[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008121668A - Power plant that utilizes gas turbine for power generation and process for lowering co2 emission - Google Patents

Power plant that utilizes gas turbine for power generation and process for lowering co2 emission Download PDF

Info

Publication number
JP2008121668A
JP2008121668A JP2007286881A JP2007286881A JP2008121668A JP 2008121668 A JP2008121668 A JP 2008121668A JP 2007286881 A JP2007286881 A JP 2007286881A JP 2007286881 A JP2007286881 A JP 2007286881A JP 2008121668 A JP2008121668 A JP 2008121668A
Authority
JP
Japan
Prior art keywords
flue gas
gas
pressure compressor
compressor
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286881A
Other languages
Japanese (ja)
Other versions
JP5128243B2 (en
Inventor
Matthias Finkenrath
マチアス・フィンカーラス
Michael Bartlett
マイケル・バートレット
Arne Lynghjem
アーネ・リンゲイム
Jon Jakobsen
ジョン・ヤコブセン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2008121668A publication Critical patent/JP2008121668A/en
Application granted granted Critical
Publication of JP5128243B2 publication Critical patent/JP5128243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G3/00Combustion-product positive-displacement engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/08Semi-closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/02Gas-turbine plants characterised by the use of combustion products as the working fluid using exhaust-gas pressure in a pressure exchanger to compress combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power plant and a process for lowering CO<SB>2</SB>emission. <P>SOLUTION: The power plant and the process generally include extracting a portion of a recirculated CO<SB>2</SB>-rich flue gas mid-way through a compression pathway of a gas turbine and removing the CO<SB>2</SB>in a separation unit. The remaining portion of the CO<SB>2</SB>-rich flue gas (i.e., the portion of the recirculated flue gas that was not fed to the separation unit) is mixed with fresh air coming from an additional compressor-expander and then fed back to the compression pathway. As a result, flue gas recirculation increases the CO<SB>2</SB>concentration within the working fluid, leading to an additional increase in CO<SB>2</SB>partial pressure. As the concentration and partial pressure of CO<SB>2</SB>is increased, a lower energy penalty is observed to remove the CO<SB>2</SB>. Moreover, a reduced volume is fed to the CO<SB>2</SB>separation unit during operation. Consequently, the size of the separation equipment can be reduced as well as the energy required for the separation process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、広義には発電に化石燃料を利用する発電所でのCO排出量を削減するための方法に関する。 The present invention relates generally to a method for reducing CO 2 emissions at a power plant that uses fossil fuels for power generation.

化石燃料を用いた発電所からの二酸化炭素(CO)排出は、京都議定書やEU域内排出量取引制度 (EU Emission Trading Scheme)のような国内及び国際規制によって一段と厳しく制限されるようになっている。CO排出コストの増加に伴って、CO排出量の削減は経済的な発電にとって重要である。今日のCO除去技術は、発電所の大気煙道ガス流のCO除去を削減することに焦点が当てられており、発電所には、非常に大型で高価なエネルギー大量消費型のCO除去ユニットが設けられている。 Carbon dioxide (CO 2 ) emissions from power plants using fossil fuels are becoming more severely restricted by national and international regulations such as the Kyoto Protocol and EU Emission Trading Scheme. Yes. With increasing CO 2 emission costs, reducing CO 2 emissions is important for economic power generation. Today's CO 2 removal technology is focused on reducing CO 2 removal from the power plant's atmospheric flue gas stream, and the power plant contains very large and expensive energy-intensive CO 2. A removal unit is provided.

ガスタービンプラントはブレイトンサイクルで運転され、一般に圧縮機を用いて燃焼室の上流で流入空気を圧縮する。次いで、燃料を導入して点火して高温高圧ガスを発生させ、ガスはタービンセクションに入って膨張する。タービンセクションは発電機及び圧縮機の双方に動力を供給する。燃焼タービンは、原油から天然ガスに至る広範な液体及び気体燃料を燃焼させることもできる。   Gas turbine plants operate in the Brayton cycle and typically compress the incoming air upstream of the combustion chamber using a compressor. The fuel is then introduced and ignited to generate a hot, high pressure gas that enters the turbine section and expands. The turbine section powers both the generator and the compressor. Combustion turbines can also burn a wide range of liquid and gaseous fuels ranging from crude oil to natural gas.

かかる発電所からのCO排出量を削減するために現在採用されている方法としては、一般に3通りの方法がある。第1の方法は、排ガスから空気で燃焼した後のCOを回収するもので、燃焼中に生成したCOを吸収法、吸着法、膜分離、隔膜、超低温法又はこれらの組合せによって排ガスから除去する。一般に燃焼後回収と呼ばれるこの方法は、通常、発電所の大気排ガスからCO排出量を削減することに焦点が当てられている。第2の方法として、燃料の炭素含量を減少させることが挙げられる。この方法では、燃料を燃焼させる前にまずH及びCOへと転化させる。こうして、ガスタービンに導入される前に燃料の炭素分を回収することができ、COの生成が避けられる。第三の方法としては、オキシ燃料法(酸素燃料法ともいう)がある。この方法では、空気ではなく純粋な酸素を酸化剤として使用して二酸化炭素と水からなる煙道ガスを得る。 There are generally three methods currently employed to reduce CO 2 emissions from such power plants. The first method is to recover the CO 2 after combustion with air from the exhaust gas, absorption method and the resulting CO 2 during combustion, adsorption, membrane separation, membrane, from the exhaust gas by cryogenic methods or a combination thereof Remove. This method, commonly referred to as post-combustion recovery, is typically focused on reducing CO 2 emissions from the power plant atmospheric exhaust. The second method includes reducing the carbon content of the fuel. In this method, the fuel is first converted to H 2 and CO 2 before burning. Thus, the carbon content of the fuel can be recovered before being introduced into the gas turbine, and the production of CO 2 is avoided. As a third method, there is an oxy fuel method (also referred to as an oxygen fuel method). In this method, pure oxygen rather than air is used as an oxidant to obtain flue gas consisting of carbon dioxide and water.

燃焼後CO回収法の主な短所は、煙道ガス中のCO濃度が低い(天然ガス燃料発電所では通例3〜4体積%)のでCO分圧が低く、COの除去に高価な大型装置が必要とされることである。煙突でのCO濃度、したがって分圧は、煙道ガスをガスタービンの圧縮機に部分的に再循環させることによって高めることができるが(これに関しては、例えば米国特許第5832712号参照)、それでもかなり低い(約6〜10体積%)。燃焼後回収の形態に付随する低いCO分圧及び大きいガス体積は、CO除去に関連して、非常に大形で高価な装置に加えて非常に高いエネルギーコストをもたらす。
米国特許第5832712号明細書
The main disadvantage of the post-combustion CO 2 recovery method is that the CO 2 concentration in the flue gas is low (usually 3 to 4% by volume in natural gas fuel power plants), so the CO 2 partial pressure is low and expensive to remove CO 2 Large-scale equipment is required. The CO 2 concentration in the chimney, and thus the partial pressure, can be increased by partially recirculating the flue gas to the compressor of the gas turbine (see for example US Pat. No. 5,832,712), but still Quite low (about 6-10% by volume). The low CO 2 partial pressure and large gas volume associated with post-combustion capture forms results in very high energy costs in addition to the very large and expensive equipment associated with CO 2 removal.
US Pat. No. 5,832,712

そこで、発電所からCOを効率的に除去するための改良法に対するニーズが存在している。 Thus, there is a need for improved methods for efficiently removing CO 2 from power plants.

本明細書に開示するのは、ガスタービンを使用する発電所及び発電に化石燃料を利用する発電所におけるCO排出量を削減する方法である。ガスタービンを備える発電所でエネルギーを発生させる方法は、低圧圧縮機及び高圧圧縮機を含む2以上の段を有する圧縮機セクションと、圧縮機セクションと流体連通した燃焼セクションと、燃焼セクションと流体連通したエキスパンダーセクションとを備えるガスタービンから煙道ガスを発生させる段階と、煙道ガスを低圧圧縮機に再循環する段階と、圧縮再循環煙道ガスの一部を二酸化炭素(CO)分離器に分流し、残りの部分を高圧圧縮機に分流する段階と、CO分離器で分流部分からCOを分離してCOリーンガスを生成する段階と、再循環煙道ガスの残りの部分を高圧圧縮機に供給する段階とを含む。 Disclosed herein is a method for reducing CO 2 emissions at power plants that use gas turbines and power plants that use fossil fuels for power generation. A method of generating energy in a power plant comprising a gas turbine includes a compressor section having two or more stages including a low pressure compressor and a high pressure compressor, a combustion section in fluid communication with the compressor section, and a combustion section in fluid communication. Generating a flue gas from a gas turbine comprising an expanded section, recirculating the flue gas to a low pressure compressor, and a carbon dioxide (CO 2 ) separator for a portion of the compressed recirculated flue gas flushed binary, the method comprising diverting the remainder of the high pressure compressor, and generating a CO 2 lean gas to separate CO 2 from the diverted portion in a CO 2 separator, the remainder of the recirculated flue gas Supplying to the high pressure compressor.

CO排出量が低減するように構成された発電所は、(a)(i)高圧圧縮機と流体連通した低圧圧縮機を含む2以上の圧縮段を有する圧縮機セクションと、(ii)圧縮ガスを導入するための第1の入口、燃料を導入するための第2の入口及び高温煙道ガスを吐出するための出口を有する燃焼器と、(iii)高温煙道ガスを導入するための入口及び低圧圧縮機と流体連通した出口を有する主エキスパンダーセクションとを備えるガスタービンと、(b)低圧圧縮機から煙道ガスの一部を受け取るために低圧圧縮機と流体連通したCO分離器であって、COリーンガスを追加のエキスパンダーに供給するCO分離器とを備えており、煙道ガスの残りの部分は、高圧圧縮機と流体連通した低圧圧縮機を介して高圧圧縮機に直接供給される。 Configured power plant as CO 2 emissions are reduced, and the compressor section having two or more compression stages comprising (a) (i) high pressure compressor in fluid communication with the low pressure compressor, (ii) compression A combustor having a first inlet for introducing gas, a second inlet for introducing fuel, and an outlet for discharging hot flue gas; and (iii) for introducing hot flue gas a gas turbine and a main expander section having an inlet and an outlet in fluid communication with the low pressure compressor, (b) CO 2 separator in fluid communication with the low pressure compressor for receiving a portion of the flue gas from the low pressure compressor A CO 2 separator for supplying CO 2 lean gas to an additional expander, the remaining part of the flue gas being passed to the high pressure compressor via a low pressure compressor in fluid communication with the high pressure compressor Supplied directly It is.

