 3.08%, the Si content is 0.41%, the Fe content is 0.95%, and the Mn content is 0.41%. The Ti content was 0.06%, the Zr content was 0.19%, the V content was 0.02%, and further 0.15% Sn was contained (G10).

さらにNo.11試験片にあってはその犠牲陽極材におけるZn含有量は3.20%、Si含有量が0.42%、Fe含有量が0.99%、Mn含有量が0.44%、Ti含有量が0.05%、Zr含有量が0.18%、V含有量が0.18%であり、さらに0.05%のInを含有した(G11)。さらにNo.12試験片にあってはその犠牲陽極材におけるZn含有量は3.18%、Si含有量が0.44%、Fe含有量が0.93%、Mn含有量が0.41%、Ti含有量が0.07%、Zr含有量が0.17%、V含有量が0.03%であり、さらに0.15%のInを含有した(G12)。さらにNo.13試験片にあってはその犠牲陽極材におけるZn含有量は3.21%、Si含有量が0.41%、Fe含有量が0.91%、Mn含有量が0.44%、Ti含有量が0.06%、Zr含有量が0.16%、V含有量が0.17%であり、さらに0.05%のSn及び0.16%のInを含有した(G13)。   Furthermore, in the No. 11 test piece, the Zn content in the sacrificial anode material is 3.20%, the Si content is 0.42%, the Fe content is 0.99%, and the Mn content is 0.44%. The Ti content was 0.05%, the Zr content was 0.18%, the V content was 0.18%, and 0.05% In was further contained (G11). Furthermore, in the No. 12 test piece, the Zn content in the sacrificial anode material is 3.18%, the Si content is 0.44%, the Fe content is 0.93%, and the Mn content is 0.41%. The Ti content was 0.07%, the Zr content was 0.17%, the V content was 0.03%, and further 0.15% In was contained (G12). Further, in the No. 13 test piece, the Zn content in the sacrificial anode material is 3.21%, the Si content is 0.41%, the Fe content is 0.91%, and the Mn content is 0.44%. Ti content was 0.06%, Zr content was 0.16%, V content was 0.17%, and further 0.05% Sn and 0.16% In were contained (G13). .

したがって以上のNo.1〜No.6、No.14〜No.27、No.28〜No.41、No.42〜No.45試験片にあっては、犠牲陽極材がZn3wt%〜8wt%、Si0.4wt%〜1.0wt%、Fe0.25wt%〜1.0wt%、Mn0.4〜2.0wt%、Ti0.05〜0.20wt%、Zr0.05〜0.2wt%を含有し残部Al及び不可避不純物よりなるとする本発明のアルミニウム合金クラッド材(請求項1)の条件を充足する。さらにNo.7〜No.13試験片にあってはV0.01〜0.2wt%、Sn0.05〜0.2wt%、In0.05〜0.2wt%のうち1種または2種以上を含有するとする本発明のアルミニウム合金クラッド材(請求項2)の条件を充足する。   Therefore, in the above No. 1 to No. 6, No. 14 to No. 27, No. 28 to No. 41, No. 42 to No. 45 specimens, the sacrificial anode material is Zn 3 wt% to 8 wt%. Si 0.4wt% -1.0wt%, Fe0.25wt% -1.0wt%, Mn0.4-2.0wt%, Ti0.05-0.20wt%, Zr0.05-0.2wt% The conditions of the aluminum alloy cladding material of the present invention (claim 1) satisfying the balance Al and inevitable impurities are satisfied. Further, No.7 to No.13 test pieces contain one or more of V0.01 to 0.2 wt%, Sn0.05 to 0.2 wt%, and In0.05 to 0.2 wt%. Then, the conditions of the aluminum alloy clad material of the present invention (Claim 2) are satisfied.

表5に示す比較例であるNo.46〜No.74試験片は表2に示す各芯材及び表3に示す各犠牲陽極材の組成の中で、No.46試験片にはS16(芯材)−G1(犠牲陽極材)、No.47試験片にはS17−G2、No.48試験片にはS18−G3、No.49試験片にはS19−G4、No.50試験片にはS20−G5、No.51試験片にはS21−G6、No.52試験片にはS22−G7、No.53試験片にはS23−G8、No.54試験片にはS24−G9、No.55試験片にはS25−G10、No.56試験片にはS26−G11、No.57試験片にはS27−G12、No.58試験片にはS28−G13の組成の芯材−犠牲陽極材がそれぞれ用いられた。   The No. 46 to No. 74 test pieces, which are comparative examples shown in Table 5, are the compositions of each core material shown in Table 2 and each sacrificial anode material shown in Table 3, and the No. 46 test piece contains S16 (core Material) -G1 (sacrificial anode material), No. 47 test piece S17-G2, No. 48 test piece S18-G3, No. 49 test piece S19-G4, No. 50 test piece S20-G5, No.51 test piece S21-G6, No.52 test piece S22-G7, No.53 test piece S23-G8, No.54 test piece S24-G9, No. S25-G10 for the 55 specimen, S26-G11 for the No.56 specimen, S27-G12 for the No.57 specimen, and S28-G13 for the No.58 specimen. Were used respectively.

No.59試験片には表2に示す芯材の成分におけるS1(芯材)−G14(犠牲陽極材)、No.60試験片にはS2−G15、No.61試験片にはS3−G16、No.62試験片にはS4−G17、No.63試験片にはS5−G18、No.64試験片にはS5−G19、No.65試験片にはS7−G20、No.66試験片にはS8−G21、No.67試験片にはS9−G22、No.68試験片にはS10−G23、No.69試験片にはS11−G24、No.70試験片にはS12−G25、No.71試験片にはS14−G26、No.72試験片にはS15−G27、No.73試験片にはS15−G28組成の芯材ー犠牲陽極材がそれぞれ用いられた。   The No. 59 test piece includes S1 (core material) -G14 (sacrificial anode material) in the core components shown in Table 2, the No. 60 test piece includes S2-G15, and the No. 61 test piece includes S3-G16. S4-G17 for No.62 specimen, S5-G18 for No.63 specimen, S5-G19 for No.64 specimen, S7-G20, No.66 specimen for No.65 specimen. S8-G21, No.67 test piece S9-G22, No.68 test piece S10-G23, No.69 test piece S11-G24, No.70 test piece S12-G25, S14-G26 was used for the No. 71 test piece, S15-G27 was used for the No. 72 test piece, and a S15-G28 composition sacrificial anode material was used for the No. 73 test piece.

比較例複合材No.46〜No.58試験片のアルミニウム合金芯材における成分構成は表2に示される様に、比較例試験片No.46はSi含有量が0.35%、Fe含有量が0.16%、Cu含有量が0.51%、Mn含有量が1.09%、Ti含有量が0.06%であった(S16)。また比較例試験片No.47はSi含有量が1.11%、Fe含有量が0.17%、Cu含有量が0.52%、Mn含有量が1.95%、Ti含有量が0.19%であった(S17)。   As shown in Table 2, the composition of the comparative composite No. 46 to No. 58 specimens in the aluminum alloy core material is as shown in Table 2, and the comparative specimen No. 46 has an Si content of 0.35% and an Fe content. Was 0.16%, Cu content was 0.51%, Mn content was 1.09%, and Ti content was 0.06% (S16). In addition, the comparative test piece No. 47 has an Si content of 1.11%, an Fe content of 0.17%, a Cu content of 0.52%, an Mn content of 1.95%, and a Ti content of 0. 19% (S17).

