[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008117597A - Transparent conductive board and its manufacturing method - Google Patents

Transparent conductive board and its manufacturing method Download PDF

Info

Publication number
JP2008117597A
JP2008117597A JP2006298847A JP2006298847A JP2008117597A JP 2008117597 A JP2008117597 A JP 2008117597A JP 2006298847 A JP2006298847 A JP 2006298847A JP 2006298847 A JP2006298847 A JP 2006298847A JP 2008117597 A JP2008117597 A JP 2008117597A
Authority
JP
Japan
Prior art keywords
transparent conductive
tin
conductive film
transparent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006298847A
Other languages
Japanese (ja)
Inventor
Takuya Kawashima
卓也 川島
Kenji Goto
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006298847A priority Critical patent/JP2008117597A/en
Publication of JP2008117597A publication Critical patent/JP2008117597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive board with a transparent conductive film with high conductivity through improvement of crystallinity while retaining high carrier concentration of tin-added indium oxide. <P>SOLUTION: The transparent conductive board is made by arranging a transparent base material and a transparent conductive film made of tin-added indium oxide on one face of the transparent conductive film. The transparent conductive film has a concentration gradient with an addition concentration of tin getting higher as it gets away from a transparent base board side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、透明導電性基板およびその製造方法に関する。   The present invention relates to a transparent conductive substrate and a manufacturing method thereof.

透明導電基板は、絶縁体であるガラスの表面にスズドープ酸化インジウム(ITO)や酸化スズ(TO)、フッ素ドープ酸化スズ(FTO)などの透光性導電酸化膜(TCO:Transparent Conductive oxide)を形成することにより導電性を備えた基板であり、光学的に透明な性質を保ちつつ、電気を流す性質も有する。これらの中で特にITOが透明導電膜として広く知られており、パソコン、テレビ、携帯電話などの液晶ディスプレイや太陽電池の透明電極に応用されている(例えば、特許文献1を参照)。   The transparent conductive substrate is formed with a transparent conductive oxide (TCO) such as tin-doped indium oxide (ITO), tin oxide (TO), or fluorine-doped tin oxide (FTO) on the surface of glass as an insulator. By doing so, the substrate has conductivity, and has the property of flowing electricity while maintaining the optically transparent property. Among these, ITO is widely known as a transparent conductive film, and is applied to liquid crystal displays such as personal computers, televisions, and mobile phones, and transparent electrodes of solar cells (for example, see Patent Document 1).

ITOは、酸素欠損量が多いことで高いキャリア濃度が得られるとともに、スズのドープ量が多いことでも高いキャリア濃度が得られる。ただしスズのドープ量が多すぎるとキャリアは高くなるが結晶性が悪くなってしまう。結晶性が悪くなると導電性が低下してしまい、一般に透明導電基板としては好ましくない(例えば、特許文献2を参照)。
特許第2516688号公報 特開2005−244128号公報
ITO has a high carrier concentration due to a large amount of oxygen vacancies, and a high carrier concentration can be obtained even when the amount of tin doped is large. However, if the amount of tin doped is too large, the carrier will be high but the crystallinity will be poor. When the crystallinity is deteriorated, the conductivity is lowered, which is generally not preferable as a transparent conductive substrate (see, for example, Patent Document 2).
Japanese Patent No. 2516688 JP-A-2005-244128

本発明は、このような従来の実情に鑑みて考案されたものであり、高いキャリア濃度を保ちつつ、スズ添加酸化インジウムの結晶性を向上させ、高い導電性を有する透明導電膜を備えた透明導電性基板を提供することを第一の目的とする。
また、本発明は、スズのドープ量を増加させても、高いキャリア濃度を保ちつつ、良好な結晶性を有するスズ添加酸化インジウムからなる透明導電膜を透明基材上に形成することのできる透明導電性基板の製造方法を提供することを第二の目的とする。
The present invention has been devised in view of such conventional circumstances, and improves the crystallinity of tin-added indium oxide while maintaining a high carrier concentration, and includes a transparent conductive film having high conductivity. It is a first object to provide a conductive substrate.
In addition, the present invention provides a transparent conductive film made of tin-doped indium oxide having good crystallinity on a transparent substrate while maintaining a high carrier concentration even when the tin doping amount is increased. A second object is to provide a method for manufacturing a conductive substrate.

