[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008121923A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2008121923A
JP2008121923A JP2006303735A JP2006303735A JP2008121923A JP 2008121923 A JP2008121923 A JP 2008121923A JP 2006303735 A JP2006303735 A JP 2006303735A JP 2006303735 A JP2006303735 A JP 2006303735A JP 2008121923 A JP2008121923 A JP 2008121923A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
water
water supply
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006303735A
Other languages
Japanese (ja)
Inventor
Hiroaki Kondo
浩明 近藤
Susumu Kawamura
進 川村
Masahiro Takatsu
昌宏 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006303735A priority Critical patent/JP2008121923A/en
Publication of JP2008121923A publication Critical patent/JP2008121923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain reduction in thermal loss (=improvement in defrosting efficiency) in defrosting operation while avoiding increase in complication or cost of a system. <P>SOLUTION: In the heat pump water heater, the temperature of water within a hot water passage 22 of a hot water supply heat exchanger 2 is raised prior to starting of defrosting operation. According to this, the thermal loss during distribution of refrigerant discharged from a compressor 1 in a refrigerant passage 21 of the heat exchanger 2. Consequently, the refrigerant discharged from the compressor 1 reaches an air heat exchanger 4 without large drop of temperature, and the time of defrosting the air heat exchanger 4 can be shortened. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプにて沸き上げた水を貯湯タンクに蓄えるようにしたヒートポンプ式給湯機に関するものである。   The present invention relates to a heat pump type hot water heater that stores water boiled by a heat pump in a hot water storage tank.

従来のヒートポンプ式給湯機は、空気熱交換器の出口側冷媒温度が所定温度に低下した場合、除霜運転を実施して空気熱交換器の霜取りを実施するようになっている。除霜運転は、圧縮機から吐出された高温の冷媒を利用して空気熱交換器の霜を除去する動作であるが、圧縮機と空気熱交換器の間に給湯用熱交換器が存在するため、給湯用熱交換器内での熱損失による除霜効率の低下が課題であった。   In the conventional heat pump type hot water heater, when the outlet side refrigerant temperature of the air heat exchanger is lowered to a predetermined temperature, the defrosting operation is performed to defrost the air heat exchanger. The defrosting operation is an operation of removing frost from the air heat exchanger using a high-temperature refrigerant discharged from the compressor, but a hot water supply heat exchanger exists between the compressor and the air heat exchanger. For this reason, a reduction in defrosting efficiency due to heat loss in the heat exchanger for hot water supply has been a problem.

そこで、圧縮機から吐出された冷媒を、除霜運転時には給湯用熱交換器をバイパスして空気熱交換器に流すバイパス方式(例えば、特許文献1参照)や、除霜運転時には水循環ポンプを停止させかつ膨張弁を通常運転に比べて開放側に設定することにより、圧縮機から空気熱交換器に至る間の熱損失を極力低減させる手法(例えば、特許文献2参照)等が考案されてきた。
特開2001−108256号公報 特開2001−82802号公報
Therefore, the refrigerant discharged from the compressor bypasses the hot water heat exchanger during the defrosting operation and flows to the air heat exchanger (see, for example, Patent Document 1), or stops the water circulation pump during the defrosting operation. In addition, by setting the expansion valve on the open side compared to the normal operation, a method (for example, see Patent Document 2) for reducing the heat loss between the compressor and the air heat exchanger as much as possible has been devised. .
JP 2001-108256 A JP 2001-82802 A

しかしながら、前者は給湯用熱交換器をバイパスさせるための機能部品(冷媒配管やバイパス弁)の追加によるシステムの複雑化やコストアップが課題である。また、後者は給湯用熱交換器内に滞留している低温水による損失が改善されていない課題があった。   However, the former has a problem in that the system is complicated and the cost is increased by adding functional parts (refrigerant piping and bypass valve) for bypassing the hot water heat exchanger. Moreover, the latter had the subject by which the loss by the low temperature water which has accumulated in the heat exchanger for hot water supply is not improved.