また比較例試験片No.48はSi含有量が0.41%、Fe含有量が0.11%、Cu含有量が0.53%、Mn含有量が1.06%、Ti含有量が0.07%であった(S18)。また比較例試験片No.49はSi含有量が0.41%、Fe含有量が1.18%、Cu含有量が0.98%、Mn含有量が1.95%、Ti含有量が0.19%であった(S19)。   The comparative sample specimen No. 48 has a Si content of 0.41%, a Fe content of 0.11%, a Cu content of 0.53%, a Mn content of 1.06%, and a Ti content of 0. 0.07% (S18). The comparative sample No. 49 has a Si content of 0.41%, a Fe content of 1.18%, a Cu content of 0.98%, a Mn content of 1.95%, and a Ti content of 0. 19% (S19).

また比較例試験片No.50はSi含有量が0.97%、Fe含有量が0.18%、Cu含有量が0.16%、Mn含有量が1.10%、Ti含有量が0.19%であった(S20)。また比較例試験片No.51はSi含有量が0.95%、Fe含有量が0.16%、Cu含有量が1.26%、Mn含有量が1.94%、Ti含有量が0.06%であった(S21)。   The comparative test piece No. 50 has an Si content of 0.97%, an Fe content of 0.18%, a Cu content of 0.16%, an Mn content of 1.10%, and a Ti content of 0. 19% (S20). The comparative sample No. 51 has a Si content of 0.95%, a Fe content of 0.16%, a Cu content of 1.26%, a Mn content of 1.94%, and a Ti content of 0. 0.06% (S21).

また比較例試験片No.52はSi含有量が0.41%、Fe含有量が0.17%、Cu含有量が0.53%、Mn含有量が0.52%、Ti含有量が0.19%であった(S22)。また比較例試験片No.53はSi含有量が0.99%、Fe含有量が0.42%、Cu含有量が0.99%、Mn含有量が2.52%、Ti含有量が0.06%であった(S23)。   Further, the comparative test piece No. 52 has a Si content of 0.41%, a Fe content of 0.17%, a Cu content of 0.53%, a Mn content of 0.52%, and a Ti content of 0. 19% (S22). The comparative sample No. 53 has a Si content of 0.99%, a Fe content of 0.42%, a Cu content of 0.99%, a Mn content of 2.52%, and a Ti content of 0. 0.06% (S23).

また比較例試験片No.54はSi含有量が0.43%、Fe含有量が0.18%、Cu含有量が0.56%、Mn含有量が1.14%、Ti含有量が0.03%であった(S24)。また比較例試験片No.55はSi含有量が0.45%、Fe含有量が0.16%、Cu含有量が0.51%、Mn含有量が1.94%、Ti含有量が0.25%であった(S25)。   Further, the comparative test piece No. 54 has a Si content of 0.43%, a Fe content of 0.18%, a Cu content of 0.56%, a Mn content of 1.14%, and a Ti content of 0. 0.03% (S24). Further, the comparative test piece No. 55 has an Si content of 0.45%, an Fe content of 0.16%, a Cu content of 0.51%, an Mn content of 1.94%, and a Ti content of 0. 25% (S25).

また比較例試験片No.56はSi含有量が0.41%、Fe含有量が0.41%、Cu含有量が0.93%、Mn含有量が1.04%、Ti含有量が0.05%、Cr含有量が0.29%であった(S26)。また比較例試験片No.57はSi含有量が0.42%、Fe含有量が0.41%、Cu含有量が0.98%、Mn含有量が1.95%、Ti含有量が0.18%、Zr含有量が0.28%であった(S27)。   The comparative test piece No. 56 has a Si content of 0.41%, a Fe content of 0.41%, a Cu content of 0.93%, a Mn content of 1.04%, and a Ti content of 0. 0.05% and Cr content was 0.29% (S26). The comparative sample No. 57 has a Si content of 0.42%, a Fe content of 0.41%, a Cu content of 0.98%, a Mn content of 1.95%, and a Ti content of 0. 18% and Zr content 0.28% (S27).

また比較例試験片No.58はSi含有量が0.95%、Fe含有量が0.18%、Cu含有量が0.97%、Mn含有量が1.17%、Ti含有量が0.19%、V含有量が0.28%であった(S28)。   The comparative sample No. 58 has an Si content of 0.95%, an Fe content of 0.18%, a Cu content of 0.97%, an Mn content of 1.17%, and a Ti content of 0. 19% and V content 0.28% (S28).

したがってNo.46〜No.58試験片にあってはそのアルミニウム合金芯材における成分構成がSi0.4wt%〜1.0wt%、Fe0.15〜1.0wt%、Cu0.5〜1.0wt%、Mn1.0〜2.0wt%、Ti0.05〜0.2wt%を含有し残部Al及び不可避不純物よりなることを特徴とする本発明のアルミニウム合金複合材(請求項3)の条件を充足しない。   Therefore, in the No. 46 to No. 58 test pieces, the component composition in the aluminum alloy core material is Si 0.4 wt% to 1.0 wt%, Fe 0.15 to 1.0 wt%, Cu 0.5 to 1.0 wt%. , Mn 1.0 to 2.0 wt%, Ti 0.05 to 0.2 wt%, the balance being Al and unavoidable impurities, the conditions of the aluminum alloy composite material of the present invention (Claim 3) is not satisfied .

すなわち、比較例No.46は芯材のSi量が本発明の下限値の0.40%未満の0.35%であり、No.47は芯材のSi量が本発明の上限値の1.00%を越える1.11%であり、比較例試験片No.48は芯材のFe量が本発明の下限値の0.15%未満の0.11%である。   That is, in Comparative Example No. 46, the Si content of the core material is 0.35%, which is less than 0.40% of the lower limit value of the present invention, and in No. 47, the Si content of the core material is 1 of the upper limit value of the present invention. It is 1.11% exceeding 0.000%, and the comparative sample specimen No. 48 is 0.11% in which the Fe content of the core material is less than 0.15% of the lower limit of the present invention.

比較例のNo.49は芯材のFe量が本発明の上限値の1.00%を越える1.18%であり、比較例試験片No.50は芯材のCu量が0.16%であって0.50%以上とする本発明の規定値未満である。さらに比較例のNo.51はCu量が本発明の上限値である1.00%を越える1.26%であった。また比較例試験片No.52は芯材のMn量が本発明の下限値の1.00%未満の0.52%である。比較例のNo.53は芯材のMn量が本発明の上限値の2.00%を越える2.52%であった。   No. 49 of the comparative example is 1.18% in which the Fe content of the core exceeds 1.00% of the upper limit of the present invention, and the comparative specimen No. 50 has a Cu content of 0.16% of the core. However, it is less than the specified value of the present invention of 0.50% or more. Further, No. 51 of the comparative example was 1.26% in which the Cu content exceeded the upper limit of 1.00% of the present invention. Further, in the comparative example test piece No. 52, the Mn content of the core material is 0.52% which is less than 1.00% of the lower limit value of the present invention. No. 53 of the comparative example was 2.52% in which the Mn content of the core material exceeded 2.00% of the upper limit of the present invention.

比較例複合材No.54では芯材のTi量が0.03%であって芯材のTi量が0.05%以上とする本発明規定値未満であった。さらに比較例のNo.55は芯材のTi量が本発明の上限値である0.20%を越える0.25%であった。   In Comparative Example Composite No. 54, the Ti content of the core material was 0.03%, and the Ti content of the core material was 0.05% or less, which was less than the specified value of the present invention. Furthermore, No. 55 of the comparative example was 0.25% in which the Ti content of the core material exceeded the upper limit of 0.20% of the present invention.