別の実施形態では、CO排出量が低減するように構成された発電所は、(a)(i)高圧圧縮機と流体連通した低圧圧縮機を含む2以上の圧縮段を有する圧縮機セクションと、(ii)高圧圧縮機からの圧縮ガスを導入するための第1の入口、燃料を導入するための第2の入口及び高温煙道ガスを吐出するための出口を有する燃焼器と、(iii)吐出高温煙道ガスを導入するための入口及び低圧圧縮機と流体連通した出口を有する主エキスパンダーセクションとを備えるガスタービンと、(b)煙道ガスの一部を処理するために低圧圧縮と流体連通したCO分離器であって、その下流の加湿器にCOリーンガスを供給して加湿・再生煙道ガスを生成するためのCO分離器とを備えており、加湿煙道ガスで、高圧圧縮機と流体連通した出口を有する第2のエキスパンダー/圧縮機ユニットを駆動し、煙道ガスの残りの部分は、高圧圧縮機と流体連通した低圧圧縮機を介して高圧圧縮機に直接供給される。 In another embodiment, configured power plant as CO 2 emissions are reduced, the compressor section having two or more compression stages comprising (a) (i) high pressure compressor in fluid communication with the low pressure compressor (Ii) a combustor having a first inlet for introducing compressed gas from a high pressure compressor, a second inlet for introducing fuel, and an outlet for discharging hot flue gas; iii) a gas turbine comprising an inlet for introducing discharged hot flue gas and a main expander section having an outlet in fluid communication with the low pressure compressor; and (b) low pressure compression to treat a portion of the flue gas. A CO 2 separator in fluid communication with a humidifier flue gas comprising a CO 2 separator for supplying humidified and regenerated flue gas by supplying CO 2 lean gas to a humidifier downstream of the CO 2 separator And fluid communication with the high-pressure compressor A second expander / compressor unit having a closed outlet is driven, and the remainder of the flue gas is fed directly to the high pressure compressor via a low pressure compressor in fluid communication with the high pressure compressor.

別の実施形態では、発電所でエネルギーを発生させる方法は、圧縮機セクションと流体連通した燃焼セクション及び燃焼セクションと流体連通したエキスパンダーを備えるガスタービンで煙道ガスを発生させる段階と、煙道ガスを低圧圧縮機に再循環する段階と、再循環煙道ガスの一部を圧縮機の下流で二酸化炭素(CO)分離器に分流し、残りの部分を燃焼器に分流する段階と、CO分離器で分流煙道ガス部分からCOを分離してCOリーンガスを生成する段階と、再循環煙道ガスの残りの部分を燃焼器に供給する段階とを含む。このシステムは2以上の圧縮段を備えるガスタービンで使用することができるし、この実施形態は単段圧縮機ユニットを備えたガスタービンにも適用することができ、圧縮機の下流での流体抽出及び再注入が可能となる。 In another embodiment, a method for generating energy at a power plant includes generating flue gas in a gas turbine comprising a combustion section in fluid communication with a compressor section and an expander in fluid communication with the combustion section; A portion of the recirculated flue gas to a carbon dioxide (CO 2 ) separator downstream of the compressor and a remaining portion to the combustor; 2 comprising the steps of a shunt flue gases part separator to separate CO 2 to produce a CO 2 lean gas, and supplying the remainder of the recirculated flue gas to the combustor. This system can be used in gas turbines with two or more compression stages, and this embodiment can also be applied to gas turbines with single stage compressor units, fluid extraction downstream of the compressor. And reinjection.

本発明の様々な特徴についての以下の詳細な説明及び実施例を参照することによって本発明の理解を深めることができよう。添付の図面では、図面全体を通して同様の部品は同一の符号で表した。   A better understanding of the present invention can be obtained by reference to the following detailed description and examples of the various features of the present invention. In the accompanying drawings, like parts are designated by like numerals throughout the drawings.

本発明は、発電用にガスタービンを利用する発電所で高圧・高濃度のCOを分離することによってCO排出量を削減する方法を提供する。以下で詳しく説明するように、高いガス圧力は、ガスタービンの圧縮経路の途中で再循環COリッチ煙道ガスを抽出することによって達成される。その結果、煙道ガスの再循環によって、作動流体中のCO濃度が増加し、CO分圧が一段と高まる。COの濃度及び分圧が高まると、COを除去するためのエネルギーペナルティが低減するのが観察される。さらに、加圧下でCOを分離するので、処理すべき体積流量が大気圧プロセスに比べて格段に減少する。従って、分離装置を小型化できるだけでなく、分離に要するエネルギーを低減することができる。さらに、以下に説明するように、CO分圧の大幅な増大によって、例えば吸着及び膜分離などの他のCO回収法の選択も可能となる。 The present invention provides a method for reducing CO 2 emissions by separating high pressure, high concentration CO 2 at power plants that utilize gas turbines for power generation. As described in more detail below, a high gas pressure is achieved by extracting the recirculated CO 2 rich flue gas in the middle of the compression path of the gas turbine. As a result, the CO 2 concentration in the working fluid is increased by the recirculation of the flue gas, and the CO 2 partial pressure is further increased. When the concentration and the partial pressure of CO 2 is increased, the energy penalty for removing CO 2 is that to reduce the observed. Furthermore, since CO 2 is separated under pressure, the volume flow to be treated is significantly reduced compared to the atmospheric pressure process. Therefore, not only can the separation apparatus be miniaturized, but also the energy required for separation can be reduced. Further, as described below, by a significant increase in CO 2 partial pressure, for example, selective adsorption and membrane separation other CO 2 recovery method, such as it is possible.

本プロセスでは、ガスタービンから抽出した流体の一部(例えば10〜70%)のみを中間冷却のためにCO分離器に流し、残りの部分は高圧圧縮機及び燃焼器に戻される。これによって、ガスタービン作動流体中のCOの分圧が高まるだけでなく、CO分離器で処理すべきガスの体積が減少する。サイクル構成は、すべてのサイクル煙道ガスをCO分離器を介してシステムから排出するというもので、最大限のCO回収(好ましくは80%超)が得られる。燃焼用の新鮮空気は別個の圧縮機ユニットで圧縮され、圧縮機入口からガスタービンサイクルに入る。こうして、分離器に導入される前の再循環COリッチ煙道ガスの希釈が回避される。新鮮空気の圧縮に要する仕事量を最小限にするために、CO分離器からの圧縮COリーンガスを別個のエキスパンダーに供給してもよく、この別個のエキスパンダーは必須ではないが好ましくは空気圧縮機と機械的に接続している。好適には、エキスパンダーで発生する仕事量を最大限にするため、様々な熱回収法を用いることもできる。例えば、圧縮機を出る新鮮空気流とエキスパンダーに入るクリーン煙道ガス流との間で熱交換器を用いてもよい。別の好適な構成では、熱回収のための熱交換は、分離器に供給されるCOリッチ煙道ガスと分離器から出るCOリーン煙道ガスとの間で行ってもよい。 In this process, part of the fluid extracted from the gas turbine only (e.g. 10% to 70%) to flow to the intermediate cooling CO 2 separator, the remaining portion is returned to the high pressure compressor and the combustor. This not only increases the partial pressure of CO 2 in the gas turbine working fluid, but also reduces the volume of gas to be processed in the CO 2 separator. The cycle configuration is that all cycle flue gas is exhausted from the system via a CO 2 separator, resulting in maximum CO 2 capture (preferably greater than 80%). Fresh air for combustion is compressed in a separate compressor unit and enters the gas turbine cycle from the compressor inlet. In this way, dilution of the recirculated CO 2 rich flue gas before it is introduced into the separator is avoided. In order to minimize the work required for the compression of fresh air, compressed CO 2 lean gas from the CO 2 separator may be fed to a separate expander, which is not essential, but preferably air compression. Mechanically connected to the machine. Preferably, various heat recovery methods can be used to maximize the amount of work generated by the expander. For example, a heat exchanger may be used between a fresh air stream exiting the compressor and a clean flue gas stream entering the expander. In another preferred configuration, heat exchange for heat recovery may occur between the CO 2 rich flue gas supplied to the separator and the CO 2 lean flue gas exiting the separator.

この方法の変法では、高いガス圧力は、圧縮機ユニットの下流で再循環COリッチ煙道ガスを抽出することによって達成される。その結果、煙道ガスの再循環によって、作動流体中のCO濃度が増加し、CO分圧が一段と高まる。COの濃度及び分圧が高まると、COを除去するためのエネルギーペナルティが低減するのが観察される。さらに、加圧下でCOを分離するので、処理すべき体積流量が大気圧プロセスに比べて格段に減少する。従って、分離装置を小型化できるだけでなく、分離に要するエネルギーを低減することができる。 In a variation of this method, a high gas pressure is achieved by extracting the recirculated CO 2 rich flue gas downstream of the compressor unit. As a result, the CO 2 concentration in the working fluid is increased by the recirculation of the flue gas, and the CO 2 partial pressure is further increased. When the concentration and the partial pressure of CO 2 is increased, the energy penalty for removing CO 2 is that to reduce the observed. Furthermore, since CO 2 is separated under pressure, the volume flow to be treated is significantly reduced compared to the atmospheric pressure process. Therefore, not only can the separation apparatus be miniaturized, but also the energy required for separation can be reduced.