本発明は上記点に鑑みて、システムの複雑化やコストアップを回避しつつ、除霜運転時の熱損失低減(=除霜効率の向上)を図ることを目的とする。   In view of the above points, an object of the present invention is to reduce heat loss during defrosting operation (= improvement of defrosting efficiency) while avoiding complication and cost increase of the system.

本発明は、ヒートポンプ式給湯機において、除霜運転を開始する前に、給湯用熱交換器(2)内の水の温度を上昇させる除霜準備運転を行うことを特徴とする。   The present invention is characterized in that, in the heat pump type hot water heater, before the defrosting operation is started, a defrost preparation operation for increasing the temperature of water in the hot water supply heat exchanger (2) is performed.

このようにすれば、除霜運転開始時には給湯用熱交換器(2)内の水温が上昇しているため、圧縮機(1)から吐出された冷媒が給湯用熱交換器(2)を流通する際の熱損失が低減される。また、給湯用熱交換器(2)をバイパスさせるための機能部品が不要であり、システムの複雑化やコストアップを回避することができる。   In this way, since the water temperature in the hot water supply heat exchanger (2) rises at the start of the defrosting operation, the refrigerant discharged from the compressor (1) flows through the hot water supply heat exchanger (2). The heat loss at the time of doing is reduced. Moreover, the functional component for bypassing the heat exchanger for hot water supply (2) is unnecessary, and the complexity and cost increase of the system can be avoided.

この場合、給湯用熱交換器(2)から流出した水を貯湯タンク(6)をバイパスして給湯用熱交換器(2)に戻すバイパス配管(130)および水循環ポンプ(8)を備え、除霜準備運転の際、給湯用熱交換器(2)にて冷媒と熱交換した水を、バイパス配管(130)を介して給湯用熱交換器(2)に戻すことができる。   In this case, a bypass pipe (130) and a water circulation pump (8) for returning the water flowing out from the hot water supply heat exchanger (2) to the hot water supply heat exchanger (2) by bypassing the hot water storage tank (6) are provided. During the frost preparation operation, the water exchanged with the refrigerant in the hot water supply heat exchanger (2) can be returned to the hot water supply heat exchanger (2) through the bypass pipe (130).

このようにすれば、貯湯タンク(6)をバイパスさせない場合よりも、給湯用熱交換器(2)内の水温を速やかに上昇させることができる。   If it does in this way, the water temperature in the hot water supply heat exchanger (2) can be raised more rapidly than the case where the hot water storage tank (6) is not bypassed.

また、貯湯タンク(6)と給湯用熱交換器(2)との間で水を循環させる水循環ポンプ(8)を備え、除霜準備運転の際、水循環ポンプ(8)を停止させた状態で、給湯用熱交換器(2)内に滞留した水と冷媒との熱交換を行わせることができる。   In addition, a water circulation pump (8) for circulating water between the hot water storage tank (6) and the hot water supply heat exchanger (2) is provided, and the water circulation pump (8) is stopped during the defrost preparation operation. Then, heat exchange between the water staying in the hot water supply heat exchanger (2) and the refrigerant can be performed.

このようにすれば、水を循環させる場合よりも、給湯用熱交換器(2)内の水温を速やかに上昇させることができる。   If it does in this way, the water temperature in the heat exchanger for hot water supply (2) can be raised more rapidly than the case where water is circulated.

また、給湯用熱交換器(2)に流入する水の温度が所定温度に達したら除霜運転を開始することができる。   The defrosting operation can be started when the temperature of the water flowing into the hot water supply heat exchanger (2) reaches a predetermined temperature.

このようにすれば、除霜運転開始時には給湯用熱交換器(2)内の水温が確実に上昇したことが確認でき、熱交換器以外の配管中の水を不必要に加熱するロスを低減できるため、圧縮機(1)から吐出された冷媒が給湯用熱交換器(2)を流通する際の熱損失が確実に低減される。   In this way, at the start of the defrosting operation, it can be confirmed that the water temperature in the hot water supply heat exchanger (2) has risen reliably, and the loss of unnecessary heating of the water in the piping other than the heat exchanger is reduced. Therefore, the heat loss when the refrigerant discharged from the compressor (1) flows through the hot water supply heat exchanger (2) is reliably reduced.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in a claim and this column shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の一実施形態について説明する。図1は本実施形態に係るヒートポンプ式給湯機の全体構成を示す図である。   An embodiment of the present invention will be described. FIG. 1 is a diagram illustrating an overall configuration of a heat pump type hot water heater according to the present embodiment.