また比較例試験片No.56は芯材のCr量が0.29%、比較例試験片No.57は芯材のZr量が0.28%、比較例試験片No.58は芯材のV量が0.28%であって、比較例試験片No.56〜No.58はいずれもZr0.05〜0.2wt%、Cr0.05〜0.2wt%、V0.05〜0.2wt%のうち1種または2種以上を含有するとする本発明請求項4の条件を充足しない。またこの比較例試験片No.56〜No.58はいずれもSi、Fe、Cu、Mn、Tiを含有し残部Al及び不可避不純物よりなるとする本発明請求項3の条件も充足しない。   Further, Comparative Example Specimen No. 56 has a core material Cr amount of 0.29%, Comparative Example Specimen No. 57 has a core material Zr content of 0.28%, and Comparative Example Specimen No. 58 has a core material content of 0.28%. The amount of V was 0.28%, and the comparative specimens No. 56 to No. 58 were all Zr 0.05 to 0.2 wt%, Cr 0.05 to 0.2 wt%, V 0.05 to 0.2 wt. %, The condition of claim 4 of the present invention, which contains 1 type or 2 types or more, is not satisfied. Moreover, these comparative example test pieces No. 56 to No. 58 do not satisfy the condition of claim 3 of the present invention in which all of them contain Si, Fe, Cu, Mn, and Ti and the balance is Al and inevitable impurities.

比較例複合材No.59〜No.73試験片の犠牲陽極材における成分構成は表2に示される様に、No.59試験片にあってはその犠牲陽極材におけるZn含有量は3.12%、Fe含有量が0.26%、Si含有量が0.35%、Mn含有量が0.98%、Ti含有量が0.06%、Zr含有量が0.07%であった(G14)。またNo.60試験片にあってはその犠牲陽極材におけるZn含有量が3.06%、Fe含有量が0.27%、Si含有量が1.16%、Mn含有量が0.95%、Ti含有量が0.07%、Zr含有量が0.05%であった(G15)。   Comparative Example No. 59 to No. 73 The specimen composition of the sacrificial anode material of the test piece is shown in Table 2, and in the No. 59 test piece, the Zn content in the sacrificial anode material is 3.12. %, Fe content was 0.26%, Si content was 0.35%, Mn content was 0.98%, Ti content was 0.06%, Zr content was 0.07% ( G14). In the No. 60 test piece, the Zn content in the sacrificial anode material is 3.06%, the Fe content is 0.27%, the Si content is 1.16%, and the Mn content is 0.95%. Ti content was 0.07% and Zr content was 0.05% (G15).

またNo.61試験片にあってはその犠牲陽極材におけるZn含有量が7.82%、Fe含有量が0.11%、Si含有量が0.42%、Mn含有量が0.92%、Ti含有量が0.19%、Zr含有量が0.18%であった(G16)。またNo.62試験片にあってはその犠牲陽極材におけるZn含有量が7.82%、Fe含有量が1.18%、Si含有量が0.44%、Mn含有量が0.91%、Ti含有量が0.17%、Zr含有量が0.19%であった(G17)。   In the No. 61 test piece, the sacrificial anode material has a Zn content of 7.82%, an Fe content of 0.11%, an Si content of 0.42%, and an Mn content of 0.92%. The Ti content was 0.19% and the Zr content was 0.18% (G16). In the No. 62 test piece, the Zn content in the sacrificial anode material was 7.82%, the Fe content was 1.18%, the Si content was 0.44%, and the Mn content was 0.91%. The Ti content was 0.17% and the Zr content was 0.19% (G17).

さらにNo.63試験片にあってはその犠牲陽極材におけるZn含有量が3.17%、Fe含有量が0.92%、Si含有量が0.41%、Mn含有量が0.26%、Ti含有量が0.05%、Zr含有量が0.15%であった(G18)。またNo.64試験片にあってはその犠牲陽極材におけるZn含有量が3.05%、Fe含有量が0.96%、Si含有量が0.44%、Mn含有量が2.51%、Ti含有量が0.06%、Zr含有量が0.19%であった(G19)。   Furthermore, in the No. 63 test piece, the Zn content in the sacrificial anode material was 3.17%, the Fe content was 0.92%, the Si content was 0.41%, and the Mn content was 0.26%. The Ti content was 0.05% and the Zr content was 0.15% (G18). In the No. 64 test piece, the Zn content in the sacrificial anode material is 3.05%, the Fe content is 0.96%, the Si content is 0.44%, and the Mn content is 2.51%. The Ti content was 0.06%, and the Zr content was 0.19% (G19).

またNo.65試験片にあってはその犠牲陽極材におけるZn含有量が2.07%、Fe含有量が0.98%、Si含有量が0.42%、Mn含有量が0.41%、Ti含有量が0.17%、Zr含有量が0.06%であった(G20)。加えてNo.66試験片にあってはその犠牲陽極材におけるZn含有量が9.97%、Fe含有量が0.99%、Si含有量が0.41%、Mn含有量が0.45%、Ti含有量が0.19%、Zr含有量が0.05%であった(G21)。   In the No. 65 test piece, the Zn content in the sacrificial anode material is 2.07%, the Fe content is 0.98%, the Si content is 0.42%, and the Mn content is 0.41%. The Ti content was 0.17% and the Zr content was 0.06% (G20). In addition, in the No. 66 test piece, the Zn content in the sacrificial anode material was 9.97%, the Fe content was 0.99%, the Si content was 0.41%, and the Mn content was 0.45. %, Ti content was 0.19%, and Zr content was 0.05% (G21).

No.67試験片にあってはその犠牲陽極材におけるZn含有量が7.92%、Fe含有量が0.25%、Si含有量が0.99%、Mn含有量が0.43%、Ti含有量が0.03%、Zr含有量が0.05%であった(G22)。No.68試験片にあってはその犠牲陽極材におけるZn含有量が7.94%、Fe含有量が0.27%、Si含有量が0.91%、Mn含有量が0.41%、Ti含有量が0.25%、Zr含有量が0.06%であった(G23)。   In the No. 67 test piece, the Zn content in the sacrificial anode material was 7.92%, the Fe content was 0.25%, the Si content was 0.99%, the Mn content was 0.43%, The Ti content was 0.03% and the Zr content was 0.05% (G22). In the No. 68 test piece, the Zn content in the sacrificial anode material was 7.94%, the Fe content was 0.27%, the Si content was 0.91%, the Mn content was 0.41%, The Ti content was 0.25%, and the Zr content was 0.06% (G23).

No.69試験片の犠牲陽極材はZn含有量が7.92%、Fe含有量が0.25%、Si含有量が0.94%、Mn含有量が0.44%、Ti含有量が0.05%、Zr含有量が0.03%であった(G24)。またNo.70試験片の犠牲陽極材はZn含有量が7.89%、Fe含有量が0.26%、Si含有量が0.99%、Mn含有量が0.41%、Ti含有量が0.06%、Zr含有量が0.25%であった(G25)。   The sacrificial anode material of the No. 69 test piece has a Zn content of 7.92%, a Fe content of 0.25%, a Si content of 0.94%, a Mn content of 0.44%, and a Ti content of 0.05% and the Zr content was 0.03% (G24). Moreover, the sacrificial anode material of the No. 70 test piece has a Zn content of 7.89%, a Fe content of 0.26%, a Si content of 0.99%, a Mn content of 0.41%, and a Ti content. Was 0.06% and the Zr content was 0.25% (G25).

No.71試験片にあってはその犠牲陽極材におけるZn含有量が3.02%、Fe含有量が0.92%、Si含有量が0.97%、Mn含有量が0.91%、Ti含有量が0.18%、Zr含有量が0.19%、V含有量が0.27%であった(G26)。   In the No. 71 test piece, the Zn content in the sacrificial anode material is 3.02%, the Fe content is 0.92%, the Si content is 0.97%, the Mn content is 0.91%, The Ti content was 0.18%, the Zr content was 0.19%, and the V content was 0.27% (G26).