ここで図1を参照すると、ガスタービン12を備える例示的な発電所10が示してある。ガスタービン12は一般に、適宜2以上の圧縮段(例えば、高圧圧縮機16と流体連通した低圧圧縮機14)を含む圧縮機セクション13と、燃焼室18と、圧縮機14,16及び発電用の発電機26を駆動するのに必要なエネルギーを供給するための1以上のエキスパンダーセクション21(例えば、燃焼ガスが送られる高圧エキスパンダー22とその下流の低圧エキスパンダー24)とを備える。始動時に、圧縮機セクション13で圧縮流体(例えば空気又は酸素濃縮空気など)を燃焼器18に供給し、燃焼器18で燃料20と混合して燃焼させ、特に水とCOを含むガスを生成する。エキスパンダー排出ガスのエネルギーを熱回収ボトミングサイクル(例えば蒸気ランキンサイクルなど)に使用すれば、例えば熱回収及び蒸気発生器28で効率を高めることができ、熱は蒸気の形態で回収される。ガスタービン出口流は完全に又は部分的に再循環することができる。部分的再循環は、過渡運転(始動、負荷変化、停止)に使用できる。この場合、ガスタービン煙道ガスを出たガスの一部又は全部を抽気し、所望の過渡運転に使用する。上記煙道ガス(符号32で示す)をまず凝縮器30で冷却して生成した液体水を除去した後、低圧圧縮機14に再循環する。この装置は好適には微粒子及びガス夾雑物を捕捉するように構成してもよい。以下で詳しく説明するように、煙道ガス再循環32の一部34は圧縮されて分離器36に送られる(例えば、10〜70%)が、残りの部分38はさらに高圧圧縮機16及び燃焼器18に再循環して作動流体中のCO濃度をさらに増加させる。 Referring now to FIG. 1, an exemplary power plant 10 with a gas turbine 12 is shown. The gas turbine 12 generally includes a compressor section 13 that includes two or more compression stages as appropriate (eg, a low pressure compressor 14 in fluid communication with the high pressure compressor 16), a combustion chamber 18, compressors 14, 16 and power generation. One or more expander sections 21 (for example, a high-pressure expander 22 to which combustion gas is sent and a low-pressure expander 24 downstream thereof) are provided for supplying energy necessary to drive the generator 26. At start-up, the compressor section 13 supplies a compressed fluid (eg, air or oxygen enriched air) to the combustor 18 where it is mixed with the fuel 20 and combusted to produce gas, particularly including water and CO 2. To do. If the energy of the expander exhaust gas is used in a heat recovery bottoming cycle (for example, a steam Rankine cycle), the efficiency can be increased by, for example, heat recovery and the steam generator 28, and heat is recovered in the form of steam. The gas turbine outlet stream can be fully or partially recirculated. Partial recirculation can be used for transient operation (start, load change, stop). In this case, part or all of the gas exiting the gas turbine flue gas is extracted and used for the desired transient operation. The flue gas (indicated by reference numeral 32) is first cooled by the condenser 30 to remove the generated liquid water, and then recycled to the low-pressure compressor 14. The device may preferably be configured to capture particulates and gas contaminants. As will be described in detail below, a portion 34 of the flue gas recirculation 32 is compressed and sent to the separator 36 (eg, 10-70%), while the remaining portion 38 further includes the high pressure compressor 16 and combustion. recycled to vessel 18 further increases the CO 2 concentration in the working fluid.

運転中、再循環煙道ガス32は第1の圧縮機14で約2〜20バールに圧縮される。CO分離器36に送られた圧縮ガスの部分は、追加の熱交換器又はトリム冷却器42で適宜冷却してもよい。再循環した残りの部分(蒸気38)は、追加の圧縮機48を通してサイクルに導入される新鮮空気と混合される。この混合気は中間冷却器51で適宜冷却してもよい。中間冷却の基本原理では、最終的に所望の圧力に(つまり圧縮機16で)圧縮する前に、ガスを部分的に圧縮してから冷却する。こうして中間冷却器51で圧縮仕事量を低減して、循環プロセスの出力を増大させる。CO分離は、最終的な圧縮の前に行われる。適宜、トリム冷却器42でガスをCO分離に望ましい温度域まで冷却する。好都合なことに、本プロセスの実施に必要なガスタービンの修正を軽減するため、現行の中間冷却式航空機転用型スクロールを利用することができる。 During operation, the recirculated flue gas 32 is compressed by the first compressor 14 to about 2-20 bar. The portion of the compressed gas sent to the CO 2 separator 36 may be appropriately cooled with an additional heat exchanger or trim cooler 42. The remaining recirculated portion (steam 38) is mixed with fresh air introduced into the cycle through an additional compressor 48. The air-fuel mixture may be appropriately cooled by the intercooler 51. In the basic principle of intercooling, the gas is partially compressed and then cooled before it is finally compressed to the desired pressure (ie with the compressor 16). Thus, the compression work is reduced by the intercooler 51, and the output of the circulation process is increased. The CO 2 separation takes place before final compression. Optionally, the trim cooler 42 cools the gas to the desired temperature range for CO 2 separation. Advantageously, current intercooled aircraft diversion scrolls can be utilized to mitigate the gas turbine modifications required to perform the process.

CO分離器36を出たクリーンガス44をエキスパンダー46で膨張させる。新鮮空気を追加の圧縮機48で供給し、再循環低圧煙道ガス部分38と混合する。混合ガスは中間冷却51され、高圧圧縮機16に供給される。エキスパンダー及び空気圧縮機は圧縮機−エキスパンダーユニットで追加のモータ(M)と連結してもよい。廃熱を回収して圧縮機16を駆動する動力を低減するために、熱交換器50での熱交換を空気流とエキスパンダー46に入るクリーンガス流との間で行ってもよい。別の構成では、熱回収50のための熱交換を、低圧圧縮機14を出たCOリッチ煙道ガスと分離器を出たCOリーン煙道ガス44との間で行ってもよい。 The clean gas 44 exiting the CO 2 separator 36 is expanded by an expander 46. Fresh air is supplied by an additional compressor 48 and mixed with the recirculating low pressure flue gas portion 38. The mixed gas is intermediate-cooled 51 and supplied to the high-pressure compressor 16. The expander and air compressor may be connected to an additional motor (M) in the compressor-expander unit. In order to recover waste heat and reduce the power to drive the compressor 16, heat exchange in the heat exchanger 50 may be performed between the air flow and the clean gas flow entering the expander 46. In another configuration, heat exchange for the heat recovery 50 may occur between the CO 2 rich flue gas exiting the low pressure compressor 14 and the CO 2 lean flue gas 44 exiting the separator.

上述の通り、全体的CO分離率に影響を与えるため、煙道ガス再循環部分34を使用することができる。同様の理由で、低圧圧縮機14への新鮮空気の流量を調整することができる。エキスパンダーユニット46の上流での点火を利用すれば、圧縮機48を駆動するためのモータをなくすことができる。ユニットの駆動には、蒸気タービン又はガスタービン12との共通シャフトも使用できる。中間冷却空気圧縮機も圧縮仕事量を節約するので、使用できる。圧縮機の一方、燃焼器、エキスパンダー全体の上流での或いはCO分離ユニット36の下流でのガス加湿(例えば、蒸気又は水噴射或いは非断熱飽和装置による)は、追加のモータの必要性をなくすことができる可能性があるだけでなく、出力及びサイクル効率を増加させることができる。 As described above, the flue gas recirculation portion 34 can be used to affect the overall CO 2 separation rate. For the same reason, the flow rate of fresh air to the low-pressure compressor 14 can be adjusted. If the ignition upstream of the expander unit 46 is used, the motor for driving the compressor 48 can be eliminated. A common shaft with the steam turbine or gas turbine 12 can also be used to drive the unit. Intermediate cooling air compressors can also be used because they save compression work. Gas humidification (eg, by steam or water injection or non-adiabatic saturator) on one side of the compressor, upstream of the entire combustor, expander or downstream of the CO 2 separation unit 36 eliminates the need for additional motors. Not only can it be possible, but also output and cycle efficiency can be increased.

この方法では、旧来の燃焼後CO回収法と比較して、煙道ガスのCO濃度が分離器で増大する。同様に、再循環煙道ガスの一部しか分離器36に流さないし、さらに重要なこととして、煙道ガスが加圧されているので、分離器36への体積流量は大気圧CO回収法と比較して大幅に減少する。例えば、煙道ガスの50%再循環でCO濃度は2倍となり、圧縮によってCO分圧が2〜20倍増大する。その結果、CO分離器の必要寸法及び必要エネルギーが低減される。さらに、高圧圧縮機16の入口温度の低下によって、質量流量を増大させることができ、比出力が高まる。一般に、CO分圧の大幅な増大によって、以下に説明するように、例えば吸着及び膜分離などの他のCO回収法の選択も可能となる。 In this method, the CO 2 concentration of the flue gas is increased in the separator as compared to the traditional post-combustion CO 2 capture method. Similarly, only a portion of the recirculated flue gas flows through the separator 36 and, more importantly, because the flue gas is pressurized, the volumetric flow to the separator 36 is at atmospheric CO 2 recovery. Compared with, it is greatly reduced. For example, 50% recirculation of flue gas doubles the CO 2 concentration and compression increases the CO 2 partial pressure by 2 to 20 times. As a result, the required dimensions and energy requirements of the CO 2 separator are reduced. Furthermore, the mass flow rate can be increased by reducing the inlet temperature of the high-pressure compressor 16, and the specific output is increased. In general, a significant increase in the CO 2 partial pressure also allows for the selection of other CO 2 recovery methods such as adsorption and membrane separation, as described below.

図2は、発電所100の別の実施形態を示す。この実施形態では、COリーンガスを内部熱回収サイクルに用いる。COリーンガスは、主ガスタービン出口流で再生(復熱)される。その前に、適宜、ガスを飽和させるためサイクルからの低温熱を用いてCOリーンガスを加湿してもよい。これによって、サイクル内に追加の内部ヒートシンクが生まれる。内部熱回収及び/又は加湿を使用したときの考えられる効果は、動力独立式の空気圧縮機と出力の増大である。適宜、蒸気ボトミングサイクルはその寸法を縮小してもよいし、或いはプラントから除いてもよい。ここに開示した発明は、圧縮全体でのガス抽出によって結合した2以上のガスタービンを備える構成も含む。膜分離法によるCO分離では、膜透過側で真空ポンプなどを用いれば駆動力を高めることができる。 FIG. 2 shows another embodiment of the power plant 100. In this embodiment, CO 2 lean gas is used for the internal heat recovery cycle. The CO 2 lean gas is regenerated (recovered) in the main gas turbine outlet stream. Prior to that, the CO 2 lean gas may be humidified using low temperature heat from the cycle as appropriate to saturate the gas. This creates an additional internal heat sink in the cycle. A possible effect when using internal heat recovery and / or humidification is a power independent air compressor and increased power. As appropriate, the steam bottoming cycle may be reduced in size or removed from the plant. The invention disclosed herein also includes a configuration comprising two or more gas turbines coupled by gas extraction over compression. In CO 2 separation by the membrane separation method, the driving force can be increased by using a vacuum pump or the like on the membrane permeation side.