ヒートポンプ式給湯機は、ヒートポンプH、温水回路W、および制御装置E等から構成される。   The heat pump type hot water heater includes a heat pump H, a hot water circuit W, a control device E, and the like.

ヒートポンプHは、圧縮機1、給湯用熱交換器2の冷媒流路21、膨張弁3、空気熱交換器4、およびアキュームレータ5を冷媒配管100で環状に接続して構成されるとともに、空気熱交換器4に外気を送風する室外ファン41を備えている。   The heat pump H is configured by connecting the compressor 1, the refrigerant flow path 21 of the hot water supply heat exchanger 2, the expansion valve 3, the air heat exchanger 4, and the accumulator 5 in a ring shape with the refrigerant pipe 100, and the air heat The exchanger 4 is provided with an outdoor fan 41 that blows outside air.

圧縮機1は、電動機(図示せず)によって駆動され、アキュームレータ5から吸引した気相冷媒を圧縮して吐出する。給湯用熱交換器2は、冷媒流路21を流れる圧縮機1からの吐出冷媒と、温水流路22を流れる水との間で熱交換する。これにより、給湯用熱交換器2の温水流路22内を流れる水が加熱されることになる。なお、給湯用熱交換器2は、冷媒の流れ方向と液体の流れ方向とが対向するように構成されている
膨張弁3は、給湯用熱交換器2の冷媒流路21から流出した冷媒を減圧・膨張させるもので、電動機(図示せず)によって弁体が駆動されてその弁開度が制御される。空気熱交換器4は、膨張弁3を通過した冷媒を、室外ファン41により送風される外気と熱交換させて蒸発させる。アキュームレータ5は、空気熱交換器4を通過した冷媒を、気相冷媒と液冷媒とに分離する。
The compressor 1 is driven by an electric motor (not shown), and compresses and discharges the gas-phase refrigerant sucked from the accumulator 5. The hot water supply heat exchanger 2 exchanges heat between the refrigerant discharged from the compressor 1 flowing through the refrigerant flow path 21 and the water flowing through the hot water flow path 22. Thereby, the water which flows through the hot water flow path 22 of the heat exchanger 2 for hot water supply is heated. The hot water supply heat exchanger 2 is configured such that the flow direction of the refrigerant and the flow direction of the liquid face each other. The expansion valve 3 allows the refrigerant flowing out from the refrigerant flow path 21 of the hot water supply heat exchanger 2 to flow. The valve body is driven by a motor (not shown) to control the valve opening degree. The air heat exchanger 4 evaporates the refrigerant that has passed through the expansion valve 3 by exchanging heat with the outside air blown by the outdoor fan 41. The accumulator 5 separates the refrigerant that has passed through the air heat exchanger 4 into gas-phase refrigerant and liquid refrigerant.

温水回路Wは、給湯用熱交換器2にて加熱された水(温水)を蓄える貯湯タンク6と、給湯用熱交換器2の温水流路22とを備えている。貯湯タンク6の下部に設けられた温水出口61と温水流路22が第1温水配管110にて接続され、貯湯タンク6の上部に設けられた温水入口62と温水流路22が第2温水配管120にて接続されている。   The hot water circuit W includes a hot water storage tank 6 that stores water (hot water) heated by the hot water supply heat exchanger 2 and a hot water flow path 22 of the hot water supply heat exchanger 2. A hot water outlet 61 and a hot water flow path 22 provided at the lower part of the hot water storage tank 6 are connected by a first hot water pipe 110, and a hot water inlet 62 and a hot water flow path 22 provided at the upper part of the hot water storage tank 6 are connected by a second hot water pipe. Connected at 120.