本発明の請求項1に記載の透明導電性基板は、透明基材と、該透明基材の一面上にスズ添加酸化インジウムからなる透明導電膜を配してなる透明導電性基板であって、前記透明導電膜は、透明基材側から離れるにつれて、スズの添加濃度が高くなるように濃度勾配を有していることを特徴とする。
本発明の請求項2に記載の透明導電性基板は、請求項1において、前記透明導電膜の前記透明基材と接する側には、スズが添加されない酸化インジウムからなる部位を有していることを特徴とする。
本発明の請求項3に記載の透明導電性基板は、請求項1において、前記透明導電膜中のスズの総添加量が、2%以上、10%以下の範囲であることを特徴とする。
本発明の請求項4に記載の透明導電性基板の製造方法は、透明基材の一面上にスズ添加酸化インジウムからなる透明導電膜を形成する透明導電性基板の製造方法であって、前記透明導電膜を形成する際に、原料溶液中に含有されるスズの濃度を制御することにより、透明基材側から離れるにつれてスズの添加濃度が高くなるように制御することを特徴とする。
本発明の請求項5に記載の透明導電性基板の製造方法は、請求項4において、前記透明導電膜の形成において、前記透明導電膜の前記透明基材と接する側に、スズが添加されない酸化インジウムからなる部位を形成することを特徴とする。
本発明の請求項6に記載の透明導電性基板の製造方法は、請求項4において、前記透明導電膜は、スプレー熱分解法により形成されることを特徴とする。
The transparent conductive substrate according to claim 1 of the present invention is a transparent conductive substrate comprising a transparent base material and a transparent conductive film made of tin-added indium oxide on one surface of the transparent base material, The transparent conductive film has a concentration gradient such that the concentration of tin added increases as the distance from the transparent substrate side increases.
The transparent conductive substrate according to claim 2 of the present invention has a portion made of indium oxide to which tin is not added on the side in contact with the transparent base material of the transparent conductive film according to claim 1. It is characterized by.
The transparent conductive substrate according to claim 3 of the present invention is characterized in that, in claim 1, the total amount of tin added in the transparent conductive film is in the range of 2% to 10%.
The manufacturing method of the transparent conductive substrate of Claim 4 of this invention is a manufacturing method of the transparent conductive substrate which forms the transparent conductive film which consists of tin addition indium oxide on one surface of a transparent base material, Comprising: Said transparent When forming the conductive film, the concentration of tin contained in the raw material solution is controlled so that the concentration of tin added increases as the distance from the transparent substrate side increases.
The method for producing a transparent conductive substrate according to claim 5 of the present invention is the method according to claim 4, wherein in the formation of the transparent conductive film, oxidation is performed in which tin is not added to a side of the transparent conductive film in contact with the transparent substrate. A portion made of indium is formed.
According to a sixth aspect of the present invention, in the method for producing a transparent conductive substrate according to the fourth aspect, the transparent conductive film is formed by a spray pyrolysis method.

本発明では、スズ添加酸化インジウムからなる透明導電膜が、透明基材側から離れるにつれて、スズの添加濃度が高くなるように濃度勾配を有しているので、高いキャリア濃度を保ちつつも、結晶性の低下を抑制することができる。その結果、電子移動度が高くなり導電性が向上した透明導電膜を備えた透明導電性基板を提供することができる。
また、本発明では、スズ添加酸化インジウムからなる透明導電膜を形成するに際し、原料溶液中に含有されるスズの濃度を制御することにより、透明基材側から離れるにつれてスズの添加濃度が高くなるように制御できる。これにより、スズのドープ量を増加させても、高いキャリア濃度を保ちつつ、良好な結晶性を有するスズ添加酸化インジウムからなる透明導電膜を透明基材上に形成することのできる透明導電性基板の製造方法を提供することができる。
In the present invention, since the transparent conductive film made of tin-added indium oxide has a concentration gradient so that the concentration of tin added increases as the distance from the transparent substrate side increases, the crystal can be maintained while maintaining a high carrier concentration. Deterioration can be suppressed. As a result, it is possible to provide a transparent conductive substrate provided with a transparent conductive film having high electron mobility and improved conductivity.
Further, in the present invention, when forming a transparent conductive film made of tin-added indium oxide, the concentration of tin added increases as the distance from the transparent substrate side increases by controlling the concentration of tin contained in the raw material solution. Can be controlled. As a result, a transparent conductive substrate capable of forming a transparent conductive film made of tin-doped indium oxide having good crystallinity on a transparent base material while maintaining a high carrier concentration even when the tin doping amount is increased. The manufacturing method of can be provided.

以下、本発明に係る透明導電性基板の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a transparent conductive substrate according to the present invention will be described with reference to the drawings.

図1は、本発明に係る透明導電性基板の一実施形態を示す概略断面図である。
この透明導電性基板10は、透明基材11、および、その一方の面11aに形成されたスズ添加酸化インジウム(ITO)からなる透明導電膜12から概略構成されている。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a transparent conductive substrate according to the present invention.
The transparent conductive substrate 10 is generally composed of a transparent base material 11 and a transparent conductive film 12 made of tin-added indium oxide (ITO) formed on one surface 11a thereof.

透明基材11としては、光透過性の素材からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、透明基材として用いられるものであればいかなるものでも用いることができる。透明基材11は、これらの中から適宜選択される。また、透明基材11としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が90%以上の基板がより好ましい。   As the transparent base material 11, a substrate made of a light-transmitting material is used, and any material can be used as long as it is usually used as a transparent base material such as glass, polyethylene terephthalate, polycarbonate, and polyethersulfone. . The transparent substrate 11 is appropriately selected from these. Moreover, as a transparent base material 11, the board | substrate which is as excellent in a light transmittance as possible is preferable on a use, and the board | substrate whose transmittance | permeability is 90% or more is more preferable.