発電所100は、圧縮機セクション113を有するガスタービン112を含み、圧縮機セクションは、2以上の圧縮段(例えば、高圧圧縮機116と流体連通した低圧圧縮機114)と、燃焼室118と、所望に応じて圧縮機114,116及び発電機126の駆動に必要なエネルギーを供給するための1以上のエキスパンダーセクション121(例えば、燃焼ガスが送られる高圧エキスパンダー122とその下流の低圧エキスパンダー124)とを備える。始動時に、圧縮機セクション113で圧縮流体(例えば空気又は酸素濃縮空気など)を燃焼器118に供給し、燃焼器118で燃料120と混合して燃焼させ、特に水とCOを含む煙道ガスを生成する。煙道ガスは、再生器150及びエコノマイザ152に供給され、それらで熱が回収される。再生器150は、タービン排出ガス流の廃熱を回収して、エキスパンダー148に入る前にCOリーン排出ガスを予熱し、エコノマイザは低位熱を回収して任意選択的なCOリーンガスの加湿を推進する。上記と同様、エキスパンダーセクション121からの煙道ガスは完全に又は部分的に再循環することができる。部分的に再循環させる場合、ガスタービン煙道ガスから出る煙道ガスの一部を抽気し、まず凝縮器130で冷却して生成した液体水を除去した後、過渡運転(始動、負荷変化、停止)に使用する。この装置は好適には微粒子及びガス夾雑物を捕捉するように構成してもよい。このように処理された煙道ガス(符号132で示す)は次いで低圧圧縮機114に再循環される。以下で詳しく説明するように、煙道ガス再循環の一部134は高いCO分圧でCO分離器136に送られる(例えば、10〜70%)が、残りの部分138はさらに高圧圧縮機116及び燃焼器118に再循環される。 The power plant 100 includes a gas turbine 112 having a compressor section 113 that includes two or more compression stages (eg, a low pressure compressor 114 in fluid communication with a high pressure compressor 116), a combustion chamber 118, One or more expander sections 121 (e.g., a high pressure expander 122 to which combustion gases are sent and a low pressure expander 124 downstream thereof) to supply the energy required to drive the compressors 114, 116 and generator 126 as desired. Is provided. At startup, the compressor section 113 supplies a compressed fluid (eg, air or oxygen enriched air) to the combustor 118, where the combustor 118 mixes with the fuel 120 and combusts, particularly flue gas containing water and CO 2. Is generated. Flue gas is supplied to regenerator 150 and economizer 152 where heat is recovered. Regenerator 150, the waste heat of the turbine exhaust gas stream is recovered, to preheat the CO 2 lean exhaust gas prior to entering the expander 148, the economizer humidification of optional CO 2 lean gas were recovered low-grade heat Promote. As above, the flue gas from the expander section 121 can be fully or partially recycled. In the case of partial recirculation, a part of the flue gas emitted from the gas turbine flue gas is extracted, first cooled by the condenser 130 to remove the generated liquid water, and then transient operation (starting, load change, Used for stop). The device may preferably be configured to capture particulates and gas contaminants. The flue gas thus treated (shown at 132) is then recycled to the low pressure compressor 114. As described in detail below, a portion 134 of the flue gas recirculation is sent to the CO 2 separator 136 at a high CO 2 partial pressure (eg, 10-70%), while the remaining portion 138 is further pressurized. Recirculated to machine 116 and combustor 118.

運転中、再循環煙道ガス132は第1の圧縮機114で約2〜20バールに圧縮される。CO分離器136に送られた圧縮ガスの部分は、追加の熱交換器又はトリム冷却器142で適宜冷却してもよい。再循環した残りの部分(蒸気138)は、追加の圧縮機セクション157(適宜、2以上の圧縮機158及び156と中間冷却器162からなる中間冷却式の追加圧縮機ユニットであってもよい。)を通してサイクルに導入される新鮮空気と混合される。再循環煙道ガスと新鮮空気の混合気は、適宜中間冷却器164で冷却され、高圧圧縮機116及び燃焼器118に再循環される。分離器136から流出するクリーンCOリーンガス144は、適宜加湿塔154で加湿されて加湿ガス155を生じ、エキスパンダー148で膨張させられる。加湿COリーンガス155をエキスパンダー148に直接導入することによって、エキスパンダー148と結合した圧縮機セクション157の作動のためのモータはなくすか或いは最小限にすることができる。さらに、必要に応じて、エキスパンダー148は発電機160の駆動にも使用できる。例えば164,152,162からの低温廃熱を用いればCOリーンガスの加湿を推進することができることが明らかであろう。この低位エネルギーは高温加圧水の形態で加湿塔に供給され、向流式にCOリーンガスを加湿し、水自体は冷却される。この低位エネルギーをこうのように使用すると、内部ヒートシンク(つまり、塔から流出する冷水)の生成によって発電所100の効率が高まる。 During operation, the recirculated flue gas 132 is compressed by the first compressor 114 to about 2-20 bar. The portion of the compressed gas sent to the CO 2 separator 136 may be appropriately cooled with an additional heat exchanger or trim cooler 142. The remaining recirculated portion (steam 138) may be an additional compressor section 157 (optionally an intercooled additional compressor unit consisting of two or more compressors 158 and 156 and an intercooler 162). ) Mixed with fresh air introduced into the cycle through. The mixture of the recirculated flue gas and fresh air is appropriately cooled by the intercooler 164 and recirculated to the high-pressure compressor 116 and the combustor 118. The clean CO 2 lean gas 144 flowing out from the separator 136 is appropriately humidified by the humidifying tower 154 to generate a humidified gas 155 and is expanded by the expander 148. By introducing the humidified CO 2 lean gas 155 directly into the expander 148, the motor for operation of the compressor section 157 coupled to the expander 148 can be eliminated or minimized. Furthermore, the expander 148 can also be used to drive the generator 160 as needed. For example, it will be apparent that the use of low temperature waste heat from 164, 152, 162 can promote humidification of the CO 2 lean gas. This lower energy is supplied to the humidification tower in the form of high-temperature pressurized water, humidifies the CO 2 lean gas in a countercurrent manner, and the water itself is cooled. Using this low energy in this way increases the efficiency of the power plant 100 by generating an internal heat sink (ie, cold water flowing out of the tower).

圧縮機セクションは、適宜、高圧圧縮機156と連結された低圧圧縮機158を含む。新鮮空気(又は酸素濃縮空気)が低圧圧縮機158に供給され、高圧圧縮機156でさらに圧縮される。適宜、ガスはこれらの圧縮機の間に配設された中間冷却器で冷却してもよい。ガスは次いで再循環低圧煙道ガス部分138と混合され、中間冷却器151に供給してから高圧圧縮機116に導入される。任意要素である中間冷却器で発生した高温水のエンタルピーは、その中を通過するガス或いはエキスパンダー48,148に送られる前のCOリーンガスを飽和させるのに使用できる。 The compressor section optionally includes a low pressure compressor 158 coupled with a high pressure compressor 156. Fresh air (or oxygen enriched air) is supplied to the low pressure compressor 158 and further compressed by the high pressure compressor 156. If appropriate, the gas may be cooled by an intercooler disposed between these compressors. The gas is then mixed with the recirculated low pressure flue gas portion 138 and fed to the intercooler 151 before being introduced into the high pressure compressor 116. The enthalpy of the hot water generated by the optional intercooler can be used to saturate the gas passing through it or the CO 2 lean gas before being sent to the expanders 48,148.

以上の内部熱回収法で説明したようにCOリーンガスの使用によって、出力が増大し、圧縮機が動力独立式となる利点がある。適宜、ネット出力を当たる一対のユニット157,148を使用することによって、従来の蒸気ボトミングサイクルをなくすか或いはその寸法を縮小することができる。 As explained in the above internal heat recovery method, the use of CO 2 lean gas has the advantage that the output increases and the compressor becomes a power independent type. Where appropriate, the use of a pair of units 157, 148 that hit the net output can eliminate or reduce the size of conventional steam bottoming cycles.

以上開示した方法をゲートサイクルとしてモデル化した。シミュレーションによって、燃焼器に煙道ガスを再循環することの主な効果が確認される。煙道ガスの50%を高圧圧縮機116に再循環すると、CO分離器136でのCO分離のための駆動力は2倍となり、体積流量は半分になるので付随する投資及びエネルギー需要が低減する。体積流量の一段の減少及びCO分離ユニットでのCO分圧の増加、ひいてはコスト及びエネルギー需要の低減は、圧力下で作動するCO分離ユニットに起因する。さらに、サイクル構成は、通常運転中すべてのサイクル煙道ガスをCO分離器を介してシステムから排出するというものである。これによって、最大CO回収(好ましくは80%超)が担保される。さらに、燃焼用の新鮮空気は別途圧縮されて主ガスタービンユニットに導入され、高圧圧縮機入口からガスタービンサイクルに入る。これによって、分離器に導入する前の再循環COリッチ排出ガスの希釈が避けられる。新鮮空気の圧縮に要する仕事量を最小限にするため、除去ユニットからの圧縮COリーンガスは、空気圧縮機と機械的に結合した別のエキスパンダーを通して送られる。好適には、エキスパンダーで発生する仕事量を最大限にするため、様々な熱回収法を用いることもできる。例えば、圧縮機を出る新鮮空気流とエキスパンダーに入るクリーン煙道ガス流との間の熱交換がある。 The method disclosed above was modeled as a gate cycle. Simulation confirms the main effect of recirculating flue gas to the combustor. When recycling 50% of the flue gases to the high pressure compressor 116, the driving force for CO 2 separation in CO 2 separator 136 is doubled, investment and energy demand associated the volume flow rate is halved Reduce. The one-step reduction in volumetric flow rate and the increase in CO 2 partial pressure in the CO 2 separation unit, and hence the reduction in cost and energy demand, is due to the CO 2 separation unit operating under pressure. Furthermore, cycle configuration is that discharged from the system normal every cycle flue gases during operation via the CO 2 separator. This ensures maximum CO 2 recovery (preferably over 80%). Further, the fresh air for combustion is separately compressed and introduced into the main gas turbine unit, and enters the gas turbine cycle from the high-pressure compressor inlet. This avoids dilution of the recirculated CO 2 rich exhaust gas before introduction into the separator. In order to minimize the work required for the compression of fresh air, the compressed CO 2 lean gas from the removal unit is sent through a separate expander mechanically coupled to the air compressor. Preferably, various heat recovery methods can be used to maximize the amount of work generated by the expander. For example, there is heat exchange between a fresh air stream exiting the compressor and a clean flue gas stream entering the expander.