第1温水配管110と第2温水配管120がバイパス配管130にて接続されている。第1温水配管110とバイパス配管130の接続部には、流路を切り替える電動式のバイパス弁7が配置されている。第1温水配管110における温水流路22とバイパス弁7との間に、電動機(図示せず)によって駆動されて水の流れを発生させる水循環ポンプ8が配置されている。   The first hot water pipe 110 and the second hot water pipe 120 are connected by a bypass pipe 130. An electric bypass valve 7 for switching the flow path is disposed at a connection portion between the first hot water pipe 110 and the bypass pipe 130. A water circulation pump 8 that is driven by an electric motor (not shown) to generate a flow of water is disposed between the hot water flow path 22 and the bypass valve 7 in the first hot water pipe 110.

バイパス弁7の第1切替位置では、水循環ポンプ8の作動に伴って、貯湯タンク6と温水流路22との間で水が循環する。より詳細には、貯湯タンク6内の水は、温水出口61から第1温水配管110を介して温水流路22に流入し、温水流路22を通過した後に第2温水配管120を介して温水入口62から貯湯タンク6内に戻される。   At the first switching position of the bypass valve 7, water circulates between the hot water storage tank 6 and the hot water flow path 22 with the operation of the water circulation pump 8. More specifically, the water in the hot water storage tank 6 flows into the hot water passage 22 from the hot water outlet 61 via the first hot water pipe 110, passes through the hot water passage 22, and then passes through the second hot water pipe 120. The water is returned from the inlet 62 into the hot water storage tank 6.

バイパス弁7の第2切替位置では、水循環ポンプ8の作動に伴って、温水流路22から流出した水は、第2温水配管120を介してバイパス配管130に流入し、さらに第1温水配管110を介して温水流路22に戻される。換言すると、温水流路22から流出した水は、貯湯タンク6をバイパスして温水流路22に戻される。   At the second switching position of the bypass valve 7, the water that has flowed out of the hot water flow path 22 along with the operation of the water circulation pump 8 flows into the bypass pipe 130 via the second hot water pipe 120, and further the first hot water pipe 110. Is returned to the hot water flow path 22. In other words, the water that has flowed out of the hot water flow path 22 bypasses the hot water storage tank 6 and is returned to the hot water flow path 22.

制御手段としての制御装置Eは、マイクロコンピュータ、メモリ(記憶手段)、カウンタ、および周辺回路から構成されている。制御装置Eには、温水流路22の入口側の水温を検出する水温センサ91の出力信号や、空気熱交換器4の出口側の冷媒温度を検出する冷媒温センサ92の出力信号等が入力され、制御装置Eは、それらの出力信号等に基づいて、圧縮機1、膨張弁3、室外ファン41、バイパス弁7、および水循環ポンプ8等を制御する。   The control device E as the control means is composed of a microcomputer, a memory (storage means), a counter, and peripheral circuits. The control device E receives an output signal from the water temperature sensor 91 that detects the water temperature on the inlet side of the hot water flow path 22, an output signal from the refrigerant temperature sensor 92 that detects the refrigerant temperature on the outlet side of the air heat exchanger 4, and the like. Then, the control device E controls the compressor 1, the expansion valve 3, the outdoor fan 41, the bypass valve 7, the water circulation pump 8, and the like based on the output signals and the like.

次に、本実施形態の給湯機の作動について説明する。図2は本実施形態の給湯機の作動例を示すタイムチャートである。   Next, the operation of the water heater of this embodiment will be described. FIG. 2 is a time chart showing an operation example of the water heater of the present embodiment.

図2に示すように、沸き上げ運転時には、圧縮機1、室外ファン41、および水循環ポンプ8を作動させる。また、バイパス弁7は第1切替位置に制御され、貯湯タンク6と温水流路22との間で水が循環する。なお、沸き上げ運転は、周知のものであり、詳細な説明は省略する。   As shown in FIG. 2, during the heating operation, the compressor 1, the outdoor fan 41, and the water circulation pump 8 are operated. Further, the bypass valve 7 is controlled to the first switching position, and water circulates between the hot water storage tank 6 and the hot water passage 22. The boiling operation is well known and will not be described in detail.