No.72試験片の犠牲陽極材はZn含有量が3.16%、Fe含有量が0.92%、Si含有量が0.41%、Mn含有量が0.41%、Ti含有量が0.05%、Zr含有量が0.18%、V含有量が0.19%、Sn含有量が0.26%であった(G27)。
No.73試験片の犠牲陽極材はZn含有量が3.17%、Fe含有量が0.96%、Si含有量が0.41%、Mn含有量が0.42%、Ti含有量が0.06%、Zr含有量が0.19%、V含有量が0.19%、In含有量が0.27%であった(G28)。
The sacrificial anode material of the No. 72 test piece has a Zn content of 3.16%, an Fe content of 0.92%, an Si content of 0.41%, an Mn content of 0.41%, and a Ti content of The content was 0.05%, the Zr content was 0.18%, the V content was 0.19%, and the Sn content was 0.26% (G27).
No. 73 specimen sacrificial anode material has a Zn content of 3.17%, a Fe content of 0.96%, a Si content of 0.41%, a Mn content of 0.42%, and a Ti content of 0.06%, Zr content was 0.19%, V content was 0.19%, and In content was 0.27% (G28).

したがって以上のNo.59〜No.73試験片にあってはその犠牲陽極材の組成は、Zn3wt%〜8wt%、Si0.4wt%〜1.0wt%、Fe0.25wt%〜1.0wt%、Mn0.4〜2.0wt%、Ti0.05〜0.20wt%、Zr0.05〜0.20wt%を含有し残部Al及び不可避不純物よりなるとする本発明の犠牲陽極材(請求項1)の条件を充足しない。   Therefore, in the above No. 59 to No. 73 test pieces, the composition of the sacrificial anode material is Zn 3 wt% to 8 wt%, Si 0.4 wt% to 1.0 wt%, Fe 0.25 wt% to 1.0 wt%, Conditions of the sacrificial anode material of the present invention (Meanwhile) containing 0.4 to 2.0 wt% of Mn, 0.05 to 0.20 wt% of Ti, 0.05 to 0.20 wt% of Zr and the balance being Al and inevitable impurities Is not satisfied.

すなわち比較例複合材No.59は犠牲陽極材のSi量が0.35%であって、Si量が0.40%以上とする本発明規定値未満である。また比較例No.60は犠牲陽極材のSi量が本発明の上限値である1.00%を越え1.16%である。比較例複合材No.61は犠牲陽極材のFe量が0.11%であって、犠牲陽極材のFe量が0.25%以上とする本発明の規定値未満である。比較例No.62は犠牲陽極材のFe量が本発明の上限値である1.00%を越え1.18%である。   That is, the composite material No. 59 of the comparative example has a Si content of 0.35% in the sacrificial anode material and is less than the specified value of the present invention in which the Si content is 0.40% or more. In Comparative Example No. 60, the amount of Si in the sacrificial anode material is 1.16% exceeding the upper limit of 1.00% of the present invention. The composite material No. 61 of the comparative example has an Fe content of 0.11% in the sacrificial anode material, and the Fe content in the sacrificial anode material is 0.25% or more, which is less than the specified value of the present invention. In Comparative Example No. 62, the amount of Fe in the sacrificial anode material is 1.18% exceeding the upper limit of 1.00% of the present invention.

また比較例複合材No.63は犠牲陽極材のMn量が0.26%であって、Mn量が0.40%以上とする本発明規定値未満である。また比較例複合材No.64は犠牲陽極材のMn量が2.51%であって、Mn量が2.00%以下とする本発明規定値を越える。さらに比較例複合材No.65は犠牲陽極材のZn量が2.07%であって、Zn量が3.00%以上とする本発明規定値未満である。   Further, the composite material No. 63 of the comparative example has a Mn content of the sacrificial anode material of 0.26%, which is less than the specified value of the present invention where the Mn content is 0.40% or more. Further, the composite material No. 64 of the comparative example has a Mn content of the sacrificial anode material of 2.51% and exceeds the specified value of the present invention in which the Mn content is 2.00% or less. Furthermore, the composite material No. 65 of the comparative example has a Zn content of the sacrificial anode material of 2.07%, which is less than the specified value of the present invention in which the Zn content is 3.00% or more.

また比較例複合材No.66は犠牲陽極材のZn量が9.97%であって、Zn量が8.00%以下とする本発明規定値を越える。比較例複合材No.67は犠牲陽極材のTi量が0.03%であって、Ti量が0.05%以上とする本発明規定値未満である。比較例複合材No.68は犠牲陽極材のTi量が0.25%であって、Ti量が0.20%以下とする本発明規定値を越える。   Further, the composite material No. 66 of the comparative example has a Zn content of the sacrificial anode material of 9.97%, which exceeds the specified value of the present invention where the Zn content is 8.00% or less. In the comparative example composite No. 67, the Ti amount of the sacrificial anode material is 0.03%, and the Ti amount is less than the specified value of the present invention, which is 0.05% or more. In the comparative example composite No. 68, the amount of Ti in the sacrificial anode material is 0.25%, which exceeds the specified value of the present invention in which the amount of Ti is 0.20% or less.

さらに比較例複合材No.69は犠牲陽極材のZr量が0.03%であって、Zr量が0.05%以上とする本発明規定値未満である。また比較例複合材No.70は犠牲陽極材のZr量が0.25%であって、Zr量が0.20%以下とする本発明規定値を越える。   Further, in the comparative composite material No. 69, the Zr content of the sacrificial anode material is 0.03%, and the Zr content is 0.05% or less, which is less than the specified value of the present invention. Further, the composite material No. 70 of the comparative example has a Zr content of the sacrificial anode material of 0.25%, which exceeds the specified value of the present invention in which the Zr content is 0.20% or less.

No.71試験片は0.27%のVを含有し、No.72試験片にあっては0.25%のSnを含有し、No.73試験片にあっては0.25%のInを含有することから、Zn、Si、Fe、Mn、Ti、Zrを含有し残部Al及び不可避不純物よりなるとする本発明請求項1の犠牲陽極材の条件を充足せず、また、V0.01〜0.2wt%、Sn0.05〜0.2wt%、In0.05〜0.2wt%のうち1種または2種以上を含有するとする本発明請求項2におけるV、Sn、Inの含有量の上限値の条件を越えており、本発明請求項2の条件も充足しない。     The No. 71 specimen contains 0.27% V, the No. 72 specimen contains 0.25% Sn, and the No. 73 specimen contains 0.25% In. Therefore, the condition of the sacrificial anode material according to claim 1 of the present invention, which contains Zn, Si, Fe, Mn, Ti, Zr and the balance Al and inevitable impurities, is not satisfied, and V0.01 ~ The upper limit of the content of V, Sn, and In in the present invention, which contains one or more of 0.2 wt%, Sn 0.05 to 0.2 wt%, and In 0.05 to 0.2 wt% The value condition is exceeded, and the condition of claim 2 of the present invention is not satisfied.

従来例複合材であるNo.75試験片は芯材(S29)及び犠牲陽極材(G29)から成る。その結果、芯材はSi量含有量が0.18%であって、芯材のSi量を0.40%以上とする本発明規定値未満とされている。また、芯材のCu量は0.13%であって、芯材のCu量を0.50%以上とする本発明規定値未満とされている。さらに芯材にはTiが含有されず、0.05〜0.20%のTiを含有すると規定する本発明(請求項3)と異なる。さらにCr及びZr及びVのいずれも含有せず、0.05〜0.20%のCr及びZr及びVのうち1種または2種以上を含有すると規定する本発明(請求項4)と異なる。   The No. 75 test piece, which is a conventional composite material, comprises a core material (S29) and a sacrificial anode material (G29). As a result, the core material has an Si content of 0.18%, and the Si content of the core material is set to 0.40% or more, which is less than the specified value of the present invention. In addition, the Cu content of the core material is 0.13%, and the Cu content of the core material is 0.50% or more, which is less than the specified value of the present invention. Furthermore, the core material does not contain Ti, and differs from the present invention (Claim 3) that defines that 0.05 to 0.20% Ti is contained. Furthermore, it does not contain any of Cr, Zr and V, and differs from the present invention (Claim 4) which prescribes that it contains one or more of 0.05 to 0.20% of Cr, Zr and V.