以上の技術的思想のすべてにおいて、CO分離法としては、例えばアミン系溶媒などを用いる化学吸収法がある。慣用法では、作動媒体を吸収塔で溶媒と接触させて、COを気相から液相へと変換し、COリーンガスを排出する。或いは、隔膜(メンブラン)を接触要素として役立てることができる。これは、2つの流れが分離されたまま保たれ、溶媒のガス流への移動が防止され、ターボ機械が保護されるという利点を有する。加えて、全体的寸法、重量及びコストを低減できる。吸収塔又は隔膜ユニットから出るCO濃縮溶媒は分離塔で再生され、再使用のため再循環される。その他のCO分離法の具体例としては、物理吸収法、化学吸収法と物理吸収法の組合せ、固体での吸着並びにこれらの組合せがある。 In all of the above technical ideas, the CO 2 separation method includes, for example, a chemical absorption method using an amine solvent. In the conventional method, the working medium is brought into contact with a solvent in an absorption tower to convert CO 2 from a gas phase to a liquid phase, and CO 2 lean gas is discharged. Alternatively, a membrane can be used as a contact element. This has the advantage that the two streams are kept separated, the movement of the solvent into the gas stream is prevented and the turbomachine is protected. In addition, overall dimensions, weight and cost can be reduced. The CO 2 concentrated solvent exiting the absorption tower or diaphragm unit is regenerated in the separation tower and recycled for reuse. Specific examples of other CO 2 separation methods include a physical absorption method, a combination of a chemical absorption method and a physical absorption method, adsorption on a solid, and a combination thereof.

なお、空気(40,140、或いはユニット48,158に導入されるもの)が酸素濃縮されると、燃焼プロセスに導入される空気の体積が低減し、COの形成が改善される。従って、分離器を流れるガス流量がさらに低くなる。 It should be noted that when the air (40, 140 or that introduced into the units 48, 158) is oxygen enriched, the volume of air introduced into the combustion process is reduced and the formation of CO 2 is improved. Therefore, the gas flow rate flowing through the separator is further reduced.

本明細書に記載した高圧分離法が例えばオキシ燃焼法に対して有する格段の利点は、既存のターボ機械をわずかに変更するだけで使用できることである。これが可能となるのは、作動媒体の特性が既存のガスタービンにおける特性によく類似しているからである。   A significant advantage that the high-pressure separation method described herein has over, for example, an oxy-combustion method is that it can be used with minor modifications to existing turbomachines. This is possible because the characteristics of the working medium are very similar to those in existing gas turbines.

16/116又は48/148の前の加湿は、水噴射又は蒸気噴射のいずれか或いは加湿塔の使用によって達成できる。これら3通りの方法はすべて水蒸気の追加によって作動媒体からのCOの損失を補う。従って、各エキスパンダーを通る体積流量が増大し、出力が増す。さらに、既存のターボ機械を使用する場合、エキスパンダーの入口における所定の設計条件をこのように再設定すれば、プロセス性能を改善することができる。 Humidification prior to 16/116 or 48/148 can be achieved by either water injection or steam injection or the use of a humidification tower. All three of these methods make up for the loss of CO 2 from the working medium by the addition of water vapor. Thus, the volume flow through each expander increases and the output increases. Further, when an existing turbomachine is used, the process performance can be improved by resetting the predetermined design conditions at the expander inlet in this manner.

図3は、ガスタービン202を備える発電所200の別の実施形態を示す。ガスタービン202は、一般に、圧縮機204と、燃焼室206と、圧縮機204及び発電用の発電機210の駆動に必要なエネルギーを供給する1以上のエキスパンダーセクション208とを備える。一実施形態では、圧縮機204からの圧縮流212は、燃焼室206へと導かれる第1の部分214と、二次燃焼器218へと導かれる第2の部分216との2つの部分に分流される。二次燃焼器218では、圧縮流212の第2の部分216を追加の燃料220(例えば天然ガス)と共に燃焼させる。これは、第2の部分216の酸素含有量を低減するとともにCO濃度を最大にするために行われる。 FIG. 3 illustrates another embodiment of a power plant 200 that includes a gas turbine 202. The gas turbine 202 generally includes a compressor 204, a combustion chamber 206, and one or more expander sections 208 that provide the energy necessary to drive the compressor 204 and the generator 210 for power generation. In one embodiment, the compressed stream 212 from the compressor 204 is split into two parts: a first part 214 that is directed to the combustion chamber 206 and a second part 216 that is directed to the secondary combustor 218. Is done. In the secondary combustor 218, the second portion 216 of the compressed stream 212 is combusted with additional fuel 220 (eg, natural gas). This is done to reduce the oxygen content of the second portion 216 and maximize the CO 2 concentration.

COリッチ流222が二次燃焼器218で発生してCO回収システム224に導かれ、そこでCOリッチ流222からCO226が分離され、COリーン流228を二次タービンシステム230に導いて追加の出力を発生させる。適宜、システムは複数の熱交換接触面を含んでいてもよく、例えば、COリッチ流222とCOリーン流228を熱交換器232に導いてそれらの熱交換を行ってもよい。さらに、熱交換器232を二次燃焼器218に直接組み込んで、燃焼ガスとCOリーン流228との間での追加の熱交換を行うとともに二次燃焼器材料の冷却を行うこともできる。 CO 2 rich stream 222 is generated by the secondary combustor 218 is led to the CO 2 recovery system 224, where CO 2 226 from the CO 2 rich stream 222 is separated, the CO 2 lean stream 228 to the secondary turbine system 230 To produce additional output. Optionally, the system may include a plurality of heat exchange contact surfaces, for example, CO 2 rich stream 222 and CO 2 lean stream 228 may be directed to heat exchanger 232 for heat exchange therebetween. Further, the heat exchanger 232 can be incorporated directly into the secondary combustor 218 to provide additional heat exchange between the combustion gases and the CO 2 lean stream 228 and to cool the secondary combustor material.

二次タービンシステム230は、二次タービン234と二次圧縮機236とを備える。COリーン流228は二次タービン234に送られて膨張し、モータ発電機238で追加の電力を発生する。排出ガス240は二次タービン234を通って膨張した後で発生し、周囲環境に典型的には熱回収ユニット242を通して流れて残留熱を回収した後で放出することができる。排出ガス240からはCO回収システム224でCOの大部分が除去されているので、排出ガス240は実質的にCOを含まず、環境を損なわずに大気中に放出することができる。 The secondary turbine system 230 includes a secondary turbine 234 and a secondary compressor 236. The CO 2 lean stream 228 is sent to the secondary turbine 234 to expand and generate additional power at the motor generator 238. Exhaust gas 240 is generated after being expanded through secondary turbine 234 and can flow to the ambient environment, typically through heat recovery unit 242 to recover the residual heat and release it. Since most of the CO 2 is removed from the exhaust gas 240 by the CO 2 recovery system 224, the exhaust gas 240 is substantially free of CO 2 and can be released to the atmosphere without harming the environment.

空気244は二次圧縮機236を通して送られるが、圧縮機236は通例タービン234によって駆動され、圧縮空気流246を生じる。圧縮空気流246は燃焼室206に送られて、一次燃料248及び圧縮流212の第1の部分214と共に燃焼され、高温煙道ガス250を生成する。高温煙道ガス250はエキスパンダーセクション208で膨張して、発電機210で電力を発生させ、膨張排出ガス252を生ずる。膨張排出ガス252は熱回収蒸気発生器254に送られ、蒸気256と冷却膨張排出ガス258とを生じる。蒸気256は蒸気タービン260に送られて膨張し、さらに電力を発生させる。冷却膨張排出ガス258は圧縮機204に送られる。膨張排出ガス258は通例水を除去できる適当な温度に冷却され、圧縮機204に送られて、そこで排出ガスが圧縮される。   Air 244 is routed through secondary compressor 236, which is typically driven by turbine 234 to produce a compressed air stream 246. The compressed air stream 246 is sent to the combustion chamber 206 and combusted with the primary fuel 248 and the first portion 214 of the compressed stream 212 to produce hot flue gas 250. Hot flue gas 250 expands in expander section 208 and generates power in generator 210 to produce expanded exhaust gas 252. The expanded exhaust gas 252 is sent to the heat recovery steam generator 254 to produce steam 256 and cooled expanded exhaust gas 258. The steam 256 is sent to the steam turbine 260 to expand and further generate electric power. The cooled expanded exhaust gas 258 is sent to the compressor 204. The expanded exhaust gas 258 is typically cooled to a suitable temperature from which water can be removed and sent to the compressor 204 where the exhaust gas is compressed.

本発明の一実施形態では、燃焼室206は一次燃焼ゾーン262と二次燃焼ゾーン264とを含む。一実施形態では、圧縮空気246と一次燃料248は一次燃焼ゾーン262に送られて燃焼し、圧縮流212の第1の部分214は二次燃焼ゾーン264に送られる。   In one embodiment of the invention, the combustion chamber 206 includes a primary combustion zone 262 and a secondary combustion zone 264. In one embodiment, compressed air 246 and primary fuel 248 are sent to primary combustion zone 262 for combustion, and first portion 214 of compressed stream 212 is sent to secondary combustion zone 264.

一実施形態では、CO回収システム224に導入するためにCOリッチ流222から酸素を除去するため、触媒燃焼装置(図示せず)を使用してもよい。分離法によっては酸素分圧の減少による恩恵を受けるものもあり、例えば、CO回収に用いられる多くの溶媒の多くはほぼ酸素分圧に比例した速度で分解する。従って、酸素の除去は、システム全体の有効性に有益な効果をもつ。この構成の利点をこの実施形態で説明したが、この構成は本発明のすべての実施形態にも等しく適用できる。 In one embodiment, a catalytic combustion device (not shown) may be used to remove oxygen from the CO 2 rich stream 222 for introduction into the CO 2 capture system 224. Depending separation method while others benefit from a decrease in oxygen partial pressure, for example, decompose at a rate substantially proportional to the oxygen partial pressure many many solvents used in the CO 2 recovery. Thus, oxygen removal has a beneficial effect on the overall system effectiveness. Although the advantages of this configuration have been described in this embodiment, this configuration is equally applicable to all embodiments of the present invention.