沸き上げ運転を実行しているときに、冷媒温センサ92で検出した空気熱交換器4の出口側冷媒温度が第1所定温度(例えば−5℃)まで低下すると、沸き上げ運転から除霜準備運転に切り替えられる。   If the refrigerant temperature at the outlet side of the air heat exchanger 4 detected by the refrigerant temperature sensor 92 decreases to the first predetermined temperature (for example, −5 ° C.) during the boiling operation, the defrosting preparation is started from the boiling operation. Switch to driving.

この除霜準備運転では、圧縮機1および水循環ポンプ8を作動させ、室外ファン41を停止させる。因みに、圧縮機1の回転数を沸き上げ運転時よりも高くして冷媒流量を増加させている。   In this defrost preparation operation, the compressor 1 and the water circulation pump 8 are operated, and the outdoor fan 41 is stopped. In this connection, the refrigerant flow rate is increased by increasing the rotational speed of the compressor 1 compared to that during the boiling operation.

また、バイパス弁7は第2切替位置に制御され、給湯用熱交換器2で冷媒と熱交換して昇温された温水は、温水流路22から流出して、第2温水配管120、バイパス配管130、さらに第1温水配管110を介して温水流路22に戻される。これにより、温水流路22内の全ての水を高温にする。このように、貯湯タンク6をバイパスして水を循環させることにより、貯湯タンク6をバイパスさせない場合よりも、温水流路22内の水温を速やかに上昇させることができる。   Further, the bypass valve 7 is controlled to the second switching position, and the hot water heated by heat exchange with the refrigerant in the hot water supply heat exchanger 2 flows out of the hot water flow path 22, and the second hot water pipe 120, bypass It is returned to the hot water flow path 22 via the pipe 130 and the first hot water pipe 110. Thereby, all the water in the warm water flow path 22 is made high temperature. As described above, by bypassing the hot water storage tank 6 and circulating the water, the water temperature in the hot water passage 22 can be increased more quickly than when the hot water storage tank 6 is not bypassed.

そして、水温センサ91で検出した温水流路22の入口側の水温が第2所定温度に達すると、除霜準備運転から除霜運転に切り替えられる。   Then, when the water temperature on the inlet side of the hot water passage 22 detected by the water temperature sensor 91 reaches the second predetermined temperature, the defrost preparation operation is switched to the defrost operation.

この除霜運転では、圧縮機1の回転数を除霜準備運転時よりも高くして冷媒流量をさらに増加させる。また、水循環ポンプ8および室外ファン41は停止させる。これにより、空気熱交換器4に付着した霜が冷媒の熱により溶かされる。   In this defrosting operation, the rotational speed of the compressor 1 is made higher than that during the defrosting preparation operation, and the refrigerant flow rate is further increased. Further, the water circulation pump 8 and the outdoor fan 41 are stopped. Thereby, the frost adhering to the air heat exchanger 4 is melted by the heat of the refrigerant.

ここで、除霜運転開始時には、除霜準備運転によって温水流路22内の水温が高められているため、圧縮機1から吐出された冷媒が給湯用熱交換器2の冷媒流路21を流通する際の熱損失が低減される。したがって、圧縮機1から吐出された冷媒は大きく温度低下することなく空気熱交換器4まで到達し、空気熱交換器4の除霜の時間が短縮される。   Here, at the start of the defrosting operation, the water temperature in the hot water passage 22 is increased by the defrosting preparation operation, so that the refrigerant discharged from the compressor 1 flows through the refrigerant passage 21 of the hot water supply heat exchanger 2. The heat loss at the time of doing is reduced. Therefore, the refrigerant discharged from the compressor 1 reaches the air heat exchanger 4 without greatly reducing the temperature, and the defrosting time of the air heat exchanger 4 is shortened.

(他の実施形態)
上記実施形態では、除霜準備運転の際、水循環ポンプ8を作動させて水を循環させたが、除霜準備運転の際、水循環ポンプ8を停止させた状態で、温水流路22内に滞留した水と冷媒との熱交換を行うようにしてもよい。
(Other embodiments)
In the above embodiment, the water circulation pump 8 is operated and water is circulated during the defrost preparation operation. However, the water circulation pump 8 is stopped during the defrost preparation operation and stays in the hot water flow path 22. Heat exchange between the water and the refrigerant may be performed.