透明導電膜12は、ITOからなり、透明基材11に導電性を付与するために、その一方の面11aに形成された薄膜である。
そして、本発明の透明導電性基板10は、前記透明導電膜12が、透明基材11側から離れるにつれて、スズの添加濃度が高くなるように濃度勾配を有していることを特徴とする。
これにより、高いキャリア濃度を保ちつつも、ITOの結晶性の低下を抑制することができる。これにより、透明導電膜12における電子移動度が高くなり、その結果、透明導電性基板10の導電性を向上することができる。
The transparent conductive film 12 is made of ITO, and is a thin film formed on one surface 11a in order to impart conductivity to the transparent substrate 11.
And the transparent conductive substrate 10 of this invention has the density | concentration gradient so that the addition density | concentration of tin may become high as the said transparent conductive film 12 leaves | separates from the transparent base material 11 side.
Thereby, the fall of the crystallinity of ITO can be suppressed, maintaining a high carrier concentration. Thereby, the electron mobility in the transparent conductive film 12 becomes high, As a result, the electroconductivity of the transparent conductive substrate 10 can be improved.

例えば、本発明の透明導電性基板を光電変換素子の作用極として用いる場合、透明導電膜上に形成される多孔質酸化物半導体層との界面近傍においてスズの添加量が多いことで、透明導電膜と多孔質酸化物半導体層との間において良好なオーミックコンタクトが得られるとともに、他の領域ではスズのドープ量が少ないことで、良好な結晶性の膜となり好ましい。
なお、透明導電膜12におけるスズの添加濃度は、段階的に変化するものであってもよいし、連続的に変化するものであってもよい。
For example, when the transparent conductive substrate of the present invention is used as a working electrode of a photoelectric conversion element, the amount of tin added in the vicinity of the interface with the porous oxide semiconductor layer formed on the transparent conductive film increases the amount of transparent conductive A good ohmic contact can be obtained between the film and the porous oxide semiconductor layer, and the amount of tin doped in other regions is small, which is preferable because a good crystalline film is obtained.
In addition, the addition concentration of tin in the transparent conductive film 12 may change stepwise or may change continuously.

また、本発明の透明導電性基板10は、図2に示すように、前記透明導電膜の前記透明基材と接する側に、スズが添加されない酸化インジウムからなる部位12aを有していてもよい。
スズ添加酸化インジウムよりも結晶性の高い酸化インジウムからなる部位12aを下層に形成することにより、結晶性の低下をより確実に抑制することができる。これにより、透明導電膜12における電子移動度をさらに高くすることができ、その結果、透明導電性基板10の導電性をさらに向上することができる。
Moreover, as shown in FIG. 2, the transparent conductive substrate 10 of this invention may have the site | part 12a which consists of indium oxide to which tin is not added in the side which contacts the said transparent base material of the said transparent conductive film. .
By forming the portion 12a made of indium oxide having higher crystallinity than tin-added indium oxide in the lower layer, a decrease in crystallinity can be more reliably suppressed. Thereby, the electron mobility in the transparent conductive film 12 can be further increased, and as a result, the conductivity of the transparent conductive substrate 10 can be further improved.

また、前記透明導電膜12中におけるスズの総添加量は、2%以上、10%以下の範囲であることが好ましい。スズの添加濃度が2%未満であると、スズの添加によるキャリア濃度の増加効果が十分に得られない。一方、スズの添加濃度が10%を超えると、ITOの結晶性が低下してしまう。スズの添加濃度を2〜10%とすることにより2%以上、10%以下の範囲とすることにより、スズの添加量を、電子移動度の高い状態を維持した範囲で、結晶性の低下を抑制することができる。また、透明導電膜に投入された電流を膜全体に均一に拡散させることができる。   The total amount of tin added in the transparent conductive film 12 is preferably in the range of 2% to 10%. If the addition concentration of tin is less than 2%, the effect of increasing the carrier concentration due to the addition of tin cannot be sufficiently obtained. On the other hand, when the addition concentration of tin exceeds 10%, the crystallinity of ITO is lowered. By making the addition concentration of tin 2 to 10%, the range of 2% or more and 10% or less reduces the crystallinity within the range in which the amount of tin added maintains a high electron mobility state. Can be suppressed. Further, the current input to the transparent conductive film can be uniformly diffused throughout the film.