本明細書では、当業者が本発明を実施できるように、最良の実施形態を含めた具体例を用いて本発明を説明してきた。本発明の技術的範囲は特許請求の範囲によって定まり、当業者に明らかな他の実施形態を包含する。そうした他の実施形態は、特許請求の範囲の文言と差異のない構成要素又は特許請求の範囲の文言とは実質的な差異のない均等な構成要素を有する場合、特許請求の範囲に包含される。   In the present specification, the present invention has been described using specific examples including the best mode for carrying out the present invention by those skilled in the art. The technical scope of the present invention is defined by the claims, and includes other embodiments that will be apparent to those skilled in the art. Such other embodiments are encompassed by the claims if they have components that do not differ from the claim language or equivalent components that do not differ substantially from the claim language. .

2段圧縮と、圧縮の途中での抽出圧縮ガスの部分流からのCO分離及び空気と再循環煙道ガスからなる圧縮ガスの再導入とを行う一実施形態に係る発電所の簡略図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified diagram of a power plant according to an embodiment that performs two-stage compression, CO 2 separation from a partial flow of extracted compressed gas during compression, and reintroduction of compressed gas comprising air and recirculated flue gas. 2段圧縮と、COリーンガス再循環生成物を用いた内部熱回収を伴うCO分離とを行う別の実施形態に係る発電所の簡略図。FIG. 6 is a simplified diagram of a power plant according to another embodiment that performs two-stage compression and CO 2 separation with internal heat recovery using a CO 2 lean gas recycle product. 圧縮機の下流で抽出した再循環排出ガスの部分流からのCO分離を行う別の実施形態に係る発電所の簡略図。FIG. 6 is a simplified diagram of a power plant according to another embodiment that performs CO 2 separation from a partial stream of recirculated exhaust gas extracted downstream of a compressor.

符号の説明Explanation of symbols

10 発電所
12 ガスタービン
13 圧縮機セクション
14 低圧圧縮機
16 高圧圧縮機
18 燃焼室
21 エキスパンダーセクション
22 高圧エキスパンダー
24 低圧エキスパンダー
26 発電機
28 熱回収及び蒸気発生器
30 凝縮器
32 煙道ガス
34 部分(煙道ガス)
36 分離器
38 残りの部分(煙道ガス)
42 トリム冷却器
44 清浄ガス
48 追加の圧縮機/エキスパンダー
50 熱交換器
51 中間冷却器
100 発電所
112 ガスタービン
113 圧縮機セクション
114 低圧圧縮機
116 高圧圧縮機
118 燃焼室
120 燃料
121 エキスパンダーセクション
122 高圧エキスパンダー
124 低圧エキスパンダー
126 発電機
132 煙道ガス
134 部分(煙道ガス)
136 分離器
138 残りの部分(煙道ガス)
142 トリム冷却器
144 清浄なCOリーンガス
148 エキスパンダー
150 再生器
152 エコノマイザ
154 加湿塔
155 加湿ガス
156 圧縮機
157 追加の圧縮機セクション
158 圧縮機
162 中間冷却器
164 中間冷却器
DESCRIPTION OF SYMBOLS 10 Power plant 12 Gas turbine 13 Compressor section 14 Low pressure compressor 16 High pressure compressor 18 Combustion chamber 21 Expander section 22 High pressure expander 24 Low pressure expander 26 Generator 28 Heat recovery and steam generator 30 Condenser 32 Flue gas 34 part ( Flue gas)
36 Separator 38 The rest (flue gas)
42 Trim cooler 44 Clean gas 48 Additional compressor / expander 50 Heat exchanger 51 Intermediate cooler 100 Power plant 112 Gas turbine 113 Compressor section 114 Low pressure compressor 116 High pressure compressor 118 Combustion chamber 120 Fuel 121 Expander section 122 High pressure Expander 124 Low pressure expander 126 Generator 132 Flue gas 134 Part (flue gas)
136 Separator 138 Remaining part (flue gas)
142 trim cooler 144 clean CO 2 lean gas 148 expander 150 regenerator 152 economizer 154 humidification tower 155 humidification gas 156 compressor 157 additional compressor section 158 compressor 162 intermediate cooler 164 intermediate cooler

Claims (10)

ガスタービン(12,112)を備える発電所(10,100)でエネルギーを発生させる方法であって、
低圧圧縮機(14,114)及び高圧圧縮機(16,116)を含む2以上の段を有する圧縮機セクション(13,113)と、圧縮機セクション(13,113)と流体連通した燃焼セクション(18,118)と、燃焼セクション(18,118)と流体連通したエキスパンダーセクション(21,121)とを備えるガスタービン(12,112)から煙道ガスを発生させる段階と、
煙道ガスを低圧圧縮機(14,114)に再循環する段階と、
圧縮再循環煙道ガスの一部を二酸化炭素(CO)分離器(36,136)に分流し、残りの部分を高圧圧縮機(16,116)に分流する段階と、
CO分離器(36,136)で分流部分からCOを分離してCOリーンガスを生成する段階と、
再循環煙道ガスの残りの部分を高圧圧縮機(16,116)に供給する段階と
を含んでなる方法。
A method for generating energy in a power plant (10, 100) comprising a gas turbine (12, 112), comprising:
A compressor section (13, 113) having two or more stages including a low pressure compressor (14, 114) and a high pressure compressor (16, 116), and a combustion section (in fluid communication with the compressor section (13, 113)) Generating gas from a gas turbine (12, 112) comprising an expander section (21, 121) in fluid communication with the combustion section (18, 118);
Recirculating the flue gas to the low pressure compressor (14, 114);
Diverting a portion of the compressed recycle flue gas to a carbon dioxide (CO 2 ) separator (36, 136) and diverting the remaining portion to a high pressure compressor (16, 116);
Generating a CO 2 lean gas to separate CO 2 from the diverted portion in a CO 2 separator (36, 136),
Feeding the remainder of the recirculated flue gas to the high pressure compressor (16, 116).
高圧圧縮機(16,116)への分流に先立って、新鮮空気を再循環煙道ガスの残りの部分と混合する段階をさらに含む、請求項1記載の方法。 The method of any preceding claim, further comprising mixing fresh air with the remainder of the recirculated flue gas prior to diversion to the high pressure compressor (16, 116). 再循環煙道ガスの残りの部分が、高圧圧縮機(16,116)に入る前に中間冷却器(51,164)を通過する、請求項1又は請求項2記載の方法。 The method according to claim 1 or 2, wherein the remaining part of the recirculated flue gas passes through the intercooler (51,164) before entering the high-pressure compressor (16,116). CO分離器(36,136)への煙道ガスの一部が、再循環煙道ガスの約10〜約70%である、請求項1乃至請求項3のいずれか1項記載の方法。 Some of the flue gas CO 2 separator into (36, 136) is from about 10 to about 70% of the recycle flue gas, any one method according to claims 1 to 3. CO分離器(36,136)で分流部分からCOを分離する段階で、COの50%超を除去する、請求項1乃至請求項4のいずれか1項記載の方法。 The method according to any one of claims 1 to 4, wherein more than 50% of the CO 2 is removed in the step of separating the CO 2 from the diverted portion with a CO 2 separator (36, 136). ガスタービン(12,112)からの煙道ガスがすべて、CO分離器(36,136)を介して発電所(10,100)から排出される、請求項1乃至請求項5のいずれか1項記載の方法。 6. Any one of claims 1 to 5, wherein all flue gas from the gas turbine (12, 112) is discharged from the power plant (10, 100) via a CO 2 separator (36, 136). The method described in the paragraph. CO排出量が低減するように構成された発電所(10,100)であって、当該発電所(10,100)が、
高圧圧縮機(16,116)と流体連通した低圧圧縮機(14,114)を含む2以上の圧縮段を有する圧縮機セクション(13,113)と、圧縮ガスを導入するための第1の入口、燃料(20,120)を導入するための第2の入口及び高温煙道ガスを吐出するための出口を有する燃焼器(18,118)と、高温煙道ガスを導入するための入口及び低圧圧縮機(14,114)と流体連通した出口を有する主エキスパンダーセクション(21,121)とを備えるガスタービン(12,112)と、
低圧圧縮機(14,114)から煙道ガスの一部を受け取るために低圧圧縮機(14,114)と流体連通したCO分離器(36,136)であって、COリーンガスを追加のエキスパンダー(48,157)に供給するCO分離器(36,136)と
を備えており、煙道ガスの残りの部分が、高圧圧縮機(16,116)と流体連通した低圧圧縮機(14,114)を介して、高圧圧縮機(16,116)に直接供給される、発電所。
A power plant (10, 100) configured to reduce CO 2 emissions, wherein the power plant (10, 100)
A compressor section (13, 113) having two or more compression stages including a low pressure compressor (14, 114) in fluid communication with the high pressure compressor (16, 116), and a first inlet for introducing compressed gas A combustor (18, 118) having a second inlet for introducing fuel (20, 120) and an outlet for discharging hot flue gas; and an inlet and low pressure for introducing hot flue gas A gas turbine (12, 112) comprising a main expander section (21, 121) having an outlet in fluid communication with the compressor (14, 114);
A CO 2 separator (36, 136) in fluid communication with the low pressure compressor (14, 114) to receive a portion of the flue gas from the low pressure compressor (14, 114), with additional CO 2 lean gas A low pressure compressor (14) having a CO 2 separator (36, 136) for feeding to the expander (48, 157), wherein the remaining part of the flue gas is in fluid communication with the high pressure compressor (16, 116). , 114), which is supplied directly to the high-pressure compressor (16, 116).
低圧圧縮機(14,114)からの煙道ガスの一部を処理するためにCO分離器(36,136)と低圧圧縮機(14,114)の間に配設された熱交換器(42,142)をさらに備える、請求項7記載の発電所。 A heat exchanger (disposed between the CO 2 separator (36, 136) and the low pressure compressor (14, 114) for treating a portion of the flue gas from the low pressure compressor (14, 114). 42, 142). The power plant of claim 7, further comprising: 高圧圧縮機(16,116)に導入される前の再循環煙道ガス(32,132)を受け入れて冷却するための中間冷却器(51,164)をさらに備える、請求項7又は請求項8記載の発電所。 The intercooler (51,164) for receiving and cooling the recirculated flue gas (32,132) before being introduced into the high pressure compressor (16,116). The listed power plant. ガスタービン(12,112)が1以上の追加のガスタービンと連結している、請求項7乃至請求項9のいずれか1項記載の発電所。 The power plant according to any one of claims 7 to 9, wherein the gas turbine (12, 112) is connected to one or more additional gas turbines.
JP2007286881A 2006-11-07 2007-11-05 Power plants using gas turbines for power generation and methods for reducing CO2 emissions Active JP5128243B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/557,243 2006-11-07
US11/557,243 US7827778B2 (en) 2006-11-07 2006-11-07 Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions

Publications (2)

Publication Number Publication Date
JP2008121668A true JP2008121668A (en) 2008-05-29
JP5128243B2 JP5128243B2 (en) 2013-01-23

Family

ID=39265193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286881A Active JP5128243B2 (en) 2006-11-07 2007-11-05 Power plants using gas turbines for power generation and methods for reducing CO2 emissions

Country Status (5)

Country Link
US (1) US7827778B2 (en)
JP (1) JP5128243B2 (en)
KR (1) KR101378195B1 (en)
CN (1) CN101235752B (en)
DE (1) DE102007053192B4 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530376A (en) * 2010-07-02 2013-07-25 エクソンモービル アップストリーム リサーチ カンパニー Stoichiometric combustion of rich air by exhaust gas recirculation system
JP2013533942A (en) * 2010-07-02 2013-08-29 エクソンモービル アップストリーム リサーチ カンパニー Low emission triple cycle power generation system and method
JP2013535604A (en) * 2010-07-02 2013-09-12 エクソンモービル アップストリーム リサーチ カンパニー Low emission triple cycle power generation system and method
JP2013221500A (en) * 2012-04-12 2013-10-28 General Electric Co <Ge> Method and system for controlling extraction pressure and temperature of stoichiometric egr system
JP2013545001A (en) * 2010-07-02 2013-12-19 エクソンモービル アップストリーム リサーチ カンパニー System and method for controlling fuel combustion
JP2014515801A (en) * 2011-03-22 2014-07-03 エクソンモービル アップストリーム リサーチ カンパニー Carbon dioxide capture system and method in a low emission turbine system
JP2014516395A (en) * 2011-03-22 2014-07-10 エクソンモービル アップストリーム リサーチ カンパニー Low emission turbine system with oxidant control system for inlet compressor and related method
JP2014517181A (en) * 2011-03-22 2014-07-17 エクソンモービル アップストリーム リサーチ カンパニー System and method for carbon dioxide capture and power generation in a low emission turbine system

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140130670A1 (en) 2012-11-14 2014-05-15 Peter Eisenberger System and method for removing carbon dioxide from an atmosphere and global thermostat using the same
US20080289495A1 (en) 2007-05-21 2008-11-27 Peter Eisenberger System and Method for Removing Carbon Dioxide From an Atmosphere and Global Thermostat Using the Same
JP5419869B2 (en) * 2007-06-22 2014-02-19 コモンウェルス サイエンティフィック アンドインダストリアル リサーチ オーガナイゼーション Improved method for transferring CO2 from a gas stream to an ammonia solution
US9027321B2 (en) 2008-03-28 2015-05-12 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
MY156350A (en) 2008-03-28 2016-02-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
MY153097A (en) 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US20090301054A1 (en) * 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
AU2009284712A1 (en) * 2008-08-22 2010-02-25 Commonwealth Scientific And Industrial Research Organisation Treatment of CO2-depleted flue gases
DE102008041874A1 (en) * 2008-09-08 2010-03-11 Robert Bosch Gmbh Apparatus and method for operating an internal combustion engine, computer program, computer program product
PL2344738T3 (en) 2008-10-14 2019-09-30 Exxonmobil Upstream Research Company Method and system for controlling the products of combustion
CH699804A1 (en) 2008-10-29 2010-04-30 Alstom Technology Ltd Gas turbine plant with exhaust gas recirculation and method for operating such a plant.
US20100170218A1 (en) * 2009-01-05 2010-07-08 General Electric Company Method for expanding compressor discharge bleed air
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
WO2010099452A2 (en) 2009-02-26 2010-09-02 Palmer Labs, Llc Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
EP2438281B1 (en) 2009-06-05 2016-11-02 Exxonmobil Upstream Research Company Combustor system
US20120174622A1 (en) * 2009-07-13 2012-07-12 Alstom Technology Ltd System for gas processing
EP2290202A1 (en) * 2009-07-13 2011-03-02 Siemens Aktiengesellschaft Cogeneration plant and cogeneration method
CH701803A1 (en) 2009-09-03 2011-03-15 Alstom Technology Ltd Gas turbine group and method for operating such a gas turbine group.
US20110094230A1 (en) * 2009-10-27 2011-04-28 Matthias Finkenrath System and method for carbon dioxide capture in an air compression and expansion system
US8341964B2 (en) * 2009-10-27 2013-01-01 General Electric Company System and method of using a compressed air storage system with a gas turbine
EP2496796A2 (en) * 2009-11-02 2012-09-12 Siemens Aktiengesellschaft Fossil-fueled power station comprising a carbon dioxide separation device and method for operating a fossil-fueled power station
CA2786010C (en) * 2010-01-25 2016-07-12 PFBC Environmental Energy Technology, Inc. Carbon dioxide capture interface and power generation facility
ES2763206T3 (en) 2010-04-30 2020-05-27 Peter Eisenberger Carbon dioxide capture method
US9028592B2 (en) 2010-04-30 2015-05-12 Peter Eisenberger System and method for carbon dioxide capture and sequestration from relatively high concentration CO2 mixtures
US20110265445A1 (en) * 2010-04-30 2011-11-03 General Electric Company Method for Reducing CO2 Emissions in a Combustion Stream and Industrial Plants Utilizing the Same
AU2011271634B2 (en) * 2010-07-02 2016-01-28 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
BR112012031512A2 (en) * 2010-07-02 2016-11-08 Exxonmobil Upstream Res Co low emission power generation systems and processes
WO2012018458A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company System and method for exhaust gas extraction
CN103069130B (en) 2010-08-06 2016-02-24 埃克森美孚上游研究公司 Optimize the system and method for stoichiometric(al) combustion
US9856769B2 (en) * 2010-09-13 2018-01-02 Membrane Technology And Research, Inc. Gas separation process using membranes with permeate sweep to remove CO2 from combustion exhaust
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US8869889B2 (en) 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
JP5637808B2 (en) * 2010-10-21 2014-12-10 株式会社東芝 Carbon dioxide recovery method and carbon dioxide recovery steam power generation system
US8726628B2 (en) * 2010-10-22 2014-05-20 General Electric Company Combined cycle power plant including a carbon dioxide collection system
US20120102964A1 (en) * 2010-10-29 2012-05-03 General Electric Company Turbomachine including a carbon dioxide (co2) concentration control system and method
TWI593872B (en) * 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 Integrated system and methods of generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
WO2012128927A1 (en) * 2011-03-22 2012-09-27 Exxonmobil Upstream Research Company Systems and methods for carbon dioxide capture in low emission turbine systems
TWI564474B (en) * 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
KR101275685B1 (en) * 2011-04-22 2013-06-14 한국에너지기술연구원 A exhaust gas treatment system using polymer membrane for CO2 capture process
US8671659B2 (en) * 2011-04-29 2014-03-18 General Electric Company Systems and methods for power generation using oxy-fuel combustion
EP2535101A1 (en) * 2011-06-13 2012-12-19 Alstom Technology Ltd Flue gas recirculation with CO2 enrichment membrane
CA2964550C (en) * 2011-07-02 2019-07-23 Inventys Thermal Technologies Inc. System and method for integrated adsorptive gas separation of combustion gases
US8205455B2 (en) * 2011-08-25 2012-06-26 General Electric Company Power plant and method of operation
US20130084794A1 (en) * 2011-09-29 2013-04-04 Vitali Victor Lissianski Systems and methods for providing utilities and carbon dioxide
US20130095999A1 (en) 2011-10-13 2013-04-18 Georgia Tech Research Corporation Methods of making the supported polyamines and structures including supported polyamines
IN2014KN01081A (en) 2011-11-02 2015-10-09 8 Rivers Capital Llc
EP2594746A1 (en) * 2011-11-17 2013-05-22 Siemens Aktiengesellschaft Gas turbine power plant with a gas turbine assembly and method for operating a gas turbine power plant
CN104428490B (en) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 The coal bed methane production of raising
WO2013120070A1 (en) 2012-02-11 2013-08-15 Palmer Labs, Llc Partial oxidation reaction with closed cycle quench
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US20130269356A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US20130269360A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a powerplant during low-load operations
US20130269357A1 (en) * 2012-04-12 2013-10-17 General Electric Company Method and system for controlling a secondary flow system
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
CA2890484C (en) * 2012-08-30 2022-07-05 Enhanced Energy Group LLC Cycle turbine engine power system
US11059024B2 (en) 2012-10-25 2021-07-13 Georgia Tech Research Corporation Supported poly(allyl)amine and derivatives for CO2 capture from flue gas or ultra-dilute gas streams such as ambient air or admixtures thereof
WO2014070667A1 (en) * 2012-10-31 2014-05-08 Membrane Technology And Research, Inc. Sweep-based membrane gas separation integrated with gas-fired power production and co2 recovery
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US20140182305A1 (en) * 2012-12-28 2014-07-03 Exxonmobil Upstream Research Company System and method for a turbine combustor
US9803865B2 (en) * 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9631815B2 (en) * 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) * 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
RU2637609C2 (en) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани System and method for turbine combustion chamber
US9784182B2 (en) 2013-03-08 2017-10-10 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
JP6250332B2 (en) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー Gas turbine equipment
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
SG11201604934QA (en) 2013-12-31 2016-07-28 Eisenberger Peter And Chichilnisky Graciela Jointly Rotating multi-monolith bed movement system for removing co2 from the atmosphere
US9504957B2 (en) 2014-01-06 2016-11-29 University Of Kentucky Research Foundation Flue gas desulfurization apparatus
US9957284B2 (en) 2014-01-10 2018-05-01 University Of Kentucky Research Foundation Method of increasing mass transfer rate of acid gas scrubbing solvents
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
TWI691644B (en) 2014-07-08 2020-04-21 美商八河資本有限公司 Method and system for power production with improved efficiency
ES2688804T3 (en) 2014-09-09 2018-11-07 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from an energy production system and method
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
MA40950A (en) 2014-11-12 2017-09-19 8 Rivers Capital Llc SUITABLE CONTROL SYSTEMS AND PROCEDURES FOR USE WITH POWER GENERATION SYSTEMS AND PROCESSES
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US20160237904A1 (en) * 2015-02-13 2016-08-18 General Electric Company Systems and methods for controlling an inlet air temperature of an intercooled gas turbine engine
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US20160273396A1 (en) * 2015-03-19 2016-09-22 General Electric Company Power generation system having compressor creating excess air flow and heat exchanger therefor
MX2017016478A (en) * 2015-06-15 2018-05-17 8 Rivers Capital Llc System and method for startup of a power production plant.
US10280760B2 (en) 2015-09-30 2019-05-07 General Electric Company Turbine engine assembly and method of assembling the same
US9863281B2 (en) 2015-12-08 2018-01-09 Esko Olavi Polvi Carbon dioxide capture interface for power generation facilities
EA037523B1 (en) 2016-02-18 2021-04-07 8 Риверз Кэпитл, Ллк System and method for power production using methanation
MY190077A (en) 2016-02-26 2022-03-24 8 Rivers Capital Llc Systems and methods for controlling a power plant
US10989113B2 (en) 2016-09-13 2021-04-27 8 Rivers Capital, Llc System and method for power production using partial oxidation
WO2018208165A1 (en) * 2017-05-08 2018-11-15 Equinor Energy As Exhaust gas power and water recovery
ES2960368T3 (en) 2017-08-28 2024-03-04 8 Rivers Capital Llc Low Quality Heat Optimization of Supercritical CO2 Recovery Energy Cycles
DE102017120369A1 (en) * 2017-09-05 2019-03-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Micro gas turbine arrangement and method for operating a micro gas turbine arrangement
US10830123B2 (en) * 2017-12-27 2020-11-10 Transportation Ip Holdings, Llc Systems and method for a waste heat-driven turbocharger system
CN112055775B (en) 2018-03-02 2023-04-28 八河流资产有限责任公司 System and method for power generation using carbon dioxide working fluid
CN112188925B (en) * 2018-03-09 2023-09-15 卡尔伯恩Ccs有限公司 Carbon capture system including gas turbine
CN110080843B (en) * 2019-05-28 2023-11-10 西安热工研究院有限公司 Supercritical carbon dioxide Brayton cycle working medium purification system and method
CN110375330B (en) * 2019-06-06 2020-10-13 清华大学 Staged oxygen supply combustion chamber and staged oxygen supply combustion method of gas turbine
US11193421B2 (en) 2019-06-07 2021-12-07 Saudi Arabian Oil Company Cold recycle process for gas turbine inlet air cooling
WO2021079324A1 (en) 2019-10-22 2021-04-29 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods
GB201917011D0 (en) * 2019-11-22 2020-01-08 Rolls Royce Plc Power generation system with carbon capture
US20230417187A1 (en) * 2020-11-17 2023-12-28 University Of Florida Research Foundation Gas turbine inlet cooling for constant power output
NO347043B1 (en) * 2021-01-12 2023-04-24 Karbon Ccs Ltd Vessel with a Carbon dioxide Capture System
WO2023287926A1 (en) * 2021-07-13 2023-01-19 Pts Power Inc. Exhaust gas path heat energy utilization system and method
US20240009616A1 (en) * 2022-07-11 2024-01-11 Karbon CCS Ltd. Carbon capture system comprising a gas turbine with two burners