また、除霜準備運転時に沸き上げたお湯をバイパス配管130を介して再度温水流路22に導入する際、除霜準備運転開始直前に温水流路22の出口近くにあった水が、丁度バイパス配管130を含む回路を一周して再度温水流路22内に導入されたタイミングで水循環ポンプ8を停止させることにより、温水流路22内の水温を上昇させるための運転実施時間を短縮することができる。このタイミングの検知には、水温センサ91で検出した温水流路22の入口側の水温を利用する。   In addition, when the hot water boiled during the defrost preparation operation is reintroduced into the hot water passage 22 via the bypass pipe 130, the water that was near the outlet of the hot water passage 22 just before the start of the defrost preparation operation is just bypassed. The operation time for raising the water temperature in the hot water channel 22 can be shortened by stopping the water circulation pump 8 at a timing when the circuit including the pipe 130 goes around and is introduced into the hot water channel 22 again. it can. For detection of this timing, the water temperature on the inlet side of the hot water flow path 22 detected by the water temperature sensor 91 is used.

本発明の一実施形態に係るヒートポンプ式給湯機の全体構成を示す図である。It is a figure which shows the whole structure of the heat pump type hot water heater which concerns on one Embodiment of this invention. 図1の給湯機の作動例を示すタイムチャートである。It is a time chart which shows the operation example of the water heater of FIG.

符号の説明Explanation of symbols

1…圧縮機、2…給湯用熱交換器、4…空気熱交換器、6…貯湯タンク、
E…制御装置(制御手段)。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Heat exchanger for hot water supply, 4 ... Air heat exchanger, 6 ... Hot water storage tank,
E ... Control device (control means).

Claims (4)

冷媒を圧縮する圧縮機(1)と、前記圧縮機(1)から吐出された冷媒と水との熱交換を行って水を加熱する給湯用熱交換器(2)と、前記給湯用熱交換器(2)にて加熱された水を蓄える貯湯タンク(6)と、前記給湯用熱交換器(2)を通過した冷媒と空気との熱交換を行う空気熱交換器(4)と、前記空気熱交換器(4)に付着した霜を冷媒の熱により溶かす除霜運転を行う制御手段(E)とを備えるヒートポンプ式給湯機において、
前記制御手段(E)は、前記除霜運転を開始する前に、前記給湯用熱交換器(2)内の水の温度を上昇させる除霜準備運転を行うことを特徴とするヒートポンプ式給湯機。
A compressor (1) that compresses the refrigerant, a heat exchanger (2) for hot water supply that heats water by performing heat exchange between the refrigerant discharged from the compressor (1) and water, and the heat exchange for hot water supply A hot water storage tank (6) for storing water heated in the vessel (2), an air heat exchanger (4) for exchanging heat between the refrigerant and air that has passed through the hot water supply heat exchanger (2), In a heat pump type water heater provided with a control means (E) for performing a defrosting operation for melting frost adhering to the air heat exchanger (4) by the heat of the refrigerant,
The said control means (E) performs the defrost preparation operation which raises the temperature of the water in the said hot water supply heat exchanger (2), before starting the said defrost operation, The heat pump type water heater characterized by the above-mentioned .
前記給湯用熱交換器(2)から流出した水を前記貯湯タンク(6)をバイパスして前記給湯用熱交換器(2)に戻すバイパス配管(130)および水循環ポンプ(8)を備え、前記制御手段(E)は、前記除霜準備運転の際、前記給湯用熱交換器(2)にて冷媒と熱交換した水を、前記バイパス配管(130)を介して前記給湯用熱交換器(2)に戻すことを特徴とする請求項1に記載のヒートポンプ式給湯機。 A bypass pipe (130) and a water circulation pump (8) for returning the water flowing out from the hot water supply heat exchanger (2) to the hot water supply heat exchanger (2) by bypassing the hot water storage tank (6), In the defrosting preparation operation, the control means (E) exchanges water that has exchanged heat with the refrigerant in the hot water supply heat exchanger (2) via the bypass pipe (130). It returns to 2), The heat pump type hot water heater of Claim 1 characterized by the above-mentioned. 前記貯湯タンク(6)と前記給湯用熱交換器(2)との間で水を循環させる水循環ポンプ(8)を備え、前記制御手段(E)は、前記除霜準備運転の際、前記水循環ポンプ(8)を停止させた状態で、前記給湯用熱交換器(2)内に滞留した水と冷媒との熱交換を行わせることを特徴とする請求項1に記載のヒートポンプ式給湯機。 A water circulation pump (8) for circulating water between the hot water storage tank (6) and the hot water supply heat exchanger (2) is provided, and the control means (E) performs the water circulation during the defrost preparation operation. The heat pump type hot water supply device according to claim 1, wherein heat exchange between water and refrigerant staying in the hot water supply heat exchanger (2) is performed in a state where the pump (8) is stopped. 前記給湯用熱交換器(2)に流入する水の温度を検出する水温センサ(91)を備え、前記制御手段(E)は、前記除霜準備運転時に前記水温センサ(91)で検出した温度が所定温度に達したら前記除霜運転を開始することを特徴とする請求項1ないし3のいずれか1つに記載のヒートポンプ式給湯機。 A water temperature sensor (91) for detecting the temperature of water flowing into the hot water supply heat exchanger (2) is provided, and the control means (E) is a temperature detected by the water temperature sensor (91) during the defrost preparation operation. The heat pump hot water heater according to any one of claims 1 to 3, wherein the defrosting operation is started when the temperature reaches a predetermined temperature.
JP2006303735A 2006-11-09 2006-11-09 Heat pump water heater Pending JP2008121923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303735A JP2008121923A (en) 2006-11-09 2006-11-09 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303735A JP2008121923A (en) 2006-11-09 2006-11-09 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2008121923A true JP2008121923A (en) 2008-05-29