次に、この実施形態の透明導電性基板10の製造方法について説明する。
この実施形態では、まず、透明基材11の一方の面11aの全域を覆うように透明導電膜12を形成し、透明導電性基板10を作製する。
透明導電膜12を形成する方法としては、特に限定されるものではなく、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。
Next, the manufacturing method of the transparent conductive substrate 10 of this embodiment is demonstrated.
In this embodiment, first, the transparent conductive film 12 is formed so as to cover the entire area of the one surface 11a of the transparent base material 11, and the transparent conductive substrate 10 is manufactured.
The method for forming the transparent conductive film 12 is not particularly limited, and examples thereof include thin film forming methods such as sputtering, CVD (chemical vapor deposition), spray pyrolysis (SPD), and vapor deposition. Can be mentioned.

その中でも、前記透明導電膜12は、スプレー熱分解法により形成されたものであることが好ましい。透明導電膜12を、スプレー熱分解法により形成することで、容易にスズの添加濃度を連続的に傾斜させることができる。
また、スプレー熱分解法は、減圧システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好適である。
Among them, the transparent conductive film 12 is preferably formed by a spray pyrolysis method. By forming the transparent conductive film 12 by a spray pyrolysis method, the concentration of tin added can be easily inclined continuously.
In addition, the spray pyrolysis method is preferable because it does not require a decompression system and can simplify the manufacturing process and reduce costs.

ここで、図3は、本発明に係る透明導電性基板の製造に用いる成膜装置の一例を示す模式図である。
この成膜装置50は、スプレー熱分解法により被処理体(透明基材11)上に薄膜(透明導電膜12)を形成する成膜装置であって、前記被処理体を載置する支持手段51と、前記被処理体の温度を調整する温度制御手段と、前記被処理体の一面に向けて、前記薄膜の原料溶液からなるミスト53を噴霧する吐出手段54と、前記原料溶液に含有されるスズの濃度を調整する濃度制御手段55と、吐出手段54と対向する位置に配される被処理体との間の空間56を包み込むように配置されるフード57とを少なくとも備える。
Here, FIG. 3 is a schematic view showing an example of a film forming apparatus used for manufacturing the transparent conductive substrate according to the present invention.
The film forming apparatus 50 is a film forming apparatus that forms a thin film (transparent conductive film 12) on a target object (transparent base material 11) by spray pyrolysis, and is a support means for mounting the target object. 51, temperature control means for adjusting the temperature of the object to be processed, discharge means 54 for spraying the mist 53 made of the raw material solution of the thin film toward one surface of the object to be processed, and the raw material solution. And at least a hood 57 disposed so as to enclose a space 56 between the object to be processed disposed at a position facing the discharge means 54.

支持手段51は、透明基材11の被成膜面11aを所定の温度に保ちながら薄膜を形成するため、被処理体2の加熱・保持・冷却機能を備えた温度制御手段52を内蔵している。温度制御手段52は、例えばヒータである。
濃度制御手段55としては、例えば、溶液混合法やミスト混合法等が挙げられる。
The support means 51 has a built-in temperature control means 52 having functions of heating, holding, and cooling the object to be processed 2 in order to form a thin film while keeping the film formation surface 11a of the transparent substrate 11 at a predetermined temperature. Yes. The temperature control means 52 is a heater, for example.
Examples of the concentration control means 55 include a solution mixing method and a mist mixing method.

吐出手段は、空気(Airと表示)を取り込む第一導入路54αと、濃度制御手段55によってスズの添加量が調整された原料溶液を取り込む第二導入路54βとを備えている。例えば、矢印αの方向に空気を、矢印βの方向に原料溶液を導入し、これらを混ぜ合わせてミスト化を図った上で吐出口54aを通して被処理体である透明基材11に向けて噴霧する。   The discharge means includes a first introduction path 54α for taking in air (indicated as Air) and a second introduction path 54β for taking in the raw material solution whose tin addition amount has been adjusted by the concentration control means 55. For example, air is introduced in the direction of the arrow α and the raw material solution is introduced in the direction of the arrow β, and these are mixed to form a mist, and then sprayed toward the transparent substrate 11 as the object to be processed through the discharge port 54a. To do.

また、成膜装置50では、フード57が吐出手段52と対向する位置に配される被処理体との間の空間を包み込むように配置されているので、吐出手段54の吐出口54aからスプレー状に噴射された原料溶液は外気の影響を受けることなく、吐出口54aから被処理体に向かう放射状空間に噴霧された状態を安定に保つことができる。換言すると、フード57はその内部空間から装置への外部へ原料溶液が飛散し、無駄な使用量が増加するのも防ぐ働きもする、これにより、原料溶液は薄膜の形成に有効に使われる。   Further, in the film forming apparatus 50, the hood 57 is disposed so as to wrap up the space between the object to be processed disposed at a position facing the discharge unit 52, so that the spray form is formed from the discharge port 54 a of the discharge unit 54. The raw material solution sprayed on can be stably kept sprayed in the radial space from the discharge port 54a toward the object to be processed without being affected by the outside air. In other words, the hood 57 also functions to prevent the raw material solution from splashing from the internal space to the outside of the apparatus and increasing the amount of uselessness, thereby effectively using the raw material solution for forming a thin film.