さらに従来例複合材であるNo.75試験片の犠牲陽極材はSi量含有量が0.21%であって、犠牲陽極材のSi量を0.40%以上とする本発明の規定値未満とされている。また犠牲陽極材にZn、Ti、Zrを本発明の規定値の範囲で含有せず本発明の犠牲陽極材(請求項1、請求項2)とは異なる。   Furthermore, the sacrificial anode material of the No. 75 test piece, which is a conventional composite material, has a Si content of 0.21%, and the Si content of the sacrificial anode material is 0.40% or more, which is less than the specified value of the present invention. It is said that. Further, the sacrificial anode material does not contain Zn, Ti, or Zr within the range of the specified values of the present invention, which is different from the sacrificial anode material of the present invention (claims 1 and 2).

(1)引っ張り試験
表4(本発明例)及び表5(比較例)の構成のブレージングシートをJIS5号の試験片に加工し、窒素雰囲気化でろう付け相当の加熱(600℃×3分)を行った後、室温で7日間放置した後引張試験を行い強度を測定した。その結果を表4又は表5に示す。
(1) Tensile test A brazing sheet having the structure shown in Table 4 (Example of the present invention) and Table 5 (Comparative example) is processed into a JIS No. 5 test piece, and is heated by brazing in a nitrogen atmosphere (600 ° C. × 3 minutes). Then, after standing for 7 days at room temperature, a tensile test was performed to measure the strength. The results are shown in Table 4 or Table 5.

本発明例のNo.1〜No.45のうち、本発明のアルミニウム合金複合材(請求項4)の条件を充足するNo.21〜No.27及びNo.35〜No.41試験片については、135〜170MPaの良好な強度を示した。またNo.1試験片〜No.45試験片の中で本発明請求項3の条件は充足するが本発明請求項4のアルミニウム合金複合材の条件は充足しないNo.1〜No.20試験片、No.28〜No.34試験片及びNo.42〜No.45試験片にあっては127〜164MPaの良好な強度を示した。   Of No. 1 to No. 45 of the present invention example, No. 21 to No. 27 and No. 35 to No. 41 test pieces satisfying the conditions of the aluminum alloy composite material of the present invention (Claim 4) A good strength of 135 to 170 MPa was exhibited. Among the No. 1 test piece to No. 45 test piece, the conditions of claim 3 of the present invention are satisfied, but the conditions of the aluminum alloy composite of claim 4 of the present invention are not satisfied. The No. 28 to No. 34 test pieces and the No. 42 to No. 45 test pieces showed good strength of 127 to 164 MPa.

これに対し、芯材のSi量が本発明の基準値未満である比較例No.46、芯材のFe量が本発明の基準値未満であるNo.48、芯材のCu量が本発明の基準値未満であるNo.50、芯材のMnが本発明未満の比較例No.52、従来例No.75はろう付け加熱後の引張り強度が114〜123MPaであり、本発明例と比較して明らかに劣っていた。尚、芯材のSi量が本発明の範囲を越える比較例No.47は、芯材に過剰なSiを含有する結果、ろう付け加熱の際に材料が溶けて試験片の作製ができなかった。芯材のFe量が本発明の基準値を越える比較例No.49、芯材のMn量が本発明の基準値を越える比較例No.53、芯材のTi量が本発明の基準値を越えるNo.55、芯材のCr量が本発明の基準値を越えるNo.56、芯材のZr量が本発明の基準値を越えるNo.57は、各々Fe、Mn、Ti、Cr、Zrを過剰に含有する結果、圧延中に割れて試験片の作製を行うことができなかった。   In contrast, Comparative Example No. 46 in which the Si amount of the core material is less than the reference value of the present invention, No. 48 in which the Fe amount of the core material is less than the reference value of the present invention, and the Cu amount of the core material are in accordance with the present invention. No. 50, which is less than the reference value of No. 5, Comparative Example No. 52 where the Mn of the core material is less than that of the present invention, and Conventional Example No. 75, the tensile strength after brazing heating is 114 to 123 MPa, which is compared with the inventive example. It was clearly inferior. In Comparative Example No. 47, in which the Si content of the core material exceeded the range of the present invention, as a result of containing excessive Si in the core material, the material melted during brazing heating, and a test piece could not be produced. . Comparative Example No. 49 in which the Fe amount of the core material exceeds the reference value of the present invention, Comparative Example No. 53 in which the Mn amount of the core material exceeds the reference value of the present invention, and the Ti amount of the core material exceed the reference value of the present invention. No. 55 exceeding No. 56, the amount of Cr of the core material exceeding the reference value of the present invention, No. 57 exceeding the Zr amount of the core material exceeding the reference value of the present invention, respectively Fe, Mn, Ti, Cr, Zr As a result of containing excessively, the test piece was not able to be cracked during rolling.

比較例No.60は犠牲材のSiが本発明の基準値を越えており、その結果、ろう付け加熱の際に材料が溶けて試験片の作製を行うことができなかった。比較例No.62は犠牲材のFe量が本発明の基準値を越え、No.64は犠牲材のMn量が本発明の基準値を越え、No.68は犠牲材のTi量が本発明の基準値を越え、No.70は犠牲材のZr量が本発明の基準値を越え、No.71は犠牲材のV量が本発明の基準値を越え、No.72は犠牲材のSn量が本発明の基準値を越え、No.73は犠牲材のInが本発明範囲を越えており、そのためこれらの比較例では圧延中に割れて試験片の作製を行うことができなかった。   In Comparative Example No. 60, the sacrificial material Si exceeded the reference value of the present invention. As a result, the material melted during brazing heating, and the test piece could not be prepared. In Comparative Example No. 62, the Fe amount of the sacrificial material exceeds the reference value of the present invention, No. 64 indicates the Mn amount of the sacrificial material exceeds the reference value of the present invention, and No. 68 indicates the Ti amount of the sacrificial material of the present invention. No. 70 indicates that the Zr amount of the sacrificial material exceeds the reference value of the present invention, No. 71 indicates that the V amount of the sacrificial material exceeds the reference value of the present invention, and No. 72 indicates Sn of the sacrificial material. The amount exceeded the reference value of the present invention, and No. 73 was a sacrificial material In exceeding the range of the present invention, so in these comparative examples, it was not possible to produce a test piece by cracking during rolling.