Family

ID=39506874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303735A Pending JP2008121923A (en) 2006-11-09 2006-11-09 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2008121923A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151633A2 (en) * 2008-08-04 2010-02-10 LG Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
JP2012002471A (en) * 2010-06-21 2012-01-05 Corona Corp Heat pump hot water heating device
CN103014880A (en) * 2012-12-20 2013-04-03 天津大学 Novel affinity ligand polypeptide library of immunoglobulin G constructed based on protein A affinity model and application of design method
KR101254367B1 (en) * 2008-08-26 2013-04-12 엘지전자 주식회사 Hot water circulation system associated with heat pump and method for controlling the same
JP2013096661A (en) * 2011-11-02 2013-05-20 Mitsubishi Electric Corp Heat pump device and heat pump water heater
JP2013249966A (en) * 2012-05-30 2013-12-12 Denso Corp Heat pump type water heater
US8657207B2 (en) 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
JP2014137166A (en) * 2013-01-16 2014-07-28 Sharp Corp Radiation type air conditioner
KR101464758B1 (en) * 2008-08-04 2014-11-24 엘지전자 주식회사 Method for controlling hot water circulation system associated with heat pump
KR20140139425A (en) * 2013-05-27 2014-12-05 린나이가부시기가이샤 Heating system
DE102017010148A1 (en) * 2017-11-02 2019-05-02 Stiebel Eltron Gmbh & Co. Kg Heating system and control method for a heating system
CN109974296A (en) * 2017-12-28 2019-07-05 杭州先途电子有限公司 A kind of air energy water heater and its Defrost method
JP2019158285A (en) * 2018-03-15 2019-09-19 株式会社デンソー Heat pump type water heater
JP2021085597A (en) * 2019-11-27 2021-06-03 株式会社ノーリツ Heat pump water heater
GB2604955A (en) * 2021-02-07 2022-09-21 Octopus Energy Group Ltd Methods and systems for performing a heat pump defrost cycle
US12140322B2 (en) 2021-02-07 2024-11-12 Octopus Energy Heating Limited Methods and systems for performing a heat pump defrost cycle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2003139405A (en) * 2001-08-24 2003-05-14 Denso Corp Storage-type hot water supply system
JP2007333340A (en) * 2006-06-16 2007-12-27 Corona Corp Heat pump type hot water supply apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2003139405A (en) * 2001-08-24 2003-05-14 Denso Corp Storage-type hot water supply system
JP2007333340A (en) * 2006-06-16 2007-12-27 Corona Corp Heat pump type hot water supply apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151633A3 (en) * 2008-08-04 2015-04-29 LG Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
EP2151633A2 (en) * 2008-08-04 2010-02-10 LG Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
KR101464758B1 (en) * 2008-08-04 2014-11-24 엘지전자 주식회사 Method for controlling hot water circulation system associated with heat pump
US8657207B2 (en) 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
KR101254367B1 (en) * 2008-08-26 2013-04-12 엘지전자 주식회사 Hot water circulation system associated with heat pump and method for controlling the same