このような成膜装置を用いてスプレー熱分解法により透明導電膜12を透明基材11上に成膜するとき、成膜条件、具体的には原料溶液中に含有されるスズの濃度を制御することにより、スズの添加濃度が異なる、具体的には透明基材側から離れるにつれて、スズの添加濃度が高くなるように濃度勾配を有するように透明導電膜12を成膜する。
これにより、高いキャリア濃度を保ちつつも、ITOの結晶性の低下を抑制することができる。その結果、結晶性が高く、電子移動度が高い透明導電膜を容易に形成することができる。
When the transparent conductive film 12 is formed on the transparent substrate 11 by spray pyrolysis using such a film forming apparatus, the film forming conditions, specifically, the concentration of tin contained in the raw material solution is controlled. By doing so, the transparent conductive film 12 is formed so as to have a concentration gradient so that the addition concentration of tin differs, specifically, as the distance from the transparent substrate side increases, the addition concentration of tin increases.
Thereby, the fall of the crystallinity of ITO can be suppressed, maintaining a high carrier concentration. As a result, a transparent conductive film having high crystallinity and high electron mobility can be easily formed.

また、前記透明導電膜12の形成において、前記透明導電膜12の前記透明基材11と接する側に、スズが添加されない酸化インジウムからなる部位12aを形成してもよい。
前記透明基材11と接する側に、スズ添加酸化インジウムよりも結晶性の高い酸化インジウムからなる部位12aを形成することにより、さらに結晶性の高い透明導電膜を形成することができる。
In forming the transparent conductive film 12, a portion 12a made of indium oxide to which tin is not added may be formed on the side of the transparent conductive film 12 in contact with the transparent base material 11.
By forming the portion 12a made of indium oxide having higher crystallinity than tin-added indium oxide on the side in contact with the transparent substrate 11, a transparent conductive film having higher crystallinity can be formed.

以上のようにして得られる透明導電性基板10は、ITOからなる透明導電膜12において、透明基材側から離れるにつれて、スズの添加濃度が高くなるように濃度勾配を有しているので、高いキャリア濃度を保ちつつも、ITOの結晶性の低下を抑制することができる。その結果、透明導電膜12における電子移動度が高くなり、導電性が向上したものとなる。   Since the transparent conductive substrate 10 obtained as described above has a concentration gradient in the transparent conductive film 12 made of ITO so that the addition concentration of tin increases as the distance from the transparent base material side increases, it is high. While maintaining the carrier concentration, it is possible to suppress a decrease in the crystallinity of ITO. As a result, the electron mobility in the transparent conductive film 12 is increased, and the conductivity is improved.

以上、本発明の透明導電性基板およびその製造方法について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。   As mentioned above, although the transparent conductive substrate of this invention and its manufacturing method were demonstrated, this invention is not limited to said example, It can change suitably as needed.

図3に示したような成膜装置を用いて、透明導電性基板を製造した。全ての工程は、大気雰囲気中にて行った。   A transparent conductive substrate was manufactured using a film forming apparatus as shown in FIG. All the steps were performed in an air atmosphere.

<原料溶液の調製>
まず、ITO透明導電膜を形成するための出発原料を、次のようにして調製した。
塩化インジウム(III)四水和物(InCl・4HO,Fw:293.24)3と塩化スズ(II)二水和物(SnCl・2HO,Fw:225.65)とを、例えばインジウムとスズのモル比が95:5となるように調製し、0.2mol/Lの各濃度になるようにエタノールを加えて溶解させた。これにより、スズ添加濃度を5%とした原料溶液を調製し、これを第五溶液とした。
同様に、インジウムとスズのモル比が、99:1、98:2、97:3、96:4、94:6、93:7、92:8となるように調製し、0.2mol/Lの各濃度になるようにエタノールを加えて溶解させた。これにより、スズ添加濃度を1%、2%、3%、4%、6%、7%、8%とした原料溶液を調製し、これらを順に第一溶液〜第四溶液、第六溶液〜第八溶液とした。
<Preparation of raw material solution>
First, a starting material for forming an ITO transparent conductive film was prepared as follows.
Indium (III) chloride tetrahydrate (InCl 3 · 4H 2 O, Fw: 293.24) 3 and tin (II) chloride dihydrate (SnCl 2 · 2H 2 O, Fw: 225.65) For example, the molar ratio of indium and tin was adjusted to 95: 5, and ethanol was added and dissolved so that each concentration was 0.2 mol / L. This prepared the raw material solution which made tin addition density | concentration 5%, and made this the 5th solution.
Similarly, the molar ratio of indium and tin was adjusted to be 99: 1, 98: 2, 97: 3, 96: 4, 94: 6, 93: 7, 92: 8, and 0.2 mol / L. Ethanol was added and dissolved so as to have each concentration. Thereby, the raw material solution which made the tin addition density | concentration 1%, 2%, 3%, 4%, 6%, 7%, 8% was prepared, and these were sequentially set to 1st solution-4th solution, 6th solution- An eighth solution was obtained.