(2)熱サイクル中の自然電位測定
表4及び表5の構成のブレージングシートを幅100mm、長さ200mmの試験片に加工し、窒素雰囲気下でろう付け加熱(600℃で3分)を行った。その後、幅30mm、長さ100mmの試験片に切り出し、自然電位の試験片を作製した。犠牲材の測定には、リード線で接続をとった後に、ろう材面と端面を信越化学製シリコンシーラントでマスキングして試験に供した。芯材の測定には、犠牲材層を研磨で取り除き、芯材を露出した後に、リード線で接続をとった後に、ろう材面と端面を信越化学製シリコンシーラントでマスキングして試験に供した。Cl:195ppm、SO −:60ppm、Cu2+:1ppm、Fe3+:30ppm(pH=11に水酸化ナトリウムで調整)の溶液をビーカーに入れその中に試験片を浸漬した。溶液を外部の水による間接加熱により88℃で8時間加熱した後に16h時間放冷する熱サイクル試験を施した。Ag/AgCl電極を参照極とし、北斗電工製HG−101にて自然電位を測定した。3サイクル後加熱中の88℃の電位と、同じく3サイクル後の放冷中の40℃の電位を測定した。芯材の自然電位の値より犠牲材の自然電位の値を減じて、88℃と40℃の芯材と犠牲材表面の電位差を求めた。
(2) Measurement of natural potential during thermal cycle The brazing sheet having the structure shown in Tables 4 and 5 is processed into a test piece having a width of 100 mm and a length of 200 mm, and brazed and heated in a nitrogen atmosphere (3 minutes at 600 ° C.). It was. Then, it cut out into the test piece of width 30mm and length 100mm, and produced the test piece of natural potential. For the measurement of the sacrificial material, after connecting with lead wires, the brazing material surface and the end surface were masked with a silicon sealant made by Shin-Etsu Chemical and used for the test. For the measurement of the core material, the sacrificial material layer was removed by polishing, the core material was exposed, and after connecting with the lead wire, the brazing material surface and the end surface were masked with a silicon sealant made by Shin-Etsu Chemical and used for the test. . A solution of Cl : 195 ppm, SO 4 2 −: 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm (adjusted to pH = 11 with sodium hydroxide) was placed in a beaker, and a test piece was immersed therein. The solution was heated at 88 ° C. by indirect heating with external water for 8 hours and then allowed to cool for 16 hours. Using the Ag / AgCl electrode as a reference electrode, the natural potential was measured with HG-101 manufactured by Hokuto Denko. The potential of 88 ° C. during heating after 3 cycles and the potential of 40 ° C. during cooling after 3 cycles were measured. By subtracting the value of the natural potential of the sacrificial material from the value of the natural potential of the core material, the potential difference between the core material at 88 ° C. and 40 ° C. and the surface of the sacrificial material was determined.

本発明例のNo.1〜No.45においては、犠牲材と芯材の電位差が3サイクル後加熱中の88℃の電位で158〜590mVであり、No.1〜No.45試験片のいずれもが150mV以上であると共に、同じく3サイクル後放冷中の40℃の電位で412〜729mVであって、No.1〜No.45試験片のいずれもが400mV以上であった。   In No. 1 to No. 45 of the example of the present invention, the potential difference between the sacrificial material and the core material is 158 to 590 mV at 88 ° C. during heating after 3 cycles, and any of the No. 1 to No. 45 test pieces. In addition, the voltage was 150 mV or more, and was 412 to 729 mV at a potential of 40 ° C. during cooling after 3 cycles, and all of the No. 1 to No. 45 test pieces were 400 mV or more.

これに対し、比較例No.59では犠牲材のSi量が本発明の基準値未満であり、No.61では犠牲材のFe量が本発明の基準値未満であり、No.63では犠牲材のMn量が本発明の基準値未満であり、No.65では犠牲材のZn量が本発明の基準値未満であり、No.67では犠牲材のTi量が本発明の基準値未満であり、No.69では犠牲材のZr量が本発明の基準値未満であり、これらについては、そのように特定の成分が基準値未満であることに起因して、3サイクル後加熱中の88℃における電位差が150mV以下になった。また成分範囲は本発明例範囲であるが、製造工程が本発明を逸脱するNo.74、および従来例No.75においても3サイクル後88℃の電位差が150mV以下になった。   In contrast, in Comparative Example No. 59, the amount of Si in the sacrificial material is less than the reference value of the present invention, in No. 61, the amount of Fe in the sacrificial material is less than the reference value of the present invention, and in No. 63, the sacrificial material. In the case of No. 65, the Zn content of the sacrificial material is less than the reference value of the present invention, and in No. 67, the Ti content of the sacrificial material is less than the standard value of the present invention. , No. 69, the Zr content of the sacrificial material is less than the reference value of the present invention, and for these, 88 ° C. during heating after 3 cycles due to the specific component being less than the reference value. The potential difference at 150 was 150 mV or less. In addition, although the component range is the range of the present invention example, the potential difference at 88 ° C. after 150 cycles of No. 74 and the conventional example No. 75 where the manufacturing process deviates from the present invention became 150 mV or less.

(3)腐食試験(i)(アルカリ性内部試験)
表4及び表5に示す構成のブレージングシートを幅30mm、長さ120mmの板に切り出し、窒素雰囲気下でろう付け相当の加熱(600℃で3分)を行った後、端部を絶縁テープでマスキングした後に、Cl:195ppm、SO −:60ppm、Cu2+:1ppm、Fe3+:30ppm(pH=11に水酸化ナトリウムで調整)溶液に、腐食試験片の試験面に対して、比液量6mL/cmで試験片を浸漬し、試験液88℃で8時間過熱した後、16時間放置するサイクル試験を3ヶ月間実施し、試験後の最大孔食深さを測定した。
(3) Corrosion test (i) (Alkaline internal test)
The brazing sheets having the configurations shown in Table 4 and Table 5 were cut out into a plate having a width of 30 mm and a length of 120 mm, and after brazing in a nitrogen atmosphere (3 minutes at 600 ° C.), the end was covered with an insulating tape. After masking, the ratio of Cl : 195 ppm, SO 4 2 −: 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm (adjusted with sodium hydroxide at pH = 11) to the test surface of the corrosion test piece A test piece was dipped at a liquid volume of 6 mL / cm 2 , heated at a test liquid of 88 ° C. for 8 hours, and then subjected to a cycle test for 16 hours. The maximum pitting corrosion depth after the test was measured.

本発明例のNo.1〜No.45では最大孔食深さが50μmであり良好な耐食性を示した。しかし、比較例試験片No.58は芯材のV量が0.30%であって、本発明範囲を越えることに起因して孔食深さが170μmに達し、耐食性が劣った。比較例No.59では犠牲材のSi量が本発明の基準値未満であり、No.61では犠牲材のFe量が本発明の基準値未満であり、No.63では犠牲材のMn量が本発明の基準値未満であり、No.65では犠牲材のZn量が本発明の基準値未満であり、No.67では犠牲材のTi量が本発明の基準値未満であり、No.69では犠牲材のZr量が本発明の基準値未満であり、これらについては、そのように特定の成分が基準値未満であることに起因して、3サイクル後加熱中の88℃における電位差が150mV未満になると共に最大孔食深さが140μm以上に達し、耐食性が劣った。特にNo.65については貫通孔を生じた。
また成分範囲は本発明例範囲であるが、製造工程が本発明を逸脱するNo.74、および従来例No.75においても3サイクル後88℃の電位差が150mV以下となり耐食性が劣り、貫通孔を生じた。
In No. 1 to No. 45 of the examples of the present invention, the maximum pitting corrosion depth was 50 μm, indicating good corrosion resistance. However, Comparative Example Specimen No. 58 had a core material V content of 0.30%, and the pitting corrosion depth reached 170 μm due to exceeding the range of the present invention, resulting in poor corrosion resistance. In Comparative Example No. 59, the amount of Si in the sacrificial material is less than the reference value of the present invention, in No. 61, the amount of Fe in the sacrificial material is less than the reference value of the present invention, and in No. 63, the amount of Mn in the sacrificial material. In the case of No. 65, the Zn amount of the sacrificial material is less than the reference value of the present invention, and in No. 67, the Ti amount of the sacrificial material is less than the reference value of the present invention. Then, the Zr content of the sacrificial material is less than the reference value of the present invention, and for these, the potential difference at 88 ° C. during heating after 3 cycles is 150 mV due to the specific component being less than the reference value. The maximum pitting corrosion depth reached 140 μm or more and the corrosion resistance was inferior. Especially for No. 65, a through hole was formed.
In addition, although the component range is the range of the present invention example, also in No. 74 where the manufacturing process deviates from the present invention and the conventional example No. 75, the potential difference at 88 ° C. becomes 150 mV or less after 3 cycles and the corrosion resistance is inferior. occured.