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
JP5378504B2 (en) * 2009-03-27 2013-12-25 日立アプライアンス株式会社 Heat pump water heater
JP2012002471A (en) * 2010-06-21 2012-01-05 Corona Corp Heat pump hot water heating device
JP2013096661A (en) * 2011-11-02 2013-05-20 Mitsubishi Electric Corp Heat pump device and heat pump water heater
JP2013249966A (en) * 2012-05-30 2013-12-12 Denso Corp Heat pump type water heater
CN103014880A (en) * 2012-12-20 2013-04-03 天津大学 Novel affinity ligand polypeptide library of immunoglobulin G constructed based on protein A affinity model and application of design method
JP2014137166A (en) * 2013-01-16 2014-07-28 Sharp Corp Radiation type air conditioner
KR102189464B1 (en) * 2013-05-27 2020-12-11 린나이가부시기가이샤 Heating system
KR20140139425A (en) * 2013-05-27 2014-12-05 린나이가부시기가이샤 Heating system
JP2014228261A (en) * 2013-05-27 2014-12-08 リンナイ株式会社 Heating system
DE102017010148A1 (en) * 2017-11-02 2019-05-02 Stiebel Eltron Gmbh & Co. Kg Heating system and control method for a heating system
CN109974296A (en) * 2017-12-28 2019-07-05 杭州先途电子有限公司 A kind of air energy water heater and its Defrost method
JP2019158285A (en) * 2018-03-15 2019-09-19 株式会社デンソー Heat pump type water heater
JP2021085597A (en) * 2019-11-27 2021-06-03 株式会社ノーリツ Heat pump water heater
JP7507378B2 (en) 2019-11-27 2024-06-28 株式会社ノーリツ Heat pump hot water supply system
GB2604955A (en) * 2021-02-07 2022-09-21 Octopus Energy Group Ltd Methods and systems for performing a heat pump defrost cycle
GB2604955B (en) * 2021-02-07 2023-04-05 Octopus Energy Heating Ltd Methods and systems for performing a heat pump defrost cycle
US12140322B2 (en) 2021-02-07 2024-11-12 Octopus Energy Heating Limited Methods and systems for performing a heat pump defrost cycle

Similar Documents

Publication Publication Date Title
JP2008121923A (en) Heat pump water heater
JP5378504B2 (en) Heat pump water heater
JP3969154B2 (en) Hot water storage water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2008241173A (en) Heat pump water heater
JP2008057910A (en) Heat pump hot water supply device
JP5324826B2 (en) Heat pump type water heater
JP2006234375A (en) Heat pump type water heater
JP6056677B2 (en) Water heater
JP3632645B2 (en) Heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP2010032063A (en) Outdoor unit and heat pump device
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP5176474B2 (en) Heat pump water heater
JP3651942B2 (en) Water heater
JP2009287843A (en) Outdoor unit and heat pump device
JP2009074736A (en) Heat pump type hot water supply device
CN208296452U (en) A kind of four seasons water cushion
JP5115283B2 (en) Heat pump type water heater
JP5097054B2 (en) Heat pump water heater
JP2002340439A (en) Heat pump type hot-water supplier
JP2009287794A (en) Heat pump type water heater
JP7227090B2 (en) Storage hot water heater
JP2009085476A (en) Heat pump water heater
JP4223468B2 (en) Hot water storage hot water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025