<実施例1>
本例では、透明基材としてガラス基板(テンパックス#8330)上に、上記原料溶液を用いてスプレー熱分解法により、膜厚方向にスズ添加濃度が2%〜8%の範囲で増加するように、ITO透明導電膜を成膜した。
具体的には、スズ添加濃度を2%〜8%とした上記第二溶液〜第八溶液を順に13mlずつ用い、総厚800nmのITO透明導電膜を有する透明導電性基板を作製した。
なお、このときの成膜条件としては、ノズル口径が1mm、ノズル−基板間距離が500mm、噴霧圧力が約0.1MPa、基板表面温度が350℃であった。
<Example 1>
In this example, the tin addition concentration is increased in the range of 2% to 8% in the film thickness direction by spray pyrolysis using the above raw material solution on a glass substrate (Tempax # 8330) as a transparent substrate. Then, an ITO transparent conductive film was formed.
Specifically, a transparent conductive substrate having an ITO transparent conductive film having a total thickness of 800 nm was prepared by sequentially using 13 ml each of the second solution to the eighth solution having a tin addition concentration of 2% to 8%.
The film formation conditions at this time were a nozzle diameter of 1 mm, a nozzle-substrate distance of 500 mm, a spraying pressure of about 0.1 MPa, and a substrate surface temperature of 350 ° C.

<実施例2>
本例では、膜厚方向にスズ添加濃度が0%〜8%の範囲で増加するように、ITO透明導電膜を成膜した。このため、原料溶液の調製において、上述した第一溶液〜第八溶液の他に、スズ添加濃度を0%とした原料溶液を調製し、ゼロ溶液とした。他の点は、実施例1と同様にしてITO透明導電膜を成膜した。
具体的には、まず、上記ゼロ溶液を10ml用いてスズが添加されない酸化インジウムからなる部位を形成した。続いてスズ添加濃度を1%〜8%とした上記第一溶液〜第八溶液を順に10mlずつ用い、総厚800nmのITO透明導電膜を有する透明導電性基板を作製した。
<Example 2>
In this example, the ITO transparent conductive film was formed so that the tin addition concentration increased in the range of 0% to 8% in the film thickness direction. For this reason, in the preparation of the raw material solution, in addition to the first solution to the eighth solution described above, a raw material solution with a tin addition concentration of 0% was prepared and used as a zero solution. In other respects, an ITO transparent conductive film was formed in the same manner as in Example 1.
Specifically, first, 10 ml of the zero solution was used to form a portion made of indium oxide to which no tin was added. Subsequently, a transparent conductive substrate having an ITO transparent conductive film having a total thickness of 800 nm was prepared using 10 ml of the first solution to the eighth solution in order of tin addition concentration of 1% to 8%.

<比較例1>
本例では、膜厚方向にスズ添加濃度が4%一定とした、ITO透明導電膜を成膜した。他の点は、実施例1と同様にした。
具体的には、スズ添加濃度を4%とした上記第四溶液を90ml用い、総厚800nmのITO透明導電膜を有する透明導電性基板を作製した。
<Comparative Example 1>
In this example, an ITO transparent conductive film having a constant tin addition concentration of 4% in the film thickness direction was formed. The other points were the same as in Example 1.
Specifically, a transparent conductive substrate having an ITO transparent conductive film having a total thickness of 800 nm was prepared using 90 ml of the fourth solution having a tin addition concentration of 4%.

<比較例2>
本例では、膜厚方向にスズ添加濃度が4%〜8%の範囲で増加するように、ITO透明導電膜を成膜した。他の点は、実施例1と同様にしてITO透明導電膜を成膜した。
具体的には、スズ添加濃度を4%〜8%とした上記第四溶液〜第八溶液を順に18mlずつ用い、総厚800nmのITO透明導電膜を有する透明導電性基板を作製した。
<Comparative example 2>
In this example, the ITO transparent conductive film was formed such that the tin addition concentration increased in the range of 4% to 8% in the film thickness direction. In other respects, an ITO transparent conductive film was formed in the same manner as in Example 1.
Specifically, a transparent conductive substrate having an ITO transparent conductive film having a total thickness of 800 nm was prepared by using 18 ml of the fourth solution to the eighth solution with a tin addition concentration of 4% to 8% in order.

以上のようにして得られた透明導電性基板について、透明導電膜の光学特性として、抵抗値および透過率を測定した。抵抗値は四端子法により測定した。また、透過率は紫外線分光光度計を用いて測定した。その結果を表1に示す。   About the transparent conductive substrate obtained as mentioned above, the resistance value and the transmittance | permeability were measured as an optical characteristic of a transparent conductive film. The resistance value was measured by the four probe method. The transmittance was measured using an ultraviolet spectrophotometer. The results are shown in Table 1.