(4)腐食試験(ii)(酸性内部試験)
表4及び表5に示す組成のブレージングシートを幅30mm、長さ120mmの板に切り出し、窒素雰囲気下でろう付け相当の加熱(600℃で3分)を行った後、端部を絶縁テープ等でマスキングした後に、Cl:195ppm、SO −:60ppm、Cu2+:1ppm、Fe3+:30ppm(未調整でpH=3)溶液に、腐食試験片の試験面に対して比液量6mL/cmで試験片を浸漬し、試験液を88℃で8時間加熱した後、16時間放置するサイクル試験を3ヶ月間実施し、試験後の最大孔食深さを測定した。結果を表4及び表5に示す。
(4) Corrosion test (ii) (acidic internal test)
A brazing sheet having the composition shown in Table 4 and Table 5 was cut into a plate having a width of 30 mm and a length of 120 mm, and after brazing in a nitrogen atmosphere (3 minutes at 600 ° C.), the end was insulated tape or the like. After the masking, the Cl : 195 ppm, SO 4 2 −: 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm (unadjusted, pH = 3) solution, 6 mL specific liquid volume with respect to the test surface of the corrosion test piece The test piece was immersed at / cm 2 , the test solution was heated at 88 ° C. for 8 hours, and then a cycle test in which it was allowed to stand for 16 hours was conducted for 3 months, and the maximum pitting depth after the test was measured. The results are shown in Tables 4 and 5.

本発明例のNo.1〜No.45では最大孔食深さが50μmであり良好な耐食性を示した。しかし、犠牲材のZn量が本発明の基準値未満である比較例試験片No.65では孔食深さが70μmに達し、比較例No.66では犠牲材のZn量が本発明を越えるため貫通孔を生じ、また従来例No.75でも貫通孔を生じた。   In No. 1 to No. 45 of the examples of the present invention, the maximum pitting corrosion depth was 50 μm, indicating good corrosion resistance. However, the pitting corrosion depth reaches 70 μm in the comparative specimen No. 65 in which the Zn content of the sacrificial material is less than the reference value of the present invention, and the Zn content of the sacrificial material exceeds the present invention in the comparative example No. 66. A through hole was formed, and the conventional example No. 75 also formed a through hole.

(4)腐食試験(iii)
表4及び表5に示す成分の各試験片を、幅16mm、長さ80mmの板に切り出し、2枚の板の間にろう材面にフィンが接するように組み付け、窒素雰囲気下でろう付け相当の加熱(600℃で3分)を実施して1段のミニコアを作製した。フィン材としてはJIS3003合金にZnを1.5%添加した板厚0.1mmのもの使用した。作成したミニコアの概念図を図4に示す。このミニコアのフィンが接していない面を信越化学製のシリコンシーラントでマスキングして試験に供した。試験はJIS Z2371に準じる塩水噴霧試験を2000hr実施した。試験後、マスキング面とフィンを削除し、フィンとフィンの間のチューブ表面の孔食深さを測定した。結果を表4及び表5に示す。
(4) Corrosion test (iii)
Each test piece of the components shown in Table 4 and Table 5 was cut into a plate having a width of 16 mm and a length of 80 mm, and assembled so that the fins were in contact with the brazing material surface between the two plates, and heating equivalent to brazing in a nitrogen atmosphere. (3 minutes at 600 ° C.) was carried out to produce a one-stage mini-core. As the fin material, a JIS3003 alloy having a thickness of 0.1 mm obtained by adding 1.5% of Zn was used. A conceptual diagram of the created mini-core is shown in FIG. The surface of the mini-core that is not in contact with the fin was masked with a silicon sealant made by Shin-Etsu Chemical and used for the test. In the test, a salt spray test according to JIS Z2371 was conducted for 2000 hours. After the test, the masking surface and fins were removed, and the pitting corrosion depth on the tube surface between the fins was measured. The results are shown in Tables 4 and 5.

本発明例のNo.1〜No.45では最大孔食深さが50μmであり良好な耐食性を示した。
これに対し、芯材のCu量が0.15%(S20)であって0.50%以上とする本発明の規定値未満である比較例複合材No.50はチューブに貫通孔を生じた。またNo.51はCu量が本発明の上限値である1.00%を越える1.20%であるため、やはりチューブに貫通孔を生じた。No.54では芯材のTi量が0.03%であって芯材のTi量が0.05%以上とする本発明規定値未満であるため耐食性が劣り、孔食深さが100μmに達した。
In No. 1 to No. 45 of the examples of the present invention, the maximum pitting corrosion depth was 50 μm, indicating good corrosion resistance.
In contrast, Comparative Example Composite No. 50, in which the Cu content of the core material is 0.15% (S20) and less than the specified value of the present invention, which is 0.50% or more, has a through hole in the tube . Further, No. 51 had a Cu content of 1.20% exceeding the upper limit of 1.00% of the present invention, so that a through hole was also formed in the tube. In No. 54, since the Ti content of the core material is 0.03% and the Ti content of the core material is less than the specified value of the present invention, the corrosion resistance is inferior and the pitting depth reaches 100 μm. did.

図1(a)は熱サイクル試験中の試験液温度の経時変化を、図1(b)、(c)は熱サイクル試験中の各供試材の自然電位の試験液温度の経時変化を示す。FIG. 1A shows the change over time of the test solution temperature during the thermal cycle test, and FIGS. 1B and 1C show the change over time in the test solution temperature of the natural potential of each test material during the thermal cycle test. . 図2(a)はAlの100℃における電極電位−pH平衡図を、図2(b)はAlの25℃における電極電位−pH平衡図を示す。FIG. 2A shows an electrode potential-pH equilibrium diagram of Al at 100 ° C., and FIG. 2B shows an electrode potential-pH equilibrium diagram of Al at 25 ° C. AlのpHと温度に関する腐食形態マップを示す。The corrosion form map regarding pH and temperature of Al is shown. 本発明の実施例において作成したミニコアの概念図。The conceptual diagram of the mini-core created in the Example of this invention. 図5(a)は自動車用熱交換器(ラジエーター)の正面図、図5(b)は図5(a)のA−A断面拡大図である。Fig.5 (a) is a front view of the heat exchanger (radiator) for motor vehicles, FIG.5 (b) is AA cross-sectional enlarged view of Fig.5 (a).

符号の説明Explanation of symbols

1・・・チューブ管、2・・・フィン、3・・・ヘッダープレート、4・・・コア、5・・・樹脂タンク、6・・・バッキング。   DESCRIPTION OF SYMBOLS 1 ... Tube pipe, 2 ... Fin, 3 ... Header plate, 4 ... Core, 5 ... Resin tank, 6 ... Backing.