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279729A (en) * 1991-03-07 1992-10-05 Mitsubishi Heavy Ind Ltd Carbon dioxide (co2) collecting gas turbine plant
JPH09509608A (en) * 1994-02-15 1997-09-30 クヴェルナー エーエスエー Method for removing and preventing carbon dioxide (CO 2) from exhaust gas generated from heat engine to the atmosphere
JP2004530097A (en) * 2001-06-14 2004-09-30 アンスティテュ フランセ デュ ペトロール Generators with low CO2 emissions and related methods
JP2004360694A (en) * 2003-06-02 2004-12-24 Alstom Technology Ltd Method to generate energy using energy generating facility having gas turbine and energy generating facility to implement the method
WO2005064232A1 (en) * 2003-12-23 2005-07-14 Alstom Technology Ltd Thermal power plant with sequential combustion and reduced co2 emissions and method for operating a plant of this type
WO2006018389A1 (en) * 2004-08-11 2006-02-23 Alstom Technology Ltd Method for generating energy in an energy generating installation comprising a gas turbine, and energy generating installation for carrying out said method
JP2006514209A (en) * 2003-03-18 2006-04-27 フルー・コーポレイシヨン Wet air turbine cycle comprising recovering carbon dioxide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592204A (en) * 1978-10-26 1986-06-03 Rice Ivan G Compression intercooled high cycle pressure ratio gas generator for combined cycles
JPH0697571B2 (en) * 1987-12-07 1994-11-30 信越化学工業株式会社 Organic high dielectric
US5490035A (en) * 1993-05-28 1996-02-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors
EP0946953A1 (en) * 1996-12-18 1999-10-06 Medtronic, Inc. High energy density capacitors and compounds for use in their preparation
US6256976B1 (en) * 1997-06-27 2001-07-10 Hitachi, Ltd. Exhaust gas recirculation type combined plant
NO990812L (en) * 1999-02-19 2000-08-21 Norsk Hydro As Method for removing and recovering CO2 from exhaust gas
US7284362B2 (en) * 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US20040011057A1 (en) * 2002-07-16 2004-01-22 Siemens Westinghouse Power Corporation Ultra-low emission power plant
US7490472B2 (en) * 2003-02-11 2009-02-17 Statoil Asa Efficient combined cycle power plant with CO2 capture and a combustor arrangement with separate flows
US7124589B2 (en) * 2003-12-22 2006-10-24 David Neary Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
WO2006046976A2 (en) * 2004-06-14 2006-05-04 University Of Florida Research Foundation, Inc. Turbine system with exhaust gas recirculation and absorption refrigeration system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04279729A (en) * 1991-03-07 1992-10-05 Mitsubishi Heavy Ind Ltd Carbon dioxide (co2) collecting gas turbine plant
JPH09509608A (en) * 1994-02-15 1997-09-30 クヴェルナー エーエスエー Method for removing and preventing carbon dioxide (CO 2) from exhaust gas generated from heat engine to the atmosphere
JP2004530097A (en) * 2001-06-14 2004-09-30 アンスティテュ フランセ デュ ペトロール Generators with low CO2 emissions and related methods
JP2006514209A (en) * 2003-03-18 2006-04-27 フルー・コーポレイシヨン Wet air turbine cycle comprising recovering carbon dioxide
JP2004360694A (en) * 2003-06-02 2004-12-24 Alstom Technology Ltd Method to generate energy using energy generating facility having gas turbine and energy generating facility to implement the method
WO2005064232A1 (en) * 2003-12-23 2005-07-14 Alstom Technology Ltd Thermal power plant with sequential combustion and reduced co2 emissions and method for operating a plant of this type
WO2006018389A1 (en) * 2004-08-11 2006-02-23 Alstom Technology Ltd Method for generating energy in an energy generating installation comprising a gas turbine, and energy generating installation for carrying out said method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530376A (en) * 2010-07-02 2013-07-25 エクソンモービル アップストリーム リサーチ カンパニー Stoichiometric combustion of rich air by exhaust gas recirculation system
JP2013533942A (en) * 2010-07-02 2013-08-29 エクソンモービル アップストリーム リサーチ カンパニー Low emission triple cycle power generation system and method
JP2013535604A (en) * 2010-07-02 2013-09-12 エクソンモービル アップストリーム リサーチ カンパニー Low emission triple cycle power generation system and method
JP2013545001A (en) * 2010-07-02 2013-12-19 エクソンモービル アップストリーム リサーチ カンパニー System and method for controlling fuel combustion
JP2014515801A (en) * 2011-03-22 2014-07-03 エクソンモービル アップストリーム リサーチ カンパニー Carbon dioxide capture system and method in a low emission turbine system
JP2014516395A (en) * 2011-03-22 2014-07-10 エクソンモービル アップストリーム リサーチ カンパニー Low emission turbine system with oxidant control system for inlet compressor and related method
JP2014517181A (en) * 2011-03-22 2014-07-17 エクソンモービル アップストリーム リサーチ カンパニー System and method for carbon dioxide capture and power generation in a low emission turbine system
JP2013221500A (en) * 2012-04-12 2013-10-28 General Electric Co <Ge> Method and system for controlling extraction pressure and temperature of stoichiometric egr system

Also Published As

Publication number Publication date
JP5128243B2 (en) 2013-01-23
CN101235752B (en) 2014-07-23
KR101378195B1 (en) 2014-03-26
CN101235752A (en) 2008-08-06
KR20080041580A (en) 2008-05-13
US20080104958A1 (en) 2008-05-08
US7827778B2 (en) 2010-11-09
DE102007053192B4 (en) 2019-03-14
DE102007053192A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP5128243B2 (en) Power plants using gas turbines for power generation and methods for reducing CO2 emissions
JP5043602B2 (en) System and method for power generation with carbon dioxide isolation
US9903271B2 (en) Low emission triple-cycle power generation and CO2 separation systems and methods
US7895822B2 (en) Systems and methods for power generation with carbon dioxide isolation
JP6147725B2 (en) System and method for carbon dioxide capture and power generation in a low emission turbine system
EP2588728B1 (en) Stoichiometric combustion of enriched air with exhaust gas recirculation
US20090193809A1 (en) Method and system to facilitate combined cycle working fluid modification and combustion thereof
US20080010967A1 (en) Method for Generating Energy in an Energy Generating Installation Having a Gas Turbine, and Energy Generating Installation Useful for Carrying Out the Method
US20050028529A1 (en) Method of generating energy in a power plant comprising a gas turbine, and power plant for carrying out the method
CA2828365A1 (en) Systems and methods for carbon dioxide capture in low emission turbine systems
US8833080B2 (en) Arrangement with a steam turbine and a condenser
JP2004530097A (en) Generators with low CO2 emissions and related methods
JP2011530033A (en) System and method for operating a gas turbine engine with an alternative working fluid
JP2012062897A (en) Method for capturing co2 from exhaust gas
JP2012032145A (en) System and method for co2 capture
WO2008091158A1 (en) Method and plant for enhancing co2 capture from a gas power plant or thermal power plant
WO2014207035A1 (en) Method and plant for capturing co2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350