Figure 2008117597
Figure 2008117597

表1から、以下の点が明らかとなった。
(1)比較例2では、透明基材の表面上に、比較例1と同じ4%スズ添加濃度のITO膜を最初に形成してから、スズ添加濃度を順に8%まで増加させたITO透明導電膜を形成した。しかしながら、スズ添加濃度を4%固定とした比較例1に比べて、電子移動度は殆ど変化がなく、電気伝導性(比抵抗)も同じレベルであった。
(2)実施例1では、透明基材の表面上に、比較例1より低い2%スズ添加濃度のITO膜を最初に形成してから、スズ添加濃度を順に8%まで増加させたITO透明導電膜を形成した。この構成によれば、比較例1に比べて、電子移動度が増加し、比抵抗を低下させることができることが分かった。
(3)実施例2では、透明基材の表面上に、ズズを含まないITO透明導電膜を最初に形成してから、スズ添加濃度を順に8%まで増加させたITO透明導電膜を形成した。この構成によれば、実施例1に比べて、さらに電子移動度が増加し、一段と比抵抗の低いITO透明導電膜が得られることが分かった。
以上の結果から、実施例1、2のITO透明導電膜は、比較例1に比べてシート抵抗と比抵抗が低く、十分に高い透過率を備えるともに、高い電子移動度も併せて有することが確認された。
From Table 1, the following points became clear.
(1) In Comparative Example 2, an ITO film having the same 4% tin addition concentration as in Comparative Example 1 was first formed on the surface of the transparent substrate, and then the ITO addition concentration was increased to 8% in order. A conductive film was formed. However, compared to Comparative Example 1 in which the tin addition concentration was fixed at 4%, the electron mobility was hardly changed and the electric conductivity (specific resistance) was at the same level.
(2) In Example 1, an ITO film having a tin addition concentration of 2% lower than that of Comparative Example 1 was first formed on the surface of the transparent substrate, and then the ITO transparency was increased to 8% in order. A conductive film was formed. According to this configuration, it was found that the electron mobility can be increased and the specific resistance can be reduced as compared with Comparative Example 1.
(3) In Example 2, an ITO transparent conductive film containing no tins was first formed on the surface of the transparent substrate, and then an ITO transparent conductive film having a tin addition concentration increased to 8% in order was formed. . According to this configuration, it was found that the ITO mobility was further increased as compared with Example 1, and an ITO transparent conductive film having a much lower specific resistance was obtained.
From the above results, the ITO transparent conductive films of Examples 1 and 2 have lower sheet resistance and specific resistance than Comparative Example 1, have sufficiently high transmittance, and also have high electron mobility. confirmed.

本発明は、ITOからなる透明導電膜を備えた透明導電性基板に適用可能である。   The present invention can be applied to a transparent conductive substrate provided with a transparent conductive film made of ITO.

本発明に係る透明導電性基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the transparent conductive substrate which concerns on this invention. 本発明に係る透明導電性基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the transparent conductive substrate which concerns on this invention. 透明導電性基板の製造に用いた成膜装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the film-forming apparatus used for manufacture of a transparent conductive substrate.

符号の説明Explanation of symbols

10 透明導電性基板、11 透明基材、12 透明導電膜。   10 transparent conductive substrate, 11 transparent base material, 12 transparent conductive film.

Claims (6)

透明基材と、該透明基材の一面上にスズ添加酸化インジウムからなる透明導電膜を配してなる透明導電性基板であって、
前記透明導電膜は、透明基材側から離れるにつれて、スズの添加濃度が高くなるように濃度勾配を有していることを特徴とする透明導電性基板。
A transparent conductive substrate comprising a transparent base material and a transparent conductive film made of tin-added indium oxide on one surface of the transparent base material,
The said transparent conductive film has a concentration gradient so that the addition density | concentration of tin may become high as it leaves | separates from the transparent base material side, The transparent conductive substrate characterized by the above-mentioned.
前記透明導電膜の前記透明基材と接する側には、スズが添加されない酸化インジウムからなる部位を有していることを特徴とする請求項1に記載の透明導電性基板。   The transparent conductive substrate according to claim 1, wherein the transparent conductive substrate has a portion made of indium oxide to which tin is not added on a side in contact with the transparent base material. 前記透明導電膜中のスズの総添加量が、2%以上、10%以下の範囲であることを特徴とする請求項1に記載の透明導電性基板。   2. The transparent conductive substrate according to claim 1, wherein the total amount of tin added in the transparent conductive film is in the range of 2% to 10%. 透明基材の一面上にスズ添加酸化インジウムからなる透明導電膜を形成する透明導電性基板の製造方法であって、
前記透明導電膜を形成する際に、原料溶液中に含有されるスズの濃度を制御することにより、透明基材側から離れるにつれてスズの添加濃度が高くなるように制御することを特徴とする透明導電性基板の製造方法。
A transparent conductive substrate manufacturing method for forming a transparent conductive film made of tin-added indium oxide on one surface of a transparent substrate,
When forming the transparent conductive film, by controlling the concentration of tin contained in the raw material solution, it is controlled so that the concentration of tin added increases as the distance from the transparent substrate side increases A method for manufacturing a conductive substrate.
前記透明導電膜の形成において、前記透明導電膜の前記透明基材と接する側に、スズが添加されない酸化インジウムからなる部位を形成することを特徴とする請求項4に記載の透明導電性基板の製造方法。   5. The transparent conductive substrate according to claim 4, wherein in the formation of the transparent conductive film, a portion made of indium oxide to which tin is not added is formed on a side of the transparent conductive film in contact with the transparent base material. Production method. 前記透明導電膜は、スプレー熱分解法により形成されることを特徴とする請求項4に記載の透明導電性基板の製造方法。   The method for producing a transparent conductive substrate according to claim 4, wherein the transparent conductive film is formed by a spray pyrolysis method.
JP2006298847A 2006-11-02 2006-11-02 Transparent conductive board and its manufacturing method Pending JP2008117597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298847A JP2008117597A (en) 2006-11-02 2006-11-02 Transparent conductive board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298847A JP2008117597A (en) 2006-11-02 2006-11-02 Transparent conductive board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008117597A true JP2008117597A (en) 2008-05-22

Family

ID=39503363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298847A Pending JP2008117597A (en) 2006-11-02 2006-11-02 Transparent conductive board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008117597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122399A (en) * 2010-05-04 2011-11-10 삼성전자주식회사 Organic solar cell
WO2012127708A1 (en) * 2011-03-22 2012-09-27 シャープ株式会社 Thin film forming apparatus and thin film forming method
KR20220127053A (en) * 2021-03-10 2022-09-19 주성엔지니어링(주) Solar Cell and Method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205235A (en) * 2002-01-16 2003-07-22 Canon Inc Method and apparatus for depositing gradient film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205235A (en) * 2002-01-16 2003-07-22 Canon Inc Method and apparatus for depositing gradient film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122399A (en) * 2010-05-04 2011-11-10 삼성전자주식회사 Organic solar cell
KR101705705B1 (en) * 2010-05-04 2017-02-13 삼성전자 주식회사 Organic solar cell
WO2012127708A1 (en) * 2011-03-22 2012-09-27 シャープ株式会社 Thin film forming apparatus and thin film forming method
KR20220127053A (en) * 2021-03-10 2022-09-19 주성엔지니어링(주) Solar Cell and Method of manufacturing the same
KR102578719B1 (en) * 2021-03-10 2023-09-14 주성엔지니어링(주) Solar Cell and Method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN101622714B (en) Thin film transistor and its manufacturing method
US10311992B2 (en) Transparent conducting films including complex oxides
KR101870686B1 (en) Transparent Heater and Method for fabricating the same
JP2008078113A (en) Device for manufacturing transparent conductive substrate
Ravichandran et al. Thickness dependence of FTO over-layer on properties of FTO/FZO bilayer
KR20120074276A (en) Transparent conductive film and device comprising same
JP2008117597A (en) Transparent conductive board and its manufacturing method
CN111785440A (en) Preparation method of ITO thin film and ITO transparent conductive glass
KR20070084121A (en) Substratum with conductive film and process for producing the same
US9570242B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
US20130334688A1 (en) Multi-elements-doped zinc oxide film, manufacturing method and application thereof
KR101359913B1 (en) The manufacturing method of low-resistance, high transmittance, flexible FTO(F-doped Tin Oxide) transparent conductive film including carbon nanotubes
JP2007242340A (en) Transparent conductive substrate, its manufacturing method and its manufacturing apparatus
Seo et al. Preparation of transparent metal films, titanium-doped zinc-oxide films (TiO2) 2 (ZnO) 98 on PEN by using a RF-magnetron sputtering method
KR20140068586A (en) Method of fabricating zinc oxide based thin film for transparent electrode
KR101418304B1 (en) Doping method for metal oxide with F by using teflon and manufacturing method of oxide semiconductor using the same
CN108411252B (en) SrTiO3/Cu/SrTiO3Preparation method of flexible transparent conductive film with sandwich structure
JP5881995B2 (en) Transparent conductive film and method for producing the same
JP2007042494A (en) Action pole and its manufacturing method and solar cell and its manufacturing method
JP2006073267A (en) Transparent conductive film, manufacturing method of transparent conductive film and dye-sensitized solar cell
US20150140321A1 (en) Methodology for improved adhesion for deposited fluorinated transparent conducting oxide films on a substrate
KR101735999B1 (en) Double structured tin oxide thin film and fabrication method of the double structured tin oxide thin film
JP2007087866A (en) Transparent conductive substrate and its manufacturing method, and photoelectric transfer element
CN104835554A (en) Transparent conductive oxide film based on TiN interlayer doping
JP2009076276A (en) Transparent electrode base material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011