Claims (4)

アルミニウム合金よりなる芯材の片面にろう材をクラッドし、前記芯材の前記ろう材をクラッドしていない他面にZn3wt%〜8wt%、Si0.4wt%〜1.0wt%、Fe0.25wt%〜1.0wt%、Mn0.4〜2.0wt%、Ti0.05〜0.20wt%、Zr0.05〜0.2wt%を含有し残部Al及び不可避不純物よりなる犠牲陽極材をクラッドしたアルミニウム合金クラッド材であって、以下の(i)及び(ii)に示す前記犠牲陽極材表面と前記芯材表面の電位差構成を同時に備えて成ることを特徴とするアルミニウム合金クラッド材。
(i)Cl195ppm、SO 2−60ppm、Cu2+1ppm、Fe3+30ppmを含有し、建浴時にpH=11に調整した腐食液中において、88℃で8時間の加熱を行った後に16時間の放冷を行う熱サイクルを3サイクル行い、3サイクル目の88℃の時点で犠牲陽極材表面と芯材表面との電位差が150mV以上となる電位差構成
(ii)Cl195ppm、SO 2−60ppm、Cu2+1ppm、Fe3+30ppmを含有し、建浴時にpH=11に調整した腐食液中において、88℃で8時間の加熱を行った後に16時間の放冷を行う熱サイクルを3サイクル行い、3サイクル目の40℃の時点で犠牲陽極材表面と芯材表面との電位差が400mV以上となる電位差構成。
A brazing material is clad on one side of a core material made of an aluminum alloy, and the other side of the core material not clad with the brazing material is Zn 3 wt% to 8 wt%, Si 0.4 wt% to 1.0 wt%, Fe 0.25 wt%. Aluminum alloy clad with a sacrificial anode material containing -1.0 wt%, Mn 0.4-2.0 wt%, Ti 0.05-0.20 wt%, Zr 0.05-0.2 wt% and the balance Al and inevitable impurities An aluminum alloy clad material which is a clad material and has the potential difference structure between the sacrificial anode material surface and the core material surface shown in the following (i) and (ii).
(I) Cl - 195ppm, SO 4 2- 60ppm, Cu 2+ 1ppm, containing Fe 3+ 30 ppm, in the corrosion solution was adjusted to pH = 11 at initial make-up, after the heating for 8 hours at 88 ° C. 16 Three thermal cycles for cooling for a period of time were carried out, and a potential difference configuration in which the potential difference between the sacrificial anode material surface and the core material surface was 150 mV or more at the third cycle of 88 ° C. (ii) Cl - 195 ppm, SO 4 2 - 60 ppm, Cu 2+ 1 ppm, containing Fe 3+ 30 ppm, in the corrosion solution was adjusted to pH = 11 during initial make-up, 3 thermal cycles to perform cooling of 16 hours after the heating for 8 hours at 88 ° C. A potential difference configuration in which the potential difference between the sacrificial anode material surface and the core material surface is 400 mV or more at the time of 40 ° C. in the third cycle.
前記犠牲陽極材に、さらにV0.01〜0.2wt%、Sn0.05〜0.2wt%、In0.05〜0.2wt%のうち1種または2種以上を含有する請求項1に記載のアルミニウム合金クラッド材。 2. The sacrificial anode material according to claim 1, further comprising one or more of V0.01 to 0.2 wt%, Sn 0.05 to 0.2 wt%, and In 0.05 to 0.2 wt%. Aluminum alloy clad material. 前記芯材が、Si0.4wt%〜1.0wt%、Fe0.15〜1.0wt%、Cu0.5〜1.0wt%、Mn1.0〜2.0wt%、Ti0.05〜0.2wt%を含有し残部Al及び不可避不純物よりなる請求項1又は請求項2に記載のアルミニウム合金クラッド材。 The core material is Si 0.4 wt% to 1.0 wt%, Fe 0.15 to 1.0 wt%, Cu 0.5 to 1.0 wt%, Mn 1.0 to 2.0 wt%, Ti 0.05 to 0.2 wt% The aluminum alloy clad material according to claim 1 or 2, comprising a balance Al and inevitable impurities. 前記芯材が、さらにZr0.05〜0.2wt%、Cr0.05〜0.2wt%、V0.05〜0.2wt%のうち1種または2種以上を含有する請求項3に記載のアルミニウム合金クラッド材。 The aluminum according to claim 3, wherein the core material further contains one or more of Zr 0.05 to 0.2 wt%, Cr 0.05 to 0.2 wt%, and V0.05 to 0.2 wt%. Alloy clad material.
JP2006311964A 2006-11-17 2006-11-17 Aluminum alloy clad material Expired - Fee Related JP5068981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311964A JP5068981B2 (en) 2006-11-17 2006-11-17 Aluminum alloy clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311964A JP5068981B2 (en) 2006-11-17 2006-11-17 Aluminum alloy clad material

Publications (2)

Publication Number Publication Date
JP2008127607A true JP2008127607A (en) 2008-06-05
JP5068981B2 JP5068981B2 (en) 2012-11-07

Family

ID=39553753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311964A Expired - Fee Related JP5068981B2 (en) 2006-11-17 2006-11-17 Aluminum alloy clad material

Country Status (1)

Country Link
JP (1) JP5068981B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026681A (en) * 2009-07-28 2011-02-10 Kobe Steel Ltd Aluminum alloy clad material
JP2013209752A (en) * 2013-05-20 2013-10-10 Kobe Steel Ltd Aluminum alloy clad material
US10730149B2 (en) 2015-11-13 2020-08-04 Gränges Ab Brazing sheet and production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097336B (en) 2017-10-25 2019-02-26 重庆博蓝鹰生物技术有限公司 Both sexes dissociating ions exchange media, application method and separation capacity scaling method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217983A (en) * 2003-01-14 2004-08-05 Sumitomo Light Metal Ind Ltd Aluminum alloy-cladded material for heat exchanger
JP2005232506A (en) * 2004-02-18 2005-09-02 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger
JP2007092101A (en) * 2005-09-27 2007-04-12 Denso Corp Aluminum alloy clad material excellent in surface joinability on sacrificial anode material surface, and heat-exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217983A (en) * 2003-01-14 2004-08-05 Sumitomo Light Metal Ind Ltd Aluminum alloy-cladded material for heat exchanger
JP2005232506A (en) * 2004-02-18 2005-09-02 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger
JP2007092101A (en) * 2005-09-27 2007-04-12 Denso Corp Aluminum alloy clad material excellent in surface joinability on sacrificial anode material surface, and heat-exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026681A (en) * 2009-07-28 2011-02-10 Kobe Steel Ltd Aluminum alloy clad material
JP2013209752A (en) * 2013-05-20 2013-10-10 Kobe Steel Ltd Aluminum alloy clad material
US10730149B2 (en) 2015-11-13 2020-08-04 Gränges Ab Brazing sheet and production method

Also Published As

Publication number Publication date
JP5068981B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
KR101686497B1 (en) Aluminium brazing sheet with a high strength and excellent corrosion performance
JP5336967B2 (en) Aluminum alloy clad material
CN100471971C (en) Aluminum alloy heat sinks of heat exchanger and heat exchanger
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
EP2732898A1 (en) Aluminum-alloy brazing sheet and method of manufacturing same
WO2004057261A1 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
JP5192718B2 (en) Fin material and heat exchanger with excellent strength, sacrificial anode effect, and corrosion resistance
JP5068981B2 (en) Aluminum alloy clad material
JP2500711B2 (en) Blazing sheet with excellent corrosion resistance and manufacturing method
JP2005298913A (en) Brazing sheet and heat exchanger
JP5019797B2 (en) Sacrificial anode material and aluminum alloy composite
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JPH1161306A (en) Aluminum alloy clad material for heat exchanger
JP3243188B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JP2009249699A (en) Method for producing sacrificial material for aluminum alloy cladding material for heat exchanger, and method for producing aluminum alloy cladding material for heat exchanger
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JP3243189B2 (en) Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
JPH0333770B2 (en)
JP3751429B2 (en) Brazing material for joining aluminum alloy and clad material using the same
JP2001162394A (en) Brazing sheet made of high corrosion resistance aluminum alloy, producing method therefor and brazing method using same
JP7520652B2 (en) Aluminum alloy bare material and brazing sheet with excellent thermal conductivity
JP3538507B2 (en) Aluminum alloy clad material for heat exchanger with excellent alkali corrosion resistance
JP5552181B2 (en) Aluminum alloy clad material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5068